1
|
戴 军, 高 昳, 王 坚, 张 舒, 刘 鹏. [Effects of Ionizing Radiation on Intestinal Bile Acid Metabolism: Mechanism of the Radioprotective Effect of Glycoursodeoxycholic Acid]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1195-1201. [PMID: 39507959 PMCID: PMC11536250 DOI: 10.12182/20240960403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Indexed: 11/08/2024]
Abstract
Objective Radioactive intestinal injury is a common complication during radiotherapy of tumors. The aim of this study is to observe the effect of ionizing radiation on short-term changes in intestinal bile acids and to investigate the radioprotective effect of bile acids on intestinal cells. Methods A rat model of small intestinal injury was constructed by exposing the abdomen of the rats to daily irradiation at 2 Gy for 4 d in succession. The bile acids were quantified using metabolomics analysis. IEC-6 cells, a small intestinal epithelial cell line, were divided into a dimethyl sulfoxide (DMSO) control group receiving DMSO and 0 Gy irradiation, a glycoursodeoxycholic acid (GUDCA) experimental group receiving GUDCA and 0 Gy irradiation, a DMSO irradiation group receiving DMSO and 10 Gy irradiation, and a GUDCA irradiation group receiving GUDCA and 10 Gy irradiation. Cell viability and cytotoxicity was assessed by CCK-8 assay test. The apoptosis rate of cells was determined by flow cytometry. The colony formation rate and the radiosensitivity of the cells were determined by colony formation assay on solid media. The expression levels of proteins associated with cell death were determined using Western blot. Results After exposure to irradiation, the small intestine tissues of the rats showed typical radioactive intestinal injury. In addition, various bile acids showed fluctuation before and after irradiation. Among the bile acids, GUDCA increased significantly at 3 d after irradiation, but returned to the pre-irradiation level at 7 d after irradiation. Compared with the control group, after GUDCA treatment at 20 μmol/L for 24 h, the cell viability rate after irradiation was significantly higher than that of the DMSO group (P<0.05); the expression levels of the proteins, including PARP, caspase-3, RIP, and GSDMD, were significantly lower than those in the control group (P<0.05). After GUDCA treatment at 20 μmol/L for 24 h and 48 h, the cell apoptosis rate of the cells after irradiation was lower than that of the DMSO group (P<0.05). Compared with the DMSO control group, the colony formation ability of the GUDCA experimental group was stronger than that of the DMSO group after irradiation at 0, 2, 4, and 6 Gy (P<0.05). D0, or the mean lethal dose, of the GUDCA group was 6.374, while that of the DMSO group was 4.572. Compared with the DMSO control group, the D0 value of the GUDCA treatment group increased, and the sensitization enhancement ratio (SER) was 0.717. Conclusion After exposing the abdomen of rats to irradiation, the intestinal bile acid metabolism of the rats will change significantly, and GUDCA can produce radioprotective effects on intestinal cells to a certain extent.
Collapse
Affiliation(s)
- 军 戴
- 徐州医科大学江阴临床学院 (无锡 214400)Jiangyin Clinical College, Xuzhou Medical University, Wuxi 214400, China
| | - 昳 高
- 徐州医科大学江阴临床学院 (无锡 214400)Jiangyin Clinical College, Xuzhou Medical University, Wuxi 214400, China
| | - 坚 王
- 徐州医科大学江阴临床学院 (无锡 214400)Jiangyin Clinical College, Xuzhou Medical University, Wuxi 214400, China
| | - 舒羽 张
- 徐州医科大学江阴临床学院 (无锡 214400)Jiangyin Clinical College, Xuzhou Medical University, Wuxi 214400, China
| | - 鹏飞 刘
- 徐州医科大学江阴临床学院 (无锡 214400)Jiangyin Clinical College, Xuzhou Medical University, Wuxi 214400, China
| |
Collapse
|
2
|
Maldonado-García JL, García-Mena LH, Mendieta-Cabrera D, Pérez-Sánchez G, Becerril-Villanueva E, Alvarez-Herrera S, Homberg T, Vallejo-Castillo L, Pérez-Tapia SM, Moreno-Lafont MC, Ortuño-Sahagún D, Pavón L. Use of Extracellular Monomeric Ubiquitin as a Therapeutic Option for Major Depressive Disorder. Pharmaceuticals (Basel) 2024; 17:841. [PMID: 39065692 PMCID: PMC11279398 DOI: 10.3390/ph17070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Major depressive disorder (MDD) is a mood disorder that has become a global health emergency according to the World Health Organization (WHO). It affects 280 million people worldwide and is a leading cause of disability and financial loss. Patients with MDD present immunoendocrine alterations like cortisol resistance and inflammation, which are associated with alterations in neurotransmitter metabolism. There are currently numerous therapeutic options for patients with MDD; however, some studies suggest a high rate of therapeutic failure. There are multiple hypotheses explaining the pathophysiological mechanisms of MDD, in which several systems are involved, including the neuroendocrine and immune systems. In recent years, inflammation has become an important target for the development of new therapeutic options. Extracellular monomeric ubiquitin (emUb) is a molecule that has been shown to have immunomodulatory properties through several mechanisms including cholinergic modulation and the generation of regulatory T cells. In this perspective article, we highlight the influence of the inflammatory response in MDD. In addition, we review and discuss the evidence for the use of emUb contained in Transferon as a concomitant treatment with selective serotonin reuptake inhibitors (SSRIs).
Collapse
Affiliation(s)
- José Luis Maldonado-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (S.M.P.-T.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| | - Lissette Haydee García-Mena
- Departamento de Salud Digital, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico;
| | - Danelia Mendieta-Cabrera
- Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico;
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| | - Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| | - Toni Homberg
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (T.H.); (L.V.-C.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (T.H.); (L.V.-C.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Sonia Mayra Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (S.M.P.-T.)
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (T.H.); (L.V.-C.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Martha C. Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (S.M.P.-T.)
| | - Daniel Ortuño-Sahagún
- Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Jalisco 44340, Mexico;
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| |
Collapse
|
3
|
Mendoza-Salazar I, Fragozo A, González-Martínez AP, Trejo-Martínez I, Arreola R, Pavón L, Almagro JC, Vallejo-Castillo L, Aguilar-Alonso FA, Pérez-Tapia SM. Almost 50 Years of Monomeric Extracellular Ubiquitin (eUb). Pharmaceuticals (Basel) 2024; 17:185. [PMID: 38399400 PMCID: PMC10892293 DOI: 10.3390/ph17020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Monomeric ubiquitin (Ub) is a 76-amino-acid highly conserved protein found in eukaryotes. The biological activity of Ub first described in the 1970s was extracellular, but it quickly gained relevance due to its intracellular role, i.e., post-translational modification of intracellular proteins (ubiquitination) that regulate numerous eukaryotic cellular processes. In the following years, the extracellular role of Ub was relegated to the background, until a correlation between higher survival rate and increased serum Ub concentrations in patients with sepsis and burns was observed. Although the mechanism of action (MoA) of extracellular ubiquitin (eUb) is not yet well understood, further studies have shown that it may ameliorate the inflammatory response in tissue injury and multiple sclerosis diseases. These observations, compounded with the high stability and low immunogenicity of eUb due to its high conservation in eukaryotes, have made this small protein a relevant candidate for biotherapeutic development. Here, we review the in vitro and in vivo effects of eUb on immunologic, cardiovascular, and nervous systems, and discuss the potential MoAs of eUb as an anti-inflammatory, antimicrobial, and cardio- and brain-protective agent.
Collapse
Affiliation(s)
- Ivette Mendoza-Salazar
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Aneth P González-Martínez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Ismael Trejo-Martínez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Rodrigo Arreola
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Juan C Almagro
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- GlobalBio, Inc., 320 Concord Ave, Cambridge, MA 02138, USA
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Francisco A Aguilar-Alonso
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Sonia M Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| |
Collapse
|
4
|
Gao X, Majetschak M. G protein activation via chemokine (C-X-C motif) receptor 4 and α 1b -adrenoceptor is ligand and heteromer-dependent. FEBS Lett 2023; 597:2017-2027. [PMID: 37395117 PMCID: PMC10530236 DOI: 10.1002/1873-3468.14692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
It is unknown whether heteromerization between chemokine (C-X-C motif) receptor 4 (CXCR4), atypical chemokine receptor 3 (ACKR3) and α1b -adrenoceptor (α1b -AR) influences effects of the CXCR4/ACKR3 agonist chemokine (C-X-C motif) ligand 12 (CXCL12) and the noncognate CXCR4 agonist ubiquitin on agonist-promoted G protein activation. We provide biophysical evidence that both ligands stimulate CXCR4-mediated Gαi activation. Unlike CXCL12, ubiquitin fails to recruit β-arrestin. Both ligands differentially modulate the conformation of CXCR4:ACKR3 heterodimers and its propensity to hetero-trimerize with α1b -AR. CXCR4:ACKR3 heterodimerization reduces the potency of CXCL12, but not of ubiquitin, to activate Gαi. Ubiquitin enhances phenylephrine-stimulated α1b -AR-promoted Gαq activation from hetero-oligomers comprising CXCR4. CXCL12 enhances phenylephrine-stimulated α1b -AR-promoted Gαq activation from CXCR4:α1b -AR heterodimers and reduces phenylephrine-stimulated α1b -AR-promoted Gαq activation from ACKR3 comprising heterodimers and trimers. Our findings suggest heteromer and ligand-dependent functions of the receptor partners.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
5
|
Jiao Y, Xu J, Song B, Wu A, Pan L, Xu Y, Geng F, Li X, Zhao C, Hong M, Meng X, Luo J, Liu P, Li M, Zhu W, Cao J, Zhang S. Interferon regulatory factor 1-triggered free ubiquitin protects the intestines against radiation-induced injury via CXCR4/FGF2 signaling. MedComm (Beijing) 2022; 3:e168. [PMID: 36051984 PMCID: PMC9416916 DOI: 10.1002/mco2.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Radiation-induced intestinal injury is a serious concern during abdominal and pelvic cancers radiotherapy. Ubiquitin (Ub) is a highly conserved protein found in all eukaryotic cells. This study aims to explore the role and mechanism of free Ub against radiogenic intestinal injury. We found that free Ub levels of irradiated animals and human patients receiving radiotherapy were upregulated. Radiation-induced Ub expression was associated with the activation of interferon regulatory factor 1 (IRF1). Intraperitoneal injection of free Ub significantly reduced the mortality of mice following 5-9 Gy total body irradiation (TBI) through the Akt pathway. Free Ub facilitates small intestinal regeneration induced by TBI or abdominal irradiation. At the cellular level, free Ub or its mutants significantly alleviated cell death and enhanced the survival of irradiated intestinal epithelial cells. The radioprotective role of free Ub depends on its receptor CXCR4. Mechanistically, free Ub increased fibroblast growth factor-2 (FGF2) secretion and consequently activated FGFR1 signaling following radiation in vivo and in vivo. Thus, free Ub confers protection against radiation-induced intestinal injury through CXCR4/Akt/FGF2 axis, which provides a novel therapeutic option.
Collapse
Affiliation(s)
- Yang Jiao
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Jing Xu
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduChina
| | - Ailing Wu
- Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Lu Pan
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Ying Xu
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Fenghao Geng
- Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Xiaoqian Li
- West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Congzhao Zhao
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Min Hong
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Xuanyu Meng
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Judong Luo
- Department of OncologyThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Pengfei Liu
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
| | - Ming Li
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Wei Zhu
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Jianping Cao
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduChina
- Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
- West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Department of OncologyThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central HospitalMianyangChina
| |
Collapse
|
6
|
Enten GA, Gao X, Strzelinski HR, Weche M, Liggett SB, Majetschak M. α 1B/D-adrenoceptors regulate chemokine receptor-mediated leukocyte migration via formation of heteromeric receptor complexes. Proc Natl Acad Sci U S A 2022; 119:e2123511119. [PMID: 35537053 PMCID: PMC9171806 DOI: 10.1073/pnas.2123511119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
It is known that catecholamines regulate innate immune functions. The underlying mechanisms, however, are not well understood. Here we show that at least 20 members of the human chemokine receptor (CR) family heteromerize with one or more members of the α1-adrenergic receptor (AR) family in recombinant systems and that such heteromeric complexes are detectable in human monocytes and the monocytic leukemia cell line THP-1. Ligand binding to α1-ARs inhibited migration toward agonists of the CR heteromerization partners of α1B/D-ARs with high potency and 50 to 77% efficacy but did not affect migration induced by a noninteracting CR. Incomplete siRNA knockdown of α1B/D-ARs in THP-1 cells partially inhibited migration toward agonists of their CR heteromerization partners. Complete α1B-AR knockout via CRISPR-Cas9 gene editing in THP-1 cells (THP-1_ADRA1BKO) resulted in 82% reduction of α1D-AR expression and did not affect CR expression. Migration of THP-1_ADRA1BKO cells toward agonists of CR heteromerization partners of α1B/D-ARs was reduced by 82 to 95%. Our findings indicate that CR:α1B/D-AR heteromers are essential for normal function of CR heteromerization partners, provide a mechanism underlying neuroendocrine control of leukocyte trafficking, and offer opportunities to modulate leukocyte and/or cancer cell trafficking in disease processes.
Collapse
Affiliation(s)
- Garrett A. Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Hannah R. Strzelinski
- Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - McWayne Weche
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Stephen B. Liggett
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
- Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| |
Collapse
|
7
|
Plasticity of seven-transmembrane-helix receptor heteromers in human vascular smooth muscle cells. PLoS One 2021; 16:e0253821. [PMID: 34166476 PMCID: PMC8224933 DOI: 10.1371/journal.pone.0253821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, we reported that the chemokine (C-X-C motif) receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) heteromerize with α1A/B/D-adrenoceptors (ARs) and arginine vasopressin receptor 1A (AVPR1A) in recombinant systems and in rodent and human vascular smooth muscle cells (hVSMCs). In these studies, we observed that heteromerization between two receptor partners may depend on the presence and the expression levels of other partnering receptors. To test this hypothesis and to gain initial insight into the formation of these receptor heteromers in native cells, we utilized proximity ligation assays in hVSMCs to visualize receptor-receptor proximity and systematically studied how manipulation of the expression levels of individual protomers affect heteromerization patterns among other interacting receptor partners. We confirmed subtype-specific heteromerization between endogenously expressed α1A/B/D-ARs and detected that AVPR1A also heteromerizes with α1A/B/D-ARs. siRNA knockdown of CXCR4 and of ACKR3 resulted in a significant re-arrangement of the heteromerization patterns among α1-AR subtypes. Similarly, siRNA knockdown of AVPR1A significantly increased heteromerization signals for seven of the ten receptor pairs between CXCR4, ACKR3, and α1A/B/D-ARs. Our findings suggest plasticity of seven transmembrane helix (7TM) receptor heteromerization in native cells and could be explained by a supramolecular organization of these receptors within dynamic clusters in the plasma membrane. Because we previously observed that recombinant CXCR4, ACKR3, α1a-AR and AVPR1A form hetero-oligomeric complexes composed of 2–4 different protomers, which show signaling properties distinct from individual protomers, re-arrangements of receptor heteromerization patterns in native cells may contribute to the phenomenon of context-dependent GPCR signaling. Furthermore, these findings advise caution in the interpretation of functional consequences after 7TM receptor knockdown in experimental models. Alterations of the heteromerization patterns among other receptor partners may alter physiological and pathological responses, in particular in more complex systems, such as studies on the function of isolated organs or in in vivo experiments.
Collapse
|
8
|
RNA-Seq Analysis Reveals CCR5 as a Key Target for CRISPR Gene Editing to Regulate In Vivo NK Cell Trafficking. Cancers (Basel) 2021; 13:cancers13040872. [PMID: 33669611 PMCID: PMC7922167 DOI: 10.3390/cancers13040872] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Adoptive immunotherapy utilizing ex vivo expanded natural killer (NK) cells is being explored in the clinical and preclinical settings to treat hematological tumors. Previous work has shown that a large fraction of ex vivo expanded NK cells traffic into the liver following i.v. infusion. In this manuscript, Levy et al. show that ex vivo expansion of NK cells alters the mRNA transcription and surface expression of several chemokine receptors. The observed shift in chemotactic receptor expression may compromise the homing of infused cells into sites where hematological tumors reside, such as bone marrow, lymph nodes, and peripheral blood, by promoting preferential trafficking into liver tissue. Here we demonstrate clustered regularly interspaced short palindromic repeats (CRISPR) gene abrogation of C-C chemokine receptor type 5 (CCR5) as a novel strategy that reduces the trafficking of adoptively transferred ex vivo expanded NK cells into liver tissue and increases NK cell presence in the circulation. Abstract A growing number of natural killer (NK) cell-based immunotherapy trials utilize ex vivo expansion to grow and activate allogenic and autologous NK cells prior to administration to patients with malignancies. Recent data in both murine and macaque models have shown that adoptively infused ex vivo expanded NK cells have extensive trafficking into liver tissue, with relatively low levels of homing to other sites where tumors often reside, such as the bone marrow or lymph nodes. Here, we evaluated gene and surface expression of molecules involved in cellular chemotaxis in freshly isolated human NK cells compared with NK cells expanded ex vivo using two different feeder cells lines: Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs) or K562 cells with membrane-bound (mb) 4-1BB ligand and interleukin (IL)-21. Expanded NK cells had altered expression in a number of genes that encode chemotactic ligands and chemotactic receptors that impact chemoattraction and chemotaxis. Most notably, we observed drastic downregulation of C-X-C chemokine receptor type 4 (CXCR4) and upregulation of C-C chemokine receptor type 5 (CCR5) transcription and phenotypic expression. clustered regularly interspaced short palindromic repeats (CRISPR) gene editing of CCR5 in expanded NK cells reduced cell trafficking into liver tissue and increased NK cell presence in the circulation following infusion into immunodeficient mice. The findings reported here show that ex vivo expansion alters multiple factors that govern NK cell homing and define a novel approach using CRISPR gene editing that reduces sequestration of NK cells by the liver.
Collapse
|
9
|
Abstract
Ischemic heart disease (IHD) accounts for the majority of heart disease-related deaths worldwide. Ubiquitin (UB), found in all eukaryotic cells, is a highly conserved low molecular weight (~8.5 kDa) protein. A well-known intracellular function of UB is to regulate protein turnover via the UB-proteasome system. UB is a normal constituent of plasma, and elevated levels of UB are observed in the serum of patients under a variety of pathological conditions. Recent studies provide evidence for cardioprotective potential of exogenous UB in the remodeling process of the heart in IHD, including effects on cardiac myocyte apoptosis, inflammatory response, and reorganization of the vasculature and extracellular matrix. This review summarizes functions of UB with an emphasis on the role of exogenous UB in myocardial remodeling in IHD.
Collapse
|
10
|
Koch C, Engele J. Functions of the CXCL12 Receptor ACKR3/CXCR7-What Has Been Perceived and What Has Been Overlooked. Mol Pharmacol 2020; 98:577-585. [PMID: 32883765 DOI: 10.1124/molpharm.120.000056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
The CXCL12 system is central to the development of many organs and is further crucially engaged in pathophysiological processes underlying cancer, inflammation, and cardiovascular disorders. This disease-associated role presently focuses major interest on the two CXCL12 receptors, CXCR4 and atypical chemokine receptor 3 (ACKR3)/CXCR7, as promising therapeutic targets. Major obstacles in these ongoing efforts are confusing reports on the differential use of either ACKR3/CXCR7 and/or CXCR4 across various cells as well as on the specific function(s) of ACKR3/CXCR7. Although basically no doubts remain that CXCR4 represents a classic chemokine receptor, functions assigned to ACKR3/CXCR7 range from those of a strictly silent scavenger receptor eventually modulating CXCR4 signaling to an active and independent signaling receptor. In this review, we depict a thorough analysis of our present knowledge on different modes of organization and functions of the cellular CXCL12 system. We further highlight the potential role of ACKR3/CXCR7 as a "crosslinker" of different receptor systems. Finally, we discuss mechanisms with the potency to impinge on the cellular organization of the CXCL12 system and hence might represent additional future therapeutic targets. SIGNIFICANCE STATEMENT: Delineating the recognized functions of atypical chemokine receptor 3 and CXCR4 in CXCL12 signaling is central to the more detailed understanding of the role of the CXCL12 system in health and disease and will help to guide future research efforts.
Collapse
Affiliation(s)
- Christian Koch
- Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany
| |
Collapse
|
11
|
Gao X, Cheng YH, Enten GA, DeSantis AJ, Gaponenko V, Majetschak M. Regulation of the thrombin/protease-activated receptor 1 axis by chemokine (C XC motif) receptor 4. J Biol Chem 2020; 295:14893-14905. [PMID: 32839271 DOI: 10.1074/jbc.ra120.015355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
The chemokine receptor CXCR4, a G protein-coupled receptor (GPCR) capable of heteromerizing with other GPCRs, is involved in many processes, including immune responses, hematopoiesis, and organogenesis. Evidence suggests that CXCR4 activation reduces thrombin/protease-activated receptor 1 (PAR1)-induced impairment of endothelial barrier function. However, the mechanisms underlying cross-talk between CXCR4 and PAR1 are not well-understood. Using intermolecular bioluminescence resonance energy transfer and proximity ligation assays, we found that CXCR4 heteromerizes with PAR1 in the HEK293T expression system and in human primary pulmonary endothelial cells (hPPECs). A peptide analog of transmembrane domain 2 (TM2) of CXCR4 interfered with PAR1:CXCR4 heteromerization. In HTLA cells, the presence of CXCR4 reduced the efficacy of thrombin to induce β-arrestin-2 recruitment to recombinant PAR1 and enhanced thrombin-induced Ca2+ mobilization. Whereas thrombin-induced extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation occurred more transiently in the presence of CXCR4, peak ERK1/2 phosphorylation was increased when compared with HTLA cells expressing PAR1 alone. CXCR4-associated effects on thrombin-induced β-arrestin-2 recruitment to and signaling of PAR1 could be reversed by TM2. In hPPECs, TM2 inhibited thrombin-induced ERK1/2 phosphorylation and activation of Ras homolog gene family member A. CXCR4 siRNA knockdown inhibited thrombin-induced ERK1/2 phosphorylation. Whereas thrombin stimulation reduced surface expression of PAR1, CXCR4, and PAR1:CXCR4 heteromers, chemokine (CXC motif) ligand 12 stimulation reduced surface expression of CXCR4 and PAR1:CXCR4 heteromers, but not of PAR1. Finally, TM2 dose-dependently inhibited thrombin-induced impairment of hPPEC monolayer permeability. Our findings suggest that CXCR4:PAR1 heteromerization enhances thrombin-induced G protein signaling of PAR1 and PAR1-mediated endothelial barrier disruption.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - You-Hong Cheng
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|
12
|
Regan DP, Coy JW, Chahal KK, Chow L, Kurihara JN, Guth AM, Kufareva I, Dow SW. The Angiotensin Receptor Blocker Losartan Suppresses Growth of Pulmonary Metastases via AT1R-Independent Inhibition of CCR2 Signaling and Monocyte Recruitment. THE JOURNAL OF IMMUNOLOGY 2019; 202:3087-3102. [PMID: 30971441 DOI: 10.4049/jimmunol.1800619] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 03/14/2019] [Indexed: 01/08/2023]
Abstract
Inflammatory monocytes have been shown to play key roles in cancer metastasis through promotion of tumor cell extravasation, growth, and angiogenesis. Monocyte recruitment to metastases is mediated primarily via the CCL2-CCR2 chemotactic axis. Thus, disruption of this axis represents an attractive therapeutic target for the treatment of metastatic disease. Losartan, a type I angiotensin II receptor (AT1R) antagonist, has been previously shown to have immunomodulatory actions involving monocyte and macrophage activity. However, the exact mechanisms accounting for these effects have not been fully elucidated. Therefore, we investigated the effects of losartan and its primary metabolite on CCL2-mediated monocyte recruitment and CCR2 receptor function using mouse tumor models and in vitro human monocyte cultures. We show, in this study, that losartan and its metabolite potently inhibit monocyte recruitment through the noncompetitive inhibition of CCL2-induced ERK1/2 activation, independent of AT1R activity. Studies in experimental metastasis models demonstrated that losartan treatment significantly reduced the metastatic burden in mice, an effect associated with a significant decrease in CD11b+/Ly6C+-recruited monocytes in the lungs. Collectively, these results indicate that losartan can exert antimetastatic activity by inhibiting CCR2 signaling and suppressing monocyte recruitment and therefore suggest that losartan (and potentially other AT1R blocker drugs) could be repurposed for use in cancer immunotherapy.
Collapse
Affiliation(s)
- Daniel P Regan
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.,Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Jonathan W Coy
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Kirti Kandhwal Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Lyndah Chow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Jade N Kurihara
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Amanda M Guth
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Steven W Dow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; .,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| |
Collapse
|
13
|
Albee LJ, LaPorte HM, Gao X, Eby JM, Cheng YH, Nevins AM, Volkman BF, Gaponenko V, Majetschak M. Identification and functional characterization of arginine vasopressin receptor 1A : atypical chemokine receptor 3 heteromers in vascular smooth muscle. Open Biol 2019; 8:rsob.170207. [PMID: 29386406 PMCID: PMC5795052 DOI: 10.1098/rsob.170207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
Recent observations suggest that atypical chemokine receptor (ACKR)3 and chemokine (C-X-C motif) receptor (CXCR)4 regulate human vascular smooth muscle function through hetero-oligomerization with α1-adrenoceptors. Here, we show that ACKR3 also regulates arginine vasopressin receptor (AVPR)1A. We observed that ACKR3 agonists inhibit arginine vasopressin (aVP)-induced inositol trisphosphate (IP3) production in human vascular smooth muscle cells (hVSMCs) and antagonize aVP-mediated constriction of isolated arteries. Proximity ligation assays, co-immunoprecipitation and bioluminescence resonance energy transfer experiments suggested that recombinant and endogenous ACKR3 and AVPR1A interact on the cell surface. Interference with ACKR3 : AVPR1A heteromerization using siRNA and peptide analogues of transmembrane domains of ACKR3 abolished aVP-induced IP3 production. aVP stimulation resulted in β-arrestin 2 recruitment to AVPR1A and ACKR3. While ACKR3 activation failed to cross-recruit β-arrestin 2 to AVPR1A, the presence of ACKR3 reduced the efficacy of aVP-induced β-arrestin 2 recruitment to AVPR1A. AVPR1A and ACKR3 co-internalized upon agonist stimulation in hVSMC. These data suggest that AVPR1A : ACKR3 heteromers are constitutively expressed in hVSMC, provide insights into molecular events at the heteromeric receptor complex, and offer a mechanistic basis for interactions between the innate immune and vasoactive neurohormonal systems. Our findings suggest that ACKR3 is a regulator of vascular smooth muscle function and a possible drug target in diseases associated with impaired vascular reactivity.
Collapse
Affiliation(s)
- Lauren J Albee
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Heather M LaPorte
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Xianlong Gao
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Jonathan M Eby
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - You-Hong Cheng
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA .,Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| |
Collapse
|
14
|
Extracellular ubiquitin modulates cardiac fibroblast phenotype and function via its interaction with CXCR4. Life Sci 2018; 211:8-16. [PMID: 30195032 DOI: 10.1016/j.lfs.2018.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
AIMS β-adrenergic receptor (β-AR) stimulation increases extracellular levels of ubiquitin (UB), and exogenous UB plays an important role in β-AR-stimulated myocardial remodeling with effects on heart function, fibrosis and myocyte apoptosis. Cardiac fibroblasts are vital for maintaining the normal function of the heart, and in the structural remodeling of the heart in response to injury. Here we hypothesized that extracellular UB modulates cardiac fibroblast phenotype and function via its interaction with CXC chemokine receptor type 4 (CXCR4). MAIN METHODS Serum starved adult cardiac fibroblasts were used to identify CXCR4 as a receptor for UB. Fluorescent microscopy, co-immunoprecipitation, western blot, proliferation, migration and collagen contraction assays were performed to investigate the role of UB/CXCR4 axis on cell signaling, and modulation of fibroblast phenotype and function. KEY FINDINGS Using fluorescent microscopy and co-immunoprecipitation assay, we provide evidence that extracellular UB interacts with CXCR4. CXCR4 antagonist, AMD3100, inhibited interaction of UB with CXCR4. UB activated ERK1/2, not Akt. It enhanced VEGF-A expression, while decreasing β3 integrins expression. Two mutated UB proteins (V70A and F4A; unable to interact with CXCR4) failed to affect the expression of VEGF-A and β3 integrins. UB treatment inhibited migration of cells into the wound and FBS-stimulated cell proliferation. UB enhanced expression of α-smooth muscle actin (marker of myofibroblast differentiation) and contraction of fibroblast-populated collagen gel pads. Most of the effects of UB were negated by AMD3100. SIGNIFICANCE The data presented here suggest that UB interacts with CXCR4, and UB/CXCR4 interaction affects intracellular signaling, and modulates fibroblast phenotype and function.
Collapse
|
15
|
Kuwata H, Yuzurihara C, Kinoshita N, Taki Y, Ikegami Y, Washio S, Hirakawa Y, Yoda E, Aiuchi T, Itabe H, Nakatani Y, Hara S. The group VIA calcium‐independent phospholipase A
2
and NFATc4 pathway mediates IL‐1β‐induced expression of chemokines CCL2 and CXCL10 in rat fibroblasts. FEBS J 2018; 285:2056-2070. [DOI: 10.1111/febs.14462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/15/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Hiroshi Kuwata
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Chihiro Yuzurihara
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Natsumi Kinoshita
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Yuki Taki
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Yuki Ikegami
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Sana Washio
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Yushi Hirakawa
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Emiko Yoda
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Toshihiro Aiuchi
- Division of Biological Chemistry Department of Molecular Biology School of Pharmacy Showa University Tokyo Japan
| | - Hiroyuki Itabe
- Division of Biological Chemistry Department of Molecular Biology School of Pharmacy Showa University Tokyo Japan
| | - Yoshihito Nakatani
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Shuntaro Hara
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| |
Collapse
|
16
|
Lüke F, Blazquez R, Yamaci RF, Lu X, Pregler B, Hannus S, Menhart K, Hellwig D, Wester HJ, Kropf S, Heudobler D, Grosse J, Moosbauer J, Hutterer M, Hau P, Riemenschneider MJ, Bayerlová M, Bleckmann A, Polzer B, Beißbarth T, Klein CA, Pukrop T. Isolated metastasis of an EGFR-L858R-mutated NSCLC of the meninges: the potential impact of CXCL12/CXCR4 axis in EGFR mut NSCLC in diagnosis, follow-up and treatment. Oncotarget 2018; 9:18844-18857. [PMID: 29721166 PMCID: PMC5922360 DOI: 10.18632/oncotarget.24787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/27/2018] [Indexed: 11/25/2022] Open
Abstract
Brain and leptomeningeal metastasis (LMM) of non-small cell lung cancer is still associated with poor prognosis. Moreover, the current diagnostic standard for LMM often yields false negative results and the scientific progress in this field is still unsatisfying. We present a case of a 71-year old patient with an isolated LMM. While standard diagnostics could only diagnose a cancer of unknown primary, the use of [68Ga]-Pentixafor-PET/CT (CXCR4-PET/CT, a radiotracer targeting CXCR4) and a liquid biopsy of the cerebrospinal fluid revealed the primary NSCLC. The detection of L858R-EGFR, a common driver mutation in NSCLC, enabled us to treat the patient with Afatinib and monitor treatment using [68Ga]-Pentixafor PET/CT. To estimate the impact of CXCR4 signaling and its ligands in NSCLC brain metastasis we looked at their expression and correlation with EGFR mutations in a primary and brain metastasis data set and investigated the previously described binding of extracellular ubiquitin to CXCR4. In conclusion, we describe a novel approach to improve diagnostics towards LMM and underline the impact of the CXCL12/CXCR4 axis in brain metastasis in a subset of NSCLC patients. We cannot confirm a correlation of CXCR4 expression with EGFR mutations or the binding of extracellular ubiquitin as previously reported.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Raquel Blazquez
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Rezan Fahrioglu Yamaci
- Chair of Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Xin Lu
- Chair of Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Benedikt Pregler
- Institute of Radiology, University Hospital Regensburg, Regensburg, Germany
| | | | - Karin Menhart
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Dirk Hellwig
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hans-Jürgen Wester
- Chair of Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | | | - Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Jirka Grosse
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Jutta Moosbauer
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Markus Hutterer
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany.,Wilhelm Sander-Neurooncology Unit, University Hospital Regensburg, Regensburg, Germany.,Department of Neurology 1, NeuroMed Campus, Kepler University Hospital Linz, Linz, Austria
| | - Peter Hau
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany.,Wilhelm Sander-Neurooncology Unit, University Hospital Regensburg, Regensburg, Germany
| | | | - Michaela Bayerlová
- University Medical Center Göttingen, Department of Medical Statistics, Göttingen, Germany
| | - Annalen Bleckmann
- University Medical Center Göttingen, Department of Medical Statistics, Göttingen, Germany.,University Medical Center Göttingen, Department of Hematology and Oncology, Göttingen, Germany
| | - Bernhard Polzer
- Division Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Tim Beißbarth
- University Medical Center Göttingen, Department of Medical Statistics, Göttingen, Germany
| | - Christoph A Klein
- Chair of Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany.,Division Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Abstract
The objective of this study was to determine whether urine ubiquitin levels are elevated after burns and to assess whether urine ubiquitin could be useful as a noninvasive biomarker for burn patients. Forty burn patients (%TBSA: 20 ± 22; modified Baux scores: 73 ± 26) were included (control: 11 volunteers). Urine was collected in 2-hour intervals for 72 hours, followed by 12-hour intervals until discharge from the intensive care unit. Ubiquitin concentrations were analyzed by enzyme linked immunosorbent assay and Western blot. Total protein was determined with a Bradford assay. Patient characteristics and clinical parameters were documented. Urine ubiquitin concentrations, renal ubiquitin excretion, and excretion rates were correlated with patient characteristics and outcomes. Initial urine ubiquitin concentrations were 362 ± 575 ng/ml in patients and 14 ± 18 ng/ml in volunteers (P < .01). Renal ubiquitin excretion on day 1 was 292.6 ± 510.8 μg/24 hr and 21 ± 27 μg/24 hr in volunteers (P < .01). Initial ubiquitin concentrations correlated with modified Baux scores (r = .46; P = .02). Ubiquitin levels peaked at day 6 postburn, whereas total protein concentrations and serum creatinine levels remained within the normal range. Total renal ubiquitin excretion and excretion rates were higher in patients with %TBSA ≥20 than with %TBSA <20, in patients who developed sepsis/multiple organ failure than in patients without these complications and in nonsurvivors vs survivors. These data suggest that ubiquitin urine levels are significantly increased after burns. Renal ubiquitin excretion and/or excretion rates are associated with %TBSA, sepsis/multiple organ failure, and mortality. Although these findings may explain previous correlations between systemic ubiquitin levels and outcomes after burns, the large variability of ubiquitin urine levels suggests that urine ubiquitin will not be useful as a noninvasive disease biomarker.
Collapse
|
18
|
Albee LJ, Eby JM, Tripathi A, LaPorte HM, Gao X, Volkman BF, Gaponenko V, Majetschak M. α 1-Adrenergic Receptors Function Within Hetero-Oligomeric Complexes With Atypical Chemokine Receptor 3 and Chemokine (C-X-C motif) Receptor 4 in Vascular Smooth Muscle Cells. J Am Heart Assoc 2017; 6:JAHA.117.006575. [PMID: 28862946 PMCID: PMC5586474 DOI: 10.1161/jaha.117.006575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Recently, we provided evidence that α1‐adrenergic receptors (ARs) in vascular smooth muscle are regulated by chemokine (C‐X‐C motif) receptor (CXCR) 4 and atypical chemokine receptor 3 (ACKR3). While we showed that CXCR4 controls α1‐ARs through formation of heteromeric receptor complexes in human vascular smooth muscle cells (hVSMCs), the molecular basis underlying cross‐talk between ACKR3 and α1‐ARs is unknown. Methods and Results We show that ACKR3 agonists inhibit inositol trisphosphate production in hVSMCs on stimulation with phenylephrine. In proximity ligation assays and co‐immunoprecipitation experiments, we observed that recombinant and endogenous ACKR3 form heteromeric complexes with α1A/B/D‐AR. While small interfering RNA knockdown of ACKR3 in hVSMCs reduced α1B/D‐AR:ACKR3, CXCR4:ACKR3, and α1B/D‐AR:CXCR4 complexes, small interfering RNA knockdown of CXCR4 reduced α1B/D‐AR:ACKR3 heteromers. Phenylephrine‐induced inositol trisphosphate production from hVSMCs was abolished after ACKR3 and CXCR4 small interfering RNA knockdown. Peptide analogs of transmembrane domains 2/4/7 of ACKR3 showed differential effects on heteromerization between ACKR3, α1A/B/D‐AR, and CXCR4. While the transmembrane domain 2 peptide interfered with α1B/D‐AR:ACKR3 and CXCR4:ACKR3 heteromerization, it increased heteromerization between CXCR4 and α1A/B‐AR. The transmembrane domain 2 peptide inhibited ACKR3 but did not affect α1b‐AR in β‐arrestin recruitment assays. Furthermore, the transmembrane domain 2 peptide inhibited phenylephrine‐induced inositol trisphosphate production in hVSMCs and attenuated phenylephrine‐induced constriction of mesenteric arteries. Conclusions α1‐ARs form hetero‐oligomeric complexes with the ACKR3:CXCR4 heteromer, which is required for α1B/D‐AR function, and activation of ACKR3 negatively regulates α1‐ARs. G protein–coupled receptor hetero‐oligomerization is a dynamic process, which depends on the relative abundance of available receptor partners. Endogenous α1‐ARs function within a network of hetero‐oligomeric receptor complexes.
Collapse
Affiliation(s)
- Lauren J Albee
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Jonathan M Eby
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Abhishek Tripathi
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Heather M LaPorte
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Xianlong Gao
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL
| | - Matthias Majetschak
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL .,Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| |
Collapse
|
19
|
Functional and structural consequences of chemokine (C-X-C motif) receptor 4 activation with cognate and non-cognate agonists. Mol Cell Biochem 2017; 434:143-151. [PMID: 28455789 DOI: 10.1007/s11010-017-3044-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/22/2017] [Indexed: 01/27/2023]
Abstract
Chemokine (C-X-C motif) receptor 4 (CXCR4) regulates cell trafficking and plays important roles in the immune system. Ubiquitin has recently been identified as an endogenous non-cognate agonist of CXCR4, which activates CXCR4 via interaction sites that are distinct from those of the cognate agonist C-X-C motif chemokine ligand 12 (CXCL12). As compared with CXCL12, chemotactic activities of ubiquitin in primary human cells are poorly characterized. Furthermore, evidence for functional selectivity of CXCR4 agonists is lacking, and structural consequences of ubiquitin binding to CXCR4 are unknown. Here, we show that ubiquitin and CXCL12 have comparable chemotactic activities in normal human peripheral blood mononuclear cells, monocytes, vascular smooth muscle, and endothelial cells. Chemotactic activities of the CXCR4 ligands could be inhibited with the selective CXCR4 antagonist AMD3100 and with a peptide analogue of the second transmembrane domain of CXCR4. In human monocytes, ubiquitin- and CXCL12-induced chemotaxis could be inhibited with pertussis toxin and with inhibitors of phospholipase C, phosphatidylinositol 3 kinase, and extracellular signal-regulated kinase 1/2. Both agonists induced inositol trisphosphate production in vascular smooth muscle cells, which could be inhibited with AMD3100. In β-arrestin recruitment assays, ubiquitin did not sufficiently recruit β-arrestin2 to CXCR4 (EC50 > 10 μM), whereas the EC50 for CXCL12 was 4.6 nM (95% confidence interval 3.1-6.1 nM). Both agonists induced similar chemical shift changes in the 13C-1H-heteronuclear single quantum correlation (HSQC) spectrum of CXCR4 in membranes, whereas CXCL11 did not significantly alter the 13C-1H-HSQC spectrum of CXCR4. Our findings point towards ubiquitin as a biased agonist of CXCR4.
Collapse
|
20
|
Xu Z, Li P, Wei D, Wang Z, Bao Y, Sun J, Qu L, Wang L. NMMHC-IIA-dependent nuclear location of CXCR4 promotes migration and invasion in renal cell carcinoma. Oncol Rep 2016; 36:2681-2688. [PMID: 27634189 DOI: 10.3892/or.2016.5082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/18/2016] [Indexed: 11/06/2022] Open
Abstract
The chemokine receptor cysteine (C)-X-C receptor (CXCR4) is a G-protein-coupled receptor that exerts a vital role in distant metastasis of renal cell carcinoma (RCC). Emerging evidence demonstrates that CXCR4 as the cytomembrane receptor translocated into the nucleus to facilitate cell migration and, therefore, determine the prognosis of several types of malignancies. However, the biological mechanism of nuclear location of CXCR4 remains unclear. In the present study, we confirmed the significant implications of the putative nuclear localization sequence (NLS) '146RPRK149̓ on CXCR4 subcellular localization and metastatic potential by point-mutation assay in RCC cell lines. Importantly, mass spectrum followed by immunoprecipitation identified non-muscle myosin heavy chain-IIA (NMMHC-IIA) as the CXCR4-interacting protein. Furthermore, pharmaceutical inhibition of NMMHC-IIA by blebbistatin dampened the nuclear translocation of CXCR4 as well as the metastatic capacity of RCC cells. In conclusion, the present study may drive the comprehensive progress toward elucidating the mechanism responsible for CXCR4 nuclear function and metastasis in tumors.
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Peng Li
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Dan Wei
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhixiang Wang
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Jipeng Sun
- Health Contingent, No. 71210 Unit of People's Liberation Army, Yantai, Shantong 264001, P.R. China
| | - Le Qu
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| |
Collapse
|
21
|
Evans AE, Tripathi A, LaPorte HM, Brueggemann LI, Singh AK, Albee LJ, Byron KL, Tarasova NI, Volkman BF, Cho TY, Gaponenko V, Majetschak M. New Insights into Mechanisms and Functions of Chemokine (C-X-C Motif) Receptor 4 Heteromerization in Vascular Smooth Muscle. Int J Mol Sci 2016; 17:ijms17060971. [PMID: 27331810 PMCID: PMC4926503 DOI: 10.3390/ijms17060971] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
Recent evidence suggests that C-X-C chemokine receptor type 4 (CXCR4) heteromerizes with α1A/B-adrenoceptors (AR) and atypical chemokine receptor 3 (ACKR3) and that CXCR4:α1A/B-AR heteromers are important for α1-AR function in vascular smooth muscle cells (VSMC). Structural determinants for CXCR4 heteromerization and functional consequences of CXCR4:α1A/B-AR heteromerization in intact arteries, however, remain unknown. Utilizing proximity ligation assays (PLA) to visualize receptor interactions in VSMC, we show that peptide analogs of transmembrane-domain (TM) 2 and TM4 of CXCR4 selectively reduce PLA signals for CXCR4:α1A-AR and CXCR4:ACKR3 interactions, respectively. While both peptides inhibit CXCL12-induced chemotaxis, only the TM2 peptide inhibits phenylephrine-induced Ca2+-fluxes, contraction of VSMC and reduces efficacy of phenylephrine to constrict isolated arteries. In a Cre-loxP mouse model to delete CXCR4 in VSMC, we observed 60% knockdown of CXCR4. PLA signals for CXCR4:α1A/B-AR and CXCR4:ACKR3 interactions in VSMC, however, remained constant. Our observations point towards TM2/4 of CXCR4 as possible contact sites for heteromerization and suggest that TM-derived peptide analogs permit selective targeting of CXCR4 heteromers. A molecular dynamics simulation of a receptor complex in which the CXCR4 homodimer interacts with α1A-AR via TM2 and with ACKR3 via TM4 is presented. Our findings further imply that CXCR4:α1A-AR heteromers are important for intrinsic α1-AR function in intact arteries and provide initial and unexpected insights into the regulation of CXCR4 heteromerization in VSMC.
Collapse
MESH Headings
- Animals
- Binding Sites
- Calcium/metabolism
- Cell Line
- Cells, Cultured
- Female
- Humans
- Male
- Mice
- Molecular Dynamics Simulation
- Muscle, Smooth, Vascular/metabolism
- Protein Binding
- Protein Multimerization
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, CXCR/genetics
- Receptors, CXCR/metabolism
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
Collapse
Affiliation(s)
- Ann E Evans
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Abhishek Tripathi
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Heather M LaPorte
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Lioubov I Brueggemann
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Abhay Kumar Singh
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Lauren J Albee
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Kenneth L Byron
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute, PO Box B, Frederick, MD 21702-1201, USA.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Thomas Yoonsang Cho
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL 60607, USA.
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
22
|
Scofield SLC, Amin P, Singh M, Singh K. Extracellular Ubiquitin: Role in Myocyte Apoptosis and Myocardial Remodeling. Compr Physiol 2015; 6:527-60. [PMID: 26756642 DOI: 10.1002/cphy.c150025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitin (UB) is a highly conserved low molecular weight (8.5 kDa) protein. It consists of 76 amino acid residues and is found in all eukaryotic cells. The covalent linkage of UB to a variety of cellular proteins (ubiquitination) is one of the most common posttranslational modifications in eukaryotic cells. This modification generally regulates protein turnover and protects the cells from damaged or misfolded proteins. The polyubiquitination of proteins serves as a signal for degradation via the 26S proteasome pathway. UB is present in trace amounts in body fluids. Elevated levels of UB are described in the serum or plasma of patients under a variety of conditions. Extracellular UB is proposed to have pleiotropic roles including regulation of immune response, anti-inflammatory, and neuroprotective activities. CXCR4 is identified as receptor for extracellular UB in hematopoietic cells. Heart failure represents a major cause of morbidity and mortality in western society. Cardiac remodeling is a determinant of the clinical course of heart failure. The components involved in myocardial remodeling include-myocytes, fibroblasts, interstitium, and coronary vasculature. Increased sympathetic nerve activity in the form of norepinephrine is a common feature during heart failure. Acting via β-adrenergic receptor (β-AR), norepinephrine is shown to induce myocyte apoptosis and myocardial fibrosis. β-AR stimulation increases extracellular levels of UB in myocytes, and UB inhibits β-AR-stimulated increases in myocyte apoptosis and myocardial fibrosis. This review summarizes intracellular and extracellular functions of UB with particular emphasis on the role of extracellular UB in cardiac myocyte apoptosis and myocardial remodeling.
Collapse
Affiliation(s)
- Stephanie L C Scofield
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Parthiv Amin
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Krishna Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA; Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; James H. Quillen VA Medical Center, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Medicine, Albany Medical College, Albany, New York, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
23
|
Ogłodek EA, Szota AM, Moś DM, Araszkiewicz A, Szromek AR. Serum concentrations of chemokines (CCL-5 and CXCL-12), chemokine receptors (CCR-5 and CXCR-4), and IL-6 in patients with posttraumatic stress disorder and avoidant personality disorder. Pharmacol Rep 2015; 67:1251-8. [DOI: 10.1016/j.pharep.2015.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
24
|
Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Front Immunol 2015; 6:429. [PMID: 26347749 PMCID: PMC4543903 DOI: 10.3389/fimmu.2015.00429] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022] Open
Abstract
CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific disease settings.
Collapse
Affiliation(s)
- Lukas Pawig
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| | - Christina Klasen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich , Munich , Germany ; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance , Munich , Germany ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , Netherlands
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany ; August-Lenz-Stiftung, Institute for Cardiovascular Research, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Heidi Noels
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| |
Collapse
|
25
|
Hu F, Miao L, Zhao Y, Xiao YY, Xu Q. A meta-analysis for C-X-C chemokine receptor type 4 as a prognostic marker and potential drug target in hepatocellular carcinoma. Drug Des Devel Ther 2015. [PMID: 26203228 PMCID: PMC4507792 DOI: 10.2147/dddt.s86032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemokines (CKs), small proinflammatory chemoattractant cytokines that bind to specific G-protein coupled seven-span transmembrane receptors, are major regulators of cell trafficking and adhesion. C-X-C chemokine receptor type 4 (CXCR4) has gained tremendous attention over the last decade, since it was found to be upregulated in a wide variety of cancer types, including hepatocellular carcinoma (HCC). The clinical relevance of expression of CXCR4 in HCC remains controversial; our aim was to identify the precise relationship of CXCR4 to prognosis and clinicopathological features. We searched the database from MEDLINE, PubMed, Web of Science, Scopus and Embase and then conducted a meta-analysis from publications met the inclusion criteria for the qualitative study. Our data showed that 1) CXCR4 is overexpressed in HCC tissues but not in normal hepatic tissue, OR =84.26, 95% confidence interval (CI) =11.86–598.98, P<0.0001. CXCR4 expression is higher in HCC than those in cirrhosis as well, OR =20.71, 95% CI =7.61–56.34, P<0.00001. 2) The expression levels of CXCR4 does not increase during local progression, however, CXCR4 expression increases the risk of distant metastases in HCC, OR =5.84, 95% CI =2.84–12.00, P<0.00001. 3) High levels of CXCR4 gene expression are associated with worse survival in HCC, HR =0.18, 95% CI =0.10–0.32, Z=5.77, P<0.00001. These data indicate that CXCR4 expression correlates with an increased risk and worse survival in HCC patients. The aberrant CXCR4 expression plays an important role in the carcinogenesis and metastasis of HCC. Our conclusion also supports that the promise of CXCR4 signaling pathway blockade as a potential strategy for HCC patients.
Collapse
Affiliation(s)
- Fei Hu
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, People's Republic of China
| | - Lin Miao
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, People's Republic of China
| | - Yu Zhao
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, People's Republic of China
| | - Yuan-Yuan Xiao
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, People's Republic of China
| | - Qing Xu
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Job F, Settele F, Lorey S, Rundfeldt C, Baumann L, Beck-Sickinger AG, Haupts U, Lilie H, Bosse-Doenecke E. Ubiquitin is a versatile scaffold protein for the generation of molecules with de novo binding and advantageous drug-like properties. FEBS Open Bio 2015; 5:579-93. [PMID: 26258013 PMCID: PMC4522466 DOI: 10.1016/j.fob.2015.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 01/17/2023] Open
Abstract
In the search for effective therapeutic strategies, protein-based biologicals are under intense development. While monoclonal antibodies represent the majority of these drugs, other innovative approaches are exploring the use of scaffold proteins for the creation of binding molecules with tailor-made properties. Ubiquitin is especially suited for this strategy due to several key characteristics. Ubiquitin is a natural serum protein, 100% conserved across the mammalian class and possesses high thermal, structural and proteolytic stability. Because of its small size and lack of posttranslational modifications, it can be easily produced in Escherichia coli. In this work we provide evidence that ubiquitin is safe as tested experimentally in vivo. In contrast to previously published results, we show that, in our hands, ubiquitin does not act as a functional ligand of the chemokine receptor CXCR4. Cellular assays based on different signaling pathways of the receptor were conducted with the natural agonist SDF-1 as a benchmark. In none of the assays could a response to ubiquitin treatment be elicited. Furthermore, intravenous application to mice at high concentrations did not induce any detectable effect on cytokine levels or hematological parameters.
Collapse
Affiliation(s)
- Florian Job
- Institute for Biochemistry and Biotechnology/Technical Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Florian Settele
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
| | - Susan Lorey
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
| | - Chris Rundfeldt
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
| | - Lars Baumann
- Institute of Biochemistry, University of Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | | | - Ulrich Haupts
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
| | - Hauke Lilie
- Institute for Biochemistry and Biotechnology/Technical Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Eva Bosse-Doenecke
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
- Corresponding author. Tel.: +49 345 4780 365; fax: +49 345 27996 332.
| |
Collapse
|
27
|
van der Toorn M, Frentzel S, Goedertier D, Peitsch M, Hoeng J, De Leon H. A prototypic modified risk tobacco product exhibits reduced effects on chemotaxis and transendothelial migration of monocytes compared with a reference cigarette. Food Chem Toxicol 2015; 80:277-286. [PMID: 25839901 DOI: 10.1016/j.fct.2015.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
Abstract
Monocyte adhesion and migration to the subendothelial space represent critical steps in atherogenesis. Here, we investigated whether extracts from the aerosol of a prototypic modified risk tobacco product (pMRTP), based on heating rather than combusting tobacco, exhibited differential effects on the migratory behavior of monocytes compared with that from the reference cigarette, 3R4F. THP-1 cells, a monocytic cell line, and human coronary arterial endothelial cells (HCAECs) were used to investigate chemotaxis and transendothelial migration (TEM) of monocytes in conventional and impedance-based systems. THP-1 cells migrated through a monolayer of HCAECs in response to C-X-C motif ligand 12 (CXCL12), a chemokine involved in diverse cellular functions including chemotaxis and survival of stem cells. Treatment of THP-1 cells with extracts from 3R4F or pMRTP induced concentration-dependent increases in cytotoxicity (7-aminoactinomycin D), and inflammation (IL-8 and TNF-α). CXCL12-mediated chemotaxis and TEM were decreased in extract-treated THP-1 cells. Extracts from 3R4F were ~21 times more potent than those from pMRTP in all examined endpoints. Extracts from 3R4F and pMRTP induced concentration-dependent responses in assays of inflammation, cytotoxicity, chemotaxis, and TEM. Furthermore, our findings indicate that extracts from a pMRTP are significantly less cytotoxic and induce less inflammation than those from the reference cigarette, 3R4F.
Collapse
Affiliation(s)
- Marco van der Toorn
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Stefan Frentzel
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Didier Goedertier
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel Peitsch
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Hector De Leon
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
28
|
Tripathi A, Vana PG, Chavan TS, Brueggemann LI, Byron KL, Tarasova NI, Volkman BF, Gaponenko V, Majetschak M. Heteromerization of chemokine (C-X-C motif) receptor 4 with α1A/B-adrenergic receptors controls α1-adrenergic receptor function. Proc Natl Acad Sci U S A 2015; 112:E1659-68. [PMID: 25775528 PMCID: PMC4386352 DOI: 10.1073/pnas.1417564112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent evidence suggests that chemokine (C-X-C motif) receptor 4 (CXCR4) contributes to the regulation of blood pressure through interactions with α1-adrenergic receptors (ARs) in vascular smooth muscle. The underlying molecular mechanisms, however, are unknown. Using proximity ligation assays to visualize single-molecule interactions, we detected that α1A/B-ARs associate with CXCR4 on the cell surface of rat and human vascular smooth muscle cells (VSMC). Furthermore, α1A/B-AR could be coimmunoprecipitated with CXCR4 in a HeLa expression system and in human VSMC. A peptide derived from the second transmembrane helix of CXCR4 induced chemical shift changes in the NMR spectrum of CXCR4 in membranes, disturbed the association between α1A/B-AR and CXCR4, and inhibited Ca(2+) mobilization, myosin light chain (MLC) 2 phosphorylation, and contraction of VSMC upon α1-AR activation. CXCR4 silencing reduced α1A/B-AR:CXCR4 heteromeric complexes in VSMC and abolished phenylephrine-induced Ca(2+) fluxes and MLC2 phosphorylation. Treatment of rats with CXCR4 agonists (CXCL12, ubiquitin) reduced the EC50 of the phenylephrine-induced blood pressure response three- to fourfold. These observations suggest that disruption of the quaternary structure of α1A/B-AR:CXCR4 heteromeric complexes by targeting transmembrane helix 2 of CXCR4 and depletion of the heteromeric receptor complexes by CXCR4 knockdown inhibit α1-AR-mediated function in VSMC and that activation of CXCR4 enhances the potency of α1-AR agonists. Our findings extend the current understanding of the molecular mechanisms regulating α1-AR and provide an example of the importance of G protein-coupled receptor (GPCR) heteromerization for GPCR function. Compounds targeting the α1A/B-AR:CXCR4 interaction could provide an alternative pharmacological approach to modulate blood pressure.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - P Geoff Vana
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - Tanmay S Chavan
- Department of Medicinal Chemistry, University of Illinois, Chicago, IL 60607
| | - Lioubov I Brueggemann
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - Kenneth L Byron
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702-1201
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153; Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153;
| |
Collapse
|
29
|
Aravindan BK, Prabhakar J, Somanathan T, Subhadra L. The role of chemokine receptor 4 and its ligand stromal cell derived factor 1 in breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:23. [PMID: 25738143 DOI: 10.3978/j.issn.2305-5839.2014.12.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/28/2014] [Indexed: 12/19/2022]
Abstract
Breast tumour cells express the chemokine receptor C-X-C chemokine receptor type 4 (CXCR4) and frequently metastasize to organs with an abundant source of CXCR4 ligand, stromal cell derived factor1 (SDF1). For this reason, CXCR4/SDF1 has garnered much interest as a target for therapeutic intervention. The present study is an attempt to correlate the CXCR4/SDF1 expression patterns with clinicopathological factors, patient survival, and its coexistence and response to 17-β estradiol (E2) and 4-hydoxytamoxifen (4OHT) in breast cancer cells. Immunohistochemistry and Reverse Transcriptase-Polymerase Chain Reaction were performed to assess the protein and gene level expressions of CXCR4 and SDF1 in normal and tumour breast tissue. The effect of E2 and 4OHT on expression of CXCR4 and SDF1 in breast cancer cells were assessed using RT-PCR, Immunofluorescence microscopy and colocalization. The CXCR4 and SDF1 were over expressed and have a significant correlation with each other as well as with histological grade, tumour size and poor survival of patients. The study also showed a modulatory effect of E2 and 4OHT on the expression and colocalization of CXCR4/SDF1 in breast cancer cells. The correlation of CXCR4/SDF1 with other parameters and modulatory effect of E2 and 4OHT on the expression and colocalization of CXCR4/SDF1 in breast cancer cells are likely to open up new avenues for the successful management of this malignancy.
Collapse
Affiliation(s)
- Binu Kottakkal Aravindan
- 1 Division of Cancer Research, 2 Division of Surgical Oncology, 3 Division of Pathology, Regional Cancer Centre, Post Box No. 2417, Medical College P.O, Thiruvananthapuram- 695011, Kerala, India
| | - Jem Prabhakar
- 1 Division of Cancer Research, 2 Division of Surgical Oncology, 3 Division of Pathology, Regional Cancer Centre, Post Box No. 2417, Medical College P.O, Thiruvananthapuram- 695011, Kerala, India
| | - Thara Somanathan
- 1 Division of Cancer Research, 2 Division of Surgical Oncology, 3 Division of Pathology, Regional Cancer Centre, Post Box No. 2417, Medical College P.O, Thiruvananthapuram- 695011, Kerala, India
| | - Lakshmi Subhadra
- 1 Division of Cancer Research, 2 Division of Surgical Oncology, 3 Division of Pathology, Regional Cancer Centre, Post Box No. 2417, Medical College P.O, Thiruvananthapuram- 695011, Kerala, India
| |
Collapse
|
30
|
Bach HH, Wong YM, Tripathi A, Nevins AM, Gamelli RL, Volkman BF, Byron KL, Majetschak M. Chemokine (C-X-C motif) receptor 4 and atypical chemokine receptor 3 regulate vascular α₁-adrenergic receptor function. Mol Med 2014; 20:435-47. [PMID: 25032954 DOI: 10.2119/molmed.2014.00101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/14/2014] [Indexed: 12/23/2022] Open
Abstract
Chemokine (C-X-C motif) receptor (CXCR) 4 and atypical chemokine receptor (ACKR) 3 ligands have been reported to modulate cardiovascular function in various disease models. The underlying mechanisms, however, remain unknown. Thus, it was the aim of the present study to determine how pharmacological modulation of CXCR4 and ACKR3 regulate cardiovascular function. In vivo administration of TC14012, a CXCR4 antagonist and ACKR3 agonist, caused cardiovascular collapse in normal animals. During the cardiovascular stress response to hemorrhagic shock, ubiquitin, a CXCR4 agonist, stabilized blood pressure, whereas coactivation of CXCR4 and ACKR3 with CXC chemokine ligand 12 (CXCL12), or blockade of CXCR4 with AMD3100 showed opposite effects. While CXCR4 and ACKR3 ligands did not affect myocardial function, they selectively altered vascular reactivity upon α1-adrenergic receptor (AR) activation in pressure myography experiments. CXCR4 activation with ubiquitin enhanced α1-AR-mediated vasoconstriction, whereas ACKR3 activation with various natural and synthetic ligands antagonized α1-AR-mediated vasoconstriction. The opposing effects of CXCR4 and ACKR3 activation by CXCL12 could be dissected pharmacologically. CXCR4 and ACKR3 ligands did not affect vasoconstriction upon activation of voltage-operated Ca(2+) channels or endothelin receptors. Effects of CXCR4 and ACKR3 agonists on vascular α1-AR responsiveness were independent of the endothelium. These findings suggest that CXCR4 and ACKR3 modulate α1-AR reactivity in vascular smooth muscle and regulate hemodynamics in normal and pathological conditions. Our observations point toward CXCR4 and ACKR3 as new pharmacological targets to control vasoreactivity and blood pressure.
Collapse
Affiliation(s)
- Harold H Bach
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Yee M Wong
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Abhishek Tripathi
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Richard L Gamelli
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kenneth L Byron
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Matthias Majetschak
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|