1
|
Salvato I, Ricciardi L, Nucera F, Nigro A, Dal Col J, Monaco F, Caramori G, Stellato C. RNA-Binding Proteins as a Molecular Link between COPD and Lung Cancer. COPD 2023; 20:18-30. [PMID: 36655862 DOI: 10.1080/15412555.2022.2107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) represents an independent risk factor for lung cancer development. Accelerated cell senescence, induced by oxidative stress and inflammation, is a common pathogenic determinant of both COPD and lung cancer. The post transcriptional regulation of genes involved in these processes is finely regulated by RNA-binding proteins (RBPs), which regulate mRNA turnover, subcellular localization, splicing and translation. Multiple pro-inflammatory mediators (including cytokines, chemokines, proteins, growth factors and others), responsible of lung microenvironment alteration, are regulated by RBPs. Several mouse models have shown the implication of RBPs in multiple mechanisms that sustain chronic inflammation and neoplastic transformation. However, further studies are required to clarify the role of RBPs in the pathogenic mechanisms shared by lung cancer and COPD, in order to identify novel biomarkers and therapeutic targets. This review will therefore focus on the studies collectively indicating the role of RBPs in oxidative stress and chronic inflammation as common pathogenic mechanisms shared by lung cancer and COPD.
Collapse
Affiliation(s)
- Ilaria Salvato
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Luca Ricciardi
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
2
|
Salvato I, Ricciardi L, Dal Col J, Nigro A, Giurato G, Memoli D, Sellitto A, Lamparelli EP, Crescenzi MA, Vitale M, Vatrella A, Nucera F, Brun P, Caicci F, Dama P, Stiff T, Castellano L, Idrees S, Johansen MD, Faiz A, Wark PA, Hansbro PM, Adcock IM, Caramori G, Stellato C. Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation. Front Immunol 2023; 14:1192028. [PMID: 37483631 PMCID: PMC10360199 DOI: 10.3389/fimmu.2023.1192028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and in vitro cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. Results RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1β/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive in-silico and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequencing, displaying a predominant downregulation of expression. Discussion Loss of intracellular AUF-1 may alter posttranscriptional regulation of targets particularly relevant for protection of genomic integrity and gene regulation, thus concurring to airway epithelial inflammatory responses related to oxidative stress and accelerated aging. Exosomal-associated AUF-1 may in turn preserve bound RNA targets and sustain their function, participating to spreading of inflammation and senescence to neighbouring cells.
Collapse
Affiliation(s)
- Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Luca Ricciardi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Maria Assunta Crescenzi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Monica Vitale
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Paola Dama
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Thomas Stiff
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Leandro Castellano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Peter A. Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health and Care Research (NIHR) Imperial Biomedical Research Centre, London, United Kingdom
| | - Gaetano Caramori
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| |
Collapse
|
3
|
Yi Q, Deng Z, Yue J, He J, Xiong J, Sun W, Sun W. RNA binding proteins in osteoarthritis. Front Cell Dev Biol 2022; 10:954376. [PMID: 36003144 PMCID: PMC9393224 DOI: 10.3389/fcell.2022.954376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative joint disease worldwide. The pathological features of OA are the erosion of articular cartilage, subchondral bone sclerosis, synovitis, and metabolic disorder. Its progression is characterized by aberrant expression of genes involved in inflammation, proliferation, and metabolism of chondrocytes. Effective therapeutic strategies are limited, as mechanisms underlying OA pathophysiology remain unclear. Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying OA focused on gene transcription. However, posttranscriptional alterations also play significant function in inflammation and metabolic changes related diseases. RNA binding proteins (RBPs) have been recognized as important regulators in posttranscriptional regulation. RBPs regulate RNA subcellular localization, stability, and translational efficiency by binding to their target mRNAs, thereby controlling their protein expression. However, their role in OA is less clear. Identifying RBPs in OA is of great importance to better understand OA pathophysiology and to figure out potential targets for OA treatment. Hence, in this manuscript, we summarize the recent knowledge on the role of dysregulated RBPs in OA and hope it will provide new insight for OA study and targeted treatment.
Collapse
Affiliation(s)
- Qian Yi
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jinglong He
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jianyi Xiong
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Wei Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| | - Weichao Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- The Central Laboratory, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| |
Collapse
|
4
|
Inflammatory gene silencing in activated monocytes by a cholesterol tagged-miRNA/siRNA: a novel approach to ameliorate diabetes induced inflammation. Cell Tissue Res 2022; 389:219-240. [PMID: 35604451 DOI: 10.1007/s00441-022-03637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
There is a major unmet need for the development of effective therapies for diabetes induced inflammation. Increased adenosine-uridine rich elements (AREs) containing mRNAs of inflammatory molecules are reported in inflamed monocytes. Destabilizing these inflammatory mRNAs by the miR-16 could reduce inflammation. DNA microarrays and in vitro cell studies showed that exogenous miR16 and its mimic treatment, in LPS/PMA induced monocytes, significantly downregulated several ARE containing inflammatory cytokine mRNAs similar to those seen in the normal monocytes. Ingenuity pathway analyses showed exogenous miR-16 or its synthetic mimic treatment alleviates inflammatory responses. To selectively target uptake, especially to inflamed cells, one of the CD36 substrate cholesterol was tagged to miR16/siRNA. Cholesterol tagged miR-16/ARE-siRNA showed enhanced uptake in CD36 expressing inflamed cells. In LPS or PMA, treated monocytes, candidate genes expressions levels such as IL-6, IL-8, IL-12β, IP-10, and TNF-α mRNA were increased, as measured by RT-qPCR as seen in primary monocytes of diabetes patients. Exogenous miR16 or ARE-siRNA transfection reduced mRNAs of pro-inflammatory cytokines levels in monocyte, and its adhesion. Increased uptake of cholesterol tagged miR-16 through the CD36 receptor was observed. This destabilizes numerous inflammatory ARE containing mRNAs and alleviates inflammatory responses. Cholesterol-tagged miR-16 and its mimic are novel anti-inflammatory molecules that can be specifically targeted to, via through CD36 expressing, "inflamed" cells and thus serve as therapeutic candidates to alleviate inflammatory diseases.
Collapse
|
5
|
Yilmaz D, Gönüllü E, Gürsoy M, Könönen E, Gürsoy UK. Salivary and serum concentrations of monocyte chemoattractant protein-1, macrophage inhibitory factor, and fractalkine in relation to rheumatoid arthritis and periodontitis. J Periodontol 2020; 92:1295-1305. [PMID: 33330982 DOI: 10.1002/jper.20-0632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Monocyte chemoattractant protein-1 (MCP-1), macrophage migration inhibitory factor (MIF), and fractalkine are chemokines that are expressed by a variety of cell types to regulate macrophage inflammatory response. The aim of the study was to examine the effects of periodontitis and rheumatoid arthritis (RA) on their serum and salivary concentrations. METHODS Adults with either periodontitis (P, n = 21), or with rheumatoid arthritis (RA, n = 23), or with both diseases (RA+P, n = 23) were included in the study. Systemically and periodontally healthy individuals (n = 22) served as controls. Saliva and serum samples were collected from all participants before the medical and periodontal examinations. Salivary and serum MCP-1, MIF, and fractalkine concentrations were measured by the Luminex technique. Total salivary protein levels were determined by the Bradford assay. RESULTS Salivary MCP-1, MIF, and fractalkine concentrations were elevated in both RA groups (RA+P and RA) in comparison with systemically healthy controls. As related to total salivary protein levels, higher MCP-1 (P = 0.003) and fractalkine (P = 0.045) concentrations were found in controls compared with the P group. In serum, MCP-1 concentrations in the RA+P group were higher (P = 0.003) than those of group P. Elevated serum fractalkine concentrations were observed in both periodontitis groups (RA+P, P = 0.014; and P, P = 0.013) compared with controls. CONCLUSIONS In RA, MCP-1, MIF, and fractalkine concentrations are elevated in saliva. These chemokines may disrupt oral macrophage responses and potentially take part in the interaction between periodontitis and RA.
Collapse
Affiliation(s)
- Dogukan Yilmaz
- Department of Periodontology, Faculty of Dentistry, Sakarya University, Sakarya, Turkey
| | - Emel Gönüllü
- Department of Rheumatology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.,Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Zhang H, Brown RD, Stenmark KR, Hu CJ. RNA-Binding Proteins in Pulmonary Hypertension. Int J Mol Sci 2020; 21:ijms21113757. [PMID: 32466553 PMCID: PMC7312837 DOI: 10.3390/ijms21113757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by significant vascular remodeling and aberrant expression of genes involved in inflammation, apoptosis resistance, proliferation, and metabolism. Effective therapeutic strategies are limited, as mechanisms underlying PH pathophysiology, especially abnormal expression of genes, remain unclear. Most PH studies on gene expression have focused on gene transcription. However, post-transcriptional alterations have been shown to play a critical role in inflammation and metabolic changes in diseases such as cancer and systemic cardiovascular diseases. In these diseases, RNA-binding proteins (RBPs) have been recognized as important regulators of aberrant gene expression via post-transcriptional regulation; however, their role in PH is less clear. Identifying RBPs in PH is of great importance to better understand PH pathophysiology and to identify new targets for PH treatment. In this manuscript, we review the current knowledge on the role of dysregulated RBPs in abnormal mRNA gene expression as well as aberrant non-coding RNA processing and expression (e.g., miRNAs) in PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - R. Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
- Department of Craniofacial Biology School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-4576; Fax: +1-303-724-4580
| |
Collapse
|
7
|
Ricciardi L, Col JD, Casolari P, Memoli D, Conti V, Vatrella A, Vonakis BM, Papi A, Caramori G, Stellato C. Differential expression of RNA-binding proteins in bronchial epithelium of stable COPD patients. Int J Chron Obstruct Pulmon Dis 2018; 13:3173-3190. [PMID: 30349226 PMCID: PMC6190813 DOI: 10.2147/copd.s166284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Inflammatory gene expression is modulated by posttranscriptional regulation via RNA-binding proteins (RBPs), which regulate mRNA turnover and translation by binding to conserved mRNA sequences. Their role in COPD is only partially defined. This study evaluated RBPs tristetraprolin (TTP), human antigen R (HuR), and AU-rich element-binding factor 1 (AUF-1) expression using lung tissue from COPD patients and control subjects and probed their function in epithelial responses in vitro. Patients and methods RBPs were detected by immunohistochemistry in bronchial and peripheral lung samples from mild-to-moderate stable COPD patients and age/smoking history-matched controls; RBPs and RBP-regulated genes were evaluated by Western blot, ELISA, protein array, and real-time PCR in human airway epithelial BEAS-2B cell line stimulated with hydrogen peroxide, cytokine combination (cytomix), cigarette smoke extract (CSE), and following siRNA-mediated silencing. Results were verified in a microarray database from bronchial brushings of COPD patients and controls. RBP transcripts were measured in peripheral blood mononuclear cell samples from additional stable COPD patients and controls. Results Specific, primarily nuclear immunostaining for the RBPs was detected in structural and inflammatory cells in bronchial and lung tissues. Immunostaining for AUF-1, but not TTP or HuR, was significantly decreased in bronchial epithelium of COPD samples vs controls. In BEAS-2B cells, cytomix and CSE stimulation reproduced the RBP pattern while increasing expression of AUF-1-regulated genes, interleukin-6, CCL2, CXCL1, and CXCL8. Silencing expression of AUF-1 reproduced, but not enhanced, target upregulation induced by cytomix compared to controls. Analysis of bronchial brushing-derived transcriptomic confirmed the selective decrease of AUF-1 in COPD vs controls and revealed significant changes in AUF-1-regulated genes by genome ontology. Conclusion Downregulated AUF-1 may be pathogenic in stable COPD by altering posttranscriptional control of epithelial gene expression.
Collapse
Affiliation(s)
- Luca Ricciardi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Paolo Casolari
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Becky M Vonakis
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| | - Alberto Papi
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Gaetano Caramori
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy, .,Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| |
Collapse
|
8
|
Amatya N, Childs EE, Cruz JA, Aggor FEY, Garg AV, Berman AJ, Gudjonsson JE, Atasoy U, Gaffen SL. IL-17 integrates multiple self-reinforcing, feed-forward mechanisms through the RNA binding protein Arid5a. Sci Signal 2018; 11:eaat4617. [PMID: 30301788 PMCID: PMC6188668 DOI: 10.1126/scisignal.aat4617] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin-17A (IL-17A) not only stimulates immunity to fungal pathogens but also contributes to autoimmune pathology. IL-17 is only a modest activator of transcription in experimental tissue culture settings. However, IL-17 controls posttranscriptional events that enhance the expression of target mRNAs. Here, we showed that the RNA binding protein (RBP) Arid5a (AT-rich interactive domain-containing protein 5a) integrated multiple IL-17-driven signaling pathways through posttranscriptional control of mRNA. IL-17 induced expression of Arid5a, which was recruited to the adaptor TRAF2. Arid5a stabilized IL-17-induced cytokine transcripts by binding to their 3' untranslated regions and also counteracted mRNA degradation mediated by the endoribonuclease MCPIP1 (Regnase-1). Arid5a inducibly associated with the eukaryotic translation initiation complex and facilitated the translation of the transcription factors (TFs) IκBζ (Nfkbiz ) and C/EBPβ (Cebpb). These TFs in turn transactivated IL-17-dependent promoters. Together, these data indicated that Arid5a orchestrates a feed-forward amplification loop, which promoted IL-17 signaling by controlling mRNA stability and translation.
Collapse
Affiliation(s)
- Nilesh Amatya
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erin E Childs
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - J Agustin Cruz
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Felix E Y Aggor
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Abhishek V Garg
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrea J Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Johann E Gudjonsson
- Department of Dermatology, Taubman Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ulus Atasoy
- Division of Allergy and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
9
|
How post-translational modifications influence the biological activity of chemokines. Cytokine 2018; 109:29-51. [DOI: 10.1016/j.cyto.2018.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022]
|
10
|
Zhang Y, Zhu J, Guo L, Zou Y, Wang F, Shao H, Li J, Deng X. Cholecystokinin protects mouse liver against ischemia and reperfusion injury. Int Immunopharmacol 2017; 48:180-186. [PMID: 28521244 DOI: 10.1016/j.intimp.2017.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 03/06/2017] [Accepted: 03/28/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Cholecystokinin (CCK), as a gastrointestinal hormone, has an important protective role against sepsis or LPS-induced endotoxic shock. We aim to address the role of CCK in hepatic ischemia followed by reperfusion (I/R) injury. MATERIALS AND METHODS A murine model of 60min partial hepatic ischemia followed by 6h of reperfusion was used in this study. CCK and CCKAR Levels in blood and liver were detected at 3h, 6h, 12h and 24h after reperfusion. Then the mice were treated with CCK or proglumide, a nonspecific CCK-receptor (CCK-R) antagonist. Mice were randomly divided into four groups as follows: (1) sham group, in which mice underwent sham operation and received saline; (2) I/R group, in which mice were subjected to hepatic I/R and received saline; (3) CCK group, in which mice were subjected to hepatic I/R and treated with CCK (400μg/kg); (4) proglumide group (Pro), in which mice underwent hepatic I/R and treated with proglumide (3mg/kg); CCK and proglumide were administrated via tail vein at the moment of reperfusion. Serum AST (sAST) and serum ALT (sALT) were determined with a biochemical assay and histological analysis were performed with hematoxylin-eosin (H&E). Cytokines (IL-1β, IL-6, IL-10, TNF-α) expressions in blood were determined with enzyme-linked immunosorbent assay (ELISA). The MPO (myeloperoxidase) assay were used to measure neutrophils' infiltration into the liver. The apoptotic index (TUNEL-positive cell number/total liver cell number×100%) was calculated to assess hepatocelluar apoptosis. Finally, activation of NF-κB and phosphor-p38 expression in liver homogenates were analyzed with Western Blot (WB). RESULTS Our findings showed that 1) CCK and CCK-AR were upregulated in our experimental model over time; 2) Treatment with CCK decreased sAST/sALT levels, inflammatory hepatic injury, neutrophil influx and hepatocelluar apoptosis, while proglumide aggravated hepatic injury. CONCLUSION These findings support our hypothesis and suggest that CCK played a positive role in the ongoing inflammatory process leading to liver I/R injury.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China; Department of Anesthesiology, Central Hospital of Jiading District, 1 Chengbai Road, Shanghai 201800, China.
| | - Jiali Zhu
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China.
| | - Long Guo
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China.
| | - Yun Zou
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Fang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, Jiangsu, China
| | - Han Shao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, Jiangsu, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China.
| | - Xiaoming Deng
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
11
|
Endo D, Saito T, Umeki Y, Suzuki K, Aratani Y. Myeloperoxidase negatively regulates the expression of proinflammatory cytokines and chemokines by zymosan-induced mouse neutrophils. Inflamm Res 2015; 65:151-9. [DOI: 10.1007/s00011-015-0899-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022] Open
|
12
|
Garg AV, Amatya N, Chen K, Cruz JA, Grover P, Whibley N, Conti HR, Hernandez Mir G, Sirakova T, Childs EC, Smithgall TE, Biswas PS, Kolls JK, McGeachy MJ, Kolattukudy PE, Gaffen SL. MCPIP1 Endoribonuclease Activity Negatively Regulates Interleukin-17-Mediated Signaling and Inflammation. Immunity 2015; 43:475-87. [PMID: 26320658 DOI: 10.1016/j.immuni.2015.07.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 05/31/2015] [Accepted: 06/16/2015] [Indexed: 01/13/2023]
Abstract
Interleukin-17 (IL-17) induces pathology in autoimmunity and infections; therefore, constraint of this pathway is an essential component of its regulation. We demonstrate that the signaling intermediate MCPIP1 (also termed Regnase-1, encoded by Zc3h12a) is a feedback inhibitor of IL-17 receptor signal transduction. MCPIP1 knockdown enhanced IL-17-mediated signaling, requiring MCPIP1's endoribonuclease but not deubiquitinase domain. MCPIP1 haploinsufficient mice showed enhanced resistance to disseminated Candida albicans infection, which was reversed in an Il17ra(-/-) background. Conversely, IL-17-dependent pathology in Zc3h12a(+/-) mice was exacerbated in both EAE and pulmonary inflammation. MCPIP1 degraded Il6 mRNA directly but only modestly downregulated the IL-6 promoter. However, MCPIP1 strongly inhibited the Lcn2 promoter by regulating the mRNA stability of Nfkbiz, encoding the IκBζ transcription factor. Unexpectedly, MCPIP1 degraded Il17ra and Il17rc mRNA, independently of the 3' UTR. The cumulative impact of MCPIP1 on IL-6, IκBζ, and possibly IL-17R subunits results in a biologically relevant inhibition of IL-17 signaling.
Collapse
Affiliation(s)
- Abhishek V Garg
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nilesh Amatya
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kong Chen
- Department of Pediatrics & Immunology, Richard King Mellon Institute for Pediatric Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - J Agustin Cruz
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prerna Grover
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Natasha Whibley
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heather R Conti
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gerard Hernandez Mir
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tatiana Sirakova
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Erin C Childs
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thomas E Smithgall
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Partha S Biswas
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jay K Kolls
- Department of Pediatrics & Immunology, Richard King Mellon Institute for Pediatric Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Mandy J McGeachy
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pappachan E Kolattukudy
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Blanco-Alvarez VM, Soto-Rodriguez G, Gonzalez-Barrios JA, Martinez-Fong D, Brambila E, Torres-Soto M, Aguilar-Peralta AK, Gonzalez-Vazquez A, Tomás-Sanchez C, Limón ID, Eguibar JR, Ugarte A, Hernandez-Castillo J, Leon-Chavez BA. Prophylactic Subacute Administration of Zinc Increases CCL2, CCR2, FGF2, and IGF-1 Expression and Prevents the Long-Term Memory Loss in a Rat Model of Cerebral Hypoxia-Ischemia. Neural Plast 2015; 2015:375391. [PMID: 26355725 PMCID: PMC4556331 DOI: 10.1155/2015/375391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 01/12/2023] Open
Abstract
Prophylactic subacute administration of zinc decreases lipoperoxidation and cell death following a transient cerebral hypoxia-ischemia, thus suggesting neuroprotective and preconditioning effects. Chemokines and growth factors are also involved in the neuroprotective effect in hypoxia-ischemia. We explored whether zinc prevents the cerebral cortex-hippocampus injury through regulation of CCL2, CCR2, FGF2, and IGF-1 expression following a 10 min of common carotid artery occlusion (CCAO). Male rats were grouped as follows: (1) Zn96h, rats injected with ZnCl2 (one dose every 24 h during four days); (2) Zn96h + CCAO, rats treated with ZnCl2 before CCAO; (3) CCAO, rats with CCAO only; (4) Sham group, rats with mock CCAO; and (5) untreated rats. The cerebral cortex-hippocampus was dissected at different times before and after CCAO. CCL2/CCR2, FGF2, and IGF-1 expression was assessed by RT-PCR and ELISA. Learning in Morris Water Maze was achieved by daily training during 5 days. Long-term memory was evaluated on day 7 after learning. Subacute administration of zinc increased expression of CCL2, CCR2, FGF2, and IGF-1 in the early and late phases of postreperfusion and prevented the CCAO-induced memory loss in the rat. These results might be explained by the induction of neural plasticity because of the expression of CCL2 and growth factors.
Collapse
Affiliation(s)
| | | | - Juan Antonio Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1° de Octubre, ISSSTE, Avenida Instituto Politécnico Nacional No. 1669, 07760 México, DF, Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, DF, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | - Maricela Torres-Soto
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | | | | | | | - I. Daniel Limón
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | - Jose R. Eguibar
- Instituto de Fisiología, BUAP, 14 Sur 6301, 72570 Puebla, PUE, Mexico
| | - Araceli Ugarte
- Instituto de Fisiología, BUAP, 14 Sur 6301, 72570 Puebla, PUE, Mexico
| | | | | |
Collapse
|
14
|
Panganiban RP, Vonakis BM, Ishmael FT, Stellato C. Coordinated post-transcriptional regulation of the chemokine system: messages from CCL2. J Interferon Cytokine Res 2015; 34:255-66. [PMID: 24697203 DOI: 10.1089/jir.2013.0149] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The molecular cross-talk between epithelium and immune cells in the airway mucosa is a key regulator of homeostatic immune surveillance and is crucially involved in the development of chronic lung inflammatory diseases. The patterns of gene expression that follow the sensitization process occurring in allergic asthma and chronic rhinosinusitis and those present in the neutrophilic response of other chronic inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD) are tightly regulated in their specificity. Studies exploring the global transcript profiles associated with determinants of post-transcriptional gene regulation (PTR) such as RNA-binding proteins (RBP) and microRNAs identified several of these factors as being crucially involved in controlling the expression of chemokines upon airway epithelial cell stimulation with cytokines prototypic of Th1- or Th2-driven responses. These studies also uncovered the participation of these pathways to glucocorticoids' inhibitory effect on the epithelial chemokine network. Unmasking the molecular mechanisms of chemokine PTR may likely uncover novel therapeutic strategies for the blockade of proinflammatory pathways that are pathogenetic for asthma, COPD, and other lung inflammatory diseases.
Collapse
Affiliation(s)
- Ronaldo P Panganiban
- 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | | | | | | |
Collapse
|
15
|
Griseri P, Pagès G. Control of pro-angiogenic cytokine mRNA half-life in cancer: the role of AU-rich elements and associated proteins. J Interferon Cytokine Res 2015; 34:242-54. [PMID: 24697202 DOI: 10.1089/jir.2013.0140] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Control of mRNA half-life plays a central role in normal development and disease. Several pathological conditions, such as inflammation and cancer, tightly correlate with deregulation in mRNA stability of pro-inflammatory genes. Among these, pro-angiogenesis cytokines, which play a crucial role in the formation of new blood vessels, normally show rapid mRNA decay patterns. The mRNA half-life of these genes appears to be regulated by mRNA-binding proteins that interact with AU-rich elements (AREs) in the 3'-untranslated region of mRNAs. Some of these RNA-binding proteins, such as tristetraprolin (TTP), ARE RNA-binding protein 1, and KH-type splicing regulatory protein, normally promote mRNA degradation. Conversely, other proteins, such as embryonic lethal abnormal vision-like protein 1 (HuR) and polyadenylate-binding protein-interacting protein 2, act as antagonists, stabilizing the mRNA. The steady state levels of mRNA-binding proteins and their relative ratio is often perturbed in human cancers and associated with invasion and aggressiveness. Compelling evidence also suggests that underexpression of TTP and overexpression of HuR may be a useful prognostic and predictive marker in breast, colon, prostate, and brain cancers, indicating a potential therapeutic approach for these tumors. In this review, we summarize the main mechanisms involved in the regulation of mRNA decay of pro-angiogenesis cytokines in different cancers and discuss the interactions between the AU-rich-binding proteins and their mRNA targets.
Collapse
Affiliation(s)
- Paola Griseri
- 1 U.O.C Medical Genetics, Institute Giannina Gaslini , Genoa, Italy
| | | |
Collapse
|
16
|
Analysis of chemokines and receptors expression profile in the myelin mutant taiep rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:397310. [PMID: 25883747 PMCID: PMC4390177 DOI: 10.1155/2015/397310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 11/18/2022]
Abstract
Taiep rat has a failure in myelination and remyelination processes leading to a state of hypomyelination throughout its life. Chemokines, which are known to play a role in inflammation, are also involved in the remyelination process. We aimed to demonstrate that remyelination-stimulating factors are altered in the brainstem of 1- and 6-month-old taiep rats. We used a Rat RT2 Profiler PCR Array to assess mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors. We also evaluated protein levels of CCL2, CCR1, CCR2, CCL5, CCR5, CCR8, CXCL1, CXCR2, CXCR4, FGF2, and VEGFA by ELISA. Sprague-Dawley rats were used as a control. PCR Array procedure showed that proinflammatory cytokines were not upregulated in the taiep rat. In contrast, some mRNA levels of beta and alpha chemokines were upregulated in 1-month-old rats, but CXCR4 was downregulated at their 6 months of age. ELISA results showed that CXCL1, CCL2, CCR2, CCR5, CCR8, and CXCR4 protein levels were decreased in brainstem at the age of 6 months. These results suggest the presence of a chronic neuroinflammation process with deficiency of remyelination-stimulating factors (CXCL1, CXCR2, and CXCR4), which might account for the demyelination in the taiep rat.
Collapse
|
17
|
Griseri P, Pagès G. Regulation of the mRNA half-life in breast cancer. World J Clin Oncol 2014; 5:323-334. [PMID: 25114848 PMCID: PMC4127604 DOI: 10.5306/wjco.v5.i3.323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 02/06/2023] Open
Abstract
The control of the half-life of mRNA plays a central role in normal development and in disease progression. Several pathological conditions, such as breast cancer, correlate with deregulation of the half-life of mRNA encoding growth factors, oncogenes, cell cycle regulators and inflammatory cytokines that participate in cancer. Substantial stability means that a mRNA will be available for translation for a longer time, resulting in high levels of protein gene products, which may lead to prolonged responses that subsequently result in over-production of cellular mediators that participate in cancer. The stability of these mRNA is regulated at the 3’UTR level by different mechanisms involving mRNA binding proteins, micro-RNA, long non-coding RNA and alternative polyadenylation. All these events are tightly inter-connected to each other and lead to steady state levels of target mRNAs. Compelling evidence also suggests that both mRNA binding proteins and regulatory RNAs which participate to mRNA half-life regulation may be useful prognostic markers in breast cancers, pointing to a potential therapeutic approach to treatment of patients with these tumors. In this review, we summarize the main mechanisms involved in the regulation of mRNA decay and discuss the possibility of its implication in breast cancer aggressiveness and the efficacy of targeted therapy.
Collapse
|
18
|
No major role for the transcription factor NF-κB in bone marrow function during peritonitis in the mouse. Int J Hematol 2014; 100:111-8. [PMID: 24859830 DOI: 10.1007/s12185-014-1598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
Nuclear factor-kappa B (NF-κB) is a multipotent transcription factor that plays a pivotal role in immune reactions, inflammation, and possibly hematopoiesis as well. Mobilization of neutrophilic granulocytes during inflammation is a highly regulated process, but one that is incompletely understood. We studied the in vivo activity of NF-κB in mouse organs and cells, with a focus on bone marrow, during acute inflammation. NF-κB activity was studied in transgenic mice expressing a luciferase reporter expressed in a NF-κB activation-dependent fashion. Acute peritoneal inflammation was induced by lipopolysaccharide (LPS), the casein digest bacto-tryptone, or the insoluble polysaccharide zymosan. Organs were removed and blood, bone marrow, and peritoneal cells were separated using density gradient centrifugation. NF-κB activity in organ homogenates and cell lysates was quantified. These three inflammatory agents increased NF-κB activity to a variable extent within the inflamed peritoneal cavity, liver, and spleen, with LPS being the strongest stimulus. LPS, but not bacto-tryptone or zymosan, activated NF-κB in lung and bone marrow, the latter activity mainly observed in density fractions rich in immature bone marrow cells. NF-κB activation was prominent at 6 h after induction of peritonitis, fading at 24 h, as expected for an acute phase phenomenon. From this proof-of-principle study with luciferase reporter mice dependent on NF-κB activation, we suggest that, in steady-state mice, mobilization of bone marrow granulocytes to an inflammatory site can occur without discernible activation of NF-κB in bone marrow.
Collapse
|
19
|
Dorhoi A, Iannaccone M, Farinacci M, Faé KC, Schreiber J, Moura-Alves P, Nouailles G, Mollenkopf HJ, Oberbeck-Müller D, Jörg S, Heinemann E, Hahnke K, Löwe D, Del Nonno F, Goletti D, Capparelli R, Kaufmann SHE. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest 2014; 123:4836-48. [PMID: 24084739 DOI: 10.1172/jci67604] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanisms that control innate immune cell trafficking during chronic infection and inflammation, such as in tuberculosis (TB), are incompletely understood. During active TB, myeloid cells infiltrate the lung and sustain local inflammation. While the chemoattractants that orchestrate these processes are increasingly recognized, the posttranscriptional events that dictate their availability are unclear. We identified microRNA-223 (miR-223) as an upregulated small noncoding RNA in blood and lung parenchyma of TB patients and during murine TB. Deletion of miR-223 rendered TB-resistant mice highly susceptible to acute lung infection. The lethality of miR-223(–/–) mice was apparently not due to defects in antimycobacterial T cell responses. Exacerbated TB in miR-223(–/–) animals could be partially reversed by neutralization of CXCL2, CCL3, and IL-6, by mAb depletion of neutrophils, and by genetic deletion of Cxcr2. We found that miR-223 controlled lung recruitment of myeloid cells, and consequently, neutrophil-driven lethal inflammation. We conclude that miR-223 directly targets the chemoattractants CXCL2, CCL3, and IL-6 in myeloid cells. Our study not only reveals an essential role for a single miRNA in TB, it also identifies new targets for, and assigns biological functions to, miR-223. By regulating leukocyte chemotaxis via chemoattractants, miR-223 is critical for the control of TB and potentially other chronic inflammatory diseases.
Collapse
|
20
|
Park HY, Park C, Hwang HJ, Kim BW, Kim GY, Kim CM, Kim ND, Choi YH. 7,8-Dihydroxyflavone attenuates the release of pro-inflammatory mediators and cytokines in lipopolysaccharide-stimulated BV2 microglial cells through the suppression of the NF-κB and MAPK signaling pathways. Int J Mol Med 2014; 33:1027-34. [PMID: 24535427 DOI: 10.3892/ijmm.2014.1652] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/03/2014] [Indexed: 01/12/2023] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF), a member of the flavonoid family, has received considerable attention as a selective tyrosine kinase receptor B agonist. However, the pharmacological mechanisms responsible for its anti-inflammatory activities in microglial cells have yet to be elucidated. In this study, we evaluated the anti-inflammatory effects of this compound on the production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated murine BV2 microglial cells. At non-toxic concentrations, 7,8-DHF attenuated the production of nitric oxide (NO) and prostaglandin E2 (PGE2), by inhibiting inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, respectively. Furthermore, the release and expression of inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), were inhibited by 7,8-DHF. In addition, 7,8-DHF suppressed nuclear factor-κB (NF-κB) translocation and its transcriptional activity by blocking IκB (IκB)-α degradation; in addition, it exerted suppressive effects on the phosphorylation of mitogen-activated protein kinases (MAPKs). These results indicate that 7,8-DHF possesses therapeutic potential against neurodegenerative diseases that involve microglial activation.
Collapse
Affiliation(s)
- Hye Young Park
- Department of Pharmacy, Busan National University, Busan 609-735, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, Dongeui University, Busan 614-714, Republic of Korea
| | - Hye Jin Hwang
- Department of Food and Nutrition, Dongeui University, Busan 614-714, Republic of Korea
| | - Byung Woo Kim
- Department of Life Science and Biotechnology, Dongeui University, Busan 614-714, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Cheol Min Kim
- Research Center for Anti-Aging Technology Development and Department of Biochemistry, Busan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, Busan National University, Busan 609-735, Republic of Korea
| | - Yung Hyun Choi
- Department of Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714, Republic of Korea
| |
Collapse
|
21
|
Martins-Green M, Petreaca M, Wang L. Chemokines and Their Receptors Are Key Players in the Orchestra That Regulates Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:327-347. [PMID: 24587971 DOI: 10.1089/wound.2012.0380] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Indexed: 12/13/2022] Open
Abstract
SIGNIFICANCE Normal wound healing progresses through a series of overlapping phases, all of which are coordinated and regulated by a variety of molecules, including chemokines. Because these regulatory molecules play roles during the various stages of healing, alterations in their presence or function can lead to dysregulation of the wound-healing process, potentially leading to the development of chronic, nonhealing wounds. RECENT ADVANCES A discovery that chemokines participate in a variety of disease conditions has propelled the study of these proteins to a level that potentially could lead to new avenues to treat disease. Their small size, exposed termini, and the fact that their only modifications are two disulfide bonds make them excellent targets for manipulation. In addition, because they bind to G-protein-coupled receptors (GPCRs), they are highly amenable to pharmacological modulation. CRITICAL ISSUES Chemokines are multifunctional, and in many situations, their functions are highly dependent on the microenvironment. Moreover, each specific chemokine can bind to several GPCRs to stimulate the function, and both can function as monomers, homodimers, heterodimers, and even oligomers. Activation of one receptor by any single chemokine can lead to desensitization of other chemokine receptors, or even other GPCRs in the same cell, with implications for how these proteins or their receptors could be used to manipulate function. FUTURE DIRECTIONS Investment in better understanding of the functions of chemokines and their receptors in a local context can reveal new ways for therapeutic intervention. Understanding how different chemokines can activate the same receptor and vice versa could identify new possibilities for drug development based on their heterotypic interactions.
Collapse
Affiliation(s)
- Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Melissa Petreaca
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Lei Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| |
Collapse
|
22
|
Ho AW, Garg AV, Monin L, Simpson-Abelson MR, Kinner L, Gaffen SL. The anaphase-promoting complex protein 5 (AnapC5) associates with A20 and inhibits IL-17-mediated signal transduction. PLoS One 2013; 8:e70168. [PMID: 23922952 PMCID: PMC3726431 DOI: 10.1371/journal.pone.0070168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/15/2013] [Indexed: 12/14/2022] Open
Abstract
IL-17 is the founding member of a family of cytokines and receptors with unique structures and signaling properties. IL-17 is the signature cytokine of Th17 cells, a relatively new T cell population that promotes inflammation in settings of infection and autoimmunity. Despite advances in understanding Th17 cells, mechanisms of IL-17-mediated signal transduction are less well defined. IL-17 signaling requires contributions from two receptor subunits, IL-17RA and IL-17RC. Mutants of IL-17RC lacking the cytoplasmic domain are nonfunctional, indicating that IL-17RC provides essential but poorly understood signaling contributions to IL-17-mediated signaling. To better understand the role of IL-17RC in signaling, we performed a yeast 2-hybrid screen to identify novel proteins associated with the IL-17RC cytoplasmic tail. One of the most frequent candidates was the anaphase promoting complex protein 7 (APC7 or AnapC7), which interacted with both IL-17RC and IL-17RA. Knockdown of AnapC7 by siRNA silencing exerted no detectable impact on IL-17 signaling. However, AnapC5, which associates with AnapC7, was also able to bind IL-17RA and IL-17RC. Moreover, AnapC5 silencing enhanced IL-17-induced gene expression, suggesting an inhibitory activity. Strikingly, AnapC5 also associated with A20 (TNFAIP3), a recently-identified negative feedback regulator of IL-17 signal transduction. IL-17 signaling was not impacted by knockdown of Itch or TAXBP1, scaffolding proteins that mediate A20 inhibition in the TNFα and IL-1 signaling pathways. These data suggest a model in which AnapC5, rather than TAX1BP1 and Itch, is a novel adaptor and negative regulator of IL-17 signaling pathways.
Collapse
Affiliation(s)
- Allen W. Ho
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Abhishek V. Garg
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Leticia Monin
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michelle R. Simpson-Abelson
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lauren Kinner
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Garg AV, Ahmed M, Vallejo AN, Ma A, Gaffen SL. The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci Signal 2013; 6:ra44. [PMID: 23737552 DOI: 10.1126/scisignal.2003699] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The proinflammatory cytokine interleukin-17 (IL-17) is the signature cytokine of the T helper 17 (TH17) subset of CD4(+) T cells, and antibodies targeting IL-17 or the IL-17 receptor (IL-17R) show clinical efficacy in several autoimmune diseases. Although important for protective immunity against microorganisms, IL-17 causes collateral damage in inflammatory settings. TNFAIP3 encodes the deubiquitinase A20 and is genetically linked to numerous autoimmune syndromes. A20, a potent inhibitor of tumor necrosis factor-α signaling, removes ubiquitin from signaling intermediates upstream of nuclear factor κB (NF-κB), thereby dampening NF-κB-mediated inflammation. We demonstrated that IL-17 stimulates TNFAIP3 expression. Enhanced IL-17-mediated induction of genes encoding proinflammatory factors, including IL-6 and various chemokines, occurred upon knockdown of A20 with short inhibitory RNA or in A20(-/-) cells. A20 associated with the E3 ubiquitin ligase TRAF6 (tumor necrosis factor receptor-associated factor 6) in an IL-17-dependent manner and restricted the IL-17-dependent activation of NF-κB and mitogen-activated protein kinases. A20 interacted directly with the distal domain of IL-17RA, a previously defined inhibitory domain. Together, these data describe a mechanism of restraining IL-17 signaling and reveal an aspect of A20 activity that may help to explain its role in autoimmunity in humans.
Collapse
Affiliation(s)
- Abhishek V Garg
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
24
|
Herjan T, Novotny M, Hamilton TA. Diversity in sequence-dependent control of GRO chemokine mRNA half-life. J Leukoc Biol 2013; 93:895-904. [PMID: 23519936 DOI: 10.1189/jlb.0812370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neutrophil trafficking to sites of injury or infection is regulated, in part, by the closely related GRO family of chemokines (CXCL1, -2, and -3). Expression of the GRO chemokine genes is known to be determined by transcriptional bursts in response to proinflammatory stimulation, but post-transcriptional mechanisms that regulate mRNA half-life are now recognized as important determinants. mRNA half-life is regulated via distinct sequence motifs and sequence-specific, RNA-binding proteins, whose function is subject to regulation by extracellular proinflammatory stimuli. Moreover, such mechanisms exhibit cell-type and stimulus dependency. We now present evidence that in nonmyeloid cells, GRO2 and GRO3 isoforms exhibit at least two patterns of mRNA instability that are distinguished by differential sensitivity to specific mRNA-destabilizing proteins and stimulus-mediated prolongation of mRNA half-life, respectively. Although the 3' UTR regions of GRO2 and GRO3 mRNAs contain multiple AREs, GRO2 has eight AUUUA pentamers, whereas GRO3 has seven. These confer quantitative differences in half-life and show sensitivity for TTP and KSRP but not SF2/ASF. Moreover, these AUUUA determinants do not confer instability that can be modulated in response to IL-1α. In contrast, IL-1α-sensitive instability for GRO2 and GRO3 is conferred by sequences located proximal to the 3' end of the 3'UTR that are independent of the AUUUA sequence motif. These regions are insensitive to TTP and KSRP but show reduced half-life mediated by SF2/ASF. These sequence-linked, post-transcriptional activities provide substantial mechanistic diversity in the control of GRO family chemokine gene expression.
Collapse
Affiliation(s)
- Tomasz Herjan
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
25
|
Altered gene expression profiles associated with enhanced skin inflammation induced by 12-O-tetradecanoylphorbol-13-acetate in streptozotocin-diabetic mice. Int Immunopharmacol 2013; 15:614-9. [DOI: 10.1016/j.intimp.2013.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/03/2012] [Accepted: 01/07/2013] [Indexed: 01/02/2023]
|
26
|
Overview of the mechanisms regulating chemokine activity and availability. Immunol Lett 2012; 145:2-9. [PMID: 22698177 DOI: 10.1016/j.imlet.2012.04.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 04/13/2012] [Indexed: 11/20/2022]
Abstract
Physiological leukocyte homing and extravasation of leukocytes during inflammatory processes is directed by a number of proteins including adhesion molecules, proteases, cytokines and chemokines. Tight regulation of leukocyte migration is essential to ensure appropriate migration. A number of mechanisms exist that regulate leukocyte migration including up- or down-regulation of chemokine or chemokine receptor gene expression. However, chemokine availability in vivo also depends on the interaction of chemokines with specific glycosaminoglycans such as heparan sulfate on the surface of endothelial layers. Modification of the interaction of chemokines with these glycosaminoglycans alters the presentation of chemokines to chemokine receptors on circulating leukocytes. On top, binding of chemokines to atypical chemokine receptors that do not signal through G proteins affects chemokine availability on the endothelial layers. In addition to mechanisms that modulate chemokine availability, this review summarizes mechanisms that fine-tune chemokine function. These include synergy or antagonism between chemokines and alternative splicing of chemokine genes. Moreover, chemokines may be posttranslationally modified leading to molecules with enhanced or reduced potency to bind to G protein-coupled receptors or GAGs or generating chemokines with altered receptor specificity. Cross-talk between these different mechanisms generates a complex regulatory network that allows the organism to modulate leukocyte migration in a highly specific manner.
Collapse
|
27
|
Hamilton T, Li X, Novotny M, Pavicic PG, Datta S, Zhao C, Hartupee J, Sun D. Cell type- and stimulus-specific mechanisms for post-transcriptional control of neutrophil chemokine gene expression. J Leukoc Biol 2011; 91:377-83. [PMID: 22167720 DOI: 10.1189/jlb.0811404] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
mRNAs encoding inflammatory chemokines that recruit neutrophils frequently exhibit short half-lives that serve to limit their expression under inappropriate conditions but are often prolonged to ensure adequate levels during inflammatory response. Extracellular stimuli that modulate the stability of such mRNAs may be the same as the transcriptional activator, as is the case with TLR ligands, or may cooperate with independent transcriptional stimuli, as with IL-17, which extends the half-life of TNF-induced transcripts. These different stimuli engage independent signaling pathways that target different instability mechanisms distinguished by dependence on different regulatory nucleotide sequence motifs within the 3'UTRs, which involve that action of different mRNA-binding proteins. The selective use of these pathways by different stimuli and in distinct cell populations provides the potential for tailoring of chemokine expression patterns to meet specific needs in different pathophysiologic circumstances.
Collapse
Affiliation(s)
- Thomas Hamilton
- Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195-0001, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sun D, Novotny M, Bulek K, Liu C, Li X, Hamilton T. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nat Immunol 2011; 12:853-60. [PMID: 21822258 PMCID: PMC3597344 DOI: 10.1038/ni.2081] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 06/30/2011] [Indexed: 12/21/2022]
Abstract
Interleukin 17 (IL-17) promotes the expression of chemokines and cytokines via the induction of gene transcription and post-transcriptional stabilization of mRNA. We show here that IL-17 enhanced the stability of chemokine CXCL1 mRNA and other mRNAs through a pathway that involved the adaptor Act1, the adaptors TRAF2 or TRAF5 and the splicing factor SF2 (also known as alternative splicing factor (ASF)). TRAF2 and TRAF5 were necessary for IL-17 to signal the stabilization of CXCL1 mRNA. Furthermore, IL-17 promoted the formation of complexes of TRAF5-TRAF2, Act1 and SF2 (ASF). Overexpression of SF2 (ASF) shortened the half-life of CXCL1 mRNA, whereas depletion of SF2 (ASF) prolonged it. SF2 (ASF) bound chemokine mRNA in unstimulated cells, whereas the SF2 (ASF)-mRNA interaction was much lower after stimulation with IL-17. Our findings define an IL-17-induced signaling pathway that links to the stabilization of selected mRNA species through Act1, TRAF2-TRAF5 and the RNA-binding protein SF2 (ASF).
Collapse
Affiliation(s)
- Dongxu Sun
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
29
|
Rao NAS, McCalman MT, Moulos P, Francoijs KJ, Chatziioannou A, Kolisis FN, Alexis MN, Mitsiou DJ, Stunnenberg HG. Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes. Genome Res 2011; 21:1404-16. [PMID: 21750107 DOI: 10.1101/gr.118042.110] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucocorticoid receptor (GR) exerts anti-inflammatory action in part by antagonizing proinflammatory transcription factors such as the nuclear factor kappa-b (NFKB). Here, we assess the crosstalk of activated GR and RELA (p65, major NFKB component) by global identification of their binding sites and target genes. We show that coactivation of GR and p65 alters the repertoire of regulated genes and results in their association with novel sites in a mutually dependent manner. These novel sites predominantly cluster with p65 target genes that are antagonized by activated GR and vice versa. Our data show that coactivation of GR and NFKB alters signaling pathways that are regulated by each factor separately and provide insight into the networks underlying the GR and NFKB crosstalk.
Collapse
Affiliation(s)
- Nagesha A S Rao
- Department of Molecular Biology, Radboud University, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|