1
|
Linares CA, Varghese A, Ghose A, Shinde SD, Adeleke S, Sanchez E, Sheriff M, Chargari C, Rassy E, Boussios S. Hallmarks of the Tumour Microenvironment of Gliomas and Its Interaction with Emerging Immunotherapy Modalities. Int J Mol Sci 2023; 24:13215. [PMID: 37686020 PMCID: PMC10487469 DOI: 10.3390/ijms241713215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Gliomas are aggressive, primary central nervous system tumours arising from glial cells. Glioblastomas are the most malignant. They are known for their poor prognosis or median overall survival. The current standard of care is overwhelmed by the heterogeneous, immunosuppressive tumour microenvironment promoting immune evasion and tumour proliferation. The advent of immunotherapy with its various modalities-immune checkpoint inhibitors, cancer vaccines, oncolytic viruses and chimeric antigen receptor T cells and NK cells-has shown promise. Clinical trials incorporating combination immunotherapies have overcome the microenvironment resistance and yielded promising survival and prognostic benefits. Rolling these new therapies out in the real-world scenario in a low-cost, high-throughput manner is the unmet need of the hour. These will have practice-changing implications to the glioma treatment landscape. Here, we review the immunobiological hallmarks of the TME of gliomas, how the TME evades immunotherapies and the work that is being conducted to overcome this interplay.
Collapse
Affiliation(s)
- Christian A. Linares
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (C.A.L.); (S.A.)
| | - Anjana Varghese
- Kent Oncology Centre, Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent ME16 9QQ, UK;
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
- Barts Cancer Centre, Barts Health NHS Trust, London EC1A 7BE, UK
- Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Northwood HA6 2RN, UK
- Immuno-Oncology Clinical Network, UK
| | - Sayali D. Shinde
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Sola Adeleke
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (C.A.L.); (S.A.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
| | - Matin Sheriff
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
| | - Cyrus Chargari
- Department of Radiation Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France;
| | - Elie Rassy
- Department of Medical Oncology, Institut Gustave Roussy, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent and Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
2
|
Ansari T, Dutta G, Srivastava AK, Jagetia A, Singh D, Singh H, Bharti R, Prakash A, Kumar A. Serum cytokines in astrocytic brain tumors: a prospective study. Br J Neurosurg 2023; 37:35-40. [PMID: 33349075 DOI: 10.1080/02688697.2020.1859461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Gliomas are the most aggressive form of brain tumors responsible for the majority of brain cancer related deaths. Interleukin (IL)-6, 10 and tumor necrosis factor (TNF)- α are tumor specific proteins that are expressed in gliomas. This study aims to estimate the pre- and postoperative levels of serum markers of these cytokines to evaluate any bearing with its grade and volume. METHODS Prospective analysis of 80 patients of newly-diagnosed gliomas of any grade was carried out. Pre- and postoperative blood samples day one, one month and at 3rd month of surgery was taken and levels of IL-6, 10 and TNF- α measured and matched with 20 healthy controls. RESULTS Of the 80 patients, 3 patients had pilocytic astrocytoma, 4 had ganglioglioma, 9 had oligodendroglioma, 17 had diffuse astrocytoma, 5 had anaplastic astrocytoma while 43 had glioblastoma. Preoperative levels of IL-6 and TNF- α was found to be markedly raised in high grade gliomas. Positive correlation was seen between IL-6 with the grade of tumor and high-grade tumors were seen to be more significantly correlated with IL-6. However, preoperative IL-10 in both low and high grade of gliomas did not show any correlation with the volume and grade of tumor. CONCLUSION High level of IL-6 and TNF-α in peripheral blood in patients of high-grade gliomas provides clue to the invasiveness of the disease which can be useful for understanding the premorbid development of tumor and perhaps extrapolating to ongoing tumor response to treatment.
Collapse
Affiliation(s)
- Tariq Ansari
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Gautam Dutta
- Department of Neuro-Surgery, Rajendra Institute of Medical Sciences (RIMS), Jharkhand, India
| | - Arvind Kumar Srivastava
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Anita Jagetia
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Daljit Singh
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Hukum Singh
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Rohit Bharti
- Department of Neuro-Surgery, Rajendra Institute of Medical Sciences (RIMS), Jharkhand, India
| | - Anand Prakash
- Department of Neuro-Surgery, Rajendra Institute of Medical Sciences (RIMS), Jharkhand, India
| | - Anil Kumar
- Department of Neuro-Surgery, Rajendra Institute of Medical Sciences (RIMS), Jharkhand, India
| |
Collapse
|
3
|
Yuan YS, Jin X, Chen L, Liao JM, Zhang Y, Yu KW, Li WK, Cao SW, Huang XZ, Kang CM. A novel model based on necroptosis-related genes for predicting immune status and prognosis in glioma. Front Immunol 2022; 13:1027794. [DOI: 10.3389/fimmu.2022.1027794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlioma is a highly aggressive brain cancer with a poor prognosis. Necroptosis is a form of programmed cell death occurring during tumor development and in immune microenvironments. The prognostic value of necroptosis in glioma is unclear. This study aimed to develop a prognostic glioma model based on necroptosis.MethodsA necroptosis-related risk model was constructed by Cox regression analysis based on The Cancer Genome Atlas (TCGA) training set, validated in two Chinese Glioma Genome Atlas (CGGA) validation sets. We explored the differences in immune infiltration and immune checkpoint genes between low and high risk groups and constructed a nomogram. Moreover, we compiled a third validation cohort including 43 glioma patients. The expression of necroptosis-related genes was verified in matched tissues using immunochemical staining in the third cohort, and we analyzed their relationship to clinicopathological features.ResultsThree necroptosis-related differentially expressed genes (EZH2, LEF1, and CASP1) were selected to construct the prognostic model. Glioma patients with a high risk score in the TCGA and CGGA cohorts had significantly shorter overall survival. The necroptosis-related risk model and nomogram exhibited good predictive performance in the TCGA training set and the CGGA validation sets. Furthermore, patients in the high risk group had higher immune infiltration status and higher expression of immune checkpoint genes, which was positively correlated with poorer outcomes. In the third validation cohort, the expression levels of the three proteins encoded by EZH2, LEF1, and CASP1 in glioma tissues were significantly higher than those from paracancerous tissues. They were also closely associated with disease severity and prognosis.ConclusionsOur necroptosis-related risk model can be used to predict the prognosis of glioma patients and improve prognostic accuracy, which may provide potential therapeutic targets and a theoretical basis for treatment.
Collapse
|
4
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
5
|
Evaluation of Comprehensive Gene Expression and NK Cell-Mediated Killing in Glioblastoma Cell Line-Derived Spheroids. Cancers (Basel) 2021; 13:cancers13194896. [PMID: 34638384 PMCID: PMC8508082 DOI: 10.3390/cancers13194896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most aggressive primary malignant brain tumor in adults. Despite standard treatment, including surgery, chemotherapy, and radiotherapy, it is associated with poor survival. Immunotherapy is a promising alternative for patients with GBM. Natural killer (NK) cells are possible promising targets in GBM treatment because of their potent cytotoxic effect. We previously reported that highly activated and ex vivo-expanded NK cells, or genuine induced NK cells (GiNK), exert a greatly cytotoxic effect on GBM cells. In this study, we investigated the potential of NK cell-based immunotherapy for GBM, which we evaluated using an ex vivo three-dimensional GBM cell-derived spheroid model. Our results indicated that the NK cells had an anti-tumor effect on the spheroid models. Our findings could lead to the development of future NK cell-based immunotherapies for GBM. Abstract Glioblastoma (GBM) is the most common and aggressive primary brain tumor, with a dismal prognosis. Natural killer (NK) cells are large granular lymphocytes with natural cytotoxicity against tumor cells, and they should be established for the novel treatment of patients with GBM. We previously reported highly activated, and ex vivo-expanded NK cells derived from human peripheral blood, designated genuine induced NK cells (GiNK), which were induced by specific culture conditions and which exerted a cytotoxic effect on GBM cells via apoptosis. Here, we comprehensively summarize the molecular characteristics, especially focusing on the expression of stem cell markers, extracellular matrix markers, chemokines, chemokine receptors, and NK receptor ligands of spheroids derived from GBM cell lines as compared with that of two-dimensional (2D) adherent GBM cells via microarray. The spheroid had upregulated gene expression of stem cell markers, extracellular matrix markers, chemokines, chemokine receptors, and NK cell inhibitory receptor ligands compared with the 2D adherent GBM cells. Preclinical evaluation of the NK cells was performed via an ex vivo 3D spheroid model derived from GBM cell lines. In the model, the NK cells accumulated and infiltrated around the spheroids and induced GBM cell death. Flow cytometry-based apoptosis detection clearly showed that the NK cells induced GBM cell death via apoptosis. Our findings could provide pivotal information for NK cell-based immunotherapy for patients with GBM.
Collapse
|
6
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
7
|
Song L, Wang S, Fang T, Qiu X, Wang X, Zhou X, Morse MA, Hobeika A, Wu W, Yang H, Ren J, Lyerly HK. Changes in Peripheral Blood Regulatory T Cells and IL-6 and IL-10 Levels Predict Response of Pediatric Medulloblastoma and Germ Cell Tumors With Residual or Disseminated Disease to Craniospinal Irradiation. Int J Radiat Oncol Biol Phys 2021; 111:479-490. [PMID: 33974888 DOI: 10.1016/j.ijrobp.2021.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Radiation therapy (RT) modulates immune cells and cytokines, resulting in both clinically beneficial and detrimental effects. The changes in peripheral blood T lymphocyte subsets and cytokines during RT for pediatric brain tumors and the association of these changes with therapeutic outcomes have not been well described. METHODS AND MATERIALS The study population consisted of children (n = 83, aged 3~18) with primary brain tumors (medulloblastoma, glioma, germ cell tumors (GCT), and central nervous system embryonal tumor-not otherwise specified), with or without residual or disseminated (R/D) diseases who were starting standard postoperative focal or craniospinal irradiation (CSI). Peripheral blood T lymphocyte subsets collected before and 4 weeks after RT were enumerated by flow cytometry. Plasma levels of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor-α, interferon-γ, and IL-17A were measured by cytometric bead array. RESULTS Patients with R/D lesions receiving CSI (n = 32) had a post-RT increase in the frequency of CD3+T and CD8+T cells, a decrease in CD4+T cells, and an increase in regulatory T cells (Tregs) and CD8+CD28- suppressor cells, which was more predominantly seen in these patients than in other groups. In the CSI group with such R/D lesions, consisting of patients with medulloblastoma and germ cell tumors, 19 experienced a complete response (CR) and 13 experienced a partial response (PR) on imaging at 4 weeks after RT. The post/pre-RT ratio of Tregs (P = .0493), IL-6 (P = .0111), and IL-10 (P = .0070) was lower in the CR group than in the PR group. Multivariate analysis revealed that the post/pre-RT ratios of Treg, IL-6, and IL-10 were independent predictors of CR (P < .0001, P = .018, P < .0001, respectively). The areas under the receiver operating curves and confidence intervals were 0.7652 (0.5831-0.8964), 0.7794 (0.5980-0.9067), and 0.7085 (0.5223-0.8552) for IL-6, IL-10, and Treg, respectively. The sensitivities of IL-6, IL-10, and Treg to predict radiotherapeutic responses were 100%, 92.3%, and 61.5%, and specificity was 52.6%, 57.9%, and 84.2%, respectively. CONCLUSIONS CSI treatment to those with R/D lesions predominantly exerted an effect on antitumor immune response compared with both R/D lesion-free but exposed to focal or CSI RT and with R/D lesions and exposed to focal RT. Such CSI with R/D lesions group experiencing CR is more likely to have a decrease in immunoinhibitory molecules and cells than patients who only achieve PR. Measuring peripheral blood Treg, IL-6, and IL-10 levels could be valuable for predicting radiotherapeutic responses of pediatric brain tumors with R/D lesions to CSI for medulloblastoma and intracranial germ cell tumors.
Collapse
Affiliation(s)
- Linan Song
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Departments of Radio-Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shuo Wang
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Tong Fang
- Departments of Radio-Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaoguang Qiu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaoli Wang
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xinna Zhou
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Michael A Morse
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Wanshui Wu
- Department of Pediatrics, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Huabing Yang
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Jun Ren
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Department of Surgery, Duke University Medical Center, Durham, North Carolina.
| | - Herbert Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
8
|
Caylioglu D, Meyer RJ, Hellmold D, Kubelt C, Synowitz M, Held-Feindt J. Effects of the Anti-Tumorigenic Agent AT101 on Human Glioblastoma Cells in the Microenvironmental Glioma Stem Cell Niche. Int J Mol Sci 2021; 22:ijms22073606. [PMID: 33808494 PMCID: PMC8037174 DOI: 10.3390/ijms22073606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is a barely treatable disease due to its profound chemoresistance. A distinct inter- and intratumoral heterogeneity reflected by specialized microenvironmental niches and different tumor cell subpopulations allows GBMs to evade therapy regimens. Thus, there is an urgent need to develop alternative treatment strategies. A promising candidate for the treatment of GBMs is AT101, the R(-) enantiomer of gossypol. The present study evaluates the effects of AT101, alone or in combination with temozolomide (TMZ), in a microenvironmental glioma stem cell niche model of two GBM cell lines (U251MG and U87MG). AT101 was found to induce strong cytotoxic effects on U251MG and U87MG stem-like cells in comparison to the respective native cells. Moreover, a higher sensitivity against treatment with AT101 was observed upon incubation of native cells with a stem-like cell-conditioned medium. This higher sensitivity was reflected by a specific inhibitory influence on the p-p42/44 signaling pathway. Further, the expression of CXCR7 and the interleukin-6 receptor was significantly regulated upon these stimulatory conditions. Since tumor stem-like cells are known to mediate the development of tumor recurrences and were observed to strongly respond to the AT101 treatment, this might represent a promising approach to prevent the development of GBM recurrences.
Collapse
|
9
|
Bender DE, Schaettler MO, Sheehan KC, Johanns TM, Dunn GP. Cytokine Profiling in Plasma from Patients with Brain Tumors Versus Healthy Individuals using 2 Different Multiplex Immunoassay Platforms. Biomark Insights 2021; 16:11772719211006666. [PMID: 33854293 PMCID: PMC8013708 DOI: 10.1177/11772719211006666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/11/2021] [Indexed: 01/18/2023] Open
Abstract
We compared the performance of two 96-well multiplex immunoassay platforms in assessing plasma cytokine concentrations in patients with glioblastoma (GBM; n = 27), individuals with melanoma, breast or lung cancer metastases to the brain (n = 17), and healthy volunteers (n = 11). Assays included a bead-based fluorescence MILLIPLEX® assay/Luminex (LMX) platform and 4 planar electrochemiluminescence kits from Meso Scale Discovery (MSD). The LMX kit evaluated 21 cytokines and the 3 MSD kits evaluated 20 cytokines in total, with 19 overlapping human cytokines between platforms (GM-CSF, IFNγ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17A, IL-21, IL-23, MIP-1α, MIP-1β, MIP-3α, TNFα). The MSD platform had lower LLoQs (lower limits of quantification) than LMX for 17/19 cytokines, and higher LLoQs for IFN-γ and IL-21. The ULoQs were higher in LMX versus MSD assays for 17/19 shared analytes, but lower than MSD for IL-17A and IL-21. With LMX, all 19 shared analytes were quantifiable in each of 55 samples. Although MSD recombinant protein standard curves indicated lower LLoQs than LMX for most cytokines, MSD detected 7/19 (37%) native analytes in <75% of samples, including 0% detection for IL-21 and 8% for IL-23. The LMX platform categorized identical samples at greater concentrations than the MSD system for most analytes (MIP-1β the sole exception), sometimes by orders of magnitude. This mismatched quantification paradigm was supported by Bland-Altman analysis. LMX identified significantly elevated levels of 10 of 19 circulating cytokines in GBM: GM-CSF, IFN-γ, IL-1β, IL-5, IL-10, IL-17A, IL-21, IL-23, MIP-1α, and MIP-3α, consistent with prior findings and confirming the utility of applying appropriate multiplex immunoassay technologies toward developing a cytokine signature profile for GBM.
Collapse
Affiliation(s)
- Diane Elizabeth Bender
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Maximilian O Schaettler
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Cf Sheehan
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tanner M Johanns
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Gavin P Dunn
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Grabowski MM, Sankey EW, Ryan KJ, Chongsathidkiet P, Lorrey SJ, Wilkinson DS, Fecci PE. Immune suppression in gliomas. J Neurooncol 2021; 151:3-12. [PMID: 32542437 PMCID: PMC7843555 DOI: 10.1007/s11060-020-03483-y] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The overall survival in patients with gliomas has not significantly increased in the modern era, despite advances such as immunotherapy. This is in part due to their notorious ability to suppress local and systemic immune responses, severely restricting treatment efficacy. METHODS We have reviewed the preclinical and clinical evidence for immunosuppression seen throughout the disease process in gliomas. This review aims to discuss the various ways that brain tumors, and gliomas in particular, co-opt the body's immune system to evade detection and ensure tumor survival and proliferation. RESULTS A multitude of mechanisms are discussed by which neoplastic cells evade detection and destruction by the immune system. These include tumor-induced T-cell and NK cell dysfunction, regulatory T-cell and myeloid-derived suppressor cell expansion, M2 phenotypic transformation in glioma-associated macrophages/microglia, upregulation of immunosuppressive glioma cell surface factors and cytokines, tumor microenvironment hypoxia, and iatrogenic sequelae of immunosuppressive treatments. CONCLUSIONS Gliomas create a profoundly immunosuppressive environment, both locally within the tumor and systemically. Future research should aim to address these immunosuppressive mechanisms in the effort to generate treatment options with meaningful survival benefits for this patient population.
Collapse
Affiliation(s)
- Matthew M Grabowski
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Eric W Sankey
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Katherine J Ryan
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Pakawat Chongsathidkiet
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Selena J Lorrey
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Daniel S Wilkinson
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat Commun 2020; 11:5424. [PMID: 33110073 PMCID: PMC7591536 DOI: 10.1038/s41467-020-19193-y] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis commonly exists and predicts poor prognoses in many cancers. Although it is thought to result from chronic ischemia, the underlying nature and mechanisms driving the involved cell death remain obscure. Here, we show that necrosis in glioblastoma (GBM) involves neutrophil-triggered ferroptosis. In a hyperactivated transcriptional coactivator with PDZ-binding motif-driven GBM mouse model, neutrophils coincide with necrosis temporally and spatially. Neutrophil depletion dampens necrosis. Neutrophils isolated from mouse brain tumors kill cocultured tumor cells. Mechanistically, neutrophils induce iron-dependent accumulation of lipid peroxides within tumor cells by transferring myeloperoxidase-containing granules into tumor cells. Inhibition or depletion of myeloperoxidase suppresses neutrophil-induced tumor cell cytotoxicity. Intratumoral glutathione peroxidase 4 overexpression or acyl-CoA synthetase long chain family member 4 depletion diminishes necrosis and aggressiveness of tumors. Furthermore, analyses of human GBMs support that neutrophils and ferroptosis are associated with necrosis and predict poor survival. Thus, our study identifies ferroptosis as the underlying nature of necrosis in GBMs and reveals a pro-tumorigenic role of ferroptosis. Together, we propose that certain tumor damage(s) occurring during early tumor progression (i.e. ischemia) recruits neutrophils to the site of tissue damage and thereby results in a positive feedback loop, amplifying GBM necrosis development to its fullest extent. Tumour necrosis is associated with tumour aggressiveness and poor outcomes in patients with glioblastomas, but the underlying mechanisms remain poorly understood. Here, the authors show that in a xenograft mouse model of glioblastoma, tumour-infiltrating neutrophils amplify necrosis by promoting myeloperoxidase-induced tumour cell ferroptosis.
Collapse
|
12
|
Clinical and Biological Correlates of Preoperative Cognitive Functioning of Glioma and Meningioma Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2054859. [PMID: 32461966 PMCID: PMC7232682 DOI: 10.1155/2020/2054859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 01/13/2023]
Abstract
Objectives This study aimed to investigate the association of high-sensitivity C-reactive protein (hsCRP) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) serum concentrations with cognitive functions of glioma and meningioma patients. Methods 177 brain tumor patients awaiting for brain tumor surgery participated in the study. Patients were assessed preoperatively, using neuropsychological tests for verbal memory, psychomotor speed, mental flexibility, and verbal fluency. The functional status of patients was evaluated using the Karnofsky Performance Index. Blood samples were drawn for evaluation of serum hsCRP and NT-proBNP concentrations upon hospital admission. Results The highest NT-proBNP concentration was observed in meningioma patients. Glioma and meningioma patients did not differ in hsCRB concentration. Patients in the highest hsCRP tertile were older and more frequently reported cardiovascular comorbidity. Patients in the highest NT-proBNP tertile were older, more frequently with cardiovascular comorbidity, females, and diagnosed with a meningioma. hsCRP was significantly related to slower psychomotor speed in high-grade glioma patients (rho = 0.30, p < 0.05). In meningioma sample, NT-proBNP correlated with decreased psychomotor speed (rho = 0.38, p < 0.01), mental flexibility (rho = 0.33, p < 0.01), worse cumulative learning (rho = −0.27, p < 0.05), and delayed recall (rho = 0.30, p < 0.01). However, the relationship between the NT-proBNP and cognitive functions became nonsignificant when demographic and clinical covariates were included into analysis. Higher hsCRP concentration remained significantly related to slower psychomotor speed (p = 0.02) and worse mental flexibility (p = 0.05) in glioma patients, independently from demographic and clinical covariates. Preoperative cognitive functioning was also predicted by older age, gender, side and location of the tumor, and tumor malignancy, and general functional status of a patient. Conclusions NT-proBNP was not associated with memory, language, and attention/executive cognitive domains of glioma and meningioma patients. Increased hsCRP was related to slower psychomotor speed and worse mental flexibility in glioma patients, indicating that inflammation processes are important for cognitive functioning in glial tumors.
Collapse
|
13
|
Groblewska M, Litman-Zawadzka A, Mroczko B. The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. Int J Mol Sci 2020; 21:ijms21103704. [PMID: 32456359 PMCID: PMC7279280 DOI: 10.3390/ijms21103704] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. Additionally, the diagnostic significance and usefulness of the measurement of some chemokines and their receptors in the blood and cerebrospinal fluid (CSF) of glioma patients is also presented.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8785
| |
Collapse
|
14
|
Entry and exit of chemotherapeutically-promoted cellular dormancy in glioblastoma cells is differentially affected by the chemokines CXCL12, CXCL16, and CX3CL1. Oncogene 2020; 39:4421-4435. [PMID: 32346064 PMCID: PMC7253351 DOI: 10.1038/s41388-020-1302-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a malignant brain tumor that evades therapy regimens. Since cellular dormancy is one strategy for surviving, and since chemokines determine the environmental conditions in which dormancy occurs, we investigated how chemokines affect temozolomide (TMZ)-promoted cellular dormancy entry and exit in GBM cells. TMZ administration over ten days promoted cellular dormancy entry, whereas discontinuing TMZ for a further 15 days resulted in resumption of proliferation. Co-administration of a chemokine cocktail containing CXCL12, CXCL16, and CX3CL1 resulted in both delayed entry and exit from cellular dormancy. A microarray-based transcriptome analysis in LN229 GBM cells revealed that cellular dormancy entry was characterized by an increased expression of CCL2 and SAA2, while THSD4, FSTL3, and VEGFC were upregulated during dormancy exit. Co-stimulation with the chemokine cocktail reduced upregulation of identified genes. After verifying the appearance of identified genes in human GBM primary cultures and ex vivo samples, we clarified whether each chemokine alone impacts cellular dormancy mechanisms using specific antagonists and selective CRISPR/Cas9 clones. While expression of CCL2 and SAA2 in LN229 cells was altered by the CXCL12-CXCR4-CXCR7 axis, CXCL16 and CX3CL1 contributed to reduced upregulation of THSD4 and, to a weaker extent, of VEGFC. The influence on FSTL3 expression depended on the entire chemokine cocktail. Effects of chemokines on dormancy entry and exit-associated genes were detectable in human GBM primary cells, too, even if in a more complex, cell-specific manner. Thus, chemokines play a significant role in the regulation of TMZ-promoted cellular dormancy in GBMs.
Collapse
|
15
|
da Silva AB, Cerqueira Coelho PL, das Neves Oliveira M, Oliveira JL, Oliveira Amparo JA, da Silva KC, Soares JRP, Pitanga BPS, Dos Santos Souza C, de Faria Lopes GP, da Silva VDA, de Fátima Dias Costa M, Junier MP, Chneiweiss H, Moura-Neto V, Costa SL. The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain Behav Immun 2020; 85:170-185. [PMID: 31059805 DOI: 10.1016/j.bbi.2019.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
Microglia cells are the immune effector in the Central Nervous System (CNS). However, studies have showed that they contribute more to glioma progression than to its elimination. Rutin and its aglycone quercetin are flavonoids present in many fruits as well as plants and have been demonstrated to bear anti-inflammatory, antioxidant and antitumor properties also to human glioblastoma cell lines. Previous studies also demonstrated that rutin, isolated from the Brazilian plant Dimorphandra mollis Bent., presents immunomodulatory effect on astrocytes and microglia. In this study, we investigate the antitumor and immunomodulatory properties of rutin and its aglycone quercetin on the viability of glioma cells alone and under direct and indirect interaction with microglia. Flavonoid treatment of rat C6 glioma cells induced inhibition of proliferation and migration, and also induced microglia chemotaxis that was associated to the up regulation of tumor necrosis factor (TNF) and the down regulation of Interleukin 10 (IL-10) at protein and mRNA expression levels, regulation of mRNA expression for chemokines CCL2, CCL5 and CX3CL1, and Heparin Binding Growth Factor (HDGF), Insulin-like growth factor (IGF) and Glial cell-derived neurotrophic factor (GDNF) growth factors. Treatment of human U251 and TG1 glioblastoma cells with both flavonoids also modulated negatively the expression of mRNA for IL-6 and IL-10 and positively the expression of mRNA for TNF characterizing changes to the immune regulatory profile. Treatment of microglia and C6 cells either in co-cultures or during indirect interaction, via conditioned media from glioma cells treated with flavonoids or via conditioned media from microglia treated with flavonoids reduced proliferation and migration of glioma cells. It also directed microglia towards an inflammatory profile with increased expression of mRNA for IL-1β, IL-6, IL-18 and decreased expression of mRNA for nitric oxide synthase 2 (NOS2) and prostaglandin-endoperoxide synthase 2 (PTGS2), arginase and transforming growth factor beta (TGF-β), as well as Insulin-like growth factor (IGF). Treatment of U251 cells with flavonoids also reduced tumorigenesis when the cells were xenotransplanted in rat brains, and directed microglia and also astrocytes in the microenvironment of tumor cell implantation as well as in the brain parenchyma to a not favorable molecular inflammatory profile to the glioma growth, as observed in cultures. Together these results demonstrate that the flavonoid rutin and its aglycone quercetin present antiglioma effects related to the property of modulating the microglial inflammatory profile and may be considered for molecular and preclinical studies as adjuvant molecules for treatment of gliomas.
Collapse
Affiliation(s)
- Alessandra Bispo da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Paulo Lucas Cerqueira Coelho
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Mona das Neves Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Joana Luz Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Jéssika Alves Oliveira Amparo
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Karina Costa da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Janaina Ribeiro Pereira Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Bruno Penas Seara Pitanga
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Cleide Dos Santos Souza
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Giselle Pinto de Faria Lopes
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil; Department of Marine Biotechnology, Institute of Studies of the Sea Studies Institute Admiral Paulo Moreira (IEAPM), 28930-000 Arraial do Cabo, Rio de Janeiro and Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil; INCT/CNPq-Neurociência Translacional (INNT), ICB/UFRJ, Av. Carlos Chagas Filho 373, CEP 21941-902 Rio de Janeiro, Brazil
| | - Marie Pierre Junier
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Campus Pierre et Marie Curie, 75005 Paris, France
| | - Hervé Chneiweiss
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Campus Pierre et Marie Curie, 75005 Paris, France
| | - Vivaldo Moura-Neto
- State Institute of the Brain Paulo Niemeyer, 20230-024 Rio de Janeiro, Rio de Janeiro, Brazil; INCT/CNPq-Neurociência Translacional (INNT), ICB/UFRJ, Av. Carlos Chagas Filho 373, CEP 21941-902 Rio de Janeiro, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil; INCT/CNPq-Neurociência Translacional (INNT), ICB/UFRJ, Av. Carlos Chagas Filho 373, CEP 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Hübner M, Effinger D, Wu T, Strauß G, Pogoda K, Kreth FW, Kreth S. The IL-1 Antagonist Anakinra Attenuates Glioblastoma Aggressiveness by Dampening Tumor-Associated Inflammation. Cancers (Basel) 2020; 12:E433. [PMID: 32069807 PMCID: PMC7072290 DOI: 10.3390/cancers12020433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The recombinant IL-1 receptor antagonist anakinra-currently approved for the treatment of autoinflammatory diseases-blocks IL-1β-mediated inflammatory signaling. As inflammation is a major driver of cancer, we hypothesized that anakinra might be able to mitigate glioblastoma (GBM) aggressiveness. METHODS Primary GBM or T98G cells were incubated alone or with peripheral blood mononuclear cells (PBMCs) and were subsequently treated with IL-1β and/or anakinra. T cells were obtained by magnetic bead isolation. Protein and mRNA expression were quantified by SDS-PAGE, qRT-PCR, and ELISA, respectively. Cell proliferation and apoptosis were analyzed via flow cytometry. Chemotaxis was studied via time-lapse microscopy. RESULTS Upon IL-1β stimulation, anakinra attenuated proinflammatory gene expression in both GBM cells and PBMCs, and mitigated tumor migration and proliferation. In a more lifelike model replacing IL-1β stimulation by GBM-PBMC co-culture, sole presence of PBMCs proved sufficient to induce a proinflammatory phenotype in GBM cells with enhanced proliferation and migration rates and attenuated apoptosis. Anakinra antagonized these pro-tumorigenic effects and, moreover, reduced inflammatory signaling in T cells without compromising anti-tumor effector molecules. CONCLUSION By dampening the inflammatory crosstalk between GBM and immune cells, anakinra mitigated GBM aggressiveness. Hence, counteracting IL-1β-mediated inflammation might be a promising strategy to pursue.
Collapse
Affiliation(s)
- Max Hübner
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - David Effinger
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - Tingting Wu
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - Gabriele Strauß
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - Kristin Pogoda
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
- Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg, Germany
| | | | - Simone Kreth
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| |
Collapse
|
17
|
Mitchell D, Chintala S, Fetcko K, Henriquez M, Tewari BN, Ahmed A, Bentley RT, Dey M. Common Molecular Alterations in Canine Oligodendroglioma and Human Malignant Gliomas and Potential Novel Therapeutic Targets. Front Oncol 2019; 9:780. [PMID: 31475119 PMCID: PMC6702544 DOI: 10.3389/fonc.2019.00780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/31/2019] [Indexed: 01/05/2023] Open
Abstract
Spontaneous canine (Canis lupus) oligodendroglioma (ODG) holds tremendous potential as an immunocompetent large animal model of human malignant gliomas (MG). However, the feasibility of utilizing this model in pre-clinical studies depends on a thorough understanding of the similarities and differences of the molecular pathways associated with gliomas between the two species. We have previously shown that canine ODG has an immune landscape and expression pattern of commonly described oncogenes similar to that of human MG. In the current study, we performed a comprehensive analysis of canine ODG RNAseq data from 4 dogs with ODG and 2 normal controls to identify highly dysregulated genes in canine tumors. We then evaluated the expression of these genes in human MG using Xena Browser, a publicly available database. STRING-database inquiry was used in order to determine the suggested protein associations of these differentially expressed genes as well as the dysregulated pathways commonly enriched by the protein products of these genes in both canine ODG and human MG. Our results revealed that 3,712 (23%) of the 15,895 differentially expressed genes demonstrated significant up- or downregulation (log2-fold change > 2.0). Of the 3,712 altered genes, ~50% were upregulated (n = 1858) and ~50% were downregulated (n = 1854). Most of these genes were also found to have altered expression in human MG. Protein association and pathway analysis revealed common pathways enriched by members of the up- and downregulated gene categories in both species. In summary, we demonstrate that a similar pattern of gene dysregulation characterizes both human MG and canine ODG and provide additional support for the use of the canine model in order to therapeutically target these common genes. The results of such therapeutic targeting in the canine model can serve to more accurately predict the efficacy of anti-glioma therapies in human patients.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sreenivasulu Chintala
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kaleigh Fetcko
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mario Henriquez
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brij N Tewari
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Atique Ahmed
- Department of Neurological Surgery, Northwestern University, Chicago, IL, United States
| | - R Timothy Bentley
- Department of Veterinary Clinical Sciences, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Mahua Dey
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
18
|
Poon CC, Gordon PMK, Liu K, Yang R, Sarkar S, Mirzaei R, Ahmad ST, Hughes ML, Yong VW, Kelly JJP. Differential microglia and macrophage profiles in human IDH-mutant and -wild type glioblastoma. Oncotarget 2019; 10:3129-3143. [PMID: 31139325 PMCID: PMC6517100 DOI: 10.18632/oncotarget.26863] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
Microglia and macrophages are the largest component of the inflammatory infiltrate in glioblastoma (GBM). However, whether there are differences in their representation and activity in the prognostically-favorable isocitrate dehydrogenase (IDH)-mutated compared to -wild type GBMs is unknown. Studies on human specimens of untreated IDH-mutant GBMs are rare given they comprise 10% of all GBMs and often present at lower grades, receiving treatments prior to dedifferentiation that can drastically alter microglia and macrophage phenotypes. We were able to obtain large samples of four previously untreated IDH-mutant GBM. Using flow cytometry, immunofluorescence techniques with automated segmentation protocols that quantify at the individual-cell level, and comparison between single-cell RNA-sequencing (scRNA-seq) databases of human GBM, we discerned dissimilarities between GBM-associated microglia and macrophages (GAMMs) in IDH-mutant and -wild type GBMs. We found there are significantly fewer GAMM in IDH-mutant GBMs, but they are more pro-inflammatory, suggesting this contributes to the better prognosis of these tumors. Our pro-inflammatory score which combines the expression of inflammatory markers (CD68/HLA-A, -B, -C/TNF/CD163/IL10/TGFB2), Iba1 intensity, and GAMM surface area also indicates that more pro-inflammatory GAMMs are associated with longer overall survival independent of IDH status. Interrogation of scRNA-seq databases demonstrates microglia in IDH-mutants are mainly pro-inflammatory, while anti-inflammatory macrophages that upregulate genes such as FCER1G and TYROBP predominate in IDH-wild type GBM. Taken together, these observations are the first head-to-head comparison of GAMMs in treatment-naïve IDH-mutant versus -wild type GBMs. Our findings highlight biological disparities in the innate immune microenvironment related to IDH prognosis that can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Candice C Poon
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Paul M K Gordon
- Centre for Health Genomics and Informatics, University of Calgary, Calgary, AB, Canada
| | - Katherine Liu
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Runze Yang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Susobhan Sarkar
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Reza Mirzaei
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Shiekh Tanveer Ahmad
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Martha L Hughes
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - John J P Kelly
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Fouladseresht H, Ziaee SM, Erfani N, Doroudchi M. Serum Levels of APRIL Increase in Patients with Glioma, Meningioma and Schwannoma. Asian Pac J Cancer Prev 2019; 20:751-756. [PMID: 30909681 PMCID: PMC6825795 DOI: 10.31557/apjcp.2019.20.3.751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective: Brain tumors are of high mortality and morbidity for which there is still no cure. The TNF family cytokine, A Proliferation Inducing Ligand (APRIL), is shown to help proliferation and development of tumor cells. We assessed serum levels of APRIL in patients with glioma, meningioma and schwannoma in comparison to healthy individuals. Methods: Peripheral blood samples of 68 patients with brain tumors, divided into three groups of gliomas (n=25), meningiomas (n=30) and schwannomas (n=13), as well as 45 healthy individuals were obtained. Serum samples were prepared and stored in -40°C until usage. Using a commercial ELISA method, APRIL concentration was measured in each serum sample. The obtained data were then analyzed using SPSS software. Results: APRIL serum levels were higher in all patients compared to the controls (P<0.001). Moreover, APRIL serum levels were higher in each of the tumor bearing groups (gliomas, meningiomas and schwannomas) in comparison to the controls (P<0.001, <0.001 and =0.001, respectively). Comparing APRIL between the patients groups showed no significant difference. Age and gender showed no significant correlation with serum APRIL levels, although the age of patients in glioma group was significantly lower than controls (P=0.017). The serum APRIL levels in gliomas with histological grade showed no difference, but in meningiomas, it was lower in tumors with higher grades (P= 0.011). Conclusion: Increased serum levels of APRIL in patients with meningioma and schwannoma as well as glioma may indicate a common role of this cytokine in brain tumors.
Collapse
Affiliation(s)
- Hamed Fouladseresht
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Mohyeddin Ziaee
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nasrollah Erfani
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ,Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ,Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Involvement of poly(ADP-ribose) polymerase-1 in Chinese patients with glioma: a potential target for effective patient care. Int J Biol Markers 2018; 33:68-72. [PMID: 28777431 DOI: 10.5301/ijbm.5000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We aimed to evaluate the genetic variation of poly(ADP-ribose) polymerase-1 (PARP-1) in the development of gliomas among Chinese individuals. MATERIALS AND METHODS Patients with a confirmed diagnosis of glioma and healthy individuals with no clinical symptoms of glioma were enrolled at Liaocheng People's Hospital, China. Genetic polymorphisms were studied in plasma samples by polymerase chain reaction-restriction fragment length polymorphism assay. Cytokine levels were measured routinely in serum samples by sandwich ELISA technique. RESULTS A total of 120 Chinese patients with gliomas and 120 healthy Chinese individuals were included. We found that patients with the GG genotype (odds ratio [OR] 2.53, 95% confidence interval [CI] 1.46-4.38, p<0.001) and carriers of the G allele (OR 11.5, 95% CI 6.31-21.3, p<0.0001) were at high risk of developing glioma. A del/ins polymorphism of the NF-κB1 gene (OR 4.27, 95% CI 2.43-7.50, p<0.001) was also found to be associated with glioma. In addition, significantly increased cytokine levels were observed in patients with glioma (p<0.05). CONCLUSIONS Our findings showed that PARP-1 polymorphisms are involved in the development of glioma in Chinese individuals. Also serum cytokine levels can be considered among the potential risk factors for developing glioma.
Collapse
|
21
|
Yin XF, Zhang Q, Chen ZY, Wang HF, Li X, Wang HX, Li HX, Kang CM, Chu S, Li KF, Li Y, Qiu YR. NLRP3 in human glioma is correlated with increased WHO grade, and regulates cellular proliferation, apoptosis and metastasis via epithelial-mesenchymal transition and the PTEN/AKT signaling pathway. Int J Oncol 2018; 53:973-986. [PMID: 30015880 PMCID: PMC6065456 DOI: 10.3892/ijo.2018.4480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
Glioma is the most prevalent and fatal primary tumor of the central nervous system in adults, while the development of effective therapeutic strategies in clinical practice remain a challenge. Nucleotide-binding domain leucine-rich family pyrin-containing 3 (NLRP3) has been reported to be associated with tumorigenesis and progression; however, its expression and function in human glioma remain unclear. The present study was designed to explore the biological role and potential mechanism of NLRP3 in human glioma. The results demonstrated that overexpression of NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), caspase-1 and interleukin (IL)-1β protein in human glioma tissues were significantly correlated with higher World Health Organization grades. The in vitro biological experiments demonstrated that NLRP3 downregulation significantly inhibited the proliferation, migration and invasion, and promoted the apoptosis of SHG44 and A172 glioma cell lines. Furthermore, western blot assays revealed that the downregulation of NLRP3 significantly reduced the expression of ASC, caspase-1 and IL-1β protein. Furthermore, NLRP3 knockdown caused the inhibition of epithelial-mesenchymal transition (EMT), and inhibited the phosphorylation of AKT serine/threonine kinase (AKT) and phosphorylation of phosphatase and tensin homolog (PTEN). Consistently, the upregulation of NLRP3 significantly increased the expression of ASC, caspase-1, IL-1β and phosphorylated-PTEN, promoted proliferation, migration, invasion and EMT, inhibited apoptosis, and activated the AKT signaling pathway. The data of the present study indicate that NLRP3 affects human glioma progression and metastasis through multiple pathways, including EMT and PTEN/AKT signaling pathway regulation, enhanced inflammasome activation, and undefined inflammasome-independent mechanisms. Understanding the biological effects of NLRP3 in human glioma and the underlying mechanisms may offer novel insights for the development of glioma clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Feng Yin
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiong Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhuo-Yu Chen
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hai-Fang Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xin Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hai-Xia Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chun-Min Kang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shuai Chu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kai-Fei Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yao Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
22
|
Prognostic role of high sensitivity C-reactive protein and interleukin-6 in glioma and meningioma patients. J Neurooncol 2018; 138:351-358. [PMID: 29460097 DOI: 10.1007/s11060-018-2803-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/10/2018] [Indexed: 01/08/2023]
Abstract
High sensitivity C-reactive protein (hsCRP) and interleukin-6 (IL-6) can be important prognostic indicators of brain tumor patients. We investigated the association of circulating IL-6 and hsCRP concentrations with discharge outcomes and survival of glioma and meningioma patients. One-hundred and sixty-three (115 women; median age 57 years) patients admitted for meningioma (n = 94), high-grade glioma (n = 48) and low-grade glioma (n = 21) surgery were enrolled in this prospective cohort study. Serum samples were collected within 24 h of admission. Discharge outcome was evaluated using the Glasgow Outcome Scale (unfavorable outcome = score from 1 to 3). Follow-up continued until November, 2016. Elevated IL-6 (≥ 2 pg/ml) and hsCRP (≥ 1 mg/l) concentrations were present in 25 and 35% of brain tumor patients, respectively. Elevated IL-6 concentrations were associated with unfavorable outcome at hospital discharge, adjusting for brain tumor histological diagnosis, patient age and gender (OR 2.39, 95% CI 0.97-5.91, p = 0.05). Elevated hsCRP concentrations were not associated with discharge outcome (p = 0.13). In multivariate Cox regression analyses adjusted for patient age, gender, extent of tumor resection and adjuvant treatment, elevated IL-6 concentration was associated with greater mortality risk in high-grade glioma patients (OR 2.623; 95% CI 1.129-5.597; p = 0.01), while elevated hsCRP concentration was associated with greater mortality risk in meningioma patients (OR 3.650; 95% CI 1.038-12.831; p = 0.04). Elevated IL-6 concentration is associated with greater unfavorable outcome risk in brain tumor patients and with greater mortality in high-grade glioma patients, while elevated hsCRP concentration is associated with greater mortality in meningioma patients.
Collapse
|
23
|
Duhart JM, Brocardo L, Caldart CS, Marpegan L, Golombek DA. Circadian Alterations in a Murine Model of Hypothalamic Glioma. Front Physiol 2017; 8:864. [PMID: 29163208 PMCID: PMC5670357 DOI: 10.3389/fphys.2017.00864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023] Open
Abstract
The mammalian circadian system is controlled by a central oscillator located in the suprachiasmatic nuclei (SCN) of the hypothalamus, in which glia appears to play a prominent role. Gliomas originate from glial cells and are the primary brain tumors with the highest incidence and mortality. Optic pathway/hypothalamic gliomas account for 4–7% of all pediatric intracranial tumors. Given the anatomical location, which compromises both the circadian pacemaker and its photic input pathway, we decided to study whether the presence of gliomas in the hypothalamic region could alter circadian behavioral outputs. Athymic nude mice implanted with LN229 human glioma cells showed an increase in the endogenous period of the circadian clock, which was also less robust in terms of sustaining the free running period throughout 2 weeks of screening. We also found that implanted mice showed a slower resynchronization rate after an abrupt 6 h advance of the light-dark (LD) cycle, advanced phase angle, and a decreased direct effect of light in general activity (masking), indicating that hypothalamic tumors could also affect photic sensitivity of the circadian clock. Our work suggests that hypothalamic gliomas have a clear impact both on the endogenous pacemaking of the circadian system, as well as on the photic synchronization of the clock. These findings strongly suggest that the observation of altered circadian parameters in patients might be of relevance for glioma diagnosis.
Collapse
Affiliation(s)
- José M Duhart
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Lucila Brocardo
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Carlos S Caldart
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Luciano Marpegan
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego A Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
24
|
Olivera-Severo D, Uberti AF, Marques MS, Pinto MT, Gomez-Lazaro M, Figueiredo C, Leite M, Carlini CR. A New Role for Helicobacter pylori Urease: Contributions to Angiogenesis. Front Microbiol 2017; 8:1883. [PMID: 29021786 PMCID: PMC5623709 DOI: 10.3389/fmicb.2017.01883] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022] Open
Abstract
Helicobacter pylori is a pathogen involved in gastric diseases such as ulcers and carcinomas. H. pylori's urease is an important virulence factor produced in large amounts by this bacterium. In previous studies, we have shown that this protein is able to activate several cell types like neutrophils, monocytes, platelets, endothelial cells, and gastric epithelial cells. Angiogenesis is a physiological process implicated in growth, invasion and metastization of tumors. Here, we have analyzed the angiogenic potential of H. pylori urease (HPU) in gastric epithelial cells. No cytotoxicity was observed in AGS, Kato-III, and MKN28 gastric cell lines treated with 300 nM HPU, as evaluated by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. As we previously reported in neutrophils, treatment with 300 nM HPU also had an anti-apoptotic effect in gastric epithelial cells leading to a 2.2-fold increase in the levels of Bcl-XL after 6 h, and a decrease of 80% in the content of BAD, after 48 h, two mitochondrial proteins involved in regulation of apoptosis. Within 10 min of exposure, HPU is rapidly internalized by gastric epithelial cells. Treatment of the gastric cells with methyl-β-cyclodextrin abolished HPU internalization suggesting a cholesterol-dependent process. HPU induces the expression of pro-angiogenic factors and the decrease of expression of anti-angiogenic factors by AGS cells. The angiogenic activity of HPU was analyzed using in vitro and in vivo models. HPU induced formation of tube-like structures by human umbilical vascular endothelial cells in a 9 h experiment. In the chicken embryo chorioallantoic membrane model, HPU induced intense neo-vascularization after 3 days. In conclusion, our results indicate that besides allowing bacterial colonization of the gastric mucosa, H. pylori's urease triggers processes that initiate pro-angiogenic responses in different cellular models. Thus, this bacterial urease, a major virulence factor, may also play a role in gastric carcinoma development.
Collapse
Affiliation(s)
- Deiber Olivera-Severo
- Center of Biotechnology, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil.,Biology Department, Universidade Regional Integrada do Alto Uruguai e das Missões, São Luiz Gonzaga, Brazil
| | - Augusto F Uberti
- Center of Biotechnology, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil.,Institute of Biology, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Miguel S Marques
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Marta T Pinto
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - Céu Figueiredo
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Marina Leite
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Célia R Carlini
- Center of Biotechnology, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil.,Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
25
|
Schiffer D, Mellai M, Bovio E, Annovazzi L. The neuropathological basis to the functional role of microglia/macrophages in gliomas. Neurol Sci 2017; 38:1571-1577. [PMID: 28593528 DOI: 10.1007/s10072-017-3002-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022]
Abstract
The paper wants to be a tracking shot of the main recent acquisitions on the function and significance of microglia/macrophages in gliomas. The observations have been principally carried out on in vitro cultures and on tumor transplants in animals. Contrary to what is deduced from microglia in non-neoplastic pathologic conditions of central nervous system (CNS), most conclusions indicate that microglia acts favoring tumor proliferation through an immunosuppression induced by glioma cells. By immunohistochemistry, different microglia phenotypes are recognized in gliomas, from ramified microglia to frank macrophagic aspect. One wonders whether the functional conclusions drawn from many microglia studies, but not in conditions of human pathology, apply to all the phenotypes recognizable in them. It is difficult to verify in human pathology a prognostic significance of microglia. Only CD163-positive microglia/macrophages inversely correlate with glioma patients' survival, whereas the total number of microglia does not change with the malignancy grade.
Collapse
Affiliation(s)
- Davide Schiffer
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100, Vercelli, Italy.
| | - Marta Mellai
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100, Vercelli, Italy
| | - Enrica Bovio
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100, Vercelli, Italy
| | - Laura Annovazzi
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100, Vercelli, Italy
| |
Collapse
|
26
|
Hou WC, Miao XH, Ma LJ, Bai XX, Liu Q, Song L. WITHAFERIN A INDUCES APOPTOSIS IN RAT C6 GLIOMA CELLS THROUGH REGULATING NF-KB NUCLEAR TRANSLOCATION AND ACTIVATION OF CASPASE CASCADE. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:319-324. [PMID: 28573248 PMCID: PMC5446457 DOI: 10.21010/ajtcam.v14i2.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The demand for the chemopreventive drug from the plant source is increasing in recent times, owing to its various biological activities without any adverse effect. The intention of this current study was to examine the anti-glioma effect of Withaferin A (WFA) on C6 glioma cell line model. MATERIALS AND METHODS C6 glioma cells were administrated with different concentration of WFA (50, 100, 200 and 500 μg/mL) and DMSO (control) group to examine its anti-proliferative, anti-inflammatory and pro-apoptotic activities. RESULTS Treatment with WFA showed a significant decline in the glioma cell count in a dose-dependent manner and thus proving its anti-proliferative effect. Similarly, inflammatory markers were also substantially lowered upon treatment with different concentration of WFA. However, DNA fragmentation and apoptotic markers like Caspase-3 and 9 were concomitantly enhanced after co-cultured with different concentration of WFA and thus exhibiting its cytotoxicity efficacy. Furthermore, the protein expression of Bcl2 and Bax were markedly downregulated and upregulated respectively; upon treatment with WFA on C6 glioma cells. CONCLUSION The outcome of this study evidently demonstrates that C6 glioma cells co-cultured with increased concentration of WFA, showed an anti-proliferative, anti-inflammatory and pro-apoptotic effect in a dose-dependent fashion.
Collapse
Affiliation(s)
- Wei-Chen Hou
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiao-Hui Miao
- Clinical Laboratory, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Lian-Jun Ma
- Department of Endoscopy Center, The China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiao-Xue Bai
- Department of Cadre's Ward, The First Hospital of Jilin University, Changchun 130021, China
| | - Qun Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Lei Song
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
27
|
Michelson N, Rincon-Torroella J, Quiñones-Hinojosa A, Greenfield JP. Exploring the role of inflammation in the malignant transformation of low-grade gliomas. J Neuroimmunol 2016; 297:132-40. [DOI: 10.1016/j.jneuroim.2016.05.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/09/2016] [Accepted: 05/23/2016] [Indexed: 01/14/2023]
|
28
|
Kast RE. The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir. CHINESE JOURNAL OF CANCER 2015; 34:161-5. [PMID: 25963312 PMCID: PMC4593370 DOI: 10.1186/s40880-015-0010-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/12/2015] [Indexed: 11/16/2022]
Abstract
Based on reporting in the last several years, an impressive but dismal list of cytotoxic chemotherapies that fail to prolong the median overall survival of patients with glioblastoma has prompted the development of treatment protocols designed to interfere with growth-facilitating signaling systems by using non-cytotoxic, non-oncology drugs. Recent recognition of the pro-mobility stimulus, interleukin-18, as a driver of centrifugal glioblastoma cell migration allows potential treatment adjuncts with disulfiram and ritonavir. Disulfiram and ritonavir are well-tolerated, non-cytotoxic, non-oncology chemotherapeutic drugs that are marketed for the treatment of alcoholism and human immunodeficiency virus (HIV) infection, respectively. Both drugs exhibit an interleukin-18–inhibiting function. Given the favorable tolerability profile of disulfiram and ritonavir, the unlikely drug-drug interaction with temozolomide, and the poor prognosis of glioblastoma, trials of addition of disulfiram and ritonavir to current standard initial treatment of glioblastoma would be warranted.
Collapse
Affiliation(s)
- Richard E Kast
- International Initiative for Accelerated Improvement of Glioblastoma Care Study Center, 22 Church Street, Burlington, VT, 05401, USA.
| |
Collapse
|