1
|
Montalbano AM, Di Sano C, Albano GD, Gjomarkaj M, Ricciardolo FLM, Profita M. IL-17A Drives Oxidative Stress and Cell Growth in A549 Lung Epithelial Cells: Potential Protective Action of Oleuropein. Nutrients 2024; 16:2123. [PMID: 38999871 PMCID: PMC11243068 DOI: 10.3390/nu16132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
IL-17A drives inflammation and oxidative stress, affecting the progression of chronic lung diseases (asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and cystic fibrosis). Oleuropein (OLP) is a polyphenolic compound present in olive oil and widely included in the Mediterranean diet. It exerts antioxidant and anti-inflammatory activities, oxidative stress resistance, and anticarcinogenic effects with a conceivable positive impact on human health. We hypothesized that OLP positively affects the mechanisms of oxidative stress, apoptosis, DNA damage, cell viability during proliferation, and cell growth in alveolar epithelial cells and tested its effect in a human alveolar epithelial cell line (A549) in the presence of IL-17A. Our results show that OLP decreases the levels of oxidative stress (Reactive Oxygen Species, Mitochondrial membrane potential) and DNA damage (H2AX phosphorylation-ser139, Olive Tail Moment data) and increases cell apoptosis in A549 cells exposed to IL-17A. Furthermore, OLP decreases the number of viable cells during proliferation, the migratory potential (Scratch test), and the single cell capacity to grow within colonies as a cancer phenotype in A549 cells exposed to IL-17A. In conclusion, we suggest that OLP might be useful to protect lung epithelial cells from oxidative stress, DNA damage, cell growth, and cell apoptosis. This effect might be exerted in lung diseases by the downregulation of IL-17A activities. Our results suggest a positive effect of the components of olive oil on human lung health.
Collapse
Affiliation(s)
- Angela Marina Montalbano
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| | - Caterina Di Sano
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| | - Giusy Daniela Albano
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| | - Mark Gjomarkaj
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| | - Fabio Luigi Massimo Ricciardolo
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Mirella Profita
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| |
Collapse
|
2
|
He F, Yu X, Zhang J, Cui J, Tang L, Zou S, Pu J, Ran P. Biomass-related PM 2.5 induced inflammatory microenvironment via IL-17F/IL-17RC axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123048. [PMID: 38036089 DOI: 10.1016/j.envpol.2023.123048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Biomass exposure is a significant environmental risk factor for COPD, but the underlying mechanisms have not yet been fully elucidated. Inflammatory microenvironment has been shown to drive the development of many chronic diseases. Pollution exposure can cause increased levels of inflammatory factors in the lungs, leading to an inflammatory microenvironment which is prevalent in COPD. Our findings revealed that IL-17F was elevated in COPD, while exposure to biomass led to increased expression of IL-17F in both alveolar epithelial and macrophage cells in mice. Blocking IL-17F could alleviate the lung inflammation induced by seven days of biomass exposure in mice. We employed a transwell co-culture system to simulate the microenvironment and investigate the interactions between MLE-12 and MH-S cells. We demonstrated that anti-IL-17F antibody attenuated the inflammatory responses induced by BRPM2.5 in MLE-12 and MH-S co-cultured with BRPM2.5-MLE-12, which reduced inflammatory changes in microenvironment. We found that IL-17RC, an important receptor for IL-17F, played a key role in the interactions. Knockout of IL-17RC in MH-S resulted in inhibited IL-17F signaling and attenuated inflammatory response after MH-S co-culture with BRPM2.5-MLE-12. Our investigation suggests that BRPM2.5 induces lung epithelial-macrophage interactions via IL-17F/IL-17RC axis regulating the inflammatory response. These results may provide a novel strategy for effective prevention and treatment of biomass-related COPD.
Collapse
Affiliation(s)
- Fang He
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Xiaoyuan Yu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiahuan Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jieda Cui
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International BioIsland, Guangzhou, Guangdong, 510000, China
| | - Lei Tang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Siqi Zou
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jinding Pu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International BioIsland, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
3
|
Ma R, Su H, Jiao K, Liu J. Association Between IL-17 and Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Int J Chron Obstruct Pulmon Dis 2023; 18:1681-1690. [PMID: 37551391 PMCID: PMC10404405 DOI: 10.2147/copd.s412626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease characterized by neutrophils airway infiltration. It is currently known that Interleukin-17 (IL-17) is an important pro-inflammatory factor. It can promote the accumulation of neutrophils and participate in the chronic inflammatory process of COPD. However, the value of IL-17 levels in the diagnosis and assessment of COPD remains controversial. In view of this, we conducted a systematic review and meta-analysis to assess its relevance. Methods We searched databases such as PubMed, Web of Science, Cochrane Library and Embase to extract original research. Results A total of 10 studies with 2268 participants were included in this meta-analysis. The results showed that the level of serum IL-17 in patients with stable COPD was significantly higher than that in healthy controls (standard mean difference SMD, 1.59, 95% CI 0.84-2.34; p<0.001). Compared with the stable COPD group, the serum IL-17 level in acute exacerbation (AECOPD) was significantly higher (SMD, 1.78, 95% CI 1.22-2.33; p<0.001). The level of IL-17 in sputum of COPD patients was also higher than that of healthy controls (SMD, 2.03, 95% CI 0.74-3.31; p<0.001). Conclusion Our results showed that IL-17 levels were elevated in serum and sputum in COPD patients compared with healthy controls, and IL-17 levels increased with disease progression. IL-17 serves as a potential biomarker to indicate the persistence of neutrophilic inflammation and exacerbation of COPD.
Collapse
Affiliation(s)
- Ru Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Gansu Provincial People’s Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Hongling Su
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Gansu Provincial People’s Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Keping Jiao
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Gansu Provincial People’s Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Jian Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| |
Collapse
|
4
|
Li D, Wang T, Ma Q, Zhou L, Le Y, Rao Y, Jin L, Pei Y, Cheng Y, Huang C, Gai X, Sun Y. IL-17A Promotes Epithelial ADAM9 Expression in Cigarette Smoke-Related COPD. Int J Chron Obstruct Pulmon Dis 2022; 17:2589-2602. [PMID: 36267325 PMCID: PMC9578481 DOI: 10.2147/copd.s375006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Background It has been reported that a disintegrin and metalloproteinase 9 (ADAM9) is involved in the pathogenesis of cigarette smoke (CS)-associated chronic obstructive pulmonary disease (COPD). But how CS exposure leads to upregulation of ADAM9 remains unknown. Methods Patients who underwent lobectomy for a solitary pulmonary nodule were enrolled and divided into three groups: non-smokers with normal lung function, smokers without COPD and smoker patients with COPD. Immunoreactivity of interleukin (IL)-17A and ADAM9 in small airways and alveolar walls was measured by immunohistochemistry. Wild-type and Il17a−/− C57BL/6 mice were exposed to CS for six months, and ADAM9 expression in the airway epithelia was measured by immunoreactivity. In addition, the protein and mRNA expression levels of IL-17A and ADAM9 were assessed in CS extract (CSE) and/or IL-17A-treated human bronchial epithelial (HBE) cells. Results The immunoreactivity of ADAM9 was increased in the airway epithelia and alveolar walls of patients with COPD compared to that of the controls. The expression of IL-17A was also upregulated in airway epithelial cells of patients with COPD and correlated positively with the level of ADAM9. The results from the animal model showed that Il17a−/− mice were protected from emphysema induced by CS exposure, together with a reduced level of ADAM9 expression in the airway epithelia, suggesting a possible link between ADAM9 and IL-17A. Consistently, our in vitro cell model showed that CSE stimulated the expression of ADAM9 and IL-17A in HBE cells in a dose- and time-dependent manner. Recombinant IL-17A induced ADAM9 upregulation in HBE cells and had a synergistic effect with CSE, whereas blocking IL-17A inhibited CSE-induced ADAM9 expression. Further analysis revealed that IL-17A induced c-Jun N-terminal kinase (JNK) phosphorylation, thereby increasing ADAM9 expression. Conclusion Our results revealed a novel role of IL-17A in CS-related COPD, where IL-17A contributes to ADAM9 expression by activating JNK signaling.
Collapse
Affiliation(s)
- Danyang Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Tong Wang
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Qianli Ma
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Lu Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Yanqing Le
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Yafei Rao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Liang Jin
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Yuqiang Pei
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Yaning Cheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Chen Huang
- Center of Basic Medical Research, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China,Correspondence: Xiaoyan Gai; Yongchang Sun, Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, People’s Republic of China, Email ;
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| |
Collapse
|
5
|
Bauer M, Fink B, Anderegg U, Röder S, Zenclussen AC. IL17F Expression as an Early Sign of Oxidative Stress-Induced Cytotoxicity/Apoptosis. Genes (Basel) 2022; 13:genes13101739. [PMID: 36292624 PMCID: PMC9602038 DOI: 10.3390/genes13101739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Interleukin 17F (IL17F) has been found to be involved in various inflammatory pathologies and has recently become a target for therapeutic purposes. In contrast to IL17F secreted by immune cells, the focus of this study is to describe the triggers of IL17F release in non-immune cells with a particular focus on IL17F-induced fibrosis. IL17F induction was examined in human lung epithelial (BEAS-2B) and myeloid cell lines as well as in peripheral blood mononuclear cells after in vitro exposure to aqueous cigarette smoke extract (CSE), inorganic mercury, cadmium or the apoptosis inducer brefeldin A. Fibrosis was examined in vitro, evaluating the transition of human primary dermal fibroblasts to myofibroblasts. We observed that all stressors were able to induce IL17F gene expression regardless of cell type. Interestingly, its induction was associated with cytotoxic/apoptotic signs. Inhibiting oxidative stress by N-acetylcysteine abrogated CSE-induced cytotoxic and IL17F-inducing effects. The induction of IL17F was accompanied by IL17F protein expression. The transition of fibroblasts into myofibroblasts was not influenced by either recombinant IL17F or supernatants of CSE-exposed BEAS-2B. In addition to IL17F secretion by specialized or activated immune cells, we underscored the cell type-independent induction of IL17F by mechanisms of inhibitable oxidative stress-induced cytotoxicity. However, IL17F was not involved in dermal fibrosis under the conditions used in this study.
Collapse
Affiliation(s)
- Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-235-1552
| | - Beate Fink
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, Leipzig University, 04103 Leipzig, Germany
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| |
Collapse
|
6
|
The role of Th17 cells: explanation of relationship between periodontitis and COPD? Inflamm Res 2022; 71:1011-1024. [PMID: 35781342 DOI: 10.1007/s00011-022-01602-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 11/05/2022] Open
Abstract
Periodontitis and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases with common risk factors, such as long-term smoking, age, and social deprivation. Many observational studies have shown that periodontitis and COPD are correlated. Moreover, they share a common pathophysiological process involving local accumulation of inflammatory cells and cytokines and damage of soft tissues. The T helper 17 (Th17) cells and the related cytokines, interleukin (IL)-17, IL-22, IL-1β, IL-6, IL-23, and transforming growth factor (TGF)-β, play a crucial regulatory role during the pathophysiological process. This paper reviewed the essential roles of Th17 lineage in the occurrence of periodontitis and COPD. The gaps in the study of their common pathological mechanism were also evaluated to explore future research directions. Therefore, this review can provide study direction for the association between periodontitis and COPD and new ideas for the clinical diagnosis and treatment of the two diseases.
Collapse
|
7
|
Chu S, Ma L, Wu Y, Zhao X, Xiao B, Pan Q. C-EBPβ mediates in cigarette/IL-17A-induced bronchial epithelial-mesenchymal transition in COPD mice. BMC Pulm Med 2021; 21:376. [PMID: 34794427 PMCID: PMC8603568 DOI: 10.1186/s12890-021-01738-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cigarettes smoking and IL-17A contribute to chronic obstructive pulmonary disease (COPD), and have synergistical effect on bronchial epithelial cell proliferation. CCAAT/enhancer-binding protein β (C-EBPβ) could be induced by IL-17A and is up-regulated in COPD. We explored the effect of cigarettes and IL-17 on bronchial epithelial-mesenchymal transition (EMT) in COPD mice and potential mechanism involved with C-EBPβ in this study. METHODS COPD model was established with mice by exposing to cigarettes. E-Cadherin, Vimentin, IL-17A and C-EBPβ distributions were detected in lung tissues. Primary bronchial epithelial cells were separated from health mice and cocultured with cigarette smoke extract (CSE) or/and IL-17A. E-Cadherin, Vimentin and IL-17 receptor (IL-17R) expressions in vitro were assessed. When C-EBPβ were silenced by siRNA in cells, E-Cadherin, Vimentin and C-EBPβ expressions were detected. RESULTS E-Cadherin distribution was less and Vimentin distribution was more in bronchus of COPD mice than controls. IL-17A and C-EBPβ expressions were higher in lung tissues of COPD mice than controls. In vitro, C-EBPβ protein expression was highest in CSE + IL-17A group, followed by CSE and IL-17A groups. E-cadherin expression in vitro was lowest and Vimentin expression was highest in CSE + IL-17A group, followed by CSE or IL-17A group. Those could be inhibited by C-EBPβ silenced. CONCLUSIONS C-EBPβ mediates in cigarette/IL-17A-induced bronchial EMT in COPD mice. Our findings contribute to a better understanding on the progress from COPD to lung cancers, which will provide novel avenues in preventing tumorigenesis of airway in the context of cigarette smoking.
Collapse
Affiliation(s)
- Shuyuan Chu
- Laboratory of Respiratory Disease, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Yashan Wu
- Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi, China
| | - Xiaoli Zhao
- Laboratory of Respiratory Disease, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Bo Xiao
- Laboratory of Respiratory Disease, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qilu Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| |
Collapse
|
8
|
Liu M, Wu K, Lin J, Xie Q, Liu Y, Huang Y, Zeng J, Yang Z, Wang Y, Dong S, Deng W, Yang M, Wu S, Jiang W, Li X. Emerging Biological Functions of IL-17A: A New Target in Chronic Obstructive Pulmonary Disease? Front Pharmacol 2021; 12:695957. [PMID: 34305606 PMCID: PMC8294190 DOI: 10.3389/fphar.2021.695957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/23/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease that causes high rates of disability and mortality worldwide because of severe progressive and irreversible symptoms. During the period of COPD initiation and progression, the immune system triggers the activation of various immune cells, including Regulatory T cells (Tregs), dendritic cells (DCs) and Th17 cells, and also the release of many different cytokines and chemokines, such as IL-17A and TGF-β. In recent years, studies have focused on the role of IL-17A in chronic inflammation process, which was found to play a highly critical role in facilitating COPD. Specially, IL-17A and its downstream regulators are potential therapeutic targets for COPD. We mainly focused on the possibility of IL-17A signaling pathways that involved in the progression of COPD; for instance, how IL-17A promotes airway remodeling in COPD? How IL-17A facilitates neutrophil inflammation in COPD? How IL-17A induces the expression of TSLP to promote the progression of COPD? Whether the mature DCs and Tregs participate in this process and how they cooperate with IL-17A to accelerate the development of COPD? And above associated studies could benefit clinical application of therapeutic targets of the disease. Moreover, four novel efficient therapies targeting IL-17A and other molecules for COPD are also concluded, such as Bufei Yishen formula (BYF), a Traditional Chinese Medicine (TCM), and curcumin, a natural polyphenol extracted from the root of Curcuma longa.
Collapse
Affiliation(s)
- Meiling Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Kang Wu
- Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,South China Hospital, Shenzhen University, Shenzhen, China
| | - Jinduan Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qingqiang Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yin Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jun Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mingming Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Song Wu
- Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,South China Hospital, Shenzhen University, Shenzhen, China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Wu M, Lai T, Jing D, Yang S, Wu Y, Li Z, Wu Y, Zhao Y, Zhou L, Chen H, Shen J, Li W, Ying S, Chen Z, Wu X, Shen H. Epithelium-derived IL17A Promotes Cigarette Smoke-induced Inflammation and Mucus Hyperproduction. Am J Respir Cell Mol Biol 2021; 65:581-592. [PMID: 34186014 DOI: 10.1165/rcmb.2020-0424oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway epithelium is a central modulator of innate and adaptive immunity in the lung. Interleukin (IL)17A expression was found to be increased in airway epithelium; however, the role of epithelial-derived IL17A in chronic obstructive pulmonary disease (COPD) remains unclear. In this study, we aim to determine whether epithelial-derived IL17A regulates inflammation and mucus hyperproduction in COPD using a cultured human bronchial epithelial (HBE) cell line in vitro and airway epithelium IL17A-specific knockout mouse in vivo. Increased IL17A expression was observed in mouse airway epithelium upon cigarette smoke (CS) exposure or in a COPD mouse model that was induced by CS and elastin. CS extract (CSE) also triggered IL17A expression in HBE cells. Blocking IL17A or IL17RA effectively attenuated CSE-induced MUC5AC and the inflammatory cytokines IL6, tumor necrosis factor (TNF)-α, and IL1β in HBE cells, suggesting that IL17A mediates CSE-induced inflammation and mucin production in an autocrine manner. CSE activated p-JUN and p-JNK, which were also reduced by IL17RA-siRNA, and JUN-siRNA attenuated CSE-induced IL6 and MUC5AC. In vivo, selective knockout of IL17A in airway epithelium markedly reduced the neutrophilic infiltration in Bronchoalveolar Lavage Fluid (BALF), peribronchial inflammation, pro-inflammatory mediators (CXCL1 and CXCL2), and mucus production in a COPD mouse model. We showed a novel function of airway epithelium-derived IL17A, which can act locally in an autocrine manner to amplify inflammation and increase mucus production in COPD pathogenesis.
Collapse
Affiliation(s)
- Mindan Wu
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, China
| | - Tianwen Lai
- Zhejiang University School of Medicine, 26441, Hangzhou, China
| | - Du Jing
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, China
| | - Shiyi Yang
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, China
| | - Yanping Wu
- Zhejiang University School of Medicine, 26441, Respiratory and Critical Care Medicine, Hangzhou, China
| | - Zhouyang Li
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, China
| | - Yinfang Wu
- Zhejiang University School of Medicine, 26441, Respiratory and Critical Care Medicine, Hangzhou, China
| | - Yun Zhao
- Zhejiang University School of Medicine, 26441, Respiratory and Critical Care Medicine, Hangzhou, China
| | - Lingren Zhou
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, China
| | - Haipin Chen
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, China
| | - Jiaxin Shen
- Zhejiang University School of Medicine, 26441, Respiratory and Critical Care Medicine, Hangzhou, China
| | - Wen Li
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Respiratory and Critical Care Midicine, Hangzhou, China
| | - Songmin Ying
- Zhejiang University School of Medicine, 26441, Respiratory and Critical Care Medicine, Hangzhou, China
| | - Zhihua Chen
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Respiratory and Critical Care Midicine, Hangzhou, China
| | - Xiaohong Wu
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, 56660, Hangzhou, China
| | - Huahao Shen
- Zhejiang University School of Medicine, 26441, Respiratory Medicine, Hangzhou, China;
| |
Collapse
|
10
|
Li H, Ye Q, Lin Y, Yang X, Zou X, Yang H, Wu W, Meng P, Zhang T. CpG oligodeoxynucleotides attenuate RORγt-mediated Th17 response by restoring histone deacetylase-2 in cigarette smoke-exposure asthma. Cell Biosci 2021; 11:92. [PMID: 34016172 PMCID: PMC8139164 DOI: 10.1186/s13578-021-00607-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 05/07/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cigarette smoke (CS) exposure increases corticosteroid insensitive asthma related to increased Th17 phenotype, and new treatment strategies are needed for CS-associated asthma. Histone deacetylase 2 (HDAC2), found in the airway epithelium, is critical for ameliorating glucocorticoids insensitivity. We recently demonstrated the anti-inflammatory effects of CpG oligodeoxynucleotides (CpG-ODNs) on CS-exposure asthma. However, the effects of CpG-ODNs on HDAC2 expression and enzymatic activity remain unclear. This study aimed to assess whether CpG-ODNs protect against excessive Th17 immune responses in CS-induced asthma through HDAC2-dependent mechanisms and compared their effects with those of corticosteroids. METHODS The effects of CpG-ODNs alone and in combination with budesonide (BUD) on airway inflammation and Th2/Th17-related airway immune responses were determined using an in vivo model of CS-induced asthma and in cultured bronchial epithelial (HBE) cells administered ovalbumin (OVA) and/or cigarette smoke extract (CSE). HDAC2 and retinoid-related orphan nuclear receptor γt (RORγt) expression were also assessed in mouse lung specimens and HBE cells. RESULTS CpG-ODNs and BUD synergistically attenuated CS exposure asthmatic responses in vivo by modulating the influx of eosinophils and neutrophils, airway remodeling, Th2/Th17 associated cytokine and chemokine production, and airway hyperresponsiveness and blocking RORγt-mediated Th17 inflammation through induced HDAC2 expression/activity. In vitro, CpG-ODNs synergized with BUD to inhibit Th17 cytokine production in OVA- and CSE-challenged HBE cells while suppressing RORγt and increasing epithelial HDAC2 expression/activity. CONCLUSIONS CpG-ODNs reversed CS-induced HDAC2 downregulation and enhanced the sensitivity of CS-exposed asthmatic mice and CSE-induced HBE cells to glucocorticoid treatment. This effect may be associated with HDAC2 restoration via RORγt/IL-17 pathway regulation, suggesting that CpG-ODNs are potential corticosteroid-sparing agents for use in CS-induced asthma with Th17-biased immune conditions.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qimei Ye
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yusen Lin
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xuena Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hailing Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ping Meng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
11
|
SnapshotDx Quiz: May 2021. J Invest Dermatol 2021. [DOI: 10.1016/j.jid.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Tsai YN, Hsiao YW, Lin SF, Chan YH, Hsieh YC, Tang WH, Lee AS, Huang YT, Li HY, Chao TF, Higa S, Wu TJ, Chang SL, Chen SA. Proinflammatory Cytokine Modulates Intracellular Calcium Handling and Enhances Ventricular Arrhythmia Susceptibility. Front Cardiovasc Med 2021; 8:623510. [PMID: 33796569 PMCID: PMC8007768 DOI: 10.3389/fcvm.2021.623510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The mechanism of Interleukin-17 (IL-17) induced ventricular arrhythmia (VA) remains unclear. This study aimed to investigate the effect of intracellular calcium (Cai) handling and VA susceptibility by IL-17. Methods: The electrophysiological properties of isolated perfused rabbit hearts under IL-17 (20 ng/ml, N = 6) and the IL-17 with neutralizer (0.4 μg/ml, N = 6) were evaluated using an optical mapping system. The action potential duration (APD) and Cai transient duration (CaiTD) were examined, and semiquantitative reverse transcriptase-polymerase chain reaction analysis of ion channels was performed. Results: There were longer APD80, CaiTD80 and increased thresholds of APD and CaiTD alternans, the maximum slope of APD restitution and induction of VA threshold in IL-17 group compared with those in IL-17 neutralizer and baseline groups. During ventricular fibrillation, the number of phase singularities and dominant frequency were both significantly greater in IL-17 group than in baseline group. The mRNA expressions of the Na+/Ca2+ exchanger, phospholamban, and ryanodine receptor Ca2+ release channel were upregulated, and the subunit of L-type Ca2+ current and sarcoplasmic reticulum Ca2+-ATPase 2a were significantly reduced in IL-17 group compared to baseline and IL-17 neutralizer group. Conclusions: IL-17 enhanced CaiTD and APD alternans through disturbances in calcium handling, which may increase VA susceptibility.
Collapse
Affiliation(s)
- Yung-Nan Tsai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ya-Wen Hsiao
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan
| | - Yi-Hsin Chan
- Division of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Cheng Hsieh
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Internal Medicine, Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Hua Tang
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yu-Ting Huang
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsing-Yuan Li
- Division of Cardiology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Urasoe, Japan
| | - Tsu-Juey Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Internal Medicine, Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shih-Lin Chang
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Ann Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Internal Medicine, Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
13
|
Zhang XF, Xiang SY, Lu J, Li Y, Zhao SJ, Jiang CW, Liu XG, Liu ZB, Zhang J. Electroacupuncture inhibits IL-17/IL-17R and post-receptor MAPK signaling pathways in a rat model of chronic obstructive pulmonary disease. Acupunct Med 2021; 39:663-672. [PMID: 33715422 DOI: 10.1177/0964528421996720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Interleukin (IL)-17, as a T-helper 17 cell (Th17) cytokine, plays a key role in chronic obstructive pulmonary disease (COPD) pathophysiology including chronic inflammation and airway obstruction, which lead to decreased pulmonary function. The aim of this study was to investigate the effect of acupuncture on IL-17, its receptor (IL-17R) and the mitogen-activated protein kinase (MAPK) signaling pathway, in a rat model of COPD. METHODS The COPD model was induced in Sprague Dawley rats by exposure to cigarette smoke for 12 weeks. The model rats were treated with electroacupuncture (EA) at BL13 and ST36. The lung function and histology of the rats were observed. IL-17, tumor necrosis factor (TNF)-α, and IL-10 were detected by enzyme-linked immunosorbent assay (ELISA) in bronchoalveolar lavage fluid (BALF) and in plasma. The leukocytes and macrophages in the BALF were counted. The expression levels of IL-17R were assayed in lung tissue by real-time polymerase chain reaction (PCR), western blotting, and immunohistochemistry. MAPK signaling pathway molecules including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK)1/2 and p38, and their phosphorylated forms, were observed in the lung by western blotting. RESULTS Compared with the control group rats, lung function decreased and there was a severe inflammatory infiltration of the pulmonary parenchyma in the COPD rats. EA effectively improved lung function and alleviated the inflammatory infiltration in the lungs of COPD rats. EA also reversed the elevated total leukocyte and macrophage counts, the high levels of IL-17 and TNF-α, and the low IL-10 content in COPD rats. Meanwhile, EA downregulated the increased mRNA and protein expression of IL-17R, and significantly inhibited the elevated levels of phosphorylated JNK, ERK1/2, and p38 in the lungs of COPD rats. CONCLUSION Our results suggest that the protective effects of acupuncture therapy on the lungs of COPD rats are likely related to inhibition of IL-17/IL-17R and the post-receptor MAPK signaling pathways.
Collapse
Affiliation(s)
- Xin-Fang Zhang
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Shui-Ying Xiang
- Institute of Acupuncture and Meridian, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Lu
- Department of Rehabilitation & Health Care, Anhui College of Traditional Chinese Medicine, Wuhu, China
| | - Yin Li
- Institute of Acupuncture and Meridian, Anhui University of Chinese Medicine, Hefei, China
| | - Shu-Jun Zhao
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chuan-Wei Jiang
- Department of Physiology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang-Guo Liu
- Department of Histology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zi-Bing Liu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.,Institute of Acupuncture and Meridian, Anhui University of Chinese Medicine, Hefei, China
| | - Jie Zhang
- Department of Immunology, Medical College of Nantong University, Nantong, China
| |
Collapse
|
14
|
Coto E, Pascual I, Avanzas P, Cuesta-Lavona E, Lorca R, Martín M, Vázquez-Coto D, Díaz-Corte C, Morís C, Rodríguez-Reguero J, Gómez J. IL17RA in early-onset coronary artery disease: Total leukocyte transcript analysis and promoter polymorphism (rs4819554) association. Cytokine 2020; 136:155285. [PMID: 32950026 DOI: 10.1016/j.cyto.2020.155285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIMS The interleukin-17 (IL-17) pathway would play an important role in the pathogenesis of atherosclerosis and coronary-artery disease (CAD). The IL-17 inflammatory mediators are expressed by Th17 cells, a group of CD4 + leukocytes that infiltrate the vascular milieu and are pivotal in the origin, progression, stability and rupture of the atherosclerotic lesion. Cigarette smoke compounds stimulated the expression of IL-17 and IL-17-receptors. In atherogenic mice models the deficiency of IL-17RA resulted in a reduction of the atherosclerotic lesion size and leukocyte infiltrate. We hypothesised that common the IL-17RA transcript might be differential expressed in the leukocytes from CAD patients and healthy individuals. METHODS The relative amount of the IL-17RA to ACTB transcript was determined in total leukocytes of 55 patients and 50 controls, all smokers. We genotyped the IL-17RA rs48195554 promoter polymorphisms in 390 healthy controls and 450 early-onset CAD patients. RESULTS Patients showed significantly higher mean IL-17RA normalised transcript value than controls (p < 0.001). For the IL-17RA rs48195554 promoter polymorphisms, IL-17RA G-carriers showed higher transcript values. However, allele and genotype frequencies did not differ between patients and controls and we thus excluded a significant association with CAD. CONCLUSIONS The higher levels of the IL-17RA transcript among CAD-patients was in agreement with a role for the IL-17 pathway in the pathogenesis of coronary atherosclerosis.
Collapse
Affiliation(s)
- Eliecer Coto
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain; Departamento Medicina, Universidad de Oviedo, Oviedo, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain.
| | - Isaac Pascual
- Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Pablo Avanzas
- Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Elías Cuesta-Lavona
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - Rebeca Lorca
- Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - María Martín
- Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | | | - Carmen Díaz-Corte
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain; Departamento Medicina, Universidad de Oviedo, Oviedo, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain; Nefrología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - César Morís
- Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain; Departamento Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | - Juan Gómez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| |
Collapse
|
15
|
Severe Acute Respiratory Syndrome-Coronavirus-2 Infection and Patients With Lung Cancer: The Potential Role of Interleukin-17 Target Therapy. J Thorac Oncol 2020; 15:e101-e103. [PMID: 32353597 PMCID: PMC7185017 DOI: 10.1016/j.jtho.2020.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 12/28/2022]
Abstract
The coronavirus disease 2019 outbreak is evolving rapidly worldwide. The lungs are the target of the primary infection and patients with lung cancer seem to have a poor prognosis. To our knowledge, this is the first reported investigation of a possible role of interleukin-17 target therapy in patients with lung cancer and concomitant severe acute respiratory syndrome–coronavirus-2 infection.
Collapse
|
16
|
Montalbano AM, Albano GD, Anzalone G, Moscato M, Gagliardo R, Di Sano C, Bonanno A, Ruggieri S, Cibella F, Profita M. Cytotoxic and genotoxic effects of the flame retardants (PBDE-47, PBDE-99 and PBDE-209) in human bronchial epithelial cells. CHEMOSPHERE 2020; 245:125600. [PMID: 31864052 DOI: 10.1016/j.chemosphere.2019.125600] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread as flame-retardants in different types of consumer products. PBDEs present in the air or dust and their inhalation can damage human health by influencing the respiratory system. We evaluated the effects of environment relevant concentrations (0.01-1 μM) of PBDE-47, PBDE-99 and PBDE-209 on the mechanism of oxidative stress, dysregulation of cell proliferation, apoptosis, and DNA damage and repair (in term of H2AX phosphorylation ser139) in an in-vitro/ex-vivo model of bronchial epithelial cells. PBDEs (-47, -99 and -209) at the environment relevant concentrations (0.01 and 1 μM) induce oxidative stress (in term of NOX-4 expression as well as ROS and JC-1 production), activate the mechanism of DNA-damage and repair affecting Olive Tail length (comet assay) production and H2AX phosphorylation (ser139) in normal human bronchial epithelial cells. Furthermore PBDEs, although do not affect cell viability, induce cell apoptosis and single cell capacity to grow into a colony (like a cancer phenotype) in bronchial epithelial cells. Finally, PBDE-47 had a greater effect than -99 and -209. PBDE-47, -99 and -209 congeners exert cytotoxic and genotoxic effects, and play a critical role in the dysregulation of oxidative stress, damaging DNA and the related gene expression in bronchial epithelial cells. Our findings might suggest that PBDEs inhalation might have adverse effect on human health regarding pulmonary diseases in the areas of environmental pollution.
Collapse
Affiliation(s)
- Angela Marina Montalbano
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Giusy Daniela Albano
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Giulia Anzalone
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Monica Moscato
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Rosalia Gagliardo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Caterina Di Sano
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Anna Bonanno
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Silvia Ruggieri
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Fabio Cibella
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Mirella Profita
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy.
| |
Collapse
|
17
|
Ma L, Jiang M, Zhao X, Sun J, Pan Q, Chu S. Cigarette and IL-17A synergistically induce bronchial epithelial-mesenchymal transition via activating IL-17R/NF-κB signaling. BMC Pulm Med 2020; 20:26. [PMID: 32000730 PMCID: PMC6993491 DOI: 10.1186/s12890-020-1057-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
Background IL-17A directly induces epithelial-mesenchymal transition (EMT) in alveolar epithelial cells. It could coordinate with cigarette smoke extract (CSE) to promote proliferation of bronchial epithelial cells. In this study, we aim to explore the direct effect of IL-17A and CSE on EMT in bronchial epithelial cells. Methods Bronchial epithelial cells were isolated from C57BL/6 mice, and cocultured with CSE or/and IL-17A. E-cadherin and Vimentin expressions in cells were detected using immunofluorescence staining. IL-17R expression was detected using immunohistochemistry staining. NF-κB expression was assessed using western blotting. When NF-κB was inhibited by BAY 11–7821, expressions of NF-κB, E-cadherin and Vimentin were measured. Results The protein expression of E-cadherin in bronchial epithelial cells was lowest in CSE + IL-17A group, followed by CSE group. In contrast, the protein expression of Vimentin was highest in CSE + IL-17A group, followed by CSE group. Similarly, IL-17R and NF-κB expressions were highest in CSE + IL-17A group, followed by CSE group and IL-17A group. NF-κB inhibitor could inhibit the expressions of E-cadherin and Vimentin. Conclusions Cigarette and IL-17A could synergistically induce EMT in bronchial epithelial cells through activating IL17R/NF-κB signaling. Our findings contribute to a better understanding in airway EMT and pathogenesis of respiratory diseases, which are involved IL-17A and cigarette smoking. Those will provide novel avenues in the immunotherapy of lung diseases.
Collapse
Affiliation(s)
- Libing Ma
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Ming Jiang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Xiaoli Zhao
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Jingyi Sun
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qilu Pan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Shuyuan Chu
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
| |
Collapse
|
18
|
Ponce-Gallegos MA, Pérez-Rubio G, Ambrocio-Ortiz E, Partida-Zavala N, Hernández-Zenteno R, Flores-Trujillo F, García-Gómez L, Hernández-Pérez A, Ramírez-Venegas A, Falfán-Valencia R. Genetic variants in IL17A and serum levels of IL-17A are associated with COPD related to tobacco smoking and biomass burning. Sci Rep 2020; 10:784. [PMID: 31964947 PMCID: PMC6972744 DOI: 10.1038/s41598-020-57606-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/06/2019] [Indexed: 11/08/2022] Open
Abstract
IL-17A is an important pro-inflammatory cytokine involved in the inflammatory response in chronic obstructive pulmonary disease (COPD). To evaluate the role played by single nucleotide polymorphisms of IL17A and protein levels in susceptibility to COPD, 1,807 subjects were included in a case-control study; 436 had COPD related to tobacco smoking (COPD-S) and 190 had COPD related to biomass burning (COPD-BB). Six hundred fifty-seven smokers without COPD (SWOC) and 183 biomass burning-exposed subjects (BBES) served as the respective control groups. The CC genotype and C allele of rs8193036 were associated with COPD (COPD-S vs. SWOC: p < 0.05; OR = 3.01, and OR = 1.28, respectively), as well as a recessive model (p < 0.01; OR = 2.91). Significant differences in serum levels were identified between COPD-S vs. SWOC, COPD-S vs. COPD-BB, and SWOC vs. BBES (p < 0.01). By comparing genotypes in the COPD-BB group TT vs. CC and TC vs. CC (p < 0.05), we found lower levels for the CC genotype. Logistic regression analysis by co-variables was performed, keeping the associations between COPD-S vs. SWOC with both polymorphisms evaluated (p < 0.05), as well as in COPD-BB vs. BBES but with a reduced risk of exacerbation (p < 0.05). In conclusion, polymorphisms in IL17A are associated with COPD. Serum levels of IL-17A were higher in smokers with and without COPD.
Collapse
Affiliation(s)
- Marco A Ponce-Gallegos
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Enrique Ambrocio-Ortiz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Neftali Partida-Zavala
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Rafael Hernández-Zenteno
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Fernando Flores-Trujillo
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Leonor García-Gómez
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Andrea Hernández-Pérez
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico.
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico.
| |
Collapse
|
19
|
Anzalone G, Arcoleo G, Bucchieri F, Montalbano AM, Marchese R, Albano GD, Di Sano C, Moscato M, Gagliardo R, Ricciardolo FLM, Profita M. Cigarette smoke affects the onco-suppressor DAB2IP expression in bronchial epithelial cells of COPD patients. Sci Rep 2019; 9:15682. [PMID: 31666665 PMCID: PMC6821751 DOI: 10.1038/s41598-019-52179-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Cigarette smoke is a risk factor for COPD and lung cancer. In cancer, epigenetic modifications affect the expression of Enhancer of Zester Homolog 2 (EZH2), and silenced disabled homolog 2 interacting protein gene (DAB2IP) (onco-suppressor gene) by Histone H3 tri-methylation in lysine 27 (H3K27me3). In"ex vivo"studies, we assessed EZH2, H3K27me3 and DAB2IP immunoreactivity in bronchial epithelial cells from COPD patients (smokers, ex-smokers), Smoker and control subjects. In"in vitro" experiments we studied the effect of cigarette smoke extract (CSE) on EZH2/H3K27me3/DAB2IP expression, apoptosis, invasiveness, and vimentin expression in 16HBE, primary cells, and lung cancer cell lines (A549) long-term exposed to CSE. Finally, in "in vitro"studies, we tested the effect of GSK343 (selective inhibitor of EZH2). EZH2 and H3K27me3 expression was higher, while DAB2IP was lower levels, in bronchial epithelium from COPD and Smokers than in Controls. CSE increased EZH2, H3K27me3 expression and decreased DAB2IP, cell apoptosis and invasiveness in epithelial cells. GSK343 restored the effects of CSE. Cigarette smoke affects EZH2 expression, and reduced DAB2IP via H3K27me3 in COPD patients. The molecular mechanisms associated with EZH2 expression, generate a dysregulation of cell apoptosis, mesenchymal transition, and cell invasiveness in bronchial epithelial cells, encouraging the progression of airway inflammation toward lung cancer in COPD patients.
Collapse
Affiliation(s)
- Giulia Anzalone
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Giuseppe Arcoleo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Fabio Bucchieri
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
- Dipartimento di Biomedicina sperimentale e Neuroscienze Cliniche (BioNec), University of Palermo, Palermo, Italy
| | - Angela M Montalbano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Roberto Marchese
- InterventionalPulmonology Unit, La Maddalena Cancer Center, Palermo, Italy
| | - Giusy D Albano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Caterina Di Sano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Monica Moscato
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Rosalia Gagliardo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | | | - Mirella Profita
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy.
| |
Collapse
|
20
|
Lai T, Wu M, Zhang C, Che L, Xu F, Wang Y, Wu Y, Xuan N, Cao C, Du X, Wu B, Li W, Ying S, Shen H, Chen Z. HDAC2 attenuates airway inflammation by suppressing IL-17A production in HDM-challenged mice. Am J Physiol Lung Cell Mol Physiol 2018; 316:L269-L279. [PMID: 30407865 DOI: 10.1152/ajplung.00143.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Histone deacetylase (HDAC)2 is expressed in airway epithelium and plays a pivotal role in inflammatory cells. However, the role of HDAC2 in allergic airway inflammation remains poorly understood. In the present study, we determined the role of HDAC2 in airway inflammation using in vivo models of house dust mite (HDM)-induced allergic inflammation and in vitro cultures of human bronchial epithelial (HBE) cells exposed to HDM, IL-17A, or both. We observed that HDM-challenged Hdac2+/- mice exhibited substantially enhanced infiltration of inflammatory cells. Higher levels of T helper 2 cytokines and IL-17A expression were found in lung tissues of HDM-challenged Hdac2+/- mice. Interestingly, IL-17A deletion or anti-IL-17A treatment reversed the enhanced airway inflammation induced by HDAC2 impairment. In vitro, HDM and IL-17A synergistically decreased HDAC2 expression in HBE cells. HDAC2 gene silencing further enhanced HDM- and/or IL-17A-induced inflammatory cytokines in HBE cells. HDAC2 overexpresion or blocking IL-17A gene expression restored the enhanced inflammatory cytokines. Collectively, these results support a protective role of HDAC2 in HDM-induced airway inflammation by suppressing IL-17A production and might suggest that activation of HDAC2 and/or inhibition of IL-17A production could prevent the development of allergic airway inflammation.
Collapse
Affiliation(s)
- Tianwen Lai
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China.,Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medicine University , Zhanjiang, Guangdong , China
| | - Mindan Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Luanqing Che
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Feng Xu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Yong Wang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Nanxia Xuan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Chao Cao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Xufei Du
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Bin Wu
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medicine University , Zhanjiang, Guangdong , China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China.,State Key Laboratory for Respiratory Diseases , Guangzhou, Guangdong , China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| |
Collapse
|
21
|
Anzalone G, Albano GD, Montalbano AM, Riccobono L, Bonanno A, Gagliardo R, Bucchieri F, Marchese R, Moscato M, Profita M. IL-17A-associated IKK-α signaling induced TSLP production in epithelial cells of COPD patients. Exp Mol Med 2018; 50:1-12. [PMID: 30291224 PMCID: PMC6173689 DOI: 10.1038/s12276-018-0158-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/12/2018] [Accepted: 06/21/2018] [Indexed: 11/09/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a cytokine expressed in the epithelium, involved in the pathogenesis of chronic disease. IL-17A regulates airway inflammation, oxidative stress, and reduction of steroid sensitivity in chronic obstructive pulmonary disease (COPD). TSLP and IL-17A were measured in induced sputum supernatants (ISs) from healthy controls (HC), healthy smokers (HS), and COPD patients by enzyme-linked immunosorbent assay. Human bronchial epithelial cell line (16HBE) and normal bronchial epithelial cells were stimulated with rhIL-17A or ISs from COPD patients to evaluate TSLP protein and mRNA expression. The effects of the depletion of IL-17A in ISs, an anticholinergic drug, and the silencing of inhibitor kappa kinase alpha (IKKα) on TSLP production were evaluated in 16HBE cells. Coimmunoprecipitation of acetyl-histone H3(Lys14)/IKKα was evaluated in 16HBE cells treated with rhIL-17A and in the presence of the drug. TSLP and IL-17A levels were higher in ISs from COPD patients and HS compared with HC. TSLP protein and mRNA increased in 16HBE cells and in normal bronchial epithelial cells stimulated with ISs from COPD patients compared with ISs from HC and untreated cells. IKKα silencing reduced TSLP production in 16HBE cells stimulated with rhIL-17A and ISs from COPD patients. RhIL-17A increased the IKKα/acetyl-histone H3 immunoprecipitation in 16HBE cells. The anticholinergic drug affects TSLP protein and mRNA levels in bronchial epithelial cells treated with rhIL-17A or with ISs from COPD patients, and IKKα mediated acetyl-histone H3(Lys14). IL-17A/IKKα signaling induced the mechanism of chromatin remodeling associated with acetyl-histone H3(Lys14) and TSLP production in bronchial epithelial cells. Anticholinergic drugs might target TSLP derived from epithelial cells during the treatment of COPD.
Collapse
Affiliation(s)
- Giulia Anzalone
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy
| | - Giusy Daniela Albano
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy
| | - Angela Marina Montalbano
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy
| | - Loredana Riccobono
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy
| | - Anna Bonanno
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy
| | - Rosalia Gagliardo
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy
| | - Fabio Bucchieri
- Dipartimento di Biomedicina sperimentale e Neuroscienze Cliniche (BioNec), University of Palermo, Palermo, Italy
| | - Roberto Marchese
- Interventional Pulmonology Unit, La Maddalena Cancer Center, Palermo, Italy
| | - Monica Moscato
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy
| | - Mirella Profita
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy.
| |
Collapse
|
22
|
Ramos CDO, Campos KKD, Costa GDP, Cangussú SD, Talvani A, Bezerra FS. Taurine treatment decreases inflammation and oxidative stress in lungs of adult mice exposed to cigarette smoke. Regul Toxicol Pharmacol 2018; 98:50-57. [PMID: 30026134 DOI: 10.1016/j.yrtph.2018.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 02/02/2023]
Abstract
Taurine is the major free amino acid found in mammalian cells and is known to be an antioxidant and membrane-stabilizing agent. This study aimed to evaluate the effects of taurine on oxidative stress and inflammatory response in the lungs of mice exposed to cigarette smoke. Fifty male C57BL/6 mice were divided into 5 groups: control group (CG), vehicle group (VG), taurine group (TG), cigarette smoke group (CSG), and cigarette smoke + taurine group (CSTG). For five consecutive days, CSG and CSTG were exposed to 4 cigarettes 3 times a day. Taurine administration was able to reduce total leukocytes in bronchoalveolar lavage fluid in CSTG compared to CSG. There was an increase in antioxidant superoxide dismutase and catalase activity in CSG compared to that in CG and TG, and a decrease in CSTG compared to CSG. There was an increase in the concentration of TNF and IL-17 in CSG and CSTG compared to CG and TG. There was an increase in the concentration of IL-22 in CSG compared to CG and TG, and a decrease in CSTG compared to CSG. The administration of taurine has been shown to reduce the inflammation and oxidative stress induced by short-term exposure to cigarette smoke.
Collapse
Affiliation(s)
- Camila de Oliveira Ramos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Keila Karine Duarte Campos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil.
| |
Collapse
|
23
|
Li Q, Anderson CD, Egilmez NK. Inhaled IL-10 Suppresses Lung Tumorigenesis via Abrogation of Inflammatory Macrophage-Th17 Cell Axis. THE JOURNAL OF IMMUNOLOGY 2018; 201:2842-2850. [PMID: 30257887 DOI: 10.4049/jimmunol.1800141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022]
Abstract
Intratracheal administration of a novel IL-10 formulation suppressed IL-17-driven, CD4+ T cell-dependent tumorigenesis in the LSL-K-rasG12D murine lung cancer model. Analysis of lung lymphocyte populations demonstrated that antitumor activity of IL-10 was associated with a 5-fold decline in Th17 cell prevalence and a concurrent suppression of inflammatory M1-like macrophage activity. Further phenotypic characterization revealed that macrophages and dendritic cells, but not Th17 cells, expressed IL-10RA on the cell surface with the CD11b+F4/80+CX3CR1+ interstitial macrophages representing the dominant IL-10RA+ subset. Consistent with these observations, in vitro stimulation of sorted CD4+ T cells with IL-10 did not affect their ability to produce IL-17, whereas similar treatment of purified interstitial macrophages resulted in a dramatic M1 to M2 phenotypic switch. Importantly, preconditioning of macrophages (but not of CD4+ T cells) with IL-10 led to potent suppression of CD4+ T cell IL-17 production in an in vitro coculture assay, suggesting that IL-10 suppressed Th17 cell activity primarily via its upstream effects on macrophages. In support of this notion, in vivo macrophage depletion resulted in a 5-fold decline in Th17 cell numbers and a concurrent 6-fold reduction in tumor burden. Collectively, these data demonstrate that in the LSL-K-rasG12D murine lung cancer model, inflammatory macrophage-Th17 cell axis is critical to tumorigenesis and that IL-10 blocks this process primarily via a direct effect on the former. Inhaled IL-10 formulations may be of use in prophylaxis against lung cancer in high-risk patients.
Collapse
Affiliation(s)
- Qingsheng Li
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Charles D Anderson
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| |
Collapse
|
24
|
Chang SL, Hsiao YW, Tsai YN, Lin SF, Liu SH, Lin YJ, Lo LW, Chung FP, Chao TF, Hu YF, Tuan TC, Liao JN, Hsieh YC, Wu TJ, Higa S, Chen SA. Interleukin-17 enhances cardiac ventricular remodeling via activating MAPK pathway in ischemic heart failure. J Mol Cell Cardiol 2018; 122:69-79. [DOI: 10.1016/j.yjmcc.2018.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/07/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
|
25
|
Vincze K, Kolonics-Farkas A, Bohacs A, Müller V. Peripheral CD4+ T-cell changes in connective tissue diseases. Cytokine Growth Factor Rev 2018; 43:16-24. [PMID: 29853252 DOI: 10.1016/j.cytogfr.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Connective tissue diseases (CTDs) are all characterized by changes in the adaptive immune system. In the last few decades several CD4 + T lymphocytes and their products have been associated with the development, progression, organ involvement, or therapeutic response of different CTDs. The T helper (Th) T-cell subsets are easy to measure in the peripheral blood, however changes are difficult to interpret. This review summarizes data about Th1/Th2/Th17 and regulatory T-cell (Treg) changes in the most common CTDs. Concordance and divergence of data might help in the better understanding of the common processes of these different systemic autoimmune disorders and might give future clues for differences in disease behavior and treatment response.
Collapse
Affiliation(s)
- Krisztina Vincze
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | | | - Aniko Bohacs
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
26
|
Jiang G, Liu CT, Zhang WD. IL-17A and GDF15 are able to induce epithelial-mesenchymal transition of lung epithelial cells in response to cigarette smoke. Exp Ther Med 2018; 16:12-20. [PMID: 29977354 PMCID: PMC6030931 DOI: 10.3892/etm.2018.6145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
Smoking is one of the primary causes of chronic obstructive pulmonary disease (COPD). Sustained active epithelial-mesenchymal transition (EMT) in COPD may explain the core pathophysiology of airway fibrosis and why lung cancer is so common among smokers. Interleukin (IL)-17A and growth/differentiation factor (GDF)15 have been reported to be biomarkers of COPD; however, the role of IL-17A and GDF15 in EMT remains unclear. The aim of the present study was to investigate the role of IL-17A and GDF15 in the pathogenesis of COPD. It was demonstrated that IL-17A and GDF15 are upregulated in patients with COPD, particularly those with a history of smoking. The results also revealed that IL-17A and GDF15 expression was negatively correlated with the epithelial marker epithelial-cadherin and positively correlated with the mesenchymal marker vimentin. Furthermore, treatment with cigarette smoke extract or IL-17A induced GDF15 expression. Combined treatment with IL-17A and GDF15 induced EMT in human small epithelial HSAEpiC cells in vitro. Collectively, the results of the present study suggest that IL-17A and GDF15-induced EMT serves an important role in the pathology of COPD.
Collapse
Affiliation(s)
- Gang Jiang
- Department of Respiration, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Chen-Tao Liu
- Department of Paediatrics, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei-Dong Zhang
- Department of Respiration, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
27
|
Wang LM, Zhang B, Li JJ, Zhou YC, Wang DX. The expression change of RORγt, BATF, and IL-17 in Chinese vitiligo patients with 308 nanometers excimer laser treatment. Dermatol Ther 2018; 31:e12598. [PMID: 29642271 DOI: 10.1111/dth.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/21/2017] [Accepted: 03/18/2018] [Indexed: 11/29/2022]
Abstract
This study aims to explore the expression of RORγt, BATF, and IL-17 in Chinese vitiligo patients with 308 nm excimer laser treatment. One hundred and sixty-four vitiligo patients treated with 308 nm excimer laser were enrolled as Case group and 137 health examiners as Control group. Quantitative real-time polymerase chain reaction and immunohistochemistry were conducted to detect the expressions of RORγt, BATF, and IL-17. Expression of RORγt, BATF, IL-17A, and IL-17F were higher in Case group than Control group, with the diagnostic accuracy of 88.04, 87.38, 97.34, and 89.04%, respectively. Pearson correlation analysis showed a positive correlation in RORγt, BATF, IL-17A, and IL-17F mRNAs in vitiligo patients. Moreover, their expressions were higher in active vitiligo patients than stable ones. Besides, the expressions of RORγt, BATF, IL-17A, and IL-17F in vitiligo skin were significantly higher than those in non lesional skin and normal controls. After treatment, their expressions were significantly decreased. Active vitiligo and the high expressions of RORγt, BATF, and IL-17F were the independent risk factors for the ineffectiveness of 308 nm excimer laser treatment. The expressions of RORγt, BATF, IL-17 were significantly enhanced in vitiligo patients, which were correlated with the activity of vitiligo and 308 nm excimer laser therapeutic effects.
Collapse
Affiliation(s)
- Lu-Mei Wang
- Department of Dermatology, Dong Guan People's Hospital, Guangdong Province, Dongguan 523018, People's Republic of China
| | - Bin Zhang
- Department of Gynaecology and Obstetrics, Dong Guan People's Hospital, Guangdong Province, Dongguan 523018, People's Republic of China
| | - Jun-Jie Li
- Department of Dermatology, Dong Guan People's Hospital, Guangdong Province, Dongguan 523018, People's Republic of China
| | - Yun-Cong Zhou
- Department of Dermatology, Dong Guan People's Hospital, Guangdong Province, Dongguan 523018, People's Republic of China
| | - Dong-Xia Wang
- Department of Interventional Therapy, Dong Guan People's Hospital, Guangdong Province, Dongguan 523018, People's Republic of China
| |
Collapse
|
28
|
HDAC2 Suppresses IL17A-Mediated Airway Remodeling in Human and Experimental Modeling of COPD. Chest 2018; 153:863-875. [DOI: 10.1016/j.chest.2017.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/02/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
|
29
|
Bhat TA, Kalathil SG, Bogner PN, Miller A, Lehmann PV, Thatcher TH, Phipps RP, Sime PJ, Thanavala Y. Secondhand Smoke Induces Inflammation and Impairs Immunity to Respiratory Infections. THE JOURNAL OF IMMUNOLOGY 2018; 200:2927-2940. [PMID: 29555783 DOI: 10.4049/jimmunol.1701417] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
Abstract
Despite advocacy to reduce smoking-related diseases, >1 billion people worldwide continue to smoke. Smoking is immunosuppressive and an important etiological factor in the development of several human disorders including respiratory diseases like chronic obstructive pulmonary disease. However, there is a critical gap in the knowledge of the role of secondhand smoke (SHS) in inflammation and immunity. We therefore studied the influence of SHS on pulmonary inflammation and immune responses to respiratory infection by nontypeable Haemophilus influenzae (NTHI) recurrently found in chronic obstructive pulmonary disease patients. Chronic SHS-exposed mice were chronically infected with NTHI and pulmonary inflammation was evaluated by histology. Immune cell numbers and cytokines were measured by flow cytometry and ELISA, respectively. Chronic SHS exposure impaired NTHI P6 Ag-specific B and T cell responses following chronic NTHI infection as measured by ELISPOT assays, reduced the production of Abs in serum and bronchoalveolar lavage, and enhanced albumin leak into the bronchoalveolar lavage as determined by ELISA. Histopathological examination of lungs revealed lymphocytic accumulation surrounding airways and bronchovasculature following chronic SHS exposure and chronic infection. Chronic SHS exposure enhanced the levels of inflammatory cytokines IL-17A, IL-6, IL-1β, and TNF-α in the lungs, and impaired the generation of adaptive immunity following either chronic infection or P6 vaccination. Chronic SHS exposure diminished bacterial clearance from the lungs after acute NTHI challenge, whereas P6 vaccination improved clearance equivalent to the level seen in air-exposed, non-vaccinated mice. Our study provides unequivocal evidence that SHS exposure has long-term detrimental effects on the pulmonary inflammatory microenvironment and immunity to infection and vaccination.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Austin Miller
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Thomas H Thatcher
- Department of Medicine, University of Rochester, Rochester, NY 14620; and
| | - Richard P Phipps
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Patricia J Sime
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
30
|
Kaur G, Bagam P, Pinkston R, Singh DP, Batra S. Cigarette smoke-induced inflammation: NLRP10-mediated mechanisms. Toxicology 2018; 398-399:52-67. [PMID: 29501574 DOI: 10.1016/j.tox.2018.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive, life-threatening disease that causes irreversible lung damage. Cigarette smoking is the chief etiologic factor for the commencement of this condition. Despite constant efforts to develop therapeutic interventions and to ascertain the molecular mechanism leading to the pathophysiology of this disease, much remains unknown. However, pattern recognition receptors (PRRs), i.e., Toll-like-receptors (TLRs) and NOD-like receptors (NLRs) are believed to play important roles in COPD and could serve as effective therapeutic targets. Although the role of TLRs in COPD has been well studied, the importance of NLRs has not yet been explored in detail. The NLR family member NLRP10 (aka NOD8, PAN5, PYNOD) is the only member of this family of proteins that lacks the leucine rich repeat (LRR) domain responsible for detection of pathogen and danger-associated molecular patterns (PAMPs/DAMPs). Therefore, instead of functioning as a PRR, NLRP10 may have a broader regulatory role. To elucidate the role of NLRP10 in secondhand smoke (SHS)-induced inflammation, we exposed C57Bl/6 (WT) and Nlrp10-deficient mice (Nlrp10-/-) on the C57Bl/6 background to filtered air- or SHS- for 6 weeks (acute exposure) and assessed the resulting molecular events. Leukocyte recruitment in SHS-exposed Nlrp10-/- mice was found to be significantly lower compared to SHS-exposed WT mice. In addition, we observed an important role for NLRP10 in SHS-mediated caspase-1 activation, cytokine/chemokine production (IL-1β, IL-18, MCP-1 and IL-17A), and induction of NF-κB and MAPKs in the lungs of C57Bl/6 mice. The reduced influx of CD4+IL-17A+ and CD8+IL-17A+ cells into the lungs of SHS-exposed Nlrp10-/- mice and impaired differentiation of Nlrp10-/- Th0 cells into Th17 cells (ex vivo) provide insight into the mechanistic details underlying NLRP10-dependent IL-17 production. We further substantiated our in vivo findings by challenging human alveolar type II epithelial cells (A549) transfected with scrambled- or Nlrp10-siRNA with cigarette smoke extract (CSE). We observed an important role of NLRP10 in cytokine and chemokine production as well as expression of NF-κB and MAPKs in CSE-exposed A549 cells. Furthermore, replenishment of A549 cell culture with recombinant IL-17A (rIL-17A) during NLRP10 knockdown rescued CSE-induced inflammatory responses. To identify upstream mediators of NLRP10 regulation we investigated epigenetic markers within the Nlrp10 promoter following cigarette smoke exposure and observed significant changes in active as well as repressive gene markers on histone 3 and histone 4 using both in vivo and in vitro study models. Further, alterations in the respective histone acetyl- and methyltransferases (PCAF, SET1, ESET, SUV20H1) correlated well with the observed histone modifications. Overall, our findings suggest a novel role of epigenetically regulated NLRP10 in Th17/IL-17 signaling during CS exposure.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Rakeysha Pinkston
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Dhirendra P Singh
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
31
|
Diesel exhaust particles up-regulate interleukin-17A expression via ROS/NF-κB in airway epithelium. Biochem Pharmacol 2018; 151:1-8. [PMID: 29499168 DOI: 10.1016/j.bcp.2018.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/22/2018] [Indexed: 01/10/2023]
Abstract
IL-17A is implicated in many aspects of pathogenesis of severe asthma, including inducing neutrophilic inflammation, airway hyperresponsiveness, steroid insensitivity and airway remodeling. Diesel exhaust particles (DEP) emission from vehicles has been shown to expand Th17 cells to increase IL-17A release that contributes to DEP-mediated exacerbation of asthma severity. It is not known whether non-immune cells in airways may also release IL-17A in response to DEP exposure. In this study, We found IL-17A expression was upregulated in the epithelium of severe allergic asthma patients from high road traffic pollution areas compared to those in low. Furthermore, we found DEP concentration-dependently increased IL-17A synthesis and release by 122.3 ± 15.72% and 235.5 ± 18.37%, respectively in primary bronchial epithelial cells (PBEC), accompanied with increased ROS production. Pretreatment of ROS scavenger (NAC) significantly inhibited DEP-induced IL-17A mRNA expression. DEP-induced IκBα degradation can be inhibited by NAC. We also found DEP increased p65 and RelB subunits expression, and pretreatment of NF-κB inhibitor (SN50) also inhibited DEP-induced IL-17A expression. We further found DEP increased NF-κB subunit RelB recruitment to IL-17A promoter in PBEC and airway tissue of severe allergic asthma patients from high road traffic pollution areas. These results indicate DEP stimulates IL-17A expression in airway epithelium through ROS/NF-κB pathway, and provide a possible link between traffic pollution exposure and IL-17A-related responses in severe allergic asthma patients.
Collapse
|
32
|
Iman M, Rezaei R, Azimzadeh Jamalkandi S, Shariati P, Kheradmand F, Salimian J. Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases. Expert Rev Clin Immunol 2017; 13:1173-1188. [PMID: 28994328 DOI: 10.1080/1744666x.2017.1389646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Sulfur mustard (SM) is an extremely toxic gas used in chemical warfare to cause massive lung injury and death. Victims exposed to SM gas acutely present with inhalational lung injury, but among those who survive, some develop obstructive airway diseases referred to as SM-lung syndrome. Pathophysiologically, SM-lung shares many characteristics with smoking-induced chronic obstructive pulmonary disease (COPD), including airway remodeling, goblet cell metaplasia, and obstructive ventilation defect. Some of the hallmarks of COPD pathogenesis, which include dysregulated lung inflammation, neutrophilia, recruitment of interleukin 17A (IL -17A) expressing CD4+T cells (Th17), and the paucity of lung regulatory T cells (Tregs), have also been described in SM-lung. Areas covered: A literature search was performed using the MEDLINE, EMBASE, and Web of Science databases inclusive of all literature prior to and including May 2017. Expert commentary: Here we review some of the recent findings that suggest a role for Th17 cell-mediated inflammatory changes associated with pulmonary complications in SM-lung and suggest new therapeutic approaches that could potentially alter disease progression with immune modulating biologics that can restore the lung Th17/Treg balance.
Collapse
Affiliation(s)
- Maryam Iman
- a Chemical Injuries Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ramazan Rezaei
- b Department of Immunology , School of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | | | - Parvin Shariati
- c Department of Industrial and Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Farrah Kheradmand
- d Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, & Department of Medicine , Pulmonary and Critical Care, Baylor College of Medicine , Houston , TX , USA
| | - Jafar Salimian
- a Chemical Injuries Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
33
|
Le Rouzic O, Pichavant M, Frealle E, Guillon A, Si-Tahar M, Gosset P. Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations. Eur Respir J 2017; 50:1602434. [PMID: 29025886 DOI: 10.1183/13993003.02434-2016] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/14/2017] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways caused mainly by cigarette smoke exposure. COPD progression is marked by exacerbations of the disease, often associated with infections. Recent data show the involvement in COPD pathophysiology of interleukin (IL)-17 and IL-22, two cytokines that are important in the control of lung inflammation and infection. During the initiation and progression of the disease, increased IL-17 secretion causes neutrophil recruitment, leading to chronic inflammation, airways obstruction and emphysema. In the established phase of COPD, a defective IL-22 response facilitates pathogen-associated infections and disease exacerbations. Altered production of these cytokines involves a complex network of immune cells and dysfunction of antigen-presenting cells. In this review, we describe current knowledge on the involvement of IL-17 and IL-22 in COPD pathophysiology at steady state and during exacerbations, and discuss implications for COPD management and future therapeutic approaches.
Collapse
Affiliation(s)
- Olivier Le Rouzic
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
- Service de Pneumologie Immunologie et Allergologie, CHU Lille, Lille, France
| | - Muriel Pichavant
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Emilie Frealle
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
- Laboratoire de Parasitologie et Mycologie Médicale, CHU Lille, Lille, France
| | - Antoine Guillon
- Service de Réanimation Polyvalente, CHRU de Tours, Tours, France
- Inserm, U1100 - Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- Inserm, U1100 - Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université François Rabelais, Tours, France
| | - Philippe Gosset
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
34
|
Intracellular and Extracellular Cytokines in A549 Cells and THP1 Cells Exposed to Cigarette Smoke. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 910:39-45. [PMID: 26987337 DOI: 10.1007/5584_2016_214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cigarette smoke (CS) activates inflammatory cells and increases cytokine levels producing local and systemic inflammation. To assess changes in intracellular and extracellular cytokine levels we used human epithelial (A549 cells) and monocyte (THP-1) cell lines grown for 24 h in cigarette smoke-conditioned media. Cytokines were assessed using immunostaining/flow cytometry and ELISA assay. In THP1cells, grown in CS-conditioned media, the intracellular interleukins IL-1β, IL-6, and IL-10 increased by more than tenfold, while less significant increases were found in A549 cells. IL-1α and IL-1β, but not IL-6 or IL-10, were increased in the culture media, while IL-2 was raised by about fivefold only in the culture medium of A549 cells. IL-4, IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor alpha were undetectable, while only a slight increase was observed in extracellular IL-17A (by about 60 %) in the medium of A549 cells and by about 115 % in the medium of THP1 cells. The interferon gamma (IFNγ) was increased by about eightfold, but only in the medium of THP1 cells grown with CS. We conclude that IL-1 and INFγ are the key cytokines responsible for pro-inflammatory signaling in epithelial cells and monocytes, respectively, exposed to cigarette smoke.
Collapse
|
35
|
Volchenkov R, Nygaard V, Sener Z, Skålhegg BS. Th17 Polarization under Hypoxia Results in Increased IL-10 Production in a Pathogen-Independent Manner. Front Immunol 2017; 8:698. [PMID: 28674533 PMCID: PMC5474482 DOI: 10.3389/fimmu.2017.00698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/29/2017] [Indexed: 12/15/2022] Open
Abstract
The IL-17-producing CD4+ T helper cell (Th17) differentiation is affected by stimulation of the aryl hydrocarbon receptor (AhR) pathway and by hypoxia-inducible factor 1 alpha (HIF-1α). In some cases, Th17 become non-pathogenic and produce IL-10. However, the initiating events triggering this phenotype are yet to be fully understood. Here, we show that such cells may be differentiated at low oxygen and regardless of AhR ligand treatment such as cigarette smoke extract. Hypoxia led to marked alterations of the transcriptome of IL-10-producing Th17 cells affecting genes involved in metabolic, anti-apoptotic, cell cycle, and T cell functional pathways. Moreover, we show that oxygen regulates the expression of CD52, which is a cell surface protein that has been shown to suppress the activation of other T cells upon release. Taken together, these findings suggest a novel ability for Th17 cells to regulate immune responses in vivo in an oxygen-dependent fashion.
Collapse
Affiliation(s)
- Roman Volchenkov
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vegard Nygaard
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital HF - Radiumhospitalet, Montebello, Oslo, Norway
| | - Zeynep Sener
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells. Mediators Inflamm 2016; 2016:9063842. [PMID: 27298519 PMCID: PMC4889862 DOI: 10.1155/2016/9063842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh) increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A) to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation), Bay11-7082 (inhibitor of IkBα phosphorylation), Hemicholinium-3 (HCh-3) (choline uptake blocker), and Tiotropium bromide (Spiriva®) (anticholinergic drug) was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells.
Collapse
|