1
|
Utaaker KS, Kifleyohannes T, Ytrehus B, Robertsen PA, Strand O, Robertson LJ. Giardia duodenalis in sympatric wild reindeer and domestic sheep in Norway. Int J Parasitol Parasites Wildl 2024; 25:101004. [PMID: 39469134 PMCID: PMC11513482 DOI: 10.1016/j.ijppaw.2024.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Wild and semi-domesticated reindeer graze freely on natural pastures in Norway, often sharing these with domestic sheep and other domestic and wild ruminants. In this study, faecal samples from wild reindeer and domestic sheep were collected from two areas in southern Norway and analysed to assess the occurrence and assemblage of Giardia duodenalis. Among 162 wild reindeer samples, 25 (15%) were positive for Giardia, showing high infection intensities, with most of the samples belonging to sub-assemblage AI, which has zoonotic potential. Interestingly, this study did not detect subassemblage AIII, known to be found in wild ruminants. Among 45 sheep samples, 13 (29%) were Giardia-positive, with most belonging to assemblage E. The finding of predominantly assemblage AI in the reindeer was surprising, particularly given the large proportion of sheep shedding assemblage E Giardia cysts. As the number of sheep on these natural pastures far outnumbers the wild reindeer, it is intriguing that they do not seem to share Giardia assemblages.
Collapse
Affiliation(s)
- Kjersti Selstad Utaaker
- Faculty of Bioscience and Aquaculture, Nord University, Bodø, Norway
- Norwegian Veterinary Institute, Ås, Norway
| | - Tsegabirhan Kifleyohannes
- Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Norwegian Veterinary Institute, Ås, Norway
| | - Bjørnar Ytrehus
- Faculty of Bioscience and Aquaculture, Nord University, Bodø, Norway
- Norwegian Veterinary Institute, Ås, Norway
| | - Per-Anders Robertsen
- Department of Forestry and Wildlife Management, Hedmark University of Applied Sciences, Campus Evenstad, NO-2418, Elverum, Norway
| | - Olav Strand
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Lucy J. Robertson
- Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Ali M, Xu C, Wang J, Kulyar MFEA, Li K. Emerging therapeutic avenues against Cryptosporidium: A comprehensive review. Vet Parasitol 2024; 331:110279. [PMID: 39116547 DOI: 10.1016/j.vetpar.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Cryptosporidium is among the top causes of life-threatening diarrheal infection in public health and livestock sectors. Despite its high prevalence and economic importance, currently, there is no vaccine. Control of this protozoan is difficult due to the excretion of many resistant oocysts in the feces of the infected host, which contaminate the environment. Paromomycin shows inconsistent results and isn't considered a reliable therapy for cryptosporidiosis. Nitazoxanide (NTZ), the only FDA-approved drug against this parasite, is less productive in impoverished children and PLWHA (people living with HIV/AIDS). The absence of mitochondria and apicoplast, its unique location inside enterocytes separated by parasitophorous vacuole, and, most importantly, challenges in its genetic manipulations are some hurdles to the drug-discovery process. A library of compounds has been tested against Cryptosporidium during in vitro and in vivo trials. However, there has still not been sufficient success in finding the drug of choice against this parasite. Recent genome editing technologies based on CRISPR/Cas-9 have explored the functions of the vital genes by producing transgenic parasites that help to screen a collection of compounds to find target-specific drugs, provided the sufficient availability of in vitro culturing platforms, efficient transfection methods, and analytic techniques. The use of herbal remedies against Cryptosporidium is also an emerging area of interest with sufficient clinical success due to enhanced concern regarding anthelmintic resistance. Here, we highlighted present treatment options with their associated limitations, the use of genetic tools and natural products against it to find safe, effective, and inexpensive drugs to control the ever-increasing global burden of this disease.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jia Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Wang MY, Zhang S, Zhang ZS, Qian XY, Chai HL, Wang Y, Fan WJ, Yi C, Ding YL, Han WX, Zhao L, Liu YH. Prevalence and molecular characterization of Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis in dairy cattle in Ningxia, northwestern China. Vet Res Commun 2024; 48:2629-2643. [PMID: 38565798 DOI: 10.1007/s11259-024-10364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis are common intestinal pathogens that infect humans and animals. To date, research regarding these three protozoa in the Ningxia Hui Autonomous Region (Ningxia) has mostly been limited to a single pathogen, and comprehensive data on mixed infections are unavailable. This study aimed to evaluate the zoonotic potential of these three protozoa. In this study, small subunit ribosomal RNA (SSU rRNA) and 60 kDa glycoprotein (gp60) genes of Cryptosporidium; internal transcribed spacer (ITS) gene of E. bieneusi; and SSU rRNA, glutamate dehydrogenase (gdh), triosephosphate isomerase (tpi), and beta-giardin (bg) genes of G. duodenalis were examined. DNA extraction, polymerase chain reaction, and sequence analysis were performed on fecal samples collected from 320 dairy cattle at three intensive dairy farms in Ningxia in 2021 to determine the prevalence and genetic characteristics of these three protozoa. The findings revealed that 61.56% (197/320) of the samples were infected with at least one protozoan. The overall prevalence of Cryptosporidium was 19.38% (62/320), E. bieneusi was 41.56% (133/320), and G. duodenalis was 29.38% (94/320). This study identified four Cryptosporidium species (C. bovis, C. andersoni, C. ryanae, and C. parvum) and the presence of mixed infections with two or three Cryptosporidium species. C. bovis was the dominant species in this study, while the dominant C. parvum subtypes were IIdA15G1 and IIdA20G1. The genotypes of E. bieneusis were J, BEB4, and I alongside the novel genotypes NX1-NX8, all belonging to group 2, with genotype J being dominant. G. duodenalis assemblages were identified as assemblages E, A, and B, and a mixed infection involving assemblages A + E was identified, with assemblage E being the dominant one. Concurrently, 11 isolates formed 10 different assemblage E multilocus genotypes (MLGs) and 1 assemblage A MLG and assemblage E MLGs formed 5 subgroups. To the best of our knowledge, this is the first report on mixed infection with two or three Cryptosporidium species in cattle in Ningxia and on the presence of the C. parvum subtype IIdA20G1 in this part of China. This study also discovered nine genotypes of E. bieneusis and novel features of G. duodenalis assemblages in Ningxia. This study indicates that dairy cattle in this region may play a significant role in the zoonotic transmission of Cryptosporidium spp., E. bieneusi, and G. duodenalis.
Collapse
Affiliation(s)
- Ming-Yuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiao-Yin Qian
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Jun Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chao Yi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co., Ltd., Hohhot, China
| | - Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
4
|
Power GM, Renaud DL, Miltenburg C, Spence KL, Hagen BNM, Winder CB. Ontario dairy producers' and veterinarians' perspectives: Barriers to biosecurity implementation. J Dairy Sci 2024; 107:5738-5753. [PMID: 38490560 DOI: 10.3168/jds.2024-24029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Implementing biosecurity protocols is necessary to reduce the spread of disease on dairy farms. In Ontario biosecurity implementation is variable among farms, and the barriers to implementing biosecurity are unknown. Thirty-five semistructured interviews were conducted between July 2022 and January 2023 with dairy producers (n = 17) and veterinarians (n = 18). Participants also completed a demographic survey. Thematic analysis was performed with constructivist and grounded theory paradigms. Thematic coding was done inductively using NVivo software. Dairy producers' understanding of the definition of biosecurity varied, with all understanding that it was to prevent the spread of disease. Furthermore, the most common perception was that biosecurity prevented the spread of disease onto the farm. Both veterinarians and producers stated that closed herds were one of the most important biosecurity protocols. Barriers to biosecurity implementation included a lack of resources, internal and external business influencers, individual perceptions of biosecurity, and a lack of industry initiative. Understanding the barriers producers face provides veterinarians with the chance to tailor their communication to ensure barriers are reduced or for other industry members to reduce the barriers.
Collapse
Affiliation(s)
- G M Power
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1 Canada.
| | - D L Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1 Canada
| | - C Miltenburg
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, ON, N1G 4Y2 Canada
| | - K L Spence
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1 Canada
| | - B N M Hagen
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1 Canada
| | - C B Winder
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1 Canada
| |
Collapse
|
5
|
Zhao Q, Ning X, Yue Z, Jian F, Li D, Lang J, Lu S, Ning C. Unveiling the presence and genotypic diversity of Giardia duodenalis on large-scale sheep farms: insights from the Henan and Ningxia Regions, China. Parasit Vectors 2024; 17:312. [PMID: 39030643 PMCID: PMC11264889 DOI: 10.1186/s13071-024-06390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The parasitic protozoan Giardia duodenalis is an important cause of diarrheal disease in humans and animals that can be spread by fecal-oral transmission through water and the environment, posing a challenge to public health and animal husbandry. Little is known about its impact on large-scale sheep farms in China. In this study we investigated G. duodenalis infection of sheep and contamination of the environment in large-scale sheep farms in two regions of China, Henan and Ningxia. METHODS A total of 528 fecal samples, 402 environmental samples and 30 water samples were collected from seven large-scale sheep farms, and 88 fecal samples and 13 environmental samples were collected from 12 backyard farms. The presence of G. duodenalis was detected by targeting the β-giardin (bg) gene, and the assemblage and multilocus genotype of G. duodenalis were investigated by analyzing three genes: bg, glutamate dehydrogenase (gdh) and triphosphate isomerase (tpi). RESULTS The overall G. duodenalis detection rate was 7.8%, 1.4% and 23.3% in fecal, environmental and water samples, respectively. On the large-scale sheep farms tested, the infection rate of sheep in Henan (13.8%) was found to be significantly higher than that of sheep in Ningxia (4.2%) (P < 0.05). However, the difference between the rates of environmental pollution in Henan (1.9%) and Ningxia (1.0%) was not significant (P > 0.05). Investigations of sheep at different physiological stages revealed that late pregnancy ewes showed the lowest infection rate (1.7%) and that young lambs exhibited the highest (18.8%). Genetic analysis identified G. duodenalis belonging to two assemblages, A and E, with assemblage E being dominant. A total of 27 multilocus genotypes were identified for members of assemblage E. CONCLUSIONS The results suggest that G. duodenalis is prevalent on large-scale sheep farms in Henan and Ningxia, China, and that there is a risk of environmental contamination. This study is the first comprehensive examination of the presence of G. duodenalis on large-scale sheep farms in China. Challenges posed by G. duodenalis to sheep farms need to be addressed proactively to ensure public health safety.
Collapse
Affiliation(s)
- Qianming Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xiaodong Ning
- Henan Vocational College of Applied Technology, Zhengzhou, 450042, Henan, People's Republic of China
| | - Zhiguang Yue
- Henan Anjin Biotechnology CO., LTD, Zhengzhou, 450011, Henan, People's Republic of China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Dongliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Jiashu Lang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Shunli Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
6
|
Kaduková M, Schreiberová A, Mudroň P, Tóthová C, Gomulec P, Štrkolcová G. Cryptosporidium Infections in Neonatal Calves on a Dairy Farm. Microorganisms 2024; 12:1416. [PMID: 39065184 PMCID: PMC11279349 DOI: 10.3390/microorganisms12071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study was conducted with the aim of the molecular identification of the protozoan parasite Cryptosporidium spp. in calves in the early stage of their development on a dairy farm in Eastern Slovakia. Twenty-five Holstein and Holstein cross calves were included in the study and monitored from their birth to the fifth week of life (1-5 weeks). Fresh fecal samples were collected from the same group of calves each week, except during the fourth week, and with the exception of Sample 8. All samples were analyzed using the Ziehl-Neelsen staining method and coproantigen was tested using the ELISA test as the screening method. Using the ELISA method, the highest incidence of cryptosporidiosis was observed in the second week of life of the calves, while the antigen was detected in 21 (91.6%) calves. Using the Ziehl-Neelsen staining method, the highest incidence was also observed in the second week, with an incidence rate of 62.5%. Positive isolates confirmed by the ELISA test were molecularly characterized. The species and subtypes of Cryptosporidium in the positive isolates were identified using PCR and the sequence analysis of the small subunit of the ribosomal 18S RNA (ssu rRNA) and the 60 kDa glycoprotein (gp60) genes of the parasite. The sequence analysis of 29 isolates at the 18S rRNA loci confirmed the presence of two species-Cryptosporidium parvum and Cryptosporidium ryanae. Out of 29 isolates, 25 were assigned to the species C. parvum, with the gp60 locus identified as genotype IIaA17G1R1. Among the individual animal groups, calves are the most common reservoirs of the C. parvum zoonotic species. This disease has significant public health implications as contact with livestock and their feces and working with barn manure are major sources of infection, not only for other animals but also for humans.
Collapse
Affiliation(s)
- Michaela Kaduková
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 040 01 Košice, Slovakia; (M.K.); (G.Š.)
| | - Andrea Schreiberová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 040 01 Košice, Slovakia; (M.K.); (G.Š.)
| | - Pavol Mudroň
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 040 01 Košice, Slovakia; (P.M.); (C.T.); (P.G.)
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 040 01 Košice, Slovakia; (P.M.); (C.T.); (P.G.)
| | - Pavel Gomulec
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 040 01 Košice, Slovakia; (P.M.); (C.T.); (P.G.)
| | - Gabriela Štrkolcová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 040 01 Košice, Slovakia; (M.K.); (G.Š.)
| |
Collapse
|
7
|
Power GM, Renaud DL, Miltenburg C, Spence KL, Hagen BNM, Winder CB. Graduate Student Literature Review: Perceptions of biosecurity in a Canadian dairy context. J Dairy Sci 2024; 107:4605-4615. [PMID: 38310960 DOI: 10.3168/jds.2023-24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
The objective of this review was to outline current implementation of biosecurity, the impact of biosecurity on the industry, and producers' and veterinarians' perceptions of biosecurity, with a focus on the Canadian dairy industry. Biosecurity has an important role in farm safety by reducing the spread of pathogens and contaminants, improving animal health and production, and maintaining human safety. Implementation of biosecurity practices varies among farms and countries. Because Canada's supply management system is different than other countries, different barriers and perceptions of biosecurity may exist. Producers may have negative perspectives on biosecurity, such as it being expensive or time consuming. Producers are motivated or deterred from biosecurity implementation for many reasons, including perceived value, disease risk, and financial incentives or deterrents. In addition, because veterinarians are a trusted source of information, their approaches to discussions on biosecurity implementation are important to understand. Veterinarians and producers appear to have differing opinions on the importance of biosecurity and approaches to discussing biosecurity. Improving biosecurity implementation requires a multifactorial approach, such as individualized education and awareness for producers, further research into efficacy of and barriers to biosecurity, and development of strategies for effective communication between veterinarians and producers.
Collapse
Affiliation(s)
- G M Power
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, ON, N1G 2W1 Canada.
| | - D L Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, ON, N1G 2W1 Canada
| | - C Miltenburg
- Ontario Ministry of Agriculture, Food and Rural Affairs, ON, N1G 4Y2 Canada
| | - K L Spence
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, ON, N1G 2W1 Canada
| | - B N M Hagen
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, ON, N1G 2W1 Canada
| | - C B Winder
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, ON, N1G 2W1 Canada
| |
Collapse
|
8
|
Deng ML, Heng ZJ, Li LJ, Yang JF, He JJ, Zou FC, Shu FF. Cryptosporidium spp. Infection and Genotype Identification in Pre-Weaned and Post-Weaned Calves in Yunnan Province, China. Animals (Basel) 2024; 14:1907. [PMID: 38998019 PMCID: PMC11240314 DOI: 10.3390/ani14131907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Cryptosporidium is a globally distributed zoonotic protozoan parasite in humans and animals. Infection is widespread in dairy cattle, especially in calves, resulting in neonatal enteritis, production losses and high mortality. However, the occurrence of Cryptosporidium spp. in pre- and post-weaned calves in Yunnan Province remains unclear. METHODS We collected 498 fecal samples from Holstein calves on 10 different farms in four regions of Yunnan Province. Nested PCR and DNA sequencing were used to determine the infection, species and genotypes of Cryptosporidium spp. in these animals. RESULTS The overall occurrence of Cryptosporidium spp. in Holstein calves was 32.9% (164/498), and the prevalence in pre- and post-weaned calves was 33.5% (106/316) and 31.9% (58/182), respectively. Four Cryptosporidium species were identified in these animals, namely C. bovis (n = 119), C. parvum (n = 23), C. ryanae (n = 20) and C. andersoni (n = 2). Based on sequencing analysis of the 60 kDa glycoprotein gene of C. bovis, C. parvum and C. ryanae, six subtypes of C. bovis (XXVIe, XXVIb, XXVIf, XXVIa XXVIc and XXVId), two subtypes of C. parvum (IIdA19G1 and IIdA18G1) and four subtypes of C. ryanae (XXIf, XXId, XXIe and XXIg) were identified. CONCLUSIONS These results provide essential information to understand the infection rate, species diversity and genetic structure of Cryptosporidium spp. populations in Holstein pre-weaned and post-weaned calves in Yunnan Province. Further, the presence of IIdA18G1 and IIdA19G1 in C. parvum implies significant animal and public health concerns, which requires greater attention and more preventive measures.
Collapse
Affiliation(s)
- Meng-Ling Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Zhao-Jun Heng
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Liu-Jia Li
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Jian-Fa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Feng-Cai Zou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Fan-Fan Shu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
9
|
Nava MG, Szewczyk J, Arrington JV, Alam T, Vinayak S. The Cryptosporidium signaling kinase CDPK5 plays an important role in male gametogenesis and parasite virulence. Cell Rep 2024; 43:114263. [PMID: 38814783 PMCID: PMC11312397 DOI: 10.1016/j.celrep.2024.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
The protozoan parasite Cryptosporidium is a leading cause of diarrhea in young children. The parasite's life cycle involves a coordinated and timely progression from asexual to sexual stages, leading to the formation of the transmissible oocyst. Underlying molecular signaling mechanisms orchestrating sexual development are not known. Here, we describe the function of a signaling kinase in Cryptosporidium male gametogenesis. We reveal the expression of Cryptosporidium parvum calcium-dependent protein kinase 5 (CDPK5) during male gamete development and its important role in the egress of mature gametes. Genetic ablation of this kinase results in viable parasites, indicating that this gene is dispensable for parasite survival. Interestingly, cdpk5 deletion decreases parasite virulence and impacts oocyst shedding in immunocompromised mice. Using phosphoproteomics, we identify possible CDPK5 substrates and biological processes regulated by this kinase. Collectively, these findings illuminate parasite cell biology by revealing a mechanism controlling male gamete production and a potential target to block disease transmission.
Collapse
Affiliation(s)
- Maria G Nava
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Joanna Szewczyk
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Justine V Arrington
- Proteomics Core Facility, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Tauqeer Alam
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Sumiti Vinayak
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| |
Collapse
|
10
|
Feng K, Yang S, Xu Y, Wen L, Chen J, Zhang W, Chen S, Shen Y, Xiao L, Guo Y, Feng Y, Li N. Molecular characterization of Cryptosporidium spp., Giardia spp. and Enterocytozoon bieneusi in eleven wild rodent species in China: Common distribution, extensive genetic diversity and high zoonotic potential. One Health 2024; 18:100750. [PMID: 38798737 PMCID: PMC11127529 DOI: 10.1016/j.onehlt.2024.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Cryptosporidium spp., Giardia spp. and Enterocytozoon bieneusi are common zoonotic pathogens in humans and animals. Although rodents are important parts of the ecosystem and common hosts for these pathogens, little is known of the distribution, genetic diversity and zoonotic potential of these pathogens in wild rodents. A total of 442 fecal samples were collected from eleven wild rodent species in three provinces of China, and analyzed for these pathogens by PCR and DNA sequencing. The infection rates of Cryptosporidium spp., Giardia spp. and E. bieneusi were 19.9% (88/442), 19.8% (75/378) and 12.2% (54/442), respectively. Altogether, 23 known Cryptosporidium species/genotypes were identified and their distribution varied among different sampling locations or rodent species. Subtyping of the zoonotic Cryptosporidium species identified two novel subtype families XVe and XVf in C. viatorum, the subtype family XIIh and a novel subtype family XIIj in C. ubiquitum, and the subtype family IId in C. parvum. Three Giardia species were identified, including G. microti (n = 57), G. muris (n = 15) and G. duodenalis (n = 3), with G. duodenalis assemblages A and G identified in brown rats in urban areas of Guangdong. In addition, 13 E. bieneusi genotypes including eight known and five novel ones were identified, belonging to Groups 1, 2, 10, 14 and 15. Within nine genotypes in the zoonotic Group 1, common human-pathogenic genotypes D, Type IV, PigEbITS7 and Peru8 were detected only in brown rats and Lesser rice-field rats in urban areas of Guangdong. Apparent host adaptation and geographical differences were observed among Cryptosporidium spp., Giardia spp. and E. bieneusi genotypes in wild rodents in the present study. Furthermore, the zoonotic Cryptosporidium species and E. bieneusi genotypes commonly found here suggest a high zoonotic potential of these pathogens in wild rodents, especially in brown rats in urban areas. Hygiene and One Health measures should be implemented in urban streets and food stores to reduce the possible direct and indirect transmission of these rodent-related pathogens.
Collapse
Affiliation(s)
- Kangli Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shenghua Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yanhua Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Luxing Wen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jia Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Shouyi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, China
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| |
Collapse
|
11
|
KABIR MHB, KATO K. Examining the molecular epidemiology of Giardia and Eimeria species in Japan: a comprehensive review. J Vet Med Sci 2024; 86:563-574. [PMID: 38556324 PMCID: PMC11144535 DOI: 10.1292/jvms.23-0525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
Globally, animals and humans suffer from diarrheal illnesses due to protozoan parasites such as Giardia and Eimeria species. The molecular epidemiology of these parasites in Japan is summarized in this review. In humans, researchers found only one main species of Giardia, which is most referred to as G. lamblia, but it's also known by different names like G. duodenalis or G. intestinalis. However, within this species, six assemblages (A, B, C, D, E, and F) were found in animals, and assemblage B was frequently recorded in human and monkey populations, whereas assemblages A and E were predominant in calves. Assemblage A was found in sika deer and assemblages A, C, D, and F were predominant in dogs, cats, and ferret. Eimeria bovis, E. zuernii, and other species found in animals made up the group of species known as Eimeria spp., with E. bovis and E. zuernii being the most common in cattle. Our review highlighted a notable lack of data investigations regarding these two pathogens in water and environmental sources. Giardia cysts were found in the few studies that have been done on water sources, suggesting that water may play a significant role in the transmission of Giardia species. Our review suggests that further research is necessary to fully comprehend the molecular diversity and dynamics of transmission of Giardia spp. and Eimeria spp. in humans, animals, and environmental sources in Japan.
Collapse
Affiliation(s)
- Mohammad Hazzaz Bin KABIR
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Kentaro KATO
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| |
Collapse
|
12
|
Zhao Q, Qi M, Jing B, Jian F, Gong P, Lu C, Yan Y, Pei Z, Ning C. Cryptosporidium spp. in large-scale sheep farms in China: prevalence and genetic diversity. Sci Rep 2024; 14:11218. [PMID: 38755395 PMCID: PMC11099184 DOI: 10.1038/s41598-024-62110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024] Open
Abstract
Cryptosporidium spp. are significant zoonotic intestinal parasites that induce diarrhea and even death across most vertebrates, including humans. Previous studies showed that sheep are important hosts for Cryptosporidium and that its distribution in sheep is influenced by geography, feeding patterns, age, and season. Environmental factors also influence the transmission of Cryptosporidium. Molecular studies of Cryptosporidium in sheep have been conducted in only a few regions of China, and studies into the effect of sheep-housing environments on Cryptosporidium transmission are even rarer. To detect the prevalence of Cryptosporidium in large-scale sheep-housing farms, a total of 1241 fecal samples were collected from sheep, 727 environmental samples were taken from sheep housing, and 30 water samples were collected in six regions of China. To ascertain the existence of the parasite and identify the species of Cryptosporidium spp., we conducted nested PCR amplification of DNA extracted from all samples using the small-subunit (SSU) rRNA gene as a target. For a more in-depth analysis of Cryptosporidium spp. subtypes, C. xiaoi-and C. ubiquitum-positive samples underwent separate nested PCR amplification targeting the 60 kDa glycoprotein (gp60) gene. The amplification of the Cryptosporidium spp. SSU rRNA gene locus from the whole genomic DNA of all samples yielded a positive rate of 1.2% (20/1241) in fecal samples, 0.1% (1/727) in environmental samples, and no positive samples were found in water samples. The prevalence of Cryptosporidium spp. infection in large-scale housed sheep was 1.7%, which was higher than that in free-ranging sheep (0.0%). The highest prevalence of infection was found in weaning lambs (6.8%). Among the different seasons, the peaks were found in the fall and winter. The most prevalent species were C. xiaoi and C. ubiquitum, with the former accounting for the majority of infections. The distribution of C. xiaoi subtypes was diverse, with XXIIIc (n = 1), XXIIId (n = 2), XXIIIe (n = 2), and XXIIIl (n = 4) identified. In contrast, only one subtype, XIIa (n = 9), was found in C. ubiquitum. In this study, C. xiaoi and C. ubiquitum were found to be the predominant species, and Cryptosporidium was found to be present in the environment. These findings provide an important foundation for the comprehensive prevention and management of Cryptosporidium in intensively reared sheep. Furthermore, by elucidating the prevalence of Cryptosporidium in sheep and its potential role in environmental transmission, this study deepens our understanding of the intricate interactions between animal health, environmental contamination, and public health dynamics.
Collapse
Affiliation(s)
- Qianming Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Bo Jing
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Pihong Gong
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Chenyang Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yaqun Yan
- School of Life Science and Agronomy, ZhouKou Normal University, Zhoukou, 466001, Henan, People's Republic of China
| | - Zhiyang Pei
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
13
|
Jovanovic NM, Bisenic O, Nenadovic K, Bogunovic D, Rajkovic M, Maletic M, Mirilovic M, Ilic T. Gastrointestinal Parasites in Owned Dogs in Serbia: Prevalence and Risk Factors. Animals (Basel) 2024; 14:1463. [PMID: 38791680 PMCID: PMC11117320 DOI: 10.3390/ani14101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Dogs are the most popular pets worldwide. Close contact between dogs and people increases the risk of transmission of various zoonotic parasitic infections. Given the importance of veterinary medicine in preserving the One Health concept, the aim of this research was to identify intestinal parasites that may have zoonotic potential and to evaluate risk factors (individual and environmental). The research was conducted in Serbia in 2022 and 2023 on 382 owned dogs, using qualitative methods of coprological examination with a concentration on parasitic elements. The overall prevalence of intestinal parasites was 62.6%, with the following detected: protozoa: Cystoisospora spp. (9.2%), Sarcocystis spp. (4.5%), Neospora caninum/Hammondia spp. (3.7%), Giardia intestinalis (11.8%); nematoda: Toxocara canis (11.5%), Toxascaris leonina (4.2%), family Ancylostomatidae (38.0%), Trichuris vulpis (21.5%), Capillaria spp. (10.5%); trematoda: Alaria alata (1.6%) and cestodes from the Taeniidae family (1.3%). Factors like age, size and coat length, as well as the way of living, attitude and diet were linked to a significantly higher (p < 0.05) prevalence of intestinal parasites. Based on the results of coprological diagnostics, this research indicates the importance of educating dog owners, conducting routine parasitological tests on their pets and regular deworming strategies.
Collapse
Affiliation(s)
- Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (D.B.); (T.I.)
| | - Olga Bisenic
- Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Katarina Nenadovic
- Department of Animal Hygiene, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Danica Bogunovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (D.B.); (T.I.)
| | - Milan Rajkovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (D.B.); (T.I.)
| | - Milan Maletic
- Department of Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Milorad Mirilovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Tamara Ilic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (D.B.); (T.I.)
| |
Collapse
|
14
|
Luo C, Xu Y, Zhang J, Tian Q, Guo Y, Li N, Feng Y, Xu R, Xiao L. Cryptosporidium parvum disrupts intestinal epithelial barrier in neonatal mice through downregulation of cell junction molecules. PLoS Negl Trop Dis 2024; 18:e0012212. [PMID: 38787872 PMCID: PMC11156435 DOI: 10.1371/journal.pntd.0012212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cryptosporidium spp. cause watery diarrhea in humans and animals, especially in infants and neonates. They parasitize the apical surface of the epithelial cells in the intestinal lumen. However, the pathogenesis of Cryptosporidium-induced diarrhea is not fully understood yet. METHODOLOGY/PRINCIPAL FINDINGS In this study, we infected C57BL/6j neonatal mice with C. parvum IIa and IId subtypes, and examined oocyst burden, pathological changes, and intestinal epithelial permeability during the infection. In addition, transcriptomic analyses were used to study the mechanism of diarrhea induced by the C. parvum IId subtype. The neonatal mice were sensitive to both C. parvum IIa and IId infection, but the IId subtype caused a wide oocyst shedding window and maintained the high oocyst burden in the mice compared with the IIa subtype. In addition, the mice infected with C. parvum IId resulted in severe intestinal damage at the peak of infection, leading to increased permeability of the epithelial barrier. The KEGG, GO and GSEA analyses revealed that the downregulation of adherens junction and cell junction molecules at 11 dpi. Meanwhile, E-cadherin, which is associated with adherens junction, was reduced at the protein level in mouse ileum at peak and late infection. CONCLUSIONS/SIGNIFICANCE C. parvum IId infection causes more severe pathological damage than C. parvum IIa infection in neonatal mice. Furthermore, the impairment of the epithelial barrier during C. parvum IId infection results from the downregulation of intestinal junction proteins.
Collapse
Affiliation(s)
- Chaowei Luo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yanhua Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Qing Tian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rui Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Zhao L, Wang Y, Wang M, Zhang S, Wang L, Zhang Z, Chai H, Yi C, Fan W, Liu Y. First report of Giardia duodenalis in dairy cattle and beef cattle in Shanxi, China. Mol Biol Rep 2024; 51:403. [PMID: 38457002 DOI: 10.1007/s11033-024-09342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Giardia duodenalis is an important intestinal parasitic protozoan that infects several vertebrates, including humans. Cattle are considered the major source of giardiasis outbreak in humans. This study aimed to investigate the prevalence and multilocus genotype (MLG) of G. duodenalis in Shanxi, and lay the foundation for the prevention and control of Giardiosis. METHODS AND RESULTS DNA extraction, nested polymerase chain reaction, sequence analysis, MLG analysis, and statistical analysis were performed using 858 bovine fecal samples from Shanxi based on three gene loci: β-giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase (tpi). The overall prevalence of G. duodenalis was 28.3%, while its prevalence in Yingxian and Lingqiu was 28.1% and 28.5%, respectively. The overall prevalence of G. duodenalis in dairy cattle and beef cattle was 28.0% and 28.5%, respectively. G. duodenalis infection was detected in all age groups evaluated in this study. The overall prevalence of G. duodenalis in diarrhea and nondiarrhea samples was 32.4% and 27.5%, respectively, whereas that in intensively farmed and free-range cattle was 35.0% and 19.9%, respectively. We obtained 83, 53, and 59 sequences of bg, gdh, and tpi in G. duodenalis, respectively. Moreover, assemblage A (n = 2) and assemblage E (n = 81) by bg, assemblage A (n = 1) and assemblage E (n = 52) by gdh, and assemblage A (n = 2) and assemblage E (n = 57) by tpi were identified. Multilocus genotyping yielded 29 assemblage E MLGs, which formed 10 subgroups. CONCLUSIONS To the best of our knowledge, this is the first study to report cattle infected with G. duodenalis in Shanxi, China. Livestock-specific G. duodenalis assemblage E was the dominant assemblage genotype, and zoonotic sub-assemblage AI was also detected in this region.
Collapse
Affiliation(s)
- Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingyuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Lifeng Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhansheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hailiang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chao Yi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenjun Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yonghong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
16
|
Sanchez D, Zapata C, Romero Y, Flores-Huarco NH, Oros O, Alvarado W, Quilcate C, Guevara-Alvarado HM, Estrada R, Coila P. Parasitism-Induced Changes in Microbial Eukaryotes of Peruvian Alpaca Gastrointestinal Tract. Life (Basel) 2024; 14:187. [PMID: 38398696 PMCID: PMC10890412 DOI: 10.3390/life14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
Alpacas, important genetic resources in the Andean region of Peru, are vulnerable to diarrhea caused by pathogenic parasites such as Eimeria lamae and Giardia sp., which can be fatal, especially in neonates, due to their physiological immaturity and limited adaptability. The study investigated the diversity and abundance of intestinal fungi and protists in alpacas infected with Eimeria lamae and Giardia sp. compared to healthy alpacas. A total of 19 alpacas, aged between one and two months, were included. They were divided into two groups, one with pathological conditions (nine) and the other healthy (ten). Parasitological analyses for the detection of parasites and subsequent molecular analysis were performed on the collected fecal samples. The results revealed a greater diversity and abundance of protists in infected alpacas in comparison with healthy alpacas, while the fungal composition did not show significant changes. Therefore, parasitic infections affect the protist component of the alpaca gut microbiota. Also, it was observed that Blastocystis was identified in all healthy alpacas, serving as a possible marker of the health of the intestinal microbiota; in addition, Prussia and Pichia are beneficial fungi that help control diseases. This groundbreaking study in neonatal alpacas is the first to explore potential changes in the intestinal microbiota during an infectious state, underscoring the importance of further research to comprehend its effects on alpaca health and immune responses.
Collapse
Affiliation(s)
- Diana Sanchez
- Unidad de Post Grado de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, P.O. Box 291, Puno 21001, Peru; (D.S.); (N.H.F.-H.)
| | - Celso Zapata
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, P.O. Box 291, Puno 21001, Peru; (C.Z.); (O.O.)
| | - Yolanda Romero
- Instituto de Investigación en Bioinformática y Bioestadistica (BIOINFO), Av. Raúl Ferrero 21, Lima 15024, Peru;
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru;
| | - Nils H. Flores-Huarco
- Unidad de Post Grado de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, P.O. Box 291, Puno 21001, Peru; (D.S.); (N.H.F.-H.)
| | - Oscar Oros
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, P.O. Box 291, Puno 21001, Peru; (C.Z.); (O.O.)
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.); (H.M.G.-A.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru;
| | - Hada M. Guevara-Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.); (H.M.G.-A.)
| | - Richard Estrada
- Instituto de Investigación en Bioinformática y Bioestadistica (BIOINFO), Av. Raúl Ferrero 21, Lima 15024, Peru;
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru;
| | - Pedro Coila
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, P.O. Box 291, Puno 21001, Peru; (C.Z.); (O.O.)
| |
Collapse
|
17
|
Matas-Méndez P, Ávalos G, Caballero-Gómez J, Dashti A, Castro-Scholten S, Jiménez-Martín D, González-Barrio D, Muñoz-de-Mier GJ, Bailo B, Cano-Terriza D, Mateo M, Nájera F, Xiao L, Köster PC, García-Bocanegra I, Carmena D. Detection and Molecular Diversity of Cryptosporidium spp. and Giardia duodenalis in the Endangered Iberian Lynx ( Lynx pardinus), Spain. Animals (Basel) 2024; 14:340. [PMID: 38275800 PMCID: PMC10812403 DOI: 10.3390/ani14020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Cryptosporidium spp. and Giardia duodenalis are the main non-viral causes of diarrhoea in humans and domestic animals globally. Comparatively, much less information is currently available in free-ranging carnivore species in general and in the endangered Iberian lynx (Lynx pardinus) in particular. Cryptosporidium spp. and G. duodenalis were investigated with molecular (PCR and Sanger sequencing) methods in individual faecal DNA samples of free-ranging and captive Iberian lynxes from the main population nuclei in Spain. Overall, Cryptosporidium spp. and G. duodenalis were detected in 2.4% (6/251) and 27.9% (70/251) of the animals examined, respectively. Positive animals to at least one of them were detected in each of the analysed population nuclei. The analysis of partial ssu rRNA gene sequences revealed the presence of rodent-adapted C. alticolis (n = 1) and C. occultus (n = 1), leporid-adapted C. cuniculus (n = 2), and zoonotic C. parvum (n = 2) within Cryptosporidium, and zoonotic assemblages A (n = 5) and B (n = 3) within G. duodenalis. Subgenotyping analyses allowed for the identification of genotype VaA19 in C. cuniculus (gp60 locus) and sub-assemblages AI and BIII/BIV in G. duodenalis (gdh, bg, and tpi loci). This study represents the first molecular description of Cryptosporidium spp. and G. duodenalis in the Iberian lynx in Spain. The presence of rodent/leporid-adapted Cryptosporidium species in the surveyed animals suggests spurious infections associated to the Iberian lynx's diet. The Iberian lynx seems a suitable host for zoonotic genetic variants of Cryptosporidium (C. parvum) and G. duodenalis (assemblages A and B), although the potential risk of human transmission is regarded as limited due to light parasite burdens and suspected low excretion of infective (oo)cysts to the environment by infected animals. More research should be conducted to ascertain the true impact of these protozoan parasites in the health status of the endangered Iberian lynx.
Collapse
Affiliation(s)
- Pablo Matas-Méndez
- Faculty of Veterinary, Alfonso X El Sabio University (UAX), 28691 Villanueva de la Cañada, Spain;
| | - Gabriel Ávalos
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
| | - Javier Caballero-Gómez
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, 14004 Córdoba, Spain
- CIBERINFEC, ISCIII—CIBER Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
| | - Sabrina Castro-Scholten
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
| | - Débora Jiménez-Martín
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
| | - Gemma J. Muñoz-de-Mier
- Faculty of Health Sciences, Alfonso X El Sabio University (UAX), 28691 Villanueva de la Cañada, Spain;
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
| | - David Cano-Terriza
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
- CIBERINFEC, ISCIII—CIBER Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
| | - Marta Mateo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Fernando Nájera
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
- Faculty of Health Sciences, Alfonso X El Sabio University (UAX), 28691 Villanueva de la Cañada, Spain;
- Faculty of Medicine, Alfonso X El Sabio University (UAX), 28691 Villanueva de la Cañada, Spain
| | - Ignacio García-Bocanegra
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
- CIBERINFEC, ISCIII—CIBER Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
- CIBERINFEC, ISCIII—CIBER Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
18
|
Gomes-Gonçalves S, Santos-Silva S, Cruz AVS, Rodrigues C, Soeiro V, Barradas P, Mesquita JR. A Thorny Tale of Parasites: Screening for Enteric Protozoan Parasites in Hedgehogs from Portugal. Animals (Basel) 2024; 14:326. [PMID: 38275786 PMCID: PMC10812701 DOI: 10.3390/ani14020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Enteric protozoan parasites, such as Blastocystis sp., Balantioides coli, Cryptosporidium spp., and Giardia duodenalis, may have implications for both animal and human health.Transmitted through the fecal-oral route, these parasites cause symptoms such as diarrhea, abdominal pain, and weight loss. This study investigated the presence of these enteric protozoan parasites and genetically characterized them in hedgehogs from Portugal. A total of 110 hedgehog stool samples were collected. Molecular detection methods showed an overall occurrence of protozoa in 1.82% (2/110 95% CI: 0.22-6.41) of hedgehogs, with Blastocystis being found in one hedgehog and Cryptosporidium being found in another. No evidence for the presence of B. coli or G. duodenalis was found. This study suggests that there is a need to stay aware of hedgehogs as potential hosts of enteric protozoa. Ongoing research and surveillance efforts are recommended to explore practical prevention and control strategies. The results contribute to the limited knowledge of these parasites in Portuguese hedgehog populations and underscore their potential relevance to both veterinary and public health.
Collapse
Affiliation(s)
- Sara Gomes-Gonçalves
- Department of Biology, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (S.S.-S.); (A.V.S.C.)
| | - Andreia V. S. Cruz
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (S.S.-S.); (A.V.S.C.)
| | - Clarisse Rodrigues
- Centro de Recuperação e Interpretação do Ouriço—CRIDO, 4470-372 Maia, Portugal;
| | - Vanessa Soeiro
- Parque Biológico de Gaia, 4430-812 Vila Nova de Gaia, Portugal;
| | - Patrícia Barradas
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, Cooperativa de Ensino Superior Politécnico e Universitário, CRL(CESPU, CRL), 4585-116 Gandra, Portugal;
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - João R. Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (S.S.-S.); (A.V.S.C.)
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
19
|
Allam NAT, Hamouda RAEF, Sedky D, Abdelsalam ME, El-Gawad MEHA, Hassan NMF, Aboelsoued D, Elmaaty AMA, Ibrahim MA, Taie HAA, Hakim AS, Desouky HM, Megeed KNA, Abdel-Hamid MS. Medical prospects of cryptosporidiosis in vivo control using biofabricated nanoparticles loaded with Cinnamomum camphora extracts by Ulva fasciata. Vet World 2024; 17:108-124. [PMID: 38406364 PMCID: PMC10884584 DOI: 10.14202/vetworld.2024.108-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Global efforts are continuing to develop preparations against cryptosporidiosis. This study aimed to investigate the efficacy of biosynthesized Ulva fasciata loading Cinnamomum camphora oil extract on new zinc oxide nanoparticles (ZnONPs shorten to ZnNPs) and silver nanoparticles (AgNPs) as alternative treatments for Cryptosporidium parvum experimental infection in rats. Materials and Methods Oil extract was characterized by gas chromatography-mass spectrometry, loaded by U. fasciata on ionic-based ZnO and NPs, and then characterized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. Biosafety and toxicity were investigated by skin tests. A total of 105 C. parvum oocysts/rat were used (n = 81, 2-3 W, 80-120 g, 9 male rats/group). Oocysts shedding was counted for 21 d. Doses of each preparation in addition to reference drug were administered daily for 7 d, starting on post-infection (PI) day (3). Nitazoxanide (100 mg) was used as the reference drug. After 3 weeks, the rats were sacrificed for postmortem examination and histopathological examination. Two blood samples/rat/group were collected on the 21st day. Ethylenediaminetetraacetic acid blood samples were also used for analysis of biochemistry, hematology, immunology, micronucleus prevalence, and chromosomal abnormalities. Results C. camphora leaves yielded 28.5 ± 0.3 g/kg oil and 20 phycocompounds were identified. Spherical and rod-shaped particles were detected at 10.47-30.98 nm and 18.83-38.39 nm, respectively. ZnNPs showed the earliest anti-cryptosporidiosis effect during 7-17 d PI. Other hematological, biochemical, immunological, histological, and genotoxicity parameters were significantly fruitful; hence, normalized pathological changes induced by infestation were observed in the NPs treatments groups against the infestation-free and Nitazoxanide treated group. Conclusion C. camphora, U. fasciata, ZnNPs, and AgNPs have refluxed the pathological effects of infection as well as positively improved host physiological condition by its anticryptosporidial immunostimulant regenerative effects with sufficient ecofriendly properties to be proposed as an alternative to traditional drugs, especially in individuals with medical reactions against chemical commercial drugs.
Collapse
Affiliation(s)
- Nesreen Allam Tantawy Allam
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Giza, Cairo, Egypt
| | - Ragaa Abd El-Fatah Hamouda
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 5 Zone, Sadat City, Munofia, Egypt
| | - Doaa Sedky
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Giza, Cairo, Egypt
| | - Mahinour Ezzeldin Abdelsalam
- Department of General Biology, Center of Basic Sciences, Misr University for Science and Technology, Al Motamayez District, 6 of October, Giza, Cairo, Egypt
| | | | - Noha Mahmoud Fahmy Hassan
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Giza, Cairo, Egypt
| | - Dina Aboelsoued
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Giza, Cairo, Egypt
| | - Amal M. Abou Elmaaty
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Giza, Cairo, Egypt
| | - Muhammad A. Ibrahim
- Cytogenetics and Animal Cell Culture Lab., National Gene Bank, Agriculture Research Center, 9 Gamaa Street, Giza, Cairo, Egypt
| | - Hanan Anwar Aly Taie
- Department of Plant Biochemistry, Agriculture and Biological Researches Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Cairo, Egypt
| | - Ashraf Samir Hakim
- Department of Microbiology and Immunology, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Giza, Cairo, Egypt
| | - Hassan Mohamed Desouky
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Giza, Cairo, Egypt
| | - Kadria Nasr Abdel Megeed
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Giza, Cairo, Egypt
| | - Marwa Salah Abdel-Hamid
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 5 Zone, Sadat City, Munofia, Egypt
| |
Collapse
|
20
|
Yao Q, Fan YY, Huang S, Hu GR, Song JK, Yang X, Zhao GH. MiR-4521 affects the propagation of Cryptosporidium parvum in HCT-8 cells through targeting foxm1 by regulating cell apoptosis. Acta Trop 2024; 249:107057. [PMID: 37913972 DOI: 10.1016/j.actatropica.2023.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Cryptosporidium parvum could regulate the expression of microRNAs of epithelial cells to facilitate its intracellular propagation. MiR-4521 has been reported to play an important role during the development and progression of tumors and infectious diseases by regulating cell proliferation, apoptosis, and autophagy. However, the implication of miR-4521 during C. parvum infection was still unknown. In this study, the expression of miR-4521 was found to be upregulated in HCT-8 cells infected with C. parvum from 8 h post-infection (pi) to 48 hpi, and its upregulation would be related with the TLR/NF-κB signal pathway during C. parvum infection. One potential target of miR-4521, foxm1, was down-regulated in HCT-8 cells from 24 hpi to 48 hpi, and the expression of foxm1 was negatively regulated by miR-4521. The target relationship between miR-4521 and foxm1 was further validated by using dual luciferase reporter assay. Further studies showed that miR-4521 promoted the propagation of C. parvum in HCT-8 cells through targeting foxm1 by regulating BCL2-mediating cell apoptosis. These results contribute to further understanding of the regulatory mechanisms of host miRNAs during Cryptosporidium infection.
Collapse
Affiliation(s)
- Qian Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ying-Ying Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shuang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Gui-Rong Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jun-Ke Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xin Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling 712100, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling 712100, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling 712100, China.
| |
Collapse
|
21
|
Wang Z, Peng X, Bo X, Zhang B, Zhang Y, Yu F, Zhao A, Zhang Z, Qi M. Molecular evaluation of Cryptosporidium spp. in sheep in southern Xinjiang, China. Parasitol Res 2023; 122:2989-2997. [PMID: 37792051 DOI: 10.1007/s00436-023-07988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
Cryptosporidium spp. are diarrheagenic intestinal parasites with multiple hosts worldwide. A total of 1252 fresh fecal samples of sheep were collected from 10 large-scale farms in southern Xinjiang. Based on the small subunit ribosomal (SSU rRNA) gene of Cryptosporidium, 100 Cryptosporidium-positive samples (8.0%, 100/1252) were detected by PCR. Nine out of 10 farms were positive for Cryptosporidium, with the highest infection rate being 18.4% (23/125) on farm 9 in Qira. The infection rates of Cryptosporidium in pre-weaned lambs, weaned lambs, fattening sheep, and adult sheep were 20.3% (61/301), 10.3% (34/329), 0.9% (3/327), and 0.7% (2/295), respectively. Three Cryptosporidium species were identified, namely, C. xiaoi (n = 61), C. parvum (n = 22), and C. ubiquitum (n = 17). Of them, C. xiaoi was detected on all positive farms and in different age groups of sheep. The subtypes of C. parvum and C. ubiquitum were identified by PCR at the 60 kDa glycoprotein (gp60) gene. Two C. parvum subtypes were identified: IIdA19G1 (n = 21) and IIdA15G1 (n = 1). One C. ubiquitum subtype was identified with XIIa (n = 17). These results indicated the common transmission and genetic diversity of Cryptosporidium in sheep in southern Xinjiang, and further investigations are needed on the zoonotic potential of C. parvum and C. ubiquitum in this region.
Collapse
Affiliation(s)
- Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Xia Peng
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Bowen Zhang
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Aiyun Zhao
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Zhenjie Zhang
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China.
| | - Meng Qi
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China.
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China.
| |
Collapse
|
22
|
Cruz-Saavedra L, Arévalo VA, Garcia-Corredor D, Jiménez PA, Vega L, Pulido-Medellín M, Ortiz-Pineda M, Ramírez JD. Molecular detection and characterization of Giardia spp., Cryptosporidium spp., and Blastocystis in captive wild animals rescued from central Colombia. Int J Parasitol Parasites Wildl 2023; 22:1-5. [PMID: 37576459 PMCID: PMC10415623 DOI: 10.1016/j.ijppaw.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Cryptosporidium, Giardia, and Blastocystis are significant causes of diarrhea worldwide. However, studies on their prevalence in wild animals are limited, compared to humans and domestic animals. In this study, we collected 23 stool samples from captive wild rescued animals in Boyacá, Colombia. Using conventional PCR, we detected Cryptosporidium spp., Giardia spp., and Blastocystis in over half of the samples (69.6%). Cryptosporidium spp. (43.5%) were the most commonly found, followed by Giardia spp. (39.1%) and Blastocystis (13.0%). Co-infections involving these parasites were also observed. Subsequent genotyping revealed Cryptosporidium canis and Cryptosporidium ryanae as the predominant species. These findings contribute valuable information about the ecoepidemiology of intestinal parasites in Colombian wild animals.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología –UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Vivian Alejandra Arévalo
- Centro de Investigaciones en Microbiología y Biotecnología –UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Diego Garcia-Corredor
- Centro de Investigaciones en Microbiología y Biotecnología –UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia (Uptc), Tunja, Colombia
| | - Paula Andrea Jiménez
- Centro de Investigaciones en Microbiología y Biotecnología –UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología –UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Martín Pulido-Medellín
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia (Uptc), Tunja, Colombia
| | - Melissa Ortiz-Pineda
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia (Uptc), Tunja, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología –UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
23
|
Sangpeng J, Eamudomkarn C, Hongsrichan N, Artchayasawat A, Chaisongkram C, Ponsrila K, Kimkamkaew S, Laoprom N, Boonmars T, Sithithaworn P, Pitaksakulrat O. Prevalence of gastrointestinal parasites in captive mammals at Khon Kaen Zoo, Thailand. Vet World 2023; 16:2416-2424. [PMID: 38328364 PMCID: PMC10844781 DOI: 10.14202/vetworld.2023.2416-2424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 02/09/2024] Open
Abstract
Background and Aim Captive animals are susceptible to parasitic diseases due to the stress and confinement they experience. In addition, they can serve as reservoirs of zoonotic parasites that have the potential to infect humans. To investigate this possibility, we estimated the prevalence of gastrointestinal (GI) parasites in captive mammals at Khon Kaen Zoo, Thailand. Materials and Methods One hundred and forty-seven individual mammals (37 primates, 43 carnivores, 62 herbivores, and 5 rodents) were examined for parasitic infections by fecal examination daily for 3 consecutive days using the formalin-ethyl acetate concentration technique (FECT) and the agar plate culture method. Results According to FECT, the overall prevalence of GI parasites was 62.6% (92/147). Within animal groups, the numbers were as follows: 67.6% (25/37) in primates, 23.3% (10/43) in carnivores, 85.5% (53/62) in herbivores, and 80.0% (4/5) in rodents. Using the agar plate culture method, 21.43% (27/126) were positive for Strongyloides spp. and hookworm infections. The GI parasites identified belonged to three categories: protozoa (including Entamoeba histolytica species complex, Entamoeba coli, Giardia spp., coccidia, and ciliated protozoa), trematodes (minute intestinal flukes and rumen flukes), and nematodes (strongyle/hookworm, Strongyloides spp., Ascarididae, and Trichuris spp.). Conclusion The findings of this study indicate the prevalence of several GI parasites in zoo animals with the potential for transmission to humans, given the animals' close proximity to both visitors and animal caretakers.
Collapse
Affiliation(s)
- Jirawat Sangpeng
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chatanun Eamudomkarn
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nuttanan Hongsrichan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Atchara Artchayasawat
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chavin Chaisongkram
- Department of Research Conservation and Animal Health, Khon Kaen Zoo, 40280, Thailand
| | - Kanda Ponsrila
- Department of Research Conservation and Animal Health, Khon Kaen Zoo, 40280, Thailand
| | - Siriwan Kimkamkaew
- Department of Research Conservation and Animal Health, Khon Kaen Zoo, 40280, Thailand
| | - Nonglak Laoprom
- Department of General Science, Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Thidarut Boonmars
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Paiboon Sithithaworn
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Opal Pitaksakulrat
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
24
|
Xu C, Tuo H, Wang W, Zhang Z, Yu F, Chuai L, Qi M, Jing B. Occurrence and genetic characteristics of Giardia duodenalis in donkeys in Xinjiang, China. Parasite 2023; 30:50. [PMID: 38015006 PMCID: PMC10683582 DOI: 10.1051/parasite/2023052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/04/2023] [Indexed: 11/29/2023] Open
Abstract
Giardia duodenalis is a common enteric parasite in humans and animals. To examine the occurrence and genetic characteristics of Giardia in donkeys in Xinjiang, China, 758 fecal samples from donkeys were collected, and Giardia was screened via PCR at the SSU rRNA gene. A total of 17.0% (129/758) of samples tested positive for Giardia, with the infection rate in large-scale farm and domestic donkeys being 21.4% (124/580) and 2.8% (5/178), respectively; the infection rates in <1-year-old and ≥1-year-old donkeys were 19.3% (72/374) and 12.7% (41/323), respectively. Three Giardia assemblages were identified, with assemblage B (n = 102) as the prevalent assemblage, followed by assemblage A (n = 23) and assemblage E (n = 4). Of the 129 Giardia-positive isolates, 40, 34 and 59 sequences were obtained at the bg, gdh and tpi genes, respectively. Twenty-one isolates successfully allowed multilocus genotyping (MLG), with four novel assemblage A MLGs, named MLG-AI-1 (n = 1), MLG-AI-2 (n = 1), MLG-AI-3 (n = 1), and MLG-AI-4 (n = 1) and three novel assemblage B MLGs, named MLG-B1 (n = 1), MLG-B2 (n = 14), and MLG-B3 (n = 1). Moreover, two isolates formed two MLG-mixed sequences. The results suggest that donkeys are commonly infected with Giardia in Xinjiang, and there is genetic diversity and host adaptability among the isolates.
Collapse
Affiliation(s)
- Chunyan Xu
- College of Animal Science and Technology, Tarim University, Alar Xinjiang 843300 China
| | - Haixin Tuo
- College of Animal Science and Technology, Tarim University, Alar Xinjiang 843300 China
| | - Wen Wang
- College of Animal Science and Technology, Tarim University, Alar Xinjiang 843300 China
| | - Zhenjie Zhang
- College of Animal Science and Technology, Tarim University, Alar Xinjiang 843300 China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alar Xinjiang 843300 China
| | - Liwen Chuai
- College of Animal Science and Technology, Tarim University, Alar Xinjiang 843300 China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar Xinjiang 843300 China
| | - Bo Jing
- College of Animal Science and Technology, Tarim University, Alar Xinjiang 843300 China
| |
Collapse
|
25
|
dos Reis LL, de Souza LSS, Braga FCDO, Lima DCDS, Lima NADS, Padinha JDS, Nava AFD, Vicente ACP. Zoonotic Giardia duodenalis assemblage A in northern sloth from Brazilian Amazon. Mem Inst Oswaldo Cruz 2023; 118:e230088. [PMID: 37971095 PMCID: PMC10644951 DOI: 10.1590/0074-02760230088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The parasite Giardia duodenalis infects a wide range of vertebrate hosts, including domestic and wild animals as well as humans. Giardia is genotyped into eight assemblages (A-H). Zoonotic assemblages A and B have already been identified in humans and wild and domestic animals (non-human primates and cats) from Brazilian Amazon and in the world. Due to its zoonotic/zooanthroponotic nature, surveillance initiatives and the definition of Giardia assemblages are important in order to characterise the epidemiological scenario and to implement further control measures. OBJECTIVES Determine assemblages of G. duodenalis in sloths from the Brazilian Amazon Region. METHODS Faecal parasitological examination of sloths from Amazonas State. Polymerase chain reaction (PCR) targeting the beta giardin (BG), and genes from multilocus sequence typing (MLST) scheme, amplicon sequencing and phylogenetic analysis. FINDINGS Here, we identified, by microscopy, Giardia in two northern sloths (Bradypus tridactylus). These two samples were submitted to molecular assays and it was revealed that both were infected by G. duodenalis assemblage A. Phylogenetic analysis showed that they belong to assemblage A within sequences from humans and wild and domestic animals. CONCLUSION Therefore, besides showing, by the first time, the current presence of this parasite in sloths, our findings reveals that this wild animal species would be part of the zoonotic/zooanthroponotic scenario of this parasite in the Brazilian Amazon.
Collapse
Affiliation(s)
- Lisiane Lappe dos Reis
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas & Maria Deane, Laboratório de Diversidade Microbiana da Amazônia de Importância para a Saúde, Manaus, AM, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Programa de Pós-Graduação em Biologia Parasitária, Rio de Janeiro, RJ, Brasil
| | - Lirna Salvioni Silva de Souza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas & Maria Deane, Laboratório de Diversidade Microbiana da Amazônia de Importância para a Saúde, Manaus, AM, Brasil
| | - Francisco Carlos de Oliveira Braga
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas & Maria Deane, Laboratório de Diversidade Microbiana da Amazônia de Importância para a Saúde, Manaus, AM, Brasil
| | - Dayane Costa de Souza Lima
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas & Maria Deane, Laboratório de Diversidade Microbiana da Amazônia de Importância para a Saúde, Manaus, AM, Brasil
| | | | - Jessica da Silva Padinha
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas & Maria Deane, Laboratório de Diversidade Microbiana da Amazônia de Importância para a Saúde, Manaus, AM, Brasil
| | - Alessandra Ferreira Dales Nava
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas & Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Manaus, AM, Brasil
| | - Ana Carolina Paulo Vicente
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
26
|
Gomes-Gonçalves S, Palmeira JD, Ferreira H, Santos-Silva S, Mesquita JR. Occurrence and Phylogenetic Analysis of Zoonotic Enteropathogenic Protist Parasites in Asymptomatic Domestic Ruminants from Portugal. Pathogens 2023; 12:1341. [PMID: 38003805 PMCID: PMC10675233 DOI: 10.3390/pathogens12111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Enteropathogenic parasites are of significant concern for public health due to their zoonotic potential and their impact on human and animal health. In this study, we investigated their occurrence and characterized these enteropathogens in asymptomatic domestic ruminants from Portugal. A total of 302 stool samples were collected from cattle (n = 166), sheep (n = 73), and goats (n = 63) in various regions of Portugal and tested for Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, Blastocystis sp., and Balantioides coli by PCR. The occurrence of Cryptosporidium spp. was found to be 12.7% (8/63, 95% confidence interval [CI]: 5.65-23.5) in goats; however, no sample was found to be positive for Cryptosporidium spp. in cattle and sheep. For E. bieneusi, 6.35% (4/63; 95%CI: 1.76-15.47) of goats were found to be positive; however, no cattle or sheep were found to be positive. Blastocystis sp. was found in sheep (9.59%; 7/73; 95% [CI]: 0.394-18.76) and goats (12.70%; 8/63; 95% [CI]: 5.65-23.50) but none was found in cattle. No positive results for G. duodenalis or B. coli were detected in this study. This study provides essential baseline information for understanding the silent shedding and epidemiology of these enteropathogens in Portugal, contributing to overall livestock health and related occupational safety. Raising awareness among consumers, veterinarians, and farm owners is crucial to minimize the risk of transmission and promote effective disease control strategies.
Collapse
Affiliation(s)
- Sara Gomes-Gonçalves
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal;
| | - Josman Dantas Palmeira
- UCIBIO—Applied Molecular Biosciences Unit, University of Porto, 4050-313 Porto, Portugal; (J.D.P.); (H.F.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
- Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, 4050-313 Porto, Portugal
| | - Helena Ferreira
- UCIBIO—Applied Molecular Biosciences Unit, University of Porto, 4050-313 Porto, Portugal; (J.D.P.); (H.F.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
- Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, 4050-313 Porto, Portugal
| | - Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
| | - João R. Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
27
|
Chae JB, Shin SU, Kim S, Jo YM, Roh H, Chae H, Kim WG, Chae JS, Song H, Kang JW. The First Identification of Cryptosporidium parvum Virus-1 (CSpV1) in Hanwoo ( Bos taurus coreanae) Calves in Korea. Vet Sci 2023; 10:633. [PMID: 37999455 PMCID: PMC10674401 DOI: 10.3390/vetsci10110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Cryptosporidium is an obligate coccidian parasite that causes enteric diseases in bovine species. A double-stranded RNA virus associated with C. parvum oocysts, Cryptosporidium parvum virus-1 (CSpV1), has been characterized. However, the relationship between the abovementioned coccidian parasite and the virus has not been studied in the context of the known clinical outcomes. This study aimed to characterize the prevalence and molecular traits of CSpV1 in diarrheal feces of Hanwoo (Korean indigenous cattle) calves. Of the 140 fecal samples previously tested for C. parvum, which were obtained from Hanwoo calves aged 60 days, 70 tested positive and 70 tested negative. These samples were included in this study. By using the polymerase chain reaction (PCR) analysis targeting the RdRp gene of CSpV1, we detected CSpV1 in 28 samples (20.0%), with infection rates of 31.4% (22/70) in C. parvum-positive and 8.6% (6/70) in C. parvum-negative samples. CSpV1 samples detected in the same farm were clustered together. To the best of our knowledge, this is the first study to report the prevalence and molecular characteristics of CSpV1 in Hanwoo calves in the Republic of Korea, providing important insights into the relationship between C. parvum and CSpV1 in bovine hosts.
Collapse
Affiliation(s)
- Jeong-Byoung Chae
- Bio Team, Animal Industry Data Korea, Seoul 06152, Republic of Korea; (J.-B.C.); (S.-U.S.); (S.K.); (Y.-M.J.); (H.R.); (H.C.); (W.-G.K.)
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Seung-Uk Shin
- Bio Team, Animal Industry Data Korea, Seoul 06152, Republic of Korea; (J.-B.C.); (S.-U.S.); (S.K.); (Y.-M.J.); (H.R.); (H.C.); (W.-G.K.)
| | - Serim Kim
- Bio Team, Animal Industry Data Korea, Seoul 06152, Republic of Korea; (J.-B.C.); (S.-U.S.); (S.K.); (Y.-M.J.); (H.R.); (H.C.); (W.-G.K.)
| | - Young-Mi Jo
- Bio Team, Animal Industry Data Korea, Seoul 06152, Republic of Korea; (J.-B.C.); (S.-U.S.); (S.K.); (Y.-M.J.); (H.R.); (H.C.); (W.-G.K.)
| | - Hyunsoo Roh
- Bio Team, Animal Industry Data Korea, Seoul 06152, Republic of Korea; (J.-B.C.); (S.-U.S.); (S.K.); (Y.-M.J.); (H.R.); (H.C.); (W.-G.K.)
| | - Hansong Chae
- Bio Team, Animal Industry Data Korea, Seoul 06152, Republic of Korea; (J.-B.C.); (S.-U.S.); (S.K.); (Y.-M.J.); (H.R.); (H.C.); (W.-G.K.)
| | - Won-Gyeong Kim
- Bio Team, Animal Industry Data Korea, Seoul 06152, Republic of Korea; (J.-B.C.); (S.-U.S.); (S.K.); (Y.-M.J.); (H.R.); (H.C.); (W.-G.K.)
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Hyuk Song
- Department of Stem Cells and Regenerative Technology, Konkuk Institute of Science and Technology, Konkuk University, Seoul 05029, Republic of Korea;
| | - Jung-Won Kang
- Bio Team, Animal Industry Data Korea, Seoul 06152, Republic of Korea; (J.-B.C.); (S.-U.S.); (S.K.); (Y.-M.J.); (H.R.); (H.C.); (W.-G.K.)
| |
Collapse
|
28
|
Khan SM, Bajwa MR, Lahar RY, Witola WH. Combination of inhibitors for two glycolytic enzymes portrays high synergistic efficacy against Cryptosporidium parvum. Antimicrob Agents Chemother 2023; 67:e0056923. [PMID: 37655889 PMCID: PMC10583678 DOI: 10.1128/aac.00569-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/22/2023] [Indexed: 09/02/2023] Open
Abstract
Cryptosporidium is an intracellular protozoan parasite that causes serious enteric disease in humans and in a wide range of animals worldwide. Despite its high prevalence, no effective therapeutic drugs are available against life-threatening cryptosporidiosis in at-risk populations including malnourished children, immunocompromised patients, and neonatal calves. Thus, new efficacious drugs are urgently needed to treat all susceptible populations with cryptosporidiosis. Unlike other apicomplexans, Cryptosporidium parvum lacks the tricarboxylic acid cycle and the oxidative phosphorylation steps, making it solely dependent on glycolysis for metabolic energy production. We have previously reported that individual inhibitors of two unique glycolytic enzymes, the plant-like pyruvate kinase (CpPyK) and the bacterial-type lactate dehydrogenase (CpLDH), are effective against C. parvum, both in vitro and in vivo. Herein, we have derived combinations of CpPyK and CpLDH inhibitors with strong synergistic effects against the growth and survival of C. parvum, both in vitro and in an infection mouse model. In infected immunocompromised mice, compound combinations of NSC303244 + NSC158011 and NSC252172 + NSC158011 depicted enhanced efficacy against C. parvum reproduction and ameliorated intestinal lesions of cryptosporidiosis at doses fourfold lower than the total effective doses of individual compounds. Importantly, unlike individual compounds, NSC303244 + NSC158011 combination was effective in clearing the infection completely without relapse in immunocompromised mice. Collectively, our study has unveiled compound combinations that simultaneously block two essential catalytic steps for metabolic energy production in C. parvum to achieve improved efficacy against the parasite. These combinations are, therefore, lead compounds for the development of a new generation of efficacious anti-cryptosporidial drugs.
Collapse
Affiliation(s)
- Shahbaz M. Khan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Muhammad Rashid Bajwa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rachael Y. Lahar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - William H. Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
29
|
Sun M, Zhao Z, Li Y, Cao L, Li J, Zhang X, Li X, Zhang N, Cheng S, Wang X, Gong P. Giardia VSPAS7 protein attenuates Giardia intestinalis-induced host macrophage pyroptosis. Parasit Vectors 2023; 16:359. [PMID: 37821972 PMCID: PMC10566177 DOI: 10.1186/s13071-023-05949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/27/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND The unicellular protozoan parasite Giardia intestinalis, which primarily infects humans and animals such as cattle and sheep, is having a major negative impact on public health. Giardia is able to evade the recognition and elimination of the host immune system because of the trophozoite surface and extracellular vesicles (EVs) covered by variant-specific surface proteins (VSPs). As key proteins for immune evasion, whether VSPs can regulate Giardia-induced pyroptosis and promote Giardia evasion of host immune responses has not been reported. METHODS To examine the role of Giardia VSPAS7 on Giardia-induced activation of the signaling pathway, secretion of pro-inflammatory cytokines, pyroptosis and the mechanism involved, we constructed the pcDNA3.1-vspas7 expression plasmid and transfected this plasmid into mouse macrophages. Key proteins for pyroptosis, IL-1β secretion and LDH release were detected in pcDNA3.1-vspas7-transfected wild-type (WT) cells and NLRP3-deficient cells by western blot, ELISA and LDH assays, respectively. The interactions of Giardia VSPAS7 and mouse NLRP3 were examined using immunofluorescence assays (IFA), co-immunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays. RESULTS VSPAS7 could decrease the levels of phosphorylated-p65 (P-p65), P-IκBα and P-ERK caused by Giardia and reduce the production levels of Giardia-induced pro-inflammatory cytokine IL-6, IL-12 p40 and TNF-α. The results showed that VSPAS7 inhibited Giardia-mediated activation of NF-κB, ERK/MAPK signaling and secretion of pro-inflammatory cytokines. Furthermore, VSPAS7 suppressed Giardia-induced macrophage pyroptosis by reducing GSDMD cleavage, caspase-1 activation, IL-1β secretion and LDH release. We further found that VSPAS7 could interact with mouse NLRP3 directly, and in NLRP3-deficient cells the suppression of Giardia-induced macrophage pyroptosis by VSPAS7 was significantly attenuated. CONCLUSIONS Overall, VSPAS7 could inhibit Giardia-induced activation of signaling pathways and pyroptosis in host macrophages, allowing Giardia evasion of host immune responses. Studies on Giardia VSP-mediated immune evasion provide an important theoretical basis for in-depth studies on Giardia pathogenicity.
Collapse
Affiliation(s)
- Min Sun
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Zhiteng Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Ying Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Lili Cao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Jianhua Li
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, 130062 China
| | - Xichen Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Xin Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Nan Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Shuqin Cheng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Xiaocen Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Pengtao Gong
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| |
Collapse
|
30
|
de Alba P, Garro C, Florin-Christensen M, Schnittger L. Prevalence, risk factors and molecular epidemiology of neonatal cryptosporidiosis in calves: The Argentine perspective. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100147. [PMID: 37941927 PMCID: PMC10628544 DOI: 10.1016/j.crpvbd.2023.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 11/10/2023]
Abstract
Cryptosporidium spp. are enteroparasitic protozoans that cause cryptosporidiosis in newborn calves. Clinical signs of the infection are diarrhoea and dehydration leading to decreased productivity and economic losses in cattle farms around the world. Additionally, cryptosporidiosis is a relevant zoonotic disease since the ingestion of oocysts can be fatal for children under five years of age, the elderly, and/or immunocompromised adults. This review aims to integrate existing knowledge on the epidemiological situation of calf cryptosporidiosis and associated risk factors in Argentina. In addition, the GP60 subtype diversity of the pathogen was analysed and related with the global distribution of corresponding GP60 subtypes. Depending on the study region and applied diagnostics, prevalence among calves up to 20 days of age varied between 25.2% and 42.5%, while a prevalence of 16.3-25.5% was observed at the age of 1-90 days. So far, molecular studies have determined exclusively Cryptosporidium parvum in preweaned calves. In addition, C. parvum infection was reported as the major cause of calf diarrhoea, followed by rotavirus A (RVA), while enteropathogens such as coronavirus, Escherichiacoli, and Salmonella sp. played a negligible role. Calf age of 20 days or less, incidence of diarrhoea, poorly drained soils, and large farm size were identified as risk factors for C. parvum-infection in Argentina. A total of nine GP60 subtypes (IIaAxxG1R1, xx = 16 to 24) were identified, showing a stepwise increase of the trinucleotide motif TCA, and including the zoonotic subtypes IIaA16G1R1, IIaA17G1R1, IIaA18G1R1, IIaA19G1R1, and IIaA20G1R1. We found that an increase in the A16→A24 trinucleotide repeat was accompanied by a gradual decrease in the global distribution of GP60 alleles, strongly suggesting that IIaA16G1R1 represents the primordial allelic variant of this group. Since identified GP60 alleles have a similar genetic background, we hypothesize that the continuous trinucleotide repeat array has been generated by stepwise repeat expansion of A16. The information gathered and integrated in this study contributes to an improved understanding of the epidemiological characteristics of bovine cryptosporidiosis in and beyond Argentina, which in turn can help to develop control strategies for this parasitosis of veterinary and medical relevance.
Collapse
Affiliation(s)
- Paloma de Alba
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham, 1686, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Carlos Garro
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham, 1686, Argentina
| | - Monica Florin-Christensen
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham, 1686, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham, 1686, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
31
|
Feng K, Li N, Huang Y, Chen C, Wen L, Wang W, Ryan UM, Xiao L, Feng Y, Guo Y. Longitudinal follow-up reveals occurrence of successive Cryptosporidium bovis and Cryptosporidium ryanae infections by different subtype families in dairy cattle. Int J Parasitol 2023; 53:651-661. [PMID: 37328045 DOI: 10.1016/j.ijpara.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 06/18/2023]
Abstract
Cryptosporidium bovis and Cryptosporidium ryanae are common species causing cryptosporidiosis in cattle. Data accumulated thus far indicate that the infection patterns of the two species could be different between areas with and without Cryptosporidium parvum. To better understand the infection dynamics of these two species, cross-sectional and longitudinal studies of Cryptosporidium spp. were conducted using genotyping and subtyping tools. In the cross-sectional survey, analysis of 634 faecal samples from two farms identified only C. bovis and C. ryanae in pre-weaned calves. Two birth cohorts of 61 and 78 calves were followed longitudinally over a 12 month period, which revealed the shedding of C. bovis oocysts started at 1-2 weeks of age and peaked initially at 6-8 weeks of age. Altogether calves experienced four infections by six subtype families of C. bovis, with each infection caused by different subtype families. In contrast, the shedding of C. ryanae oocysts started at 2-4 weeks of age, and the two infections were caused by different subtype families. The cumulative incidence of C. bovis infection was 100% (58/58, 32/32) on both farms, compared with 84.4-98.3% (27/32 and 57/58) for C. ryanae infection. Overall, the mean duration of oocyst shedding in the cohort studies was 3.8-4.0 weeks for C. bovis compared with 2.1 weeks for C. ryanae. The oocyst shedding intensity was high (mean oocysts per gram of faeces was over 105) during the first infection with each species but became significantly lower in the later infections. Cryptosporidium ryanae was associated with the occurrence of diarrhea on one farm, while C. bovis was not. The data indicate that there is an early occurrence of C. bovis and C. ryanae in pre-weaned calves with high infection intensity in the absence of C. parvum. Calves infected with the same Cryptosporidium sp. multiple times could be associated with the presence of subtype-specific immunity.
Collapse
Affiliation(s)
- Kangli Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yujin Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chengyi Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Luxing Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weijian Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una M Ryan
- Harry Butler Institute, Murdoch University, Western Australia, 6150, Australia
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yaqiong Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
32
|
Mateusa M, Selezņova M, Terentjeva M, Deksne G. Giardia duodenalis (Styles, 1902) in Cattle: Isolation of Calves with Diarrhoea and Manure Treatment in the Lagoon Presented as Risk Factors in Latvian Herds. Microorganisms 2023; 11:2338. [PMID: 37764182 PMCID: PMC10537315 DOI: 10.3390/microorganisms11092338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Giardia duodenalis is a waterborne zoonotic protozoan that causes gastrointestinal tract inflammation in humans, cattle, and other animals. The aim of the present study was to estimate the prevalence and potential risk factors for Giardia infection in cattle in Latvia. During 2020-2021, a total of 973 individual faecal samples from cattle aged from 1 day to 12 years old, from 32 cattle herds, were tested for Giardia cyst presence with immunofluorescence staining followed by Giardia assemblage differentiation targeting beta-giardin gene. Using a questionnaire, information was collected to estimate the potential risk factors for G. duodenalis infection in cattle herds. Giardia was found in 8.4% of the examined cattle with a mean intensity of 5756 cysts per gram of faeces. The highest prevalence was observed in the 0 to 3-month-old calves (16.4%). At least one Giardia shedding animal was found in 27 herds with an overall prevalence of 84.4%. Significantly higher prevalence was found for cattle infected with G. duodenalis assemblage E compared to that infected with assemblage A: 88.7% and 11.3%, respectively. Protective factors such as age and rodent control and change of shoes were found to be significant for Giardia infection, while isolating calves for diarrhoea and water bodies (ponds/lakes) in pasture were potential risk factors in Latvian cattle.
Collapse
Affiliation(s)
- Maira Mateusa
- Institute of Food Safety, Animal Health and Environment BIOR, 1076 Riga, Latvia; (M.S.); (M.T.)
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, 3001 Jelgava, Latvia
| | - Maija Selezņova
- Institute of Food Safety, Animal Health and Environment BIOR, 1076 Riga, Latvia; (M.S.); (M.T.)
| | - Margarita Terentjeva
- Institute of Food Safety, Animal Health and Environment BIOR, 1076 Riga, Latvia; (M.S.); (M.T.)
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, 3001 Jelgava, Latvia
| | - Gunita Deksne
- Institute of Food Safety, Animal Health and Environment BIOR, 1076 Riga, Latvia; (M.S.); (M.T.)
- Faculty of Biology, University of Latvia, 1004 Riga, Latvia
| |
Collapse
|
33
|
Marta BBF, Hossotani CMDS, Bresciani KDS, Meireles MV. Absence of Giardia spp. in fecal samples from capybaras (Hydrochoerus hydrochaeris) inhabiting urban areas in the state of Mato Grosso do Sul, Brazil. Vet Parasitol Reg Stud Reports 2023; 44:100920. [PMID: 37652631 DOI: 10.1016/j.vprsr.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Giardiasis is a major cause of diarrhea in humans and animals worldwide. Currently, there are nine species of Giardia, including Giardia duodenalis, which infects most vertebrates. The capybara (Hydrochoerus hydrochaeris) is the largest herbivorous rodent in the world. Although capybaras are hosts of several parasites of public health importance, including helminths and protozoa, there is a paucity of research on their zoonotic potential. We investigated the prevalence of Giardia spp. in populations of capybaras living in urban areas. Fecal samples from 247 capybaras were collected in Lagoa Maior, located in the municipality of Três Lagoas, and in Lago do Amor and Parque das Nações Indígenas, both located in the municipality of Campo Grande, state of Mato Grosso do Sul, Brazil. Fecal samples from capybaras originated from 133 adults (54%), 61 cubs (25%), and 53 juveniles (21%); 183 samples were collected in the rainy season and 64 in the dry season. Giardia spp. DNA was screened by the small-subunit ribosomal RNA (SSU rRNA) targeted PCR. Samples with DNA band sizes suggestive of Giardia spp. amplicons were examined by PCR targeting the glutamate dehydrogenase (GDH) and triosephosphate isomerase (TPI) genes. PCR amplicons were subjected to genetic sequencing. Nested PCR screening of the SSU rRNA gene revealed 16 samples showing faint DNA bands in gel electrophoresis with sizes similar to Giardia spp. amplicons. PCR amplicons of the SSU rRNA gene were analyzed by Sanger sequencing. Most of the sequencing reactions failed, and the chromatogram reads of some samples were ambiguous, suggesting nonspecific amplification. Therefore, all the capybara fecal samples were considered negative for Giardia spp. Two published studies on Giardia spp. in capybaras reported findings similar to ours, i.e., the absence or a low positivity rate for Giardia spp. However, further studies are needed to determine the possible role of capybaras in the epidemiology of giardiasis.
Collapse
Affiliation(s)
- Bárbara Braga Ferreira Marta
- Universidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária, Rua Clóvis Pestana, 793, Araçatuba, São Paulo 16050-680, SP, Brazil
| | - Camila Michele de Souza Hossotani
- Universidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária, Rua Clóvis Pestana, 793, Araçatuba, São Paulo 16050-680, SP, Brazil
| | - Kátia Denise Saraiva Bresciani
- Universidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária, Rua Clóvis Pestana, 793, Araçatuba, São Paulo 16050-680, SP, Brazil
| | - Marcelo Vasconcelos Meireles
- Universidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária, Rua Clóvis Pestana, 793, Araçatuba, São Paulo 16050-680, SP, Brazil.
| |
Collapse
|
34
|
Ranasinghe S, Armson A, Lymbery AJ, Zahedi A, Ash A. Medicinal plants as a source of antiparasitics: an overview of experimental studies. Pathog Glob Health 2023; 117:535-553. [PMID: 36805662 PMCID: PMC10392325 DOI: 10.1080/20477724.2023.2179454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Despite advances in modern human and veterinary medicine, gastrointestinal (GI) parasitic infections remain a significant health issue worldwide, mainly in developing countries. Increasing evidence of the multi-drug resistance of these parasites and the side effects of currently available synthetic drugs have led to increased research on alternative medicines to treat parasitic infections. The exploration of potential botanical antiparasitics, which are inexpensive and abundant, may be a promising alternative in this context. This study summarizes the in vitro/in vivo antiparasitic efficacy of different medicinal plants and their components against GI parasites. Published literature from 1990-2020 was retrieved from Google Scholar, Web of Science, PubMed and Scopus. A total of 68 plant species belonging to 32 families have been evaluated as antiparasitic agents against GI parasites worldwide. The majority of studies (70%) were conducted in vitro. Most plants were from the Fabaceae family (53%, n = 18). Methanol (37%, n = 35) was the most used solvent. Leaf (22%, n = 16) was the most used plant part, followed by seed and rhizome (each 12%, n = 9). These studies suggest that herbal medicines hold a great scope for new drug discoveries against parasitic diseases and that the derivatives of these plants are useful structures for drug synthesis and bioactivity optimization.
Collapse
Affiliation(s)
- Sandamalie Ranasinghe
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Anthony Armson
- Exercise Science and Chiropractic, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Alan J. Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Alireza Zahedi
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Amanda Ash
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
35
|
Zhao L, Zhang ZS, Han WX, Yang B, Chai HL, Wang MY, Wang Y, Zhang S, Zhao WH, Ma YM, Zhan YJ, Wang LF, Ding YL, Wang JL, Liu YH. Prevalence and molecular characterization of Giardia duodenalis in dairy cattle in Central Inner Mongolia, Northern China. Sci Rep 2023; 13:13960. [PMID: 37634027 PMCID: PMC10460406 DOI: 10.1038/s41598-023-40987-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
Giardia duodenalis is a gastrointestinal protozoan ubiquitous in nature. It is a confirmed zoonotic pathogen, and cattle are considered a source of giardiasis outbreaks in humans. This study aimed to evaluate the prevalence and multilocus genotype (MLG) of G. duodenalis in dairy cattle in Central Inner Mongolia. This study was based on the small subunit ribosomal RNA (SSU rRNA), glutamate dehydrogenase (gdh), triosephosphate isomerase (tpi), and beta-giardin (bg) genes of G. duodenalis. DNA extraction, polymerase chain reaction (PCR), and sequence analysis were performed on 505 dairy cattle fecal samples collected in 2021 from six sampling sites and four age groups in Central Inner Mongolia to determine the prevalence and MLG distribution of G. duodenalis. The PCR results of SSU rRNA revealed that the overall prevalence of G. duodenalis was 29.5% (149/505) and that the overall prevalence of the diarrhea and nondiarrhea samples was 31.5% (46/146) and 28.5% (103/359), respectively; the difference was not significant (p > 0.05). SSU rRNA sequence analysis revealed that G. duodenalis assemblage E (91.1%, 133/146) was primarily detected and that assemblage A (8.9%, 13/146) was detected in 13 samples. The G. duodenalis-positive samples were PCR amplified and sequenced for gdh, tpi, and bg, from which 38, 47, and 70 amplified sequences were obtained, respectively. A combination of G. duodenalis assemblages A and E were detected in seven samples. Multilocus genotyping yielded 25 different assemblage E MLGs, which formed six subgroups. To the best of our knowledge, this is the first report regarding G. duodenalis infection in dairy cattle in Inner Mongolia, China. This study revealed that Inner Mongolian cattle pose a risk of giardiasis transmission to humans and that the distribution of local cattle G. duodenalis assemblage E MLGs is diverse. The findings of this study can bridge the knowledge gap in the molecular epidemiological investigation of giardiasis in Central Inner Mongolia.
Collapse
Affiliation(s)
- Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co., Ltd., Hohhot, China
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ming-Yuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei-Hong Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yi-Min Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Jie Zhan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Li-Feng Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jin-Ling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
36
|
Zhao L, Chai HL, Wang MY, Zhang ZS, Han WX, Yang B, Wang Y, Zhang S, Zhao WH, Ma YM, Zhan YJ, Wang LF, Ding YL, Wang JL, Liu YH. Prevalence and molecular characterization of Cryptosporidium spp. in dairy cattle in Central Inner Mongolia, Northern China. BMC Vet Res 2023; 19:134. [PMID: 37626358 PMCID: PMC10464073 DOI: 10.1186/s12917-023-03696-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cryptosporidium is a gastrointestinal protozoan that widely exists in nature, it is an established zoonotic pathogen. Infected cattle are considered to be associated with cryptosporidiosis outbreaks in humans. In the present study, we aimed to assess the prevalence and species distribution of Cryptosporidium in dairy cattle in Central Inner Mongolia. METHODS We focused on the small subunit ribosomal RNA gene (SSU rRNA) of Cryptosporidium and 60-kDa glycoprotein gene (gp60) of Cryptosporidium parvum. We collected 505 dairy cattle manure samples from 6 sampling sites in Inner Mongolia in 2021; the samples were divided into 4 groups based on age. DNA extraction, polymerase chain reaction (PCR), sequence analysis, and restriction fragment length polymorphism (RFLP) using SspI and MboII restriction endonucleases were performed. RFLP analysis was performed to determine the prevalence and species distribution of Cryptosporidium. RESULTS SSU rRNA PCR revealed that the overall prevalence of Cryptosporidium infection was 29.90% (151/505), with a prevalence of 37.67% (55/146) and 26.74% (96/359) in diarrheal and nondiarrheal samples, respectively; these differences were significant. The overall prevalence of Cryptosporidium infection at the 6 sampling sites ranged from 0 to 47.06% and that among the 4 age groups ranged from 18.50 to 43.81%. SSU rRNA sequence analysis and RFLP analysis revealed the presence of 4 Cryptosporidium species, namely, C. bovis (44.37%), C. andersoni (35.10%), C. ryanae (21.85%), and C. parvum (11.92%), along with a mixed infection involving two or three Cryptosporidium species. Cryptosporidium bovis or C. andersoni was the most common cause of infection in the four age groups. The subtype of C. parvum was successfully identified as IIdA via gp60 analysis; all isolates were identified as the subtype IIdA19G1. CONCLUSIONS To the best of our knowledge, this is the first report of dairy cattle infected with four Cryptosporidium species in Inner Mongolia, China, along with a mixed infection involving two or three Cryptosporidium species, with C. bovis and C. andersoni as the dominant species. Moreover, this is the first study to identify C. parvum subtype IIdA19G1 in cattle in Inner Mongolia. Our study findings provide detailed information on molecular epidemiological investigation of bovine cryptosporidiosis in Inner Mongolia, suggesting that dairy cattle in this region are at risk of transmitting cryptosporidiosis to humans.
Collapse
Affiliation(s)
- Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ming-Yuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co.,Ltd, Hohhot, China
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei-Hong Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yi-Min Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Jie Zhan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Li-Feng Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jin-Ling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
37
|
Gilbert IH, Vinayak S, Striepen B, Manjunatha UH, Khalil IA, Van Voorhis WC. Safe and effective treatments are needed for cryptosporidiosis, a truly neglected tropical disease. BMJ Glob Health 2023; 8:e012540. [PMID: 37541693 PMCID: PMC10407372 DOI: 10.1136/bmjgh-2023-012540] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/25/2023] [Indexed: 08/06/2023] Open
Affiliation(s)
| | - Sumiti Vinayak
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Boris Striepen
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ujjini H Manjunatha
- Global Health, Novartis Institutes for BioMedical Research, Inc, Emeryville, California, USA
| | - Ibrahim A Khalil
- Department of Health, State of Washington, Seattle, Washington, USA
| | | |
Collapse
|
38
|
Fu Y, Zhang K, Yang M, Li X, Chen Y, Li J, Xu H, Dhakal P, Zhang L. Metagenomic analysis reveals the relationship between intestinal protozoan parasites and the intestinal microecological balance in calves. Parasit Vectors 2023; 16:257. [PMID: 37525231 PMCID: PMC10388496 DOI: 10.1186/s13071-023-05877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND A close connection between a protozoan parasite and the balance of the other gut microbes of the host has been demonstrated. The calves may be naturally co-infected with many parasites, and the co-effects of parasites on other intestinal microbes of calves remain unclear. This study aims to preliminarily reveal the relationship between intestinal parasites and other intestinal microbes in calves. METHODS Fecal samples were collected from four calves with bloody diarrhea, four calves with watery diarrhea, and seven normal calves, and the microbial flora of the samples were analyzed by whole-genome sequencing. Protozoal parasites were detected in the metagenome sequences and identified using polymerase chain reaction (PCR). RESULTS Cryptosporidium, Eimeria, Giardia, Blastocystis, and Entamoeba were detected by metagenomic analysis, and the identified species were Giardia duodenalis assemblage E, Cryptosporidium bovis, Cryptosporidium ryanae, Eimeria bovis, Eimeria subspherica, Entamoeba bovis, and Blastocystis ST2 and ST10. Metagenomic analysis showed that the intestinal microbes of calves with diarrhea were disordered, especially in calves with bloody diarrhea. Furthermore, different parasites show distinct relationships with the intestinal microecology. Cryptosporidium, Eimeria, and Giardia were negatively correlated with various intestinal bacteria but positively correlated with some fungi. However, Blastocystis and Entamoeba were positively associated with other gut microbes. Twenty-seven biomarkers not only were significantly enriched in bloody diarrhea, watery diarrhea, and normal calves but were also associated with Eimeria, Cryptosporidium, and Giardia. Only Eimeria showed a distinct relationship with seven genera of bacteria, which were significantly enriched in the healthy calves. All 18 genera of fungi were positively correlated with Cryptosporidium, Eimeria, and Giardia, which were also significantly enriched in calves with bloody diarrhea. Functional genes related to parasites and diseases were found mainly in fungi. CONCLUSIONS This study revealed the relationship between intestinal protozoan parasites and the other calf gut microbiome. Different intestinal protozoan parasites have diametrically opposite effects on other gut microecology, which not only affects bacteria in the gut, but also is significantly related to fungi and archaea.
Collapse
Affiliation(s)
- Yin Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Kaihui Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Mengyao Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Yuancai Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Huiyan Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Pitambar Dhakal
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China.
| |
Collapse
|
39
|
Dunière L, Ruiz P, Lebbaoui Y, Guillot L, Bernard M, Forano E, Chaucheyras-Durand F. Effects of rearing mode on gastro-intestinal microbiota and development, immunocompetence, sanitary status and growth performance of lambs from birth to two months of age. Anim Microbiome 2023; 5:34. [PMID: 37461095 DOI: 10.1186/s42523-023-00255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Artificial rearing system, commonly used in prolific sheep breeds, is associated to increased mortality and morbidity rates before weaning, which might be linked to perturbations in digestive tract maturation, including microbiota colonization. This study evaluated the effect of rearing mode (mothered or artificially reared) on the establishment of the rumen and intestinal microbiome of lambs from birth to weaning. We also measured immunological and zootechnical parameters to assess lambs' growth and health. GIT anatomy as well as rumen and intestinal epithelium gene expression were also analysed on weaned animals to assess possible long-term effects of the rearing practice. RESULTS Total VFA concentrations were higher in mothered lambs at 2 months of age, while artificially-reared lambs had lower average daily gain, a more degraded sanitary status and lower serum IgG concentration in the early growth phase. Metataxonomic analysis revealed higher richness of bacterial and eukaryote populations in mothered vs. artificially-reared lambs in both Rumen and Feces. Beta diversity analysis indicated an evolution of rumen and fecal bacterial communities in mothered lambs with age, not observed in artificially-reared lambs. Important functional microorganisms such as the cellulolytic bacterium Fibrobacter succinogenes and rumen protozoa did not establish correctly before weaning in artificially-reared lambs. Enterobacteriaceae and Escherichia coli were dominant in the fecal microbiota of mothered lambs, but main E. coli virulence genes were not found differential between the two groups, suggesting they are commensal bacteria which could exert a protective effect against pathogens. The fecal microbiota of artificially-reared lambs had a high proportion of lactic acid bacteria taxa. No difference was observed in mucosa gene expression in the two lamb groups after weaning. CONCLUSIONS The rearing mode influences gastrointestinal microbiota and health-associated parameters in offspring in early life: rumen maturation was impaired in artificially-reared lambs which also presented altered sanitary status and higher risk of gut dysbiosis. The first month of age is thus a critical period where the gastrointestinal tract environment and microbiota are particularly unstable and special care should be taken in the management of artificially fed newborn ruminants.
Collapse
Affiliation(s)
- Lysiane Dunière
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Yacine Lebbaoui
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Laurie Guillot
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Mickael Bernard
- UE 1414 (Unité Expérimentale), INRAE, Herbipôle, Saint-Genès Champanelle, 63122, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France.
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France.
| |
Collapse
|
40
|
Dashti A, Köster PC, Bailo B, de Las Matas AS, Habela MÁ, Rivero-Juarez A, Vicente J, Serrano E, Arnal MC, de Luco DF, Morrondo P, Armenteros JA, Balseiro A, Cardona GA, Martínez-Carrasco C, Ortiz JA, Carpio AJ, Calero-Bernal R, González-Barrio D, Carmena D. Occurrence and limited zoonotic potential of Cryptosporidium spp., Giardia duodenalis, and Balantioides coli infections in free-ranging and farmed wild ungulates in Spain. Res Vet Sci 2023; 159:189-197. [PMID: 37148738 DOI: 10.1016/j.rvsc.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Little information is currently available on the occurrence and molecular diversity of the enteric protozoan parasites Cryptosporidium spp., Giardia duodenalis, and Balantioides coli in wild ungulates and the role of these host species as potential sources of environmental contamination and consequent human infections. The presence of these three pathogens was investigated in eight wild ungulate species present in Spain (genera Ammotragus, Capra, Capreolus, Cervus, Dama, Ovis, Rupicapra, and Sus) by molecular methods. Faecal samples were retrospectively collected from free-ranging (n = 1058) and farmed (n = 324) wild ungulates from the five Spanish bioregions. Overall infection rates were 3.0% (42/1382; 95% CI: 2.1-3.9%) for Cryptosporidium spp., 5.4% (74/1382; 95% CI: 4.2-6.5%) for G. duodenalis, and 0.7% (9/1382; 95% CI: 0.3-1.2%) for B. coli. Cryptosporidium infection was detected in roe deer (7.5%), wild boar (7.0%) and red deer (1.5%), and G. duodenalis in southern chamois (12.9%), mouflon (10.0%), Iberian wild goat (9.0%), roe deer (7.5%), wild boar (5.6%), fallow deer (5.2%) and red deer (3.8%). Balantioides coli was only detected in wild boar (2.5%, 9/359). Sequence analyses revealed the presence of six distinct Cryptosporidium species: C. ryanae in red deer, roe deer, and wild boar; C. parvum in red deer and wild boar; C. ubiquitum in roe deer; C. scrofarum in wild boar; C. canis in roe deer; and C. suis in red deer. Zoonotic assemblages A and B were detected in wild boar and red deer, respectively. Ungulate-adapted assemblage E was identified in mouflon, red deer, and southern chamois. Attempts to genotype samples positive for B. coli failed. Sporadic infections by canine- or swine-adapted species may be indicative of potential cross-species transmission, although spurious infections cannot be ruled out. Molecular evidence gathered is consistent with parasite mild infections and limited environmental contamination with (oo)cysts. Free-ranging wild ungulate species would not presumably play a significant role as source of human infections by these pathogens. Wild ruminants do not seem to be susceptible hosts for B. coli.
Collapse
Affiliation(s)
- Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Ana Sánchez de Las Matas
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Miguel Ángel Habela
- Department of Animal Health, Veterinary Sciences Faculty, Extremadura University, Caceres, Spain
| | - Antonio Rivero-Juarez
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain; Center for Biomedical Research Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| | - Joaquín Vicente
- SaBio Group, Institute for Game and Wildlife Research, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Emmanuel Serrano
- Wildlife Ecology & Health Group (WE&H), Wildlife Environmental Pathology Service (SEFaS), Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Bellaterra, Spain
| | - Maria C Arnal
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | | | - Patrocinio Morrondo
- INVESAGA Group, Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - José A Armenteros
- Council of Development, Territory Planning and the Environment of the Principado de Asturias, Oviedo, Spain
| | - Ana Balseiro
- Animal Health Department, Veterinary School, University of León, León, Spain; Animal Health Department, Mountain Livestock Institute (CSIC-University of León), León, Spain
| | | | - Carlos Martínez-Carrasco
- Animal Health Department, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Espinardo, Murcia, Spain
| | - José Antonio Ortiz
- Medianilla S.L., Department of Veterinary and Research, Benalup-Casas Viejas, Spain
| | - Antonio José Carpio
- Institute for Research on Hunting Resources, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain; Department of Zoology, University of Cordoba, Campus de Rabanales, Cordoba, Spain
| | - Rafael Calero-Bernal
- SALUVET, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain.
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain; Center for Biomedical Research Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain.
| |
Collapse
|
41
|
Elmahallawy EK, Köster PC, Dashti A, Alghamdi SQ, Saleh A, Gareh A, Alrashdi BM, Hernández-Castro C, Bailo B, Lokman MS, Hassanen EAA, González-Barrio D, Carmena D. Molecular detection and characterization of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi infections in dromedary camels ( Camelus dromedaries) in Egypt. Front Vet Sci 2023; 10:1139388. [PMID: 37152690 PMCID: PMC10157078 DOI: 10.3389/fvets.2023.1139388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Few studies have investigated the occurrence of microeukaryotic gut parasites in dromedary camels in Egypt, and the majority of these investigations are based on microscopic analysis of fecal material. Methods Herein, we assessed the occurrence, molecular diversity, and zoonotic potential of protozoan (Cryptosporidium spp. and Giardia duodenalis) and microsporidian (Enterocytozoon bieneusi) pathogens in individual fecal samples (n = 102) of dromedary camels with (n = 26) and without (n = 76) diarrhea from Aswan Governorate, Upper Egypt. Other factors possibly associated with an increased risk of infection (geographical origin, sex, age, and physical condition) were also analyzed. The SSU rRNA or ITS genes were targeted by molecular (PCR and Sanger sequencing) techniques for pathogen detection and species identification. Results and discussion The most abundant species detected was G. duodenalis (3.9%, 4/102; 95% CI: 1.1-9.7), followed by Cryptosporidium spp. (2.9%, 3/102; 95% CI: 0.6-8.4). All samples tested negative for the presence of E. bieneusi. Sequence analysis data confirmed the presence of zoonotic C. parvum (66.7%, 2/3) and cattle-adapted C. bovis (33.3%, 1/3). These Cryptosporidium isolates, as well as the four Giardia-positive isolates, were unable to be amplified at adequate genotyping markers (Cryptosporidium: gp60; Giardia: gdh, bg, and tpi). Camels younger than 2 years old were significantly more likely to harbor Cryptosporidium infections. This connection was not statistically significant, although two of the three cryptosporidiosis cases were detected in camels with diarrhea. The spread of G. duodenalis infections was unaffected by any risk variables studied. This is the first report of C. parvum and C. bovis in Egyptian camels. The finding of zoonotic C. parvum has public health implications since camels may function as sources of oocyst pollution in the environment and potentially infect livestock and humans. Although preliminary, this study provides useful baseline data on the epidemiology of diarrhea-causing microeukaryotic parasites in Egypt. Further research is required to confirm and expand our findings in other animal populations and geographical regions of the country.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
| | - Samia Qasem Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Alaqiq, Al-Baha Province, Saudi Arabia
| | - Amira Saleh
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Gareh
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Barakat M. Alrashdi
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Carolina Hernández-Castro
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
- Parasitology Group, Faculty of Medicine, Academic Corporation for the Study of Tropical Pathologies, University of Antioquia, Medellín, Colombia
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
| | - Maha S. Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Eman A. A. Hassanen
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
42
|
Geng HL, Yan WL, Wang JM, Meng JX, Zhang M, Zhao JX, Shang KM, Liu J, Liu WH. Meta-analysis of the prevalence of Giardia duodenalis in sheep and goats in China. Microb Pathog 2023; 179:106097. [PMID: 37062491 DOI: 10.1016/j.micpath.2023.106097] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 04/01/2023] [Indexed: 04/18/2023]
Abstract
Giardia duodenum (G. duodenalis) can cause giardiasis and infect a variety of hosts. So far, there have been no detailed data regarding the positive rate of G. duodenalis in sheep and goats in China. Here, a systematic literature review was carried out to investigate the epidemiology of G. duodenalis in sheep and goats in China. To perform the meta-analysis, the databases CNKI, VIP, WanFang, PubMed, Web of science and ScienceDirect were employed for screening studies related to the prevalence of G. duodenalis in sheep and goats in China. The total prevalence of G. duodenalis in sheep and goats was estimated to be 7.00% (95% CI: 4.00-10.00). In the age subgroup, the prevalence of G. duodenalis in sheep and goats of >12 months (11.29%; 95% CI: 8.08-14.97) was higher than that in sheep and goats of ≤12 months (7.57%; 95% CI: 3.95-12.24). An analysis based on seasons showed that the prevalence of G. duodenalis in sheep and goats was higher in summer (11.90%; 95% CI: 0.50-35.05) than that in other seasons. The prevalence of G. duodenalis in sheep and goats after 2016 was 8.57% (95% CI: 5.34-11.79), which was higher than others. The highest prevalence of G. duodenalis in sheep and goats was 13.06% (95% CI: 6.26-19.86) recorded in Southwestern China. The prevalence of Giardia infection in sheep (7.28%; 95% CI: 2.30-14.73) was higher than that in goats (5.43%; 95% CI: 2.73-8.98). The NOAA's National Center for Environmental Information (https://gis.ncdc.noaa.gov/maps/ncei/cdo/monthly) was used to extract relevant geoclimatic data (latitude, longitude, elevation, temperature, precipitation, humidity, and climate). By analyzing the data of each subgroup, it was shown that region, genetype, and climate were potential risk factors for giardiasis prevalence in sheep and goats. Based on the analysis of common factors and geographical factors, it is recommended to strengthen effective management measures (e.g. ventilation and disinfection in warm and humid areas) and formulate relevant policies according to local conditions. Breeders should strengthen the detection of G. duodenalis in sheep and goats, customize corresponding control measures according to the diet and living habits of sheep and goats, and strengthen the protection of sheep and lamb calves, so as to reduce the incidence rate and reduce the economic loss of China's animal husbandry.
Collapse
Affiliation(s)
- Hong-Li Geng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Wei-Lan Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China; College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin, PR China
| | - Jian-Min Wang
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, PR China
| | - Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Miao Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Jing Liu
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin, PR China.
| | - Wen-Hua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China.
| |
Collapse
|
43
|
Multilocus Sequence Typing as a Useful Tool for the Study of the Genetic Diversity and Population Structure of Cryptosporidium Spp. FOLIA VETERINARIA 2023. [DOI: 10.2478/fv-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Abstract
One of the most important aquatic parasites in industrialized countries, Cryptosporidium spp., is a major cause of diarrheal disease in humans and animals worldwide. The contingent evolution of cryptosporidia with hosts, host adaptation, and geographic variation contributed to the creation of species subtypes, thereby shaping their population genetic structures. Multilocus typing tools for population genetic characterizations of transmission dynamics and delineation of mechanisms for the emergence of virulent subtypes have played an important role in improving our understanding of the transmission of this parasite. However, to better understand the significance of different subtypes with clinical disease manifestations and transmission risks, a large number of samples and preferably from different geographical areas need to be analyzed. This review provides an analysis of genetic variation through multilocus sequence typing, provides an overview of subtypes, typing gene markers for Cryptosporidium parvum, Cryptosporidium hominis, Cryptosporidium muris and Cryptosporidium andersoni genotypes and an overview of the hosts of these parasites.
Collapse
|
44
|
Tyrosine Kinase Inhibitors Display Potent Activity against Cryptosporidium parvum. Microbiol Spectr 2023; 11:e0387422. [PMID: 36533912 PMCID: PMC9927415 DOI: 10.1128/spectrum.03874-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The protozoan parasite Cryptosporidium is a leading cause of diarrheal disease (cryptosporidiosis) and death in young children. Cryptosporidiosis can be life-threatening in individuals with weak immunity such as HIV/AIDS patients and organ transplant recipients. There is currently no effective drug to treat cryptosporidiosis in the pediatric and immunocompromised population. Therefore, there is an urgent need to expedite the drug discovery process in order to develop new and effective therapies to reduce the global disease burden of cryptosporidiosis. In this study, we employed a drug repurposing strategy to screen a library of 473 human kinase inhibitors to determine their activity against Cryptosporidium parvum. We have identified 67 new anti-cryptosporidial compounds using phenotypic screening based on a transgenic C. parvum strain expressing a luciferase reporter. Further, dose-response assays led to the identification of 11 hit compounds that showed potent inhibition of C. parvum at nanomolar concentration. Kinome profiling of these 11 prioritized hits identified compounds that displayed selectivity in targeting specific families of kinases, particularly tyrosine kinases. Overall, this study identified tyrosine kinase inhibitors that hold potential for future development as new drug candidates against cryptosporidiosis. IMPORTANCE The intestinal parasite Cryptosporidium parvum is a major cause of diarrhea-associated morbidity and mortality in children, immunocompromised people, and young ruminant animals. With no effective drug available to treat cryptosporidiosis in humans and animals, there is an urgent need to identify anti-parasitic compounds and new targets for drug development. To address this unmet need, we screened a GSK library of kinase inhibitors and identified several potent compounds, including tyrosine kinase inhibitors, that were highly effective in killing C. parvum. Overall, our study revealed several novel compounds and a new family of kinases that can be targeted for anti-cryptosporidial drug development.
Collapse
|
45
|
Derx J, Kılıç HS, Linke R, Cervero-Aragó S, Frick C, Schijven J, Kirschner AKT, Lindner G, Walochnik J, Stalder G, Sommer R, Saracevic E, Zessner M, Blaschke AP, Farnleitner AH. Probabilistic fecal pollution source profiling and microbial source tracking for an urban river catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159533. [PMID: 36270368 DOI: 10.1016/j.scitotenv.2022.159533] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
We developed an innovative approach to estimate the occurrence and extent of fecal pollution sources for urban river catchments. The methodology consists of 1) catchment surveys complemented by literature data where needed for probabilistic estimates of daily produced fecal indicator (FIBs, E. coli, enterococci) and zoonotic reference pathogen numbers (Campylobacter, Cryptosporidium and Giardia) excreted by human and animal sources in a river catchment, 2) generating a hypothesis about the dominant sources of fecal pollution and selecting a source targeted monitoring design, and 3) verifying the results by comparing measured concentrations of the informed choice of parameters (i.e. chemical tracers, C. perfringensspores, and host-associated genetic microbial source tracking (MST) markers) in the river, and by multi-parametric correlation analysis. We tested the approach at a study area in Vienna, Austria. The daily produced microbial particle numbers according to the probabilistic estimates indicated that, for the dry weather scenario, the discharge of treated wastewater (WWTP) was the primary contributor to fecal pollution. For the wet weather scenario, 80-99 % of the daily produced FIBs and pathogens resulted from combined sewer overflows (CSOs) according to the probabilistic estimates. When testing our hypothesis in the river, the measured concentrations of the human genetic fecal marker were log10 4 higher than for selected animal genetic fecal markers. Our analyses showed for the first-time statistical relationships between C. perfringens spores (used as conservative microbial tracer for communal sewage) and a human genetic fecal marker (i.e. HF183/BacR287) with the reference pathogen Giardia in river water (Spearman rank correlation: 0.78-0.83, p < 0.05. The developed approach facilitates urban water safety management and provides a robust basis for microbial fate and transport models and microbial infection risk assessment.
Collapse
Affiliation(s)
- Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Austria.
| | - H Seda Kılıç
- Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Austria
| | - Rita Linke
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Austria
| | - Sílvia Cervero-Aragó
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Christina Frick
- Vienna City Administration, Municipal Department 39, Division of Hygiene, Vienna, Austria
| | - Jack Schijven
- Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Department of Statistics, Informatics and Modelling, Bilthoven, the Netherlands
| | - Alexander K T Kirschner
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria; Division Water Quality and Health, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Gerhard Lindner
- Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Regina Sommer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Ernis Saracevic
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Matthias Zessner
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Alfred P Blaschke
- Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Austria
| | - Andreas H Farnleitner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Austria.; Division Water Quality and Health, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
46
|
Survey of Zoonotic Diarrheagenic Protist and Hepatitis E Virus in Wild Boar ( Sus scrofa) of Portugal. Animals (Basel) 2023; 13:ani13020256. [PMID: 36670797 PMCID: PMC9854796 DOI: 10.3390/ani13020256] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Enteropathogenic parasites and viruses have been frequently reported in swine and can infect a wide range of mammals, including humans. Among the wide variety of parasites infecting swine, diarrhoeagenic protists are among those that cause significant morbidity. Hepatitis E virus (HEV) has also been reported both in domestic pigs and wild boar and is known to have an important public health significance. These agents share the fecal−oral transmission route, but data on their fecal shedding and circulation pathways are still lacking or incomplete. Hence, the aim of the present study was to characterize the presence of microeukaryotes and HEV in the wild boar of Portugal. Wild boar stool samples (n = 144) were obtained during the official hunting seasons (October to February) in 2018/2019, 2019/2020, and 2021/2022 and tested for Cryptosporidium spp., Balantioides coli, Giardia duodenalis, Blastocystis sp., Enterocytozoon bieneusi and HEV by molecular assays, followed by sequencing and phylogenetic analysis. We have detected Cryptosporidium scrofarum (1.4%, 95% CI: 0.2−4.9), B. coli (14.6%, 95% CI: 9.2−21.4), Blastocystis ST5 (29.2%, 95% CI: 21.9−37.2) and HEV genotype 3 (2.8%, 95% CI: 0.7−6.9; subgenotypes 3e and 3m). Co-infections were observed in thirteen animals where two were positive for both HEV and B. coli, one was positive for both C. scrofarum and Blastocystis ST5, and ten were positive for both B. coli and Blastocystis ST5. Giardia duodenalis and E. bieneusi were not detected in the surveyed wild boar population. As far as we know, this is the first report describing protist infections by Cryptosporidium spp., B. coli, and Blastocystis sp., as well as the first identification of the emerging HEV genotype 3m in wild boar of Portugal. The present work shows that potentially zoonotic protozoa and HEV are circulating in wild boar populations in Portugal. Awareness and epidemic-surveillance network implementation measures targeting wild boar are needed to prevent the spread of these pathogenic agents to humans.
Collapse
|
47
|
Khan SM, Witola WH. Past, current, and potential treatments for cryptosporidiosis in humans and farm animals: A comprehensive review. Front Cell Infect Microbiol 2023; 13:1115522. [PMID: 36761902 PMCID: PMC9902888 DOI: 10.3389/fcimb.2023.1115522] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
The intracellular protozoan parasite of the genus Cryptosporidium is among the leading causes of waterborne diarrheal disease outbreaks throughout the world. The parasite is transmitted by ingestion of infective oocysts that are highly stable in the environment and resistant to almost all conventional disinfection methods and water treatments. Control of the parasite infection is exceedingly difficult due to the excretion of large numbers of oocysts in the feces of infected individuals that contaminate the environment and serve as a source of infection for susceptible hosts including humans and animals. Drug development against the parasite is challenging owing to its limited genetic tractability, absence of conventional drug targets, unique intracellular location within the host, and the paucity of robust cell culture platforms for continuous parasite propagation. Despite the high prevalence of the parasite, the only US Food and Drug Administration (FDA)-approved treatment of Cryptosporidium infections is nitazoxanide, which has shown moderate efficacy in immunocompetent patients. More importantly, no effective therapeutic drugs are available for treating severe, potentially life-threatening cryptosporidiosis in immunodeficient patients, young children, and neonatal livestock. Thus, safe, inexpensive, and efficacious drugs are urgently required to reduce the ever-increasing global cryptosporidiosis burden especially in low-resource countries. Several compounds have been tested for both in vitro and in vivo efficacy against the disease. However, to date, only a few experimental compounds have been subjected to clinical trials in natural hosts, and among those none have proven efficacious. This review provides an overview of the past and present anti-Cryptosporidium pharmacotherapy in humans and agricultural animals. Herein, we also highlight the progress made in the field over the last few years and discuss the different strategies employed for discovery and development of effective prospective treatments for cryptosporidiosis.
Collapse
|
48
|
Noaman EA, Nayel M, Salama A, Mahmoud MA, El-Kattan AM, Dawood AS, Abd El-Hamid IS, Elsify A, Mousa W, Elkhtam A, Zaghawa A. Enteric protozoal infections in camels: Etiology, epidemiology, and future perspectives. GERMAN JOURNAL OF VETERINARY RESEARCH 2023; 3:1-17. [DOI: 10.51585/gjvr.2023.1.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Camels have great potential as a safety valve for current and future food security for pastoralists, agropastoralists, and urban populations. Enteric protozoal diseases are important causes of economic losses in camels; however, they are poorly concerned globally. The most common members of enteric protozoa are Balantidium, Eimeria, Giardia, and Cryptosporidium. Some of them threaten human health as humans can be infected by consuming food or water contaminated with camel feces, particularly in poor communities with inadequate sanitation and low-quality healthcare facilities. For these reasons, a comprehensive and careful investigation was conducted on some enteric protozoal diseases of camels to present an updated insight into the etiology, epidemiology, and future trends in diagnosing and controlling camel enteric protozoa. Future studies on the camel enteric protozoa should be carried out to develop advanced diagnostic approaches in diverse farm animal species. Moreover, the protozoan zoonotic potential should be considered to secure human health.
Collapse
|
49
|
Meng XZ, Kang C, Wei J, Ma H, Liu G, Zhao JP, Zhang HS, Yang XB, Wang XY, Yang LH, Geng HL, Cao H. Meta-Analysis of the Prevalence of Giardia duodenalis in Cattle in China. Foodborne Pathog Dis 2023; 20:17-31. [PMID: 36576972 DOI: 10.1089/fpd.2022.0052] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Giardia duodenum (G. duodenalis) can cause giardiasis and infect a variety of hosts. So far, there have been no detailed data regarding the positive rate of G. duodenalis in cattle in China. Here, a systematic literature review was carried out to investigate the epidemiology of bovine G. duodenalis in China. To perform the meta-analysis, the databases China National Knowledge Infrastructure, VIP Chinese Journal Databases, WanFang Databases, PubMed, and ScienceDirect were employed for screening studies related to the prevalence of G. duodenalis in cattle in China. The total prevalence of G. duodenalis in cattle was estimated to be 8.00% (95% confidence interval [CI]: 5.51-11.62). In the age subgroup, the prevalence of G. duodenalis in calves (11.72%; 95% CI: 7.75-17.73) was significantly higher than that in cattle of other age groups. An analysis based on seasons showed that the prevalence of G. duodenalis in cattle was higher in summer (9.69%; 95% CI: 2.66-35.30) than that in other seasons. The prevalence of G. duodenalis in cattle in 2016 or later was 11.62% (95% CI: 6.49-20.79), which was significantly higher than that before 2016 (3.65%; 95% CI: 2.17-6.12). The highest prevalence of G. duodenalis in cattle was 74.23% (95% CI: 69.76-78.45) recorded in South China. The NOAA's National Center for Environmental Information (https://gis.ncdc.noaa.gov/maps/ncei/cdo/monthly) was used to extract relevant geoclimatic data (latitude, longitude, elevation, temperature, precipitation, humidity, and climate). By analyzing the data of each subgroup, it was shown that age of cattle, sampling year, province, region, temperature, and climate were potential risk factors for giardiasis prevalence in cattle. Based on the analysis of common factors and geographical factors, it is recommended to strengthen effective management measures (e.g., ventilation and disinfection in warm and humid areas) and formulate relevant policies according to local conditions. Breeders should pay more attention to the detection of G. duodenalis in calves, to prevent giardiasis prevalence in cattle of different ages, thereby reducing the economic losses of animal husbandry in China.
Collapse
Affiliation(s)
- Xiang-Zhu Meng
- Department of Preventive Veterinary Medicine, College of Life Sciences, Changchun Sci-Tech University, Changchun, Jilin, China.,Department of Preventive Veterinary Medicine, School of Pharmacy, The Yancheng Teachers University, Yancheng, Jiangsu, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Chao Kang
- Department of Preventive Veterinary Medicine, Center for Animal Disease Prevention and Control, Baicheng, Jilin, China
| | - Jiaqi Wei
- Department of Preventive Veterinary Medicine, School of Pharmacy, The Yancheng Teachers University, Yancheng, Jiangsu, China
| | - He Ma
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Gang Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jin-Ping Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hong-Shun Zhang
- Department of Preventive Veterinary Medicine, Inner Mongolia Shunwang Cattle Co., Ltd., Tongliao, Inner Mongolia Autonomous Region, China
| | - Xin-Bo Yang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiang-Yu Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Li-Hua Yang
- Department of Preventive Veterinary Medicine, College of Life Sciences, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Hong-Li Geng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hongwei Cao
- Department of Preventive Veterinary Medicine, School of Pharmacy, The Yancheng Teachers University, Yancheng, Jiangsu, China
| |
Collapse
|
50
|
Awais MM, Ihsan-Ul-Haq H, Akhtar M, Anwar MI, Shirwany ASAK, Razzaq A, Ahmad S. Copro-ELISA-based prevalence and risk determinants of giardiasis in cattle and sheep populations raised by socio-economically deprived urban nomadic communities located in and around Multan, Punjab-Pakistan. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2022.2156180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mian Muhammad Awais
- One Health Research Laboratory, Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Hafiz Ihsan-Ul-Haq
- One Health Research Laboratory, Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Masood Akhtar
- One Health Research Laboratory, Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Irfan Anwar
- One Health Research Laboratory, Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdul Sammad Ali Khan Shirwany
- One Health Research Laboratory, Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdul Razzaq
- Animal Sciences Division, Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Sibtain Ahmad
- Livestock and Dairy Development Department, Directorate of Multan Division, Multan, Pakistan
| |
Collapse
|