1
|
Cao XH, Fan ZY, Chang YJ, Xu LP, Zhang XH, Huang XJ, Zhao XY. Prediction model for EBV infection following HLA haploidentical matched hematopoietic stem cell transplantation. J Transl Med 2024; 22:244. [PMID: 38448996 PMCID: PMC10916301 DOI: 10.1186/s12967-024-05042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
AIMS Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for hematological malignancies. However, viral infections, particularly EBV infection, frequently occur following allo-HSCT and can result in multi-tissue and organ damage. Due to the lack of effective antiviral drugs, these infections can even progress to post-transplant lymphoproliferative disorders (PTLD), thereby impacting the prognosis. In light of this, our objective is to develop a prediction model for EBV infection following allo-HSCT. METHODS A total of 466 patients who underwent haploidentical hematopoietic stem cell transplantation (haplo-HSCT) between September 2019 and December 2020 were included in this study. The patients were divided into a development cohort and a validation cohort based on the timing of their transplantation. Our aim was to develop and validate a grading scale using these cohorts to predict the risk of EBV infection within the first year after haplo-HSCT. Additionally, single-cell RNA sequencing (sc-RNAseq) data from the bone marrow of healthy donors were utilized to assess the impact of age on immune cells and viral infection. RESULTS In the multivariate logistic regression model, four predictors were retained: donor age, female-to-male transplant, graft MNC (mononuclear cell) dose, and CD8 dose. Based on these predictors, an EBV reactivation predicting score system was constructed. The scoring system demonstrated good calibration in both the derivation and validation cohorts, as confirmed by the Hosmer-Lemeshow test (p > 0.05). The scoring system also exhibited favorable discriminative ability, as indicated by the C statistics of 0.72 in the derivation cohort and 0.60 in the validation cohort. Furthermore, the clinical efficacy of the scoring system was evaluated using Kaplan-Meier curves based on risk ratings. The results showed significant differences in EBV reactivation rates between different risk groups, with p-values less than 0.001 in both the derivation and validation cohorts, indicating robust clinical utility. The analysis of sc-RNAseq data from the bone marrow of healthy donors revealed that older age had a profound impact on the quantity and quality of immune subsets. Functional enrichment analysis highlighted that older age was associated with a higher risk of infection. Specifically, CD8 + T cells from older individuals showed enrichment in the pathway of "viral carcinogenesis", while older CD14 + monocytes exhibited enrichment in the pathway of "regulation of viral entry into host cell." These findings suggest that older age may contribute to an increased susceptibility to viral infections, as evidenced by the altered immune profiles observed in the sc-RNAseq data. CONCLUSION Overall, these results demonstrate the development and validation of an effective scoring system for predicting EBV reactivation after haplo-HSCT, and provide insights into the impact of age on immune subsets and viral infection susceptibility based on sc-RNAseq analysis of healthy donors' bone marrow.
Collapse
Affiliation(s)
- Xun-Hong Cao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ze-Ying Fan
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
2
|
Research Note: Development and Characterization of Monoclonal Antibodies Specific for Chicken Interleukin-7 Receptor α (CD127). Poult Sci 2022; 101:102047. [PMID: 35973349 PMCID: PMC9396400 DOI: 10.1016/j.psj.2022.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Chicken recombinant IL-7Ra (chCD127) was expressed and characterized. Six new mouse monoclonal antibodies (MAbs) specific for chCD127 were developed and characterized. All mouse anti-CD127 MAbs detected chCD127 protein in ELISA with two clones highly reactive with chicken leukocytes in flow cytometry. The CD127 as identified by the MAb 3B8 was highly expressed in thymus, lung, and spleen tissues of 3-week-old chickens. All six anti-chCD127 MAbs inhibited IL-7-induced thymocyte proliferation.
CD127, also named interleukin-7 receptor (IL-7R), is expressed on various cell types including naive and memory T cells, and plays a critical role in the differentiation and activation of T lymphocytes. The availability of poultry-specific immune reagents to identify and measure chicken CD127 response will enhance fundamental and applied research in poultry immunology. Mouse monoclonal antibodies (MAbs) against chicken CD127 (chCD127) were developed and characterized. More specifically, a 678 bp ectodomain of chCD127 gene was cloned in the pET28a (+) vector and expressed in BL21-AI E. coli competent cells. The recombinant chCD127 protein with a size of 30 KDa which was also recognized by a mouse anti-human CD127 MAb (Clone G-11) was used to immunize mice, and 6 new mouse MAbs which specifically detected chicken CD127 were developed and characterized. Availability of these new sets of chCD127-specific MAbs will facilitate the immunological studies on CD127 in poultry, especially in understanding effector and memory T immune cell responses in normal and diseased states.
Collapse
|
3
|
Cellular and molecular profiling of T-cell subsets at the onset of human acute GVHD. Blood Adv 2021; 4:3927-3942. [PMID: 32818226 DOI: 10.1182/bloodadvances.2019001032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
The cellular and molecular processes involved in acute graft-versus-host disease (aGVHD) development early after allogeneic hematopoietic cell transplantation (HCT) in humans remain largely unknown. We have performed multiparameter immunophenotyping and molecular profiling of CD4+ and CD8+ T cells in 2 independent cohorts of patients undergoing HCT, as well as in their HLA-identical sibling donors. Cellular profiling using spectral flow cytometry showed an incomplete reconstitution of the T-cell compartment in recipients without aGVHD early after transplantation, as well as a shift toward an effector memory phenotype, paralleled by depletion of the naive T-cell pool. Molecular profiling of T-cell populations in donors vs recipients without aGVHD revealed increased pathway activity of >40 gene modules in recipients. These pathways were associated in particular with T-cell activation, adhesion, migration, and effector functions. Cellular profiles from recipients developing aGVHD displayed an enrichment of cells with a T memory stem cell-like phenotype compared with recipients without aGVHD. Comparison of gene profiles from these recipients revealed that transforming growth factor-β (TGF-β) signaling was most significantly downregulated, whereas the pathway activity of NF-κB-associated transcription factors and signaling pathways were increased, at aGVHD onset. This study suggests that the integration of cellular and molecular profiles provides new insights into the development of aGVHD in humans.
Collapse
|
4
|
Yanir A, Schulz A, Lawitschka A, Nierkens S, Eyrich M. Immune Reconstitution After Allogeneic Haematopoietic Cell Transplantation: From Observational Studies to Targeted Interventions. Front Pediatr 2021; 9:786017. [PMID: 35087775 PMCID: PMC8789272 DOI: 10.3389/fped.2021.786017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Immune reconstitution (IR) after allogeneic haematopoietic cell transplantation (HCT) represents a central determinant of the clinical post-transplant course, since the majority of transplant-related outcome parameters such as graft-vs.-host disease (GvHD), infectious complications, and relapse are related to the velocity, quantity and quality of immune cell recovery. Younger age at transplant has been identified as the most important positive prognostic factor for favourable IR post-transplant and, indeed, accelerated immune cell recovery in children is most likely the pivotal contributing factor to lower incidences of GvHD and infectious complications in paediatric allogeneic HCT. Although our knowledge about the mechanisms of IR has significantly increased over the recent years, strategies to influence IR are just evolving. In this review, we will discuss different patterns of IR during various time points post-transplant and their impact on outcome. Besides IR patterns and cellular phenotypes, recovery of antigen-specific immune cells, for example virus-specific T cells, has recently gained increasing interest, as certain threshold levels of antigen-specific T cells seem to confer protection against severe viral disease courses. In contrast, the association between IR and a possible graft-vs. leukaemia effect is less well-understood. Finally, we will present current concepts of how to improve IR and how this could change transplant procedures in the near future.
Collapse
Affiliation(s)
- Asaf Yanir
- Bone Marrow Transplant Unit, Division of Haematology and Oncology, Schneider Children's Medical Center of Israel, Petach-Tikva, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Anita Lawitschka
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Matthias Eyrich
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University Medical Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Gaballa A, Clave E, Uhlin M, Toubert A, Arruda LCM. Evaluating Thymic Function After Human Hematopoietic Stem Cell Transplantation in the Personalized Medicine Era. Front Immunol 2020; 11:1341. [PMID: 32849495 PMCID: PMC7412601 DOI: 10.3389/fimmu.2020.01341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an effective treatment option for several malignant and non-malignant hematological diseases. The clinical outcome of this procedure relies to a large extent on optimal recovery of adaptive immunity. In this regard, the thymus plays a central role as the primary site for de novo generation of functional, diverse, and immunocompetent T-lymphocytes. The thymus is exquisitely sensitive to several insults during HSCT, including conditioning drugs, corticosteroids, infections, and graft-vs.-host disease. Impaired thymic recovery has been clearly associated with increased risk of opportunistic infections and poor clinical outcomes in HSCT recipients. Therefore, better understanding of thymic function can provide valuable information for improving HSCT outcomes. Recent data have shown that, besides gender and age, a specific single-nucleotide polymorphism affects thymopoiesis and may also influence thymic output post-HSCT, suggesting that the time of precision medicine of thymic function has arrived. Here, we review the current knowledge about thymic role in HSCT and the recent work of genetic control of human thymopoiesis. We also discuss different transplant-related factors that have been associated with impaired thymic recovery and the use of T-cell receptor excision circles (TREC) to assess thymic output, including its clinical significance. Finally, we present therapeutic strategies that could boost thymic recovery post-HSCT.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuel Clave
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis APHP, Paris, France.,Université de Paris, Paris, France
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Antoine Toubert
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis APHP, Paris, France.,Université de Paris, Paris, France
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Mehta M, Gohil D, Khattry N, Kumar R, Sandur S, Sharma D, Checker R, Agarwal B, Jha D, Majumdar A, Gota V. Prevention of acute graft-versus-host-disease by Withaferin a via suppression of AKT/mTOR pathway. Int Immunopharmacol 2020; 84:106575. [PMID: 32416453 DOI: 10.1016/j.intimp.2020.106575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022]
Abstract
Acute Graft versus Host Disease (aGVHD) is a frequent and serious complication in patients receiving allogeneic bone marrow transplantation (allo-BMT) and often requires rigorous prophylaxis. The current treatment regimens for aGVHD are associated with several side effects which necessitates the development of novel interventions that prevent aGVHD without precluding graft-versus-tumor effects. In the present study, we show that treatment of donor graft with plant steroidal lactone Withaferin A (WA) prior to transplantation markedly reduced aGVHD mediated damage in target organs without compromising the graft-versus.-tumor activity of the transplanted lymphocytes. WA abrogated post-transplant cytokine storm associated with allo-activation of donor lymphocytes. This was attributed to the ability of WA to inhibit early signaling events in T-cell activation including lymphoblast formation and activation of AKT/mTOR pathway. Mortality and morbidity related to allo-transplantation was significantly reduced in recipients of WA treated donor splenocytes compared to recipient of vehicle treated donor splenocytes. Further, WA treatment did not have any effect on reconstitution of lymphoid and myeloid lineages in recipients, resulting in stable and complete donor chimerism. In agreement with previous reports showing the effectiveness of WA in a mouse model of partial chimerism, our data further establishes that WA is able to attenuate aGVHD in an MHC-mismatched high dose chemo-conditioned murine model without compromising engraftment. This study provides compelling scientific basis for possible application of WA for prevention and treatment of aGVHD in patients receiving allo-BMT.
Collapse
Affiliation(s)
- Miten Mehta
- Department of Pharmacology and Toxicology, Bombay College of Pharmacy, Mumbai, India; Clinical Pharmacology laboratory, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Dievya Gohil
- Clinical Pharmacology laboratory, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Navin Khattry
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Rajiv Kumar
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Santosh Sandur
- Radiation Biology & Health Science Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Science Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Rahul Checker
- Radiation Biology & Health Science Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Beamon Agarwal
- Department of Hematopathology, Montefiore Medical Centre, New York, NY, United States
| | - Dhruv Jha
- Birla Institute of Technology, Mesra Ranchi, Ranchi, India
| | - Anuradha Majumdar
- Department of Pharmacology and Toxicology, Bombay College of Pharmacy, Mumbai, India
| | - Vikram Gota
- Clinical Pharmacology laboratory, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.
| |
Collapse
|
7
|
Simons L, Cavazzana M, André I. Concise Review: Boosting T-Cell Reconstitution Following Allogeneic Transplantation-Current Concepts and Future Perspectives. Stem Cells Transl Med 2019; 8:650-657. [PMID: 30887712 PMCID: PMC6591542 DOI: 10.1002/sctm.18-0248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for a large number of malignant and nonmalignant (inherited) diseases of the hematopoietic system. Nevertheless, non‐HLA identical transplantations are complicated by a severe T‐cell immunodeficiency associated with a high rate of infection, relapse and graft‐versus‐host disease. Initial recovery of T‐cell immunity following HSCT relies on peripheral expansion of memory T cells mostly driven by cytokines. The reconstitution of a diverse, self‐tolerant, and naive T‐cell repertoire, however, may take up to 2 years and crucially relies on the interaction of T‐cell progenitors with the host thymic epithelium, which may be altered by GvHD, age or transplant‐related toxicities. In this review, we summarize current concepts to stimulate reconstitution of a peripheral and polyclonal T‐cell compartment following allogeneic transplantation such as graft manipulation (i.e., T‐cell depletion), transfusion of ex vivo manipulated donor T cells or the exogenous administration of cytokines and growth factors to stimulate host‐thymopoiesis with emphasis on approaches which have led to clinical trials. Particular attention will be given to the development of cellular therapies such as the ex vivo generation of T‐cell precursors to fasten generation of a polyclonal and functional host‐derived T‐cell repertoire. Having been tested so far only in preclinical mouse models, clinical studies are now on the way to validate the efficacy of such T‐cell progenitors in enhancing immune reconstitution following HSCT in various clinical settings. stem cells translational medicine2019;00:1–8
Collapse
Affiliation(s)
- Laura Simons
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC, Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle André
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
8
|
Gauthier SD, Moutuou MM, Daudelin F, Leboeuf D, Guimond M. IL-7 Is the Limiting Homeostatic Factor that Constrains Homeostatic Proliferation of CD8 + T Cells after Allogeneic Stem Cell Transplantation and Graft-versus-Host Disease. Biol Blood Marrow Transplant 2018; 25:648-655. [PMID: 30576835 DOI: 10.1016/j.bbmt.2018.12.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022]
Abstract
Immune reconstitution after allogeneic hematopoietic stem cell transplantation relies primarily on homeostatic proliferation (HP) of mature T lymphocytes, but this process is typically impaired during graft-versus-host disease (GVHD). We previously showed that low IL-7 levels combined with lack of dendritic cell (DC) regeneration constrain CD4+ T cell HP during GVHD. However, it is not clear whether these alterations to the peripheral CD4+ T cell niche also contribute to impair CD8+ T cell regeneration during GVHD. We found that IL-7 therapy was sufficient for restoring CD8+ T cell HP in GVHD hosts while forcing DC regeneration with Flt3-L had only a modest effect on CD8+ T cell HP in IL-7 treated mice. Using bone marrow chimeras, we showed that HP of naïve CD8+ T cells is primarily regulated by MHC class I on radio-resistant stromal cells, yet optimal recovery of CD8+ T cell counts still requires expression of MHC class I on both radio-resistant and radio-sensitive hematopoietic cells. Thus, IL-7 level is the primary limiting factor that constrains naïve CD8+ T cell HP during GVHD, and accessibility of MHC class I on stromal cells explains how IL-7 therapy, as a single agent, can induce robust CD8 + T cell HP in the absence of DCs.
Collapse
Affiliation(s)
- Simon-David Gauthier
- Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Moutuaata M Moutuou
- Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Francis Daudelin
- Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Dominique Leboeuf
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada; Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Martin Guimond
- Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada; Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.
| |
Collapse
|
9
|
Moutuou MM, Pagé G, Zaid I, Lesage S, Guimond M. Restoring T Cell Homeostasis After Allogeneic Stem Cell Transplantation; Principal Limitations and Future Challenges. Front Immunol 2018; 9:1237. [PMID: 29967605 PMCID: PMC6015883 DOI: 10.3389/fimmu.2018.01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
For several leukemia patients, allogeneic stem cell transplantation (allogeneic-SCT) is the unique therapeutic modality that could potentially cure their disease. Despite significant progress made in clinical management of allogeneic-SCT, acute graft-versus-host disease (aGVHD) and infectious complications remain the second and third cause of death after disease recurrence. Clinical options to restore immunocompetence after allogeneic-SCT are very limited as studies have raised awareness about the safety with regards to graft-versus-host disease (GVHD). Preclinical works are now focusing on strategies to improve thymic functions and to restore the peripheral niche that have been damaged by alloreactive T cells. In this mini review, we will provide a brief overview about the adverse effects of GVHD on the thymus and the peripheral niche and the resulting negative outcome on peripheral T cell homeostasis. Finally, we will discuss the potential relevance of coordinating our studies on thymic rejuvenation and improvement of the peripheral lymphoid niche to achieve optimal T cell regeneration in GVHD patients.
Collapse
Affiliation(s)
- Moutuaata M Moutuou
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Gabriel Pagé
- Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Intesar Zaid
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Sylvie Lesage
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Martin Guimond
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Neuman T, David K, Cooper D, Strair R. The enteric toxicity of gluten enhances graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Med Hypotheses 2017; 104:174-177. [PMID: 28673580 DOI: 10.1016/j.mehy.2017.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/25/2017] [Indexed: 12/19/2022]
Abstract
Pro-inflammatory peptides present in wheat and related grains are associated with celiac disease and non-celiac gluten sensitivity. We hypothesize that these peptides induce enteric responses that may exacerbate the gastrointestinal manifestations of graft-versus-host disease after an allogeneic hematopoietic stem cell transplant. Therefore, we propose that a gluten free diet should be tested as a prophylactic and/or therapeutic intervention against gastrointestinal graft-versus-host disease for patients undergoing an allogeneic hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Taylor Neuman
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, United States
| | - Kevin David
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, United States
| | - Dennis Cooper
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, United States
| | - Roger Strair
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, United States.
| |
Collapse
|
11
|
Thiant S, Moutuou MM, Laflamme P, Sidi Boumedine R, Leboeuf DM, Busque L, Roy J, Guimond M. Imatinib mesylate inhibits STAT5 phosphorylation in response to IL-7 and promotes T cell lymphopenia in chronic myelogenous leukemia patients. Blood Cancer J 2017; 7:e551. [PMID: 28387753 PMCID: PMC5436073 DOI: 10.1038/bcj.2017.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Imatinib mesylate (IM) therapy has been shown to induce lower T cell counts in chronic myelogenous leukemia (CML) patients and an interference of IM with T cell receptor (TCR) signaling has been invoked to explain this observation. However, IL-7 and TCR signaling are both essential for lymphocyte survival. This study was undertaken to determine whether IM interferes with IL-7 or TCR signaling to explain lower T cell counts in patients. At diagnosis, CML patients have typically lower CD4+ counts in their blood, yet CD8+ counts are normal or even increased in some. Following the initiation of IM treatment, CD4+ counts were further diminished and CD8+ T lymphocytes were dramatically decreased. In vitro studies confirmed IM interference with TCR signaling through the inhibition of ERK phosphorylation and we showed a similar effect on IL-7 signaling and STAT5 phosphorylation (STAT5-p). Importantly however, using an in vivo mouse model, we demonstrated that IM impaired T cell survival through the inhibition of IL-7 and STAT5-p but not TCR signaling which remained unaffected during IM therapy. Thus, off-target inhibitory effects of IM on IL-7 and STAT5-p explain how T cell lymphopenia occurs in patients treated with IM.
Collapse
Affiliation(s)
- S Thiant
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - M M Moutuou
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - P Laflamme
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - R Sidi Boumedine
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - D M Leboeuf
- Départment de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - L Busque
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - J Roy
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - M Guimond
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
12
|
Morton LM, Saber W, Baker KS, Barrett AJ, Bhatia S, Engels EA, Gadalla SM, Kleiner DE, Pavletic S, Burns LJ. National Institutes of Health Hematopoietic Cell Transplantation Late Effects Initiative: The Subsequent Neoplasms Working Group Report. Biol Blood Marrow Transplant 2017; 23:367-378. [PMID: 27634019 PMCID: PMC5285307 DOI: 10.1016/j.bbmt.2016.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023]
Abstract
Subsequent neoplasms (SN) after hematopoietic cell transplantation (HCT) cause significant patient morbidity and mortality. Risks for specific SN types vary substantially, with particularly elevated risks for post-transplantation lymphoproliferative disorders, myelodysplastic syndrome/acute myeloid leukemia, and squamous cell malignancies. This document provides an overview of the current state of knowledge regarding SN after HCT and recommends priorities and approaches to overcome challenges and gaps in understanding. Numerous factors have been suggested to affect risk, including patient-related (eg, age), primary disease-related (eg, disease type, pre-HCT therapies), and HCT-related characteristics (eg, type and intensity of conditioning regimen, stem cell source, development of graft-versus-host disease). However, gaps in understanding remain for each of these risk factors, particularly for patients receiving HCT in the current era because of substantial advances in clinical transplantation practices. Additionally, the influence of nontransplantation-related risk factors (eg, germline genetic susceptibility, oncogenic viruses, lifestyle factors) is poorly understood. Clarification of the magnitude of SN risks and identification of etiologic factors will require large-scale, long-term, systematic follow-up of HCT survivors with detailed clinical data. Most investigations of the mechanisms of SN pathogenesis after HCT have focused on immune drivers. Expansion of our understanding in this area will require interdisciplinary laboratory collaborations utilizing measures of immune function and availability of archival tissue from SN diagnoses. Consensus-based recommendations for optimal preventive, screening, and therapeutic approaches have been developed for certain SN after HCT, whereas for other SN, general population guidelines are recommended. Further evidence is needed to specifically tailor preventive, screening, and therapeutic guidelines for SN after HCT, particularly for unique patient populations. Accomplishment of this broad research agenda will require increased investment in systematic data collection with engagement from patients, clinicians, and interdisciplinary scientists to reduce the burden of SN in the rapidly growing population of HCT survivors.
Collapse
Affiliation(s)
- Lindsay M Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - K Scott Baker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - A John Barrett
- Stem Cell Transplantation Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eric A Engels
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven Pavletic
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Linda J Burns
- National Marrow Donor Program/Be The Match and Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| |
Collapse
|
13
|
Chen X, Meng X, Xu Y, Xie H, Yin S, Li H, Wu L, Zheng S. Cytokine and human leukocyte antigen (HLA) profile for graft-versus-host disease (GVHD) after organ transplantation. Eur J Med Res 2016; 21:38. [PMID: 27729070 PMCID: PMC5059997 DOI: 10.1186/s40001-016-0232-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Graft-versus-host disease (GVHD) after liver and kidney transplantation has high mortality and causes diagnostic challenges. This study aims to describe the cytokine and human leukocyte antigen (HLA) profile in the GVHD after liver and kidney transplantation. METHODS A high-throughput detection kit was applied and altogether 18 different cytokines were tested simultaneously. GVHD patients included 23 post-liver transplantation patients; 22 post-renal transplantation patients; The control patients include 22 hepatocellular carcinoma (HCC) patients without transplantation and 20 healthy controls. Their HLA characters were compared. RESULTS The full spectrum of cytokines was present. The inflammatory markers were activated significantly in liver transplantation. The level of inflammatory markers in liver transplantation was higher than that in renal transplantation, HCC or healthy controls. GVHD was associated with the HLA characters; HLA characters are involved in liver GVHD occurrence and act as risk factors. CONCLUSION Our findings confirmed that the inflammatory cytokines play a pathogenic role in GVHD and can be used as early diagnostic markers. The HLA mismatch acts as a risk factor in liver transplantation to predict GVHD occurrence.
Collapse
Affiliation(s)
- Xinhua Chen
- Key Laboratory of Combined Multi-organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China.,The Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xueqin Meng
- Key Laboratory of Combined Multi-organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China.,The Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yuning Xu
- Key Laboratory of Combined Multi-organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China.,The Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China.,The Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Shengyong Yin
- Key Laboratory of Combined Multi-organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China.,The Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongchun Li
- Key Laboratory of Hepatobiliary Disease in Shenzhen, Shenzhen, 518112, China
| | - Liming Wu
- Key Laboratory of Combined Multi-organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China. .,The Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Shusen Zheng
- Key Laboratory of Combined Multi-organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China. .,The Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
14
|
Editorial: Cytokines in inflammation, aging, cancer and obesity. Cytokine 2016; 82:1-3. [PMID: 26997465 DOI: 10.1016/j.cyto.2016.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 12/19/2022]
|