1
|
Avian Influenza NS1 Proteins Inhibit Human, but Not Duck, RIG-I Ubiquitination and Interferon Signaling. J Virol 2022; 96:e0077622. [PMID: 36069546 PMCID: PMC9517716 DOI: 10.1128/jvi.00776-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nonstructural protein 1 (NS1) of influenza A viruses is an important virulence factor that controls host cell immune responses. In human cells, NS1 proteins inhibit the induction of type I interferon by several mechanisms, including potentially, by preventing the activation of the retinoic acid-inducible gene I (RIG-I) receptor by the ubiquitin ligase tripartite motif-containing protein 25 (TRIM25). It is unclear whether the inhibition of human TRIM25 is a universal function of all influenza A NS1 proteins or is strain dependent. It is also unclear if NS1 proteins similarly target the TRIM25 of mallard ducks, a natural reservoir host of avian influenza viruses with a long coevolutionary history and unique disease dynamics. To answer these questions, we compared the ability of five different NS1 proteins to interact with human and duck TRIM25 using coimmunoprecipitation and microscopy and assessed the consequence of this on RIG-I ubiquitination and signaling in both species. We show that NS1 proteins from low-pathogenic and highly pathogenic avian influenza viruses potently inhibit RIG-I ubiquitination and reduce interferon promoter activity and interferon-beta protein secretion in transfected human cells, while the NS1 of the mouse-adapted PR8 strain does not. However, all the NS1 proteins, when cloned into recombinant viruses, suppress interferon in infected alveolar cells. In contrast, avian NS1 proteins do not suppress duck RIG-I ubiquitination and interferon promoter activity, despite interacting with duck TRIM25. IMPORTANCE Influenza A viruses are a major cause of human and animal disease. Periodically, avian influenza viruses from wild waterfowl, such as ducks, pass through intermediate agricultural hosts and emerge into the human population as zoonotic diseases with high mortality rates and epidemic potential. Because of their coevolution with influenza A viruses, ducks are uniquely resistant to influenza disease compared to other birds, animals, and humans. Here, we investigate a mechanism of influenza A virus interference in an important antiviral signaling pathway that is orthologous in humans and ducks. We show that NS1 proteins from four avian influenza strains can block the coactivation and signaling of the human RIG-I antiviral receptor, while none block the coactivation and signaling of duck RIG-I. Understanding host-pathogen dynamics in the natural reservoir will contribute to our understanding of viral disease mechanisms, viral evolution, and the pressures that drive it, which benefits global surveillance and outbreak prevention.
Collapse
|
2
|
Vaughn LS, Frederick K, Burnett SB, Sharma N, Bragg DC, Camargos S, Cardoso F, Patel RC. DYT- PRKRA Mutation P222L Enhances PACT's Stimulatory Activity on Type I Interferon Induction. Biomolecules 2022; 12:713. [PMID: 35625640 PMCID: PMC9138762 DOI: 10.3390/biom12050713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
DYT-PRKRA (dystonia 16 or DYT-PRKRA) is caused by mutations in the PRKRA gene that encodes PACT, the protein activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR). PACT participates in several cellular pathways, of which its role as a PKR activator protein during integrated stress response (ISR) is the best characterized. Previously, we have established that the DYT-PRKRA mutations cause enhanced activation of PKR during ISR to sensitize DYT-PRKRA cells to apoptosis. In this study, we evaluate if the most prevalent substitution mutation reported in DYT-PRKRA patients alters PACT's functional role in induction of type I IFNs via the retinoic acid-inducible gene I (RIG-I) signaling. Our results indicate that the P222L mutation augments PACT's ability to induce IFN β in response to dsRNA and the basal expression of IFN β and IFN-stimulated genes (ISGs) is higher in DYT-PRKRA patient cells compared to cells from the unaffected controls. Additionally, IFN β and ISGs are also induced at higher levels in DYT-PRKRA cells in response to dsRNA. These results offer a new avenue for investigations directed towards understanding the underlying molecular pathomechanisms in DYT-PRKRA.
Collapse
Affiliation(s)
- Lauren S. Vaughn
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Kenneth Frederick
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Samuel B. Burnett
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; (N.S.); (D.C.B.)
| | - D. Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; (N.S.); (D.C.B.)
| | - Sarah Camargos
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.C.); (F.C.)
| | - Francisco Cardoso
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.C.); (F.C.)
| | - Rekha C. Patel
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| |
Collapse
|
3
|
Bakre AA, Jones LP, Murray J, Reneer ZB, Meliopoulos VA, Cherry S, Schultz-Cherry S, Tripp RA. Innate Antiviral Cytokine Response to Swine Influenza Virus by Swine Respiratory Epithelial Cells. J Virol 2021; 95:e0069221. [PMID: 33980596 PMCID: PMC8274599 DOI: 10.1128/jvi.00692-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/20/2022] Open
Abstract
Swine influenza virus (SIV) can cause respiratory illness in swine. Swine contribute to influenza virus reassortment, as avian, human, and/or swine influenza viruses can infect swine and reassort, and new viruses can emerge. Thus, it is important to determine the host antiviral responses that affect SIV replication. In this study, we examined the innate antiviral cytokine response to SIV by swine respiratory epithelial cells, focusing on the expression of interferon (IFN) and interferon-stimulated genes (ISGs). Both primary and transformed swine nasal and tracheal respiratory epithelial cells were examined following infection with field isolates. The results show that IFN and ISG expression is maximal at 12 h postinfection (hpi) and is dependent on cell type and virus genotype. IMPORTANCE Swine are considered intermediate hosts that have facilitated influenza virus reassortment events that have given rise pandemics or genetically related viruses have become established in swine. In this study, we examine the innate antiviral response to swine influenza virus in primary and immortalized swine nasal and tracheal epithelial cells, and show virus strain- and host cell type-dependent differential expression of key interferons and interferon-stimulated genes.
Collapse
Affiliation(s)
- Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Les P Jones
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Z Beau Reneer
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Vaughn LS, Chukwurah E, Patel RC. Opposite actions of two dsRNA-binding proteins PACT and TRBP on RIG-I mediated signaling. Biochem J 2021; 478:493-510. [PMID: 33459340 PMCID: PMC7919947 DOI: 10.1042/bcj20200987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
An integral aspect of innate immunity is the ability to detect foreign molecules of viral origin to initiate antiviral signaling via pattern recognition receptors (PRRs). One such receptor is the RNA helicase retinoic acid inducible gene 1 (RIG-I), which detects and is activated by 5'triphosphate uncapped double stranded RNA (dsRNA) as well as the cytoplasmic viral mimic dsRNA polyI:C. Once activated, RIG-I's CARD domains oligomerize and initiate downstream signaling via mitochondrial antiviral signaling protein (MAVS), ultimately inducing interferon (IFN) production. Another dsRNA binding protein PACT, originally identified as the cellular protein activator of dsRNA-activated protein kinase (PKR), is known to enhance RIG-I signaling in response to polyI:C treatment, in part by stimulating RIG-I's ATPase and helicase activities. TAR-RNA-binding protein (TRBP), which is ∼45% homologous to PACT, inhibits PKR signaling by binding to PKR as well as by sequestration of its' activators, dsRNA and PACT. Despite the extensive homology and similar structure of PACT and TRBP, the role of TRBP has not been explored much in RIG-I signaling. This work focuses on the effect of TRBP on RIG-I signaling and IFN production. Our results indicate that TRBP acts as an inhibitor of RIG-I signaling in a PACT- and PKR-independent manner. Surprisingly, this inhibition is independent of TRBP's post-translational modifications that are important for other signaling functions of TRBP, but TRBP's dsRNA-binding ability is essential. Our work has major implications on viral susceptibility, disease progression, and antiviral immunity as it demonstrates the regulatory interplay between PACT and TRBP IFN production.
Collapse
Affiliation(s)
- Lauren S. Vaughn
- Department of Biology, University of South Carolina, Columbia, SC 29210
| | | | - Rekha C Patel
- Department of Biology, University of South Carolina, Columbia, SC 29210
| |
Collapse
|
5
|
Zhang X, Zhu Z, Wang C, Yang F, Cao W, Li P, Du X, Zhao F, Liu X, Zheng H. Foot-and-Mouth Disease Virus 3B Protein Interacts with Pattern Recognition Receptor RIG-I to Block RIG-I-Mediated Immune Signaling and Inhibit Host Antiviral Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2207-2221. [PMID: 32917788 PMCID: PMC7533709 DOI: 10.4049/jimmunol.1901333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/10/2020] [Indexed: 12/23/2022]
Abstract
Foot-and-mouth disease is a highly contagious disease of pigs, sheep, goats, bovine, and various wild cloven-hoofed animals caused by foot-and-mouth disease virus (FMDV) that has given rise to significant economic loss to global livestock industry. FMDV 3B protein is an important determinant of virulence of the virus. Modifications in 3B protein of FMDV considerably decrease virus yield. In the current study, we demonstrated the significant role of 3B protein in suppression of type I IFN production and host antiviral response in both human embryonic kidney HEK293T cells and porcine kidney PK-15 cells. We found that 3B protein interacted with the viral RNA sensor RIG-I to block RIG-I-mediated immune signaling. 3B protein did not affect the expression of RIG-I but interacted with RIG-I to block the interaction between RIG-I and the E3 ubiquitin ligase TRIM25, which prevented the TRIM25-mediated, Lys63-linked ubiquitination and activation of RIG-I. This inhibition of RIG-I-mediated immune signaling by 3B protein decreased IFN-β, IFN-stimulated genes, and proinflammatory cytokines expression, which in turn promoted FMDV replication. All of the three nonidentical copies of 3B could inhibit type I IFN production, and the aa 17A in each copy of 3B was involved in suppression of IFN-related antiviral response during FMDV infection in porcine cells. Together, our results indicate the role of 3B in suppression of host innate immune response and reveal a novel antagonistic mechanism of FMDV that is mediated by 3B protein.
Collapse
Affiliation(s)
- Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Pengfei Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiaoli Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Furong Zhao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China; and
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| |
Collapse
|
6
|
Pustulan Activates Chicken Bone Marrow-Derived Dendritic Cells In Vitro and Promotes Ex Vivo CD4 + T Cell Recall Response to Infectious Bronchitis Virus. Vaccines (Basel) 2020; 8:vaccines8020226. [PMID: 32429204 PMCID: PMC7349971 DOI: 10.3390/vaccines8020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Infectious bronchitis virus (IBV) is a highly contagious avian coronavirus. IBV causes substantial worldwide economic losses in the poultry industry. Vaccination with live-attenuated viral vaccines, therefore, are of critical importance. Live-attenuated viral vaccines, however, exhibit the potential for reversion to virulence and recombination with virulent field strains. Therefore, alternatives such as subunit vaccines are needed together with the identification of suitable adjuvants, as subunit vaccines are less immunogenic than live-attenuated vaccines. Several glycan-based adjuvants directly targeting mammalian C-type lectin receptors were assessed in vitro using chicken bone marrow-derived dendritic cells (BM-DCs). The β-1-6-glucan, pustulan, induced an up-regulation of MHC class II (MHCII) cell surface expression, potentiated a strong proinflammatory cytokine response, and increased endocytosis in a cation-dependent manner. Ex vivo co-culture of peripheral blood monocytes from IBV-immunised chickens, and BM-DCs pulsed with pustulan-adjuvanted recombinant IBV N protein (rN), induced a strong recall response. Pustulan-adjuvanted rN induced a significantly higher CD4+ blast percentage compared to either rN, pustulan or media. However, the CD8+ and TCRγδ+ blast percentage were significantly lower with pustulan-adjuvanted rN compared to pustulan or media. Thus, pustulan enhanced the efficacy of MHCII antigen presentation, but apparently not the cross-presentation on MHCI. In conclusion, we found an immunopotentiating effect of pustulan in vitro using chicken BM-DCs. Thus, future in vivo studies might show pustulan as a promising glycan-based adjuvant for use in the poultry industry to contain the spread of coronaviridiae as well as of other avian viral pathogens.
Collapse
|
7
|
Hayman TJ, Hsu AC, Kolesnik TB, Dagley LF, Willemsen J, Tate MD, Baker PJ, Kershaw NJ, Kedzierski L, Webb AI, Wark PA, Kedzierska K, Masters SL, Belz GT, Binder M, Hansbro PM, Nicola NA, Nicholson SE. RIPLET, and not TRIM25, is required for endogenous RIG-I-dependent antiviral responses. Immunol Cell Biol 2019; 97:840-852. [PMID: 31335993 DOI: 10.1111/imcb.12284] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Abstract
The innate immune system is our first line of defense against viral pathogens. Host cell pattern recognition receptors sense viral components and initiate immune signaling cascades that result in the production of an array of cytokines to combat infection. Retinoic acid-inducible gene-I (RIG-I) is a pattern recognition receptor that recognizes viral RNA and, when activated, results in the production of type I and III interferons (IFNs) and the upregulation of IFN-stimulated genes. Ubiquitination of RIG-I by the E3 ligases tripartite motif-containing 25 (TRIM25) and Riplet is thought to be requisite for RIG-I activation; however, recent studies have questioned the relative importance of these two enzymes for RIG-I signaling. In this study, we show that deletion of Trim25 does not affect the IFN response to either influenza A virus (IAV), influenza B virus, Sendai virus or several RIG-I agonists. This is in contrast to deletion of either Rig-i or Riplet, which completely abrogated RIG-I-dependent IFN responses. This was consistent in both mouse and human cell lines, as well as in normal human bronchial cells. With most of the current TRIM25 literature based on exogenous expression, these findings provide critical evidence that Riplet, and not TRIM25, is required endogenously for the ubiquitination of RIG-I. Despite this, loss of TRIM25 results in greater susceptibility to IAV infection in vivo, suggesting that it may have an alternative role in host antiviral defense. This study refines our understanding of RIG-I signaling in viral infections and will inform future studies in the field.
Collapse
Affiliation(s)
- Thomas J Hayman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Alan C Hsu
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Tatiana B Kolesnik
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Joschka Willemsen
- Research Group Dynamics of Early Viral Infection and the Innate Antiviral Response, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Paul J Baker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Peter A Wark
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
- Centre for Inflammation, Centenary Institute, The University of Technology Sydney, Sydney, NSW, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Seth L Masters
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marco Binder
- Research Group Dynamics of Early Viral Infection and the Innate Antiviral Response, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philip M Hansbro
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
- Centre for Inflammation, Centenary Institute, The University of Technology Sydney, Sydney, NSW, Australia
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Larsen FT, Bed'Hom B, Guldbrandtsen B, Dalgaard TS. Identification and tissue-expression profiling of novel chicken c-type lectin-like domain containing proteins as potential targets for carbohydrate-based vaccine strategies. Mol Immunol 2019; 114:216-225. [PMID: 31386978 DOI: 10.1016/j.molimm.2019.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
C-type lectin-like domain containing proteins (CTLDcps) mainly bind carbohydrate-based ligands, but also other ligands. CTLDcps are involved in several biological processes including cell adhesion, cell-cell interactions, and pathogen recognition. Pathogen recognition by myeloid cells, e.g. dendritic cells (DCs), can be facilitated through cell surface expressed CTLDcps. Cell surface expressed CTLDcps have been exploited in vaccine designs for specific targeting of human and mouse DCs using antibodies. In recent years, however, DC targeting using carbohydrate-based vaccines has gained interest due to low production cost, limited immunogenicity, and possibility of multivalent adjustment. In chicken, however, only a few CTLDcps have been identified. Identifying and annotating additional chicken CTLDcps (chCTLDcps) is needed to exploit carbohydrate-mediated DC targeting in chicken. Therefore, we searched the chicken GRCg6a assembly for novel chCTLDcps. We identified 28 chCTLDcps of which 10 had previously been described and also experimentally validated. RNA-seq and RT-qPCR confirmed mRNA expression of the remaining 18 identified chCTLDcps. A group of highly related chCTLDcps, moreover, was shown to be avian-specific and comprise novel members mapped to the proposed chicken natural killer gene complex. Two chCTLDcps, chCLEC17AL-A and chCLEC17AL-B, were found to share a recent common ancestor with CLEC17A. Putative mannose or fucose-binding sequence motifs, EPN and WND, were found in the CTLD of chCLEC17AL-A. Both contained intracellular internalisation and signalling sequence motifs. In conclusion, several chCTLDcps were identified and their expression confirmed. Both chCLEC17AL-A and -B showed promise as potential targets in carbohydrate-based chicken vaccine strategies. Determination of DC-specific expression of chCLEC17AL-A and -B, thus, might prove useful in chicken vaccinology.
Collapse
Affiliation(s)
- Frederik T Larsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Bertrand Bed'Hom
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Blichers Allé 20, 8830, Tjele, Denmark
| | - Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark.
| |
Collapse
|
9
|
Brisse M, Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front Immunol 2019; 10:1586. [PMID: 31379819 PMCID: PMC6652118 DOI: 10.3389/fimmu.2019.01586] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
RIG-I (Retinoic acid-inducible gene I) and MDA5 (Melanoma Differentiation-Associated protein 5), collectively known as the RIG-I-like receptors (RLRs), are key protein sensors of the pathogen-associated molecular patterns (PAMPs) in the form of viral double-stranded RNA (dsRNA) motifs to induce expression of type 1 interferons (IFN1) (IFNα and IFNβ) and other pro-inflammatory cytokines during the early stage of viral infection. While RIG-I and MDA5 share many genetic, structural and functional similarities, there is increasing evidence that they can have significantly different strategies to recognize different pathogens, PAMPs, and in different host species. This review article discusses the similarities and differences between RIG-I and MDA5 from multiple perspectives, including their structures, evolution and functional relationships with other cellular proteins, their differential mechanisms of distinguishing between host and viral dsRNAs and interactions with host and viral protein factors, and their immunogenic signaling. A comprehensive comparative analysis can help inform future studies of RIG-I and MDA5 in order to fully understand their functions in order to optimize potential therapeutic approaches targeting them.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| |
Collapse
|
10
|
Antonczyk A, Krist B, Sajek M, Michalska A, Piaszyk-Borychowska A, Plens-Galaska M, Wesoly J, Bluyssen HAR. Direct Inhibition of IRF-Dependent Transcriptional Regulatory Mechanisms Associated With Disease. Front Immunol 2019; 10:1176. [PMID: 31178872 PMCID: PMC6543449 DOI: 10.3389/fimmu.2019.01176] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a family of homologous proteins that regulate the transcription of interferons (IFNs) and IFN-induced gene expression. As such they are important modulating proteins in the Toll-like receptor (TLR) and IFN signaling pathways, which are vital elements of the innate immune system. IRFs have a multi-domain structure, with the N-terminal part acting as a DNA binding domain (DBD) that recognizes a DNA-binding motif similar to the IFN-stimulated response element (ISRE). The C-terminal part contains the IRF-association domain (IAD), with which they can self-associate, bind to IRF family members or interact with other transcription factors. This complex formation is crucial for DNA binding and the commencing of target-gene expression. IRFs bind DNA and exert their activating potential as homo or heterodimers with other IRFs. Moreover, they can form complexes (e.g., with Signal transducers and activators of transcription, STATs) and collaborate with other co-acting transcription factors such as Nuclear factor-κB (NF-κB) and PU.1. In time, more of these IRF co-activating mechanisms have been discovered, which may play a key role in the pathogenesis of many diseases, such as acute and chronic inflammation, autoimmune diseases, and cancer. Detailed knowledge of IRFs structure and activating mechanisms predisposes IRFs as potential targets for inhibition in therapeutic strategies connected to numerous immune system-originated diseases. Until now only indirect IRF modulation has been studied in terms of antiviral response regulation and cancer treatment, using mainly antisense oligonucleotides and siRNA knockdown strategies. However, none of these approaches so far entered clinical trials. Moreover, no direct IRF-inhibitory strategies have been reported. In this review, we summarize current knowledge of the different IRF-mediated transcriptional regulatory mechanisms and how they reflect the diverse functions of IRFs in homeostasis and in TLR and IFN signaling. Moreover, we present IRFs as promising inhibitory targets and propose a novel direct IRF-modulating strategy employing a pipeline approach that combines comparative in silico docking to the IRF-DBD with in vitro validation of IRF inhibition. We hypothesize that our methodology will enable the efficient identification of IRF-specific and pan-IRF inhibitors that can be used for the treatment of IRF-dependent disorders and malignancies.
Collapse
Affiliation(s)
- Aleksandra Antonczyk
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Bart Krist
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Sajek
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Agata Michalska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Piaszyk-Borychowska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Martyna Plens-Galaska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
11
|
Asha K, Kumar P, Sanicas M, Meseko CA, Khanna M, Kumar B. Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections. J Clin Med 2018; 8:jcm8010006. [PMID: 30577479 PMCID: PMC6351902 DOI: 10.3390/jcm8010006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Several viruses cause pulmonary infections due to their shared tropism with cells of the respiratory tract. These respiratory problems due to viral infection become a public health concern due to rapid transmission through air/aerosols or via direct-indirect contact with infected persons. In addition, the cross-species transmission causes alterations to viral genetic makeup thereby increasing the risk of emergence of pathogens with new and more potent infectivity. With the introduction of effective nucleic acid-based technologies, post translational gene silencing (PTGS) is being increasingly used to silence viral gene targets and has shown promising approach towards management of many viral infections. Since several host factors are also utilized by these viruses during various stages of infection, silencing these host factors can also serve as promising therapeutic tool. Several nucleic acid-based technologies such as short interfering RNAs (siRNA), antisense oligonucleotides, aptamers, deoxyribozymes (DNAzymes), and ribozymes have been studied and used against management of respiratory viruses. These therapeutic nucleic acids can be efficiently delivered through the airways. Studies have also shown efficacy of gene therapy in clinical trials against respiratory syncytial virus (RSV) as well as models of respiratory diseases including severe acute respiratory syndrome (SARS), measles and influenza. In this review, we have summarized some of the recent advancements made in the area of nucleic acid based therapeutics and highlighted the emerging roles of nucleic acids in the management of some of the severe respiratory viral infections. We have also focused on the methods of their delivery and associated challenges.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida 201303, India.
| | - Melvin Sanicas
- Sanofi Pasteur, Asia and JPAC Region, Singapore 257856, Singapore.
| | - Clement A Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom 930010, Nigeria.
| | - Madhu Khanna
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| | - Binod Kumar
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
12
|
Danillo Lucas Alves E, Benedito Antonio Lopes da F. Characterization of the immune response following in vitro mayaro and chikungunya viruses (Alphavirus, Togaviridae) infection of mononuclear cells. Virus Res 2018; 256:166-173. [PMID: 30145137 DOI: 10.1016/j.virusres.2018.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
Two Alphaviruses stand out for their clinical importance in Brazil: chikungunya (CHIKV) and mayaro (MAYV) viruses. Few studies exist on the mechanisms of the immune response after infection by these viruses and neither a treatment nor a vaccine for these pathogens are available. Although their infection does not have a high mortality rate, they can lead to a joint involvement that can persist for months. The aims of this work were the study of the mechanisms of antiviral immune response following in vitro (U937 cells) infection with these viruses; to investigate the characteristics of the infection by these viruses; and to determine possible molecular targets that could serve as antiviral therapies against these pathogens. Several genes were modulated after infection by these viruses, and the three antiviral detection and response pathways were activated (Toll-like, RIG-I and NOD-like). Eotaxin and IL-6 were induced in all experiments. The cellular immune response profile found for each virus was different, with CHIKV activating primarily an inflammatory response (Th1 and Th17) and MAYV inducing a regulatory/suppressive response, an important feature to contain the inflammation resulting from infection. The data acquired by this study could provide an explanation why CHIKV infections, due to activation of the inflammatory response, are more clinically relevant than MAYV infections, which generates mostly an anti-inflammatory response after infection.
Collapse
Affiliation(s)
- Esposito Danillo Lucas Alves
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo State, Brazil.
| | | |
Collapse
|
13
|
Baicalin Downregulates RLRs Signaling Pathway to Control Influenza A Virus Infection and Improve the Prognosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4923062. [PMID: 29681974 PMCID: PMC5846362 DOI: 10.1155/2018/4923062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/23/2018] [Indexed: 12/31/2022]
Abstract
The objective of this study is to investigate the effects of baicalin on controlling the pulmonary infection and improving the prognosis in influenza A virus (IAV) infection. PCR and western blot were used to measure the changes of some key factors in RLRs signaling pathway. MSD electrochemiluminescence was used to measure the expression of pulmonary inflammatory cytokines including IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, and KC/GRO. Flow cytometry was used to detect the proportion of Th1, Th2, Th17, and Treg. The results showed that IAV infection led to low body weight and high viral load and high expression of RIG-I, IRF3, IRF7, and NF-κB mRNA, as well as RIG-I and NF-κB p65 protein. However, baicalin reduced the rate of body weight loss, inhibited virus replication, and downregulated the key factors of the RLRs signaling pathway. Besides, baicalin reduced the high expression inflammatory cytokines in lung and decreased the ratios of Th1/Th2 and Th17/Treg to arouse a brief but not overviolent inflammatory response. Therefore, baicalin activated a balanced host inflammatory response to limit immunopathologic injury, which was helpful to the improvement of clinical and survival outcomes.
Collapse
|
14
|
González VM, Martín ME, Fernández G, García-Sacristán A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals (Basel) 2016; 9:ph9040078. [PMID: 27999271 PMCID: PMC5198053 DOI: 10.3390/ph9040078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers' properties as a real tool for viral infection detection and treatment.
Collapse
Affiliation(s)
- Víctor M González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - M Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Gerónimo Fernández
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ana García-Sacristán
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
15
|
Standing on three legs: antiviral activities of RIG-I against influenza viruses. Curr Opin Immunol 2016; 42:71-75. [DOI: 10.1016/j.coi.2016.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/29/2016] [Indexed: 12/12/2022]
|
16
|
Rodriguez P, Pérez-Morgado MI, Gonzalez VM, Martín ME, Nieto A. Inhibition of Influenza Virus Replication by DNA Aptamers Targeting a Cellular Component of Translation Initiation. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e308. [PMID: 27070300 PMCID: PMC5014521 DOI: 10.1038/mtna.2016.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/17/2016] [Indexed: 02/08/2023]
Abstract
The genetic diversity of the influenza virus hinders the use of broad spectrum antiviral drugs and favors the appearance of resistant strains. Single-stranded DNA aptamers represent an innovative approach with potential application as antiviral compounds. The mRNAs of influenza virus possess a 5'cap structure and a 3'poly(A) tail that makes them structurally indistinguishable from cellular mRNAs. However, selective translation of viral mRNAs occurs in infected cells through a discriminatory mechanism, whereby viral polymerase and NS1 interact with components of the translation initiation complex, such as the eIF4GI and PABP1 proteins. We have studied the potential of two specific aptamers that recognize PABP1 (ApPABP7 and ApPABP11) to act as anti-influenza drugs. Both aptamers reduce viral genome expression and the production of infective influenza virus particles. The interaction of viral polymerase with the eIF4GI translation initiation factor is hindered by transfection of infected cells with both PABP1 aptamers, and ApPABP11 also inhibits the association of NS1 with PABP1 and eIF4GI. These results indicate that aptamers targeting the host factors that interact with viral proteins may potentially have a broad therapeutic spectrum, reducing the appearance of escape mutants and resistant subtypes.
Collapse
Affiliation(s)
- Paloma Rodriguez
- Centro Nacional de Biotecnología, Madrid, Spain
- Ciber de Enfermedades Respiratorias, Spain
| | - M Isabel Pérez-Morgado
- Laboratory of aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Víctor M Gonzalez
- Laboratory of aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - M Elena Martín
- Laboratory of aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal, Ctra, Colmenar Km. 9,100, 28034, Madrid, Spain. E-mail:
| | - Amelia Nieto
- Centro Nacional de Biotecnología, Madrid, Spain
- Ciber de Enfermedades Respiratorias, Spain
- Centro Nacional de Biotecnología, C.S.I.C., Darwin 3, Cantoblanco, 28049 Madrid, Spain. E-mail:
| |
Collapse
|