1
|
Deng Y, Zhao Z, Sheldon M, Zhao Y, Teng H, Martinez C, Zhang J, Lin C, Sun Y, Yao F, Zhu H, Ma L. LIFR recruits HGF-producing neutrophils to promote liver injury repair and regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533289. [PMID: 36993315 PMCID: PMC10055204 DOI: 10.1101/2023.03.18.533289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The molecular links between tissue repair and tumorigenesis remain elusive. Here, we report that loss of the liver tumor suppressor Lifr in mouse hepatocytes impairs the recruitment and activity of reparative neutrophils, resulting in the inhibition of liver regeneration after partial hepatectomy or toxic injuries. On the other hand, overexpression of LIFR promotes liver repair and regeneration after injury. Interestingly, LIFR deficiency or overexpression does not affect hepatocyte proliferation ex vivo or in vitro . In response to physical or chemical damage to the liver, LIFR from hepatocytes promotes the secretion of the neutrophil chemoattractant CXCL1 (which binds CXCR2 to recruit neutrophils) and cholesterol in a STAT3-dependent manner. Cholesterol, in turn, acts on the recruited neutrophils to secrete hepatocyte growth factor (HGF) to accelerate hepatocyte proliferation and regeneration. Altogether, our findings reveal a LIFR-STAT3- CXCL1-CXCR2 axis and a LIFR-STAT3-cholesterol-HGF axis that mediate hepatic damage- induced crosstalk between hepatocytes and neutrophils to repair and regenerate the liver.
Collapse
|
2
|
Yao F, Deng Y, Zhao Y, Mei Y, Zhang Y, Liu X, Martinez C, Su X, Rosato RR, Teng H, Hang Q, Yap S, Chen D, Wang Y, Chen MJM, Zhang M, Liang H, Xie D, Chen X, Zhu H, Chang JC, You MJ, Sun Y, Gan B, Ma L. A targetable LIFR-NF-κB-LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis. Nat Commun 2021; 12:7333. [PMID: 34921145 PMCID: PMC8683481 DOI: 10.1038/s41467-021-27452-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
The growing knowledge of ferroptosis has suggested the role and therapeutic potential of ferroptosis in cancer, but has not been translated into effective therapy. Liver cancer, primarily hepatocellular carcinoma (HCC), is highly lethal with limited treatment options. LIFR is frequently downregulated in HCC. Here, by studying hepatocyte-specific and inducible Lifr-knockout mice, we show that loss of Lifr promotes liver tumorigenesis and confers resistance to drug-induced ferroptosis. Mechanistically, loss of LIFR activates NF-κB signaling through SHP1, leading to upregulation of the iron-sequestering cytokine LCN2, which depletes iron and renders insensitivity to ferroptosis inducers. Notably, an LCN2-neutralizing antibody enhances the ferroptosis-inducing and anticancer effects of sorafenib on HCC patient-derived xenograft tumors with low LIFR expression and high LCN2 expression. Thus, anti-LCN2 therapy is a promising way to improve liver cancer treatment by targeting ferroptosis.
Collapse
Affiliation(s)
- Fan Yao
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ying Mei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaohua Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Roberto R Rosato
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shannon Yap
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dahu Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mei-Ju May Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mutian Zhang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jenny C Chang
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Detry S, Składanowska K, Vuylsteke M, Savvides SN, Bloch Y. Revisiting the combinatorial potential of cytokine subunits in the IL-12 family. Biochem Pharmacol 2019; 165:240-248. [PMID: 30885765 DOI: 10.1016/j.bcp.2019.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022]
Abstract
The four core members of the Interleukin-12 (IL-12) family of cytokines, IL-12, IL-23, IL-27 and IL-35 are heterodimers which share α- and β-cytokine subunits. All four cytokines are immune modulators and have been proposed to play divergent roles in inflammatory arthritis. In recent years additional combinations of α- and β-cytokine subunits belonging to the IL-12 family have been proposed to form novel cytokines such as IL-39. However, the actual extent of the combinatorial potential of the cytokine subunits in the human IL-12 family is not known. Here, we identify several combinations of subunits that form secreted heterodimeric assemblies based on a systematic orthogonal approach. The heterodimers are detected in the conditioned media harvested from mammalian cell cultures transfected with unfused pairs of cytokine subunits. While certain previously reported subunit combinations could not be recapitulated, our approach showed robustly that all four of the canonical members could be secreted. Furthermore, we provide evidence for the interaction between Cytokine Receptor Like Factor 1 (CRLF1) and Interleukin-12 subunit alpha (p35). Similar to IL-27 and IL-35 this novel heterodimer is not abundantly secreted rendering isolation from the conditioned medium very challenging, unlike IL-12 and IL-23. Our findings set the stage for fine-tuning approaches towards the biochemical reconstitution of IL-12 family cytokines for biochemical, cellular, and structural studies.
Collapse
Affiliation(s)
- Sammy Detry
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Katarzyna Składanowska
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | | | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| | - Yehudi Bloch
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| |
Collapse
|
4
|
Magno AL, Herat LY, Carnagarin R, Schlaich MP, Matthews VB. Current Knowledge of IL-6 Cytokine Family Members in Acute and Chronic Kidney Disease. Biomedicines 2019; 7:biomedicines7010019. [PMID: 30871285 PMCID: PMC6466237 DOI: 10.3390/biomedicines7010019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/24/2022] Open
Abstract
Healthy kidneys are important for the efficient regulation of metabolism. However, there is an ever increasing population of patients suffering from both acute and chronic kidney diseases that disrupt this homeostasis. This review will explore the emerging roles that interleukin 6 (IL-6) cytokine family members play in the pathogenesis of kidney disease. The IL-6 family of cytokines are involved in a diverse range of physiological functions. In relation to kidney disease, their involvement is no less diverse. Evidence from both preclinical and clinical sources show that IL-6 cytokine family members can play either a deleterious or protective role in response to kidney disease. This appears to be dependent on the type of kidney disease in question or the specific cytokine. Current attempts to use or target IL-6 cytokine family members as therapies of kidney diseases will be highlighted throughout this review. Finally, the involvement of IL-6 cytokine family members in kidney disease will be presented in the context of three regularly overlapping conditions: obesity, hypertension and diabetes.
Collapse
Affiliation(s)
- Aaron L Magno
- Research Centre, Royal Perth Hospital, Perth 6000, Western Australia, Australia.
| | - Lakshini Y Herat
- Dobney Hypertension Centre, School of Biomedical Science-Royal Perth Hospital Unit, University of Western Australia, Crawley 6000, Western Australia, Australia.
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, University of Western Australia, Crawley 6000, Western Australia, Australia.
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, University of Western Australia, Crawley 6000, Western Australia, Australia.
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth 6000, Western Australia, Australia.
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Biomedical Science-Royal Perth Hospital Unit, University of Western Australia, Crawley 6000, Western Australia, Australia.
| |
Collapse
|
5
|
Transcriptomic profiling of trigeminal nucleus caudalis and spinal cord dorsal horn. Brain Res 2018; 1692:23-33. [DOI: 10.1016/j.brainres.2018.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/15/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022]
|
6
|
CRLF1 promotes malignant phenotypes of papillary thyroid carcinoma by activating the MAPK/ERK and PI3K/AKT pathways. Cell Death Dis 2018. [PMID: 29515111 PMCID: PMC5841418 DOI: 10.1038/s41419-018-0352-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Papillary thyroid carcinoma (PTC) is the one of the most common types of endocrine cancer and has a heterogeneous prognosis. Tumors from patients with poor prognosis may differentially express specific genes. Therefore, an analysis of The Cancer Genome Atlas (TCGA) database was performed and revealed that cytokine receptor-like factor 1 (CRLF1) may be a potential novel target for PTC treatment. The objective of the current study was to explore the expression of CRLF1 in PTC and to investigate the main functions and mechanisms of CRLF1 in PTC. PTC tissues exhibited higher CRLF1 expression at both the mRNA and protein levels than it did with normal thyroid tissues. High CRLF1 levels were associated with aggressive clinicopathological features and poor disease-free survival rates. By using loss-of-function and gain-of-function assays, we found that CRLF1 not only increased cell migration and invasion in vitro but also promoted tumor growth both in vitro and in vivo. In addition, CRLF1 induced epithelial–mesenchymal transitions. Overexpression of CRLF1 activated the ERK1/2 and AKT pathways. The oncogenic effects induced by CRLF1 were suppressed by treating the cells with the MEK inhibitor U0126 or the AKT inhibitor MK-2206. These results suggest that CRLF1 enhances cell proliferation and metastasis in PTC and thus may therefore be a potential therapeutic target for PTC.
Collapse
|
7
|
Releasing Mechanism of Neurotrophic Factors via Polysialic Acid. VITAMINS AND HORMONES 2017; 104:89-112. [DOI: 10.1016/bs.vh.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Cytokine-Like Factor 1, an Essential Facilitator of Cardiotrophin-Like Cytokine:Ciliary Neurotrophic Factor Receptor α Signaling and sorLA-Mediated Turnover. Mol Cell Biol 2016; 36:1272-86. [PMID: 26858303 PMCID: PMC4836274 DOI: 10.1128/mcb.00917-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/01/2016] [Indexed: 01/09/2023] Open
Abstract
Cardiotrophin-like cytokine:cytokine-like factor-1 (CLC:CLF-1) is a heterodimeric neurotropic cytokine that plays a crucial role during neuronal development. Mice lacking CLC:CLF-1 die soon after birth due to a suckling defect and show reduced numbers of motor neurons. Humans carrying mutations in CLC:CLF-1 develop similar disorders, known as Sohar-Crisponi or cold-induced sweating syndrome, and have a high risk of early death. It is well known that CLC binds the ciliary neurotrophic factor receptor α (CNTFRα) and is a prerequisite for signaling through the gp130/leukemia inhibitory factor receptor β (LIFRβ) heterodimer, whereas CLF-1 serves to promote the cellular release of CLC. However, the precise role of CLF-1 is unclear. Here, we report that CLF-1, based on its binding site for CLC and on two additional and independent sites for CNTFRα and sorLA, is a key player in CLC and CNTFRα signaling and turnover. The site for CNTFRα enables CLF-1 to promote CLC:CNTFRα complex formation and signaling. The second site establishes a link between the endocytic receptor sorLA and the tripartite CLC:CLF-1:CNTFRα complex and allows sorLA to downregulate the CNTFRα pool in stimulated cells. Finally, sorLA may bind and concentrate the tripartite soluble CLC:CLF-1:CNTFRα complex on cell membranes and thus facilitate its signaling through gp130/LIFRβ.
Collapse
|
9
|
Piras R, Chiappe F, Torraca IL, Buers I, Usala G, Angius A, Akin MA, Basel-Vanagaite L, Benedicenti F, Chiodin E, El Assy O, Feingold-Zadok M, Guibert J, Kamien B, Kasapkara ÇS, Kılıç E, Boduroğlu K, Kurtoglu S, Manzur AY, Onal EE, Paderi E, Roche CH, Tümer L, Unal S, Utine GE, Zanda G, Zankl A, Zampino G, Crisponi G, Crisponi L, Rutsch F. Expanding the Mutational Spectrum ofCRLF1in Crisponi/CISS1 Syndrome. Hum Mutat 2014; 35:424-33. [DOI: 10.1002/humu.22522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/24/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Roberta Piras
- Istituto di Ricerca Genetica e Biomedica; Consiglio Nazionale delle Ricerche; Cagliari Italy
- Department of Public Health and Clinical and Molecular Medicine; University of Cagliari; Cagliari Italy
| | - Francesca Chiappe
- Istituto di Ricerca Genetica e Biomedica; Consiglio Nazionale delle Ricerche; Cagliari Italy
| | - Ilaria La Torraca
- Istituto di Pediatria, Policlinico “A. Gemelli”; Università Cattolica del S. Cuore; Rome Italy
| | - Insa Buers
- Department of General Pediatrics; Münster University Children's Hospital; Münster Germany
| | - Gianluca Usala
- Istituto di Ricerca Genetica e Biomedica; Consiglio Nazionale delle Ricerche; Cagliari Italy
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica; Consiglio Nazionale delle Ricerche; Cagliari Italy
- CRS4 Center for Advanced Studies, Research and Development in Sardinia, Laboratorio di Bioinformatica; Parco tecnologico della Sardegna; Pula Italy
| | - Mustafa Ali Akin
- Department of Pediatrics, Medical Faculty; Erciyes University; Kayseri Turkey
| | - Lina Basel-Vanagaite
- Pediatric Genetics, Schneider Children's Medical Center of Israel, and Raphael Recanati Genetic Institute; Rabin Medical Center, Beilinson Hospital; Petah Tikva 49100 Israel
- Sackler School of Medicine; Tel Aviv University; Tel Aviv 69978 Israel
- Felsenstein Medical Research Center, Tel Aviv University, Rabin Medical Center; Beilinson Campus; Petah Tikva 49100 Israel
| | - Francesco Benedicenti
- Genetic Counseling Service, Department of Pediatrics; Regional Hospital of Bolzano; Bolzano Italy
| | - Elisabetta Chiodin
- Neonatal Intensive Care Unit, Department of Pediatrics; Regional Hospital of Bolzano; Bolzano Italy
| | - Osama El Assy
- Pediatric Department-NICU; Al-Hada Military Hospital; Taif Saudi Arabia
| | - Michal Feingold-Zadok
- Pediatric Genetics, Schneider Children's Medical Center of Israel, and Raphael Recanati Genetic Institute; Rabin Medical Center, Beilinson Hospital; Petah Tikva 49100 Israel
| | - Javier Guibert
- Servicio de Pediatría; Complejo Hospitalario de Navarra; Pamplona Spain
| | - Benjamin Kamien
- Queensland Health Pathology; Royal Brisbane Hospital; Herston Australia
| | | | - Esra Kılıç
- Hacettepe University School of Medicine, Ihsan Dogramaci Children's Hospital; Department of Pediatric Genetics; Ankara Turkey
| | - Koray Boduroğlu
- Hacettepe University School of Medicine, Ihsan Dogramaci Children's Hospital; Department of Pediatric Genetics; Ankara Turkey
| | - Selim Kurtoglu
- Department of Pediatrics, Medical Faculty; Erciyes University; Kayseri Turkey
| | - Adnan Y Manzur
- The Dubowitz Neuromuscular Centre, Department of Neurosciences; Great Ormond Hospital for Children; London United Kingdom
| | - Eray Esra Onal
- Gazi University Hospital, Department of Pediatrics; Division of Neonatology Besevler; Ankara Turkey
| | - Enrica Paderi
- Unità Operativa Pediatria -Neonatologia - Nido; Ospedale San Martino; Oristano Italy
| | | | - Leyla Tümer
- Gazi University Hospital; Pediatric Metabolism and Nutrition; Ankara Turkey
| | - Sezin Unal
- Gazi University Hospital, Department of Pediatrics; Division of Neonatology Besevler; Ankara Turkey
| | - Gülen Eda Utine
- Hacettepe University School of Medicine, Ihsan Dogramaci Children's Hospital; Department of Pediatric Genetics; Ankara Turkey
| | - Giovanni Zanda
- Unità Operativa Pediatria -Neonatologia - Nido; Ospedale San Martino; Oristano Italy
| | - Andreas Zankl
- Discipline of Genetic Medicine; The University of Sydney; Sydney Australia
- Academic Department of Medical Genetics; The Children's Hospital at Westmead; Sydney Australia
| | - Giuseppe Zampino
- Istituto di Pediatria, Policlinico “A. Gemelli”; Università Cattolica del S. Cuore; Rome Italy
| | | | - Laura Crisponi
- Istituto di Ricerca Genetica e Biomedica; Consiglio Nazionale delle Ricerche; Cagliari Italy
| | - Frank Rutsch
- Department of General Pediatrics; Münster University Children's Hospital; Münster Germany
| |
Collapse
|
10
|
Tompkins VS, Han SS, Olivier A, Syrbu S, Bair T, Button A, Jacobus L, Wang Z, Lifton S, Raychaudhuri P, Morse HC, Weiner G, Link B, Smith BJ, Janz S. Identification of candidate B-lymphoma genes by cross-species gene expression profiling. PLoS One 2013; 8:e76889. [PMID: 24130802 PMCID: PMC3793908 DOI: 10.1371/journal.pone.0076889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/29/2013] [Indexed: 01/08/2023] Open
Abstract
Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma (BL). We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the "mouse filter" for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists.
Collapse
Affiliation(s)
- Van S. Tompkins
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Seong-Su Han
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alicia Olivier
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Sergei Syrbu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Thomas Bair
- Bioinformatics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Anna Button
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, Iowa, United States of America
| | - Laura Jacobus
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Zebin Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Samuel Lifton
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Statistics & Actuarial Science, University of Iowa College of Liberal Arts & Sciences, Iowa City, Iowa, United States of America
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Herbert C. Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - George Weiner
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Brian Link
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Brian J. Smith
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Siegfried Janz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| |
Collapse
|
11
|
Abstract
The interleukin 12 (IL-12) family is unique in having the only heterodimeric cytokines, including IL-12, IL-23, IL-27 and IL-35. This feature endows these cytokines with a unique set of connections and functional interactions not shared by other cytokine families. Despite sharing many structural features and molecular partners, cytokines of the IL-12 family mediate surprisingly diverse functional effects. Here we discuss the unique and unusual structural and functional characteristics of this cytokine family. We outline how cells might interpret seemingly similar cytokine signals to give rise to the diverse functional outcomes that characterize this cytokine family. We also discuss the therapeutic implications of this complexity.
Collapse
Affiliation(s)
- Dario A A Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| | | |
Collapse
|
12
|
Cytokine-like factor 1 gene expression is enriched in idiopathic pulmonary fibrosis and drives the accumulation of CD4+ T cells in murine lungs: evidence for an antifibrotic role in bleomycin injury. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1963-78. [PMID: 22429962 DOI: 10.1016/j.ajpath.2012.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 11/22/2011] [Accepted: 01/20/2012] [Indexed: 11/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and typically fatal lung disease. To gain insight into the pathogenesis of IPF, we reanalyzed our previously published gene expression data profiling IPF lungs. Cytokine receptor-like factor 1 (CRLF1) was among the most highly up-regulated genes in IPF lungs, compared with normal controls. The protein product (CLF-1) and its partner, cardiotrophin-like cytokine (CLC), function as members of the interleukin 6 (IL-6) family of cytokines. Because of earlier work implicating IL-6 family members in IPF pathogenesis, we tested whether CLF-1 expression contributes to inflammation in experimental pulmonary fibrosis. In IPF, we detected CLF-1 expression in both type II alveolar epithelial cells and macrophages. We found that the receptor for CLF-1/CLC signaling, ciliary neurotrophic factor receptor (CNTFR), was expressed only in type II alveolar epithelial cells. Administration of CLF-1/CLC to both uninjured and bleomycin-injured mice led to the pulmonary accumulation of CD4(+) T cells. We also found that CLF-1/CLC administration increased inflammation but decreased pulmonary fibrosis. CLF-1/CLC leads to significantly enriched expression of T-cell-derived chemokines and cytokines, including the antifibrotic cytokine interferon-γ. We propose that, in IPF, CLF-1 is a selective stimulus of type II alveolar epithelial cells and may potentially drive an antifibrotic response by augmenting both T-helper-1-driven and T-regulatory-cell-driven inflammatory responses in the lung.
Collapse
|