1
|
Sun J, Corradini S, Azab F, Shokeen M, Muz B, Miari KE, Maksimos M, Diedrich C, Asare O, Alhallak K, Park C, Lubben B, Chen Y, Adebayo O, Bash H, Kelley S, Fiala M, Bender DE, Zhou H, Wang S, Vij R, Williams MTS, Azab AK. IL-10R inhibition reprograms tumor-associated macrophages and reverses drug resistance in multiple myeloma. Leukemia 2024; 38:2355-2365. [PMID: 39215060 PMCID: PMC11518999 DOI: 10.1038/s41375-024-02391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Multiple myeloma (MM) is the cancer of plasma cells within the bone marrow and remains incurable. Tumor-associated macrophages (TAMs) within the tumor microenvironment often display a pro-tumor phenotype and correlate with tumor proliferation, survival, and therapy resistance. IL-10 is a key immunosuppressive cytokine that leads to recruitment and development of TAMs. In this study, we investigated the role of IL-10 in MM TAM development as well as the therapeutic application of IL-10/IL-10R/STAT3 signaling inhibition. We demonstrated that IL-10 is overexpressed in MM BM and mediates M2-like polarization of TAMs in patient BM, 3D co-cultures in vitro, and mouse models. In turn, TAMs promote MM proliferation and drug resistance, both in vitro and in vivo. Moreover, inhibition of IL-10/IL-10R/STAT3 axis using a blocking IL-10R monoclonal antibody and STAT3 protein degrader/PROTAC prevented M2 polarization of TAMs and the consequent TAM-induced proliferation of MM, and re-sensitized MM to therapy, in vitro and in vivo. Therefore, our findings suggest that inhibition of IL-10/IL-10R/STAT3 axis is a novel therapeutic strategy with monotherapy efficacy and can be further combined with current anti-MM therapy, such as immunomodulatory drugs, to overcome drug resistance. Future investigation is warranted to evaluate the potential of such therapy in MM patients.
Collapse
Affiliation(s)
- Jennifer Sun
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO, USA
| | - Stefan Corradini
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Feda Azab
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Monica Shokeen
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mina Maksimos
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Camila Diedrich
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Obed Asare
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kinan Alhallak
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO, USA
| | - Chaelee Park
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Berit Lubben
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Yixuan Chen
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ola Adebayo
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Hannah Bash
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sarah Kelley
- Department of Medicine, Oncology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Mark Fiala
- Department of Medicine, Oncology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Diane E Bender
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Haibin Zhou
- Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, USA
| | - Shaomeng Wang
- Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ravi Vij
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA
- Department of Medicine, Oncology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO, USA.
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA.
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Barberi J, Baruffaldi D, Napione L, Frascella F, Yamaguchi S, Pirri C, Spriano S. Investigation of the Relationship between Surface Features, Protein Adsorption, and Osteoimmunomodulation: The Case of a Chemically Treated Titanium Alloy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17301-17310. [PMID: 39106975 PMCID: PMC11340636 DOI: 10.1021/acs.langmuir.4c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 08/09/2024]
Abstract
This paper deals with the combined effects of immune response and osseointegration because of the lack of comprehensive studies on this topic. An antibacterial Ti surface was considered because of the high risk of infection for titanium bone implants. A chemically treated Ti6Al4 V alloy [Ti64(Sr-Ag)] with a microporous and Sr-Ag doped surface was compared to a polished version (Ti64) regarding protein adsorption (albumin and fibronectin) and osteoimmunomodulation. Characterization via fluorescence microscopy and zeta potential showed a continuous fibronectin layer on Ti64(Sr-Ag), even with preadsorbed albumin, while it remained filamentous on Ti64. Macrophages (differentiated from THP-1 monocytes) were cultured on both surfaces, with viability and cytokine release analyzed. Differently from Ti64, Ti64(Sr-Ag) promoted early anti-inflammatory responses and significant downregulation of VEGF. Ti64(Sr-Ag) also enhanced human bone marrow mesenchymal cell differentiation toward osteoblasts, when a macrophage-conditioned medium was used, influencing ALP production. Surface properties in relation to protein adsorption and osteoimmunomodulation were discussed.
Collapse
Affiliation(s)
- J. Barberi
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Centro
Interdipartimentale Polito BioMEDLab, Politecnico
di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - D. Baruffaldi
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Centro
Interdipartimentale Polito BioMEDLab, Politecnico
di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - L. Napione
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Centro
Interdipartimentale Polito BioMEDLab, Politecnico
di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - F. Frascella
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Centro
Interdipartimentale Polito BioMEDLab, Politecnico
di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - S. Yamaguchi
- Department
of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - C.F. Pirri
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Centro
Interdipartimentale Polito BioMEDLab, Politecnico
di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Center
for Sustainable Futures, PolitoIstituto
Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy
| | - S. Spriano
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
- Centro
Interdipartimentale Polito BioMEDLab, Politecnico
di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| |
Collapse
|
3
|
Sutthiwanjampa C, Kang SH, Kim MK, Hwa Choi J, Kim HK, Woo SH, Bae TH, Kim WJ, Kang SH, Park H. Tumor necrosis factor-α-treated human adipose-derived stem cells enhance inherent radiation tolerance and alleviate in vivo radiation-induced capsular contracture. J Adv Res 2024:S2090-1232(24)00295-9. [PMID: 39019109 DOI: 10.1016/j.jare.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION Post-mastectomy radiotherapy plays a crucial role in breast cancer treatment but can lead to an inflammatory response causing soft tissue damage, particularly radiation-induced capsular contracture (RICC), impacting breast reconstruction outcomes. Adipose-derived stem cells (ADSCs), known for their regenerative potential via paracrine capacity, exhibit inherent radiotolerance. The influence of tumor necrosis factor-alpha (TNF-α) on ADSCs has been reported to enhance the paracrine effect of ADSCs, promoting wound healing by modulating inflammatory responses. OBJECTIVE This study investigates the potential of TNF-α-treated human ADSCs (T-hASCs) on silicone implants to alleviate RICC, hypothesizing to enhance suppressive effects on RICC by modulating inflammatory responses in a radiation-exposed environment. METHODS In vitro, T-hASCs were cultured on various surfaces to assess viability after exposure to radiation up to 20 Gy. In vivo, T-hASC and non-TNF-α-treated hASC (C-hASCs)-coated membranes were implanted in mice before radiation exposure, and an evaluation of the RICC mitigation took place 4 and 8 weeks after implantation. In addition, the growth factors released from T-hASCs were assessed. RESULTS In vitro, hASCs displayed significant radiotolerance, maintaining consistent viability after exposure to 10 Gy. TNF-α treatment further enhanced radiation tolerance, as evidenced by significantly higher viability than C-hASCs at 20 Gy. In vivo, T-hASC-coated implants effectively suppressed RICC, reducing capsule thickness. T-hASCs exhibited remarkable modulation of the inflammatory response, suppressing M1 macrophage polarization while enhancing M2 polarization. The elevated secretion of vascular endothelial growth factor from T-hASCs is believed to induce macrophage polarization, potentially reducing RICC. CONCLUSION This study establishes T-hASCs as a promising strategy for ameliorating the adverse effects experienced by breast reconstruction patients after mastectomy and radiation therapy. The observed radiotolerance, anti-fibrotic effects, and immune modulation suggest the possibility of enhancing patient outcomes and quality of life. Further research and clinical trials are warranted for broader clinical uses.
Collapse
Affiliation(s)
- Chanutchamon Sutthiwanjampa
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seung Hyun Kang
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Mi Kyung Kim
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Departments of Pathology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Jin Hwa Choi
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Radiation Oncology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Han Koo Kim
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Soo Hyun Woo
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Tae Hui Bae
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Woo Joo Kim
- Department of Plastic Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea
| | - Shin Hyuk Kang
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
4
|
Wang H, Wang L, Gong G, Lin X, Luo J, Liu C, Mor G, Liao A. Interleukin-10: a novel metabolic inducer of macrophage differentiation and subsequently contributing to improved pregnancy outcomes of mice by orchestrating oxidative phosphorylation metabolism†. Biol Reprod 2024; 111:76-91. [PMID: 38501817 PMCID: PMC11466864 DOI: 10.1093/biolre/ioae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Metabolism regulates the phenotype and function of macrophages. After recruitment to local tissues, monocytes are influenced by the local microenvironment and differentiate into various macrophages depending on different metabolic pathways. However, the metabolic mechanisms underlying decidual macrophage differentiation remain unknown. Interleukin-10 (IL-10) is an important decidual macrophage inducer and promotes oxidative phosphorylation (OXPHOS) of bone marrow-derived macrophages. In this study, we mainly investigate the metabolic changes involved in IL-10-generated macrophages from monocytes using in vitro models. We demonstrate that exposure of monocytes (either peripheral or THP-1) to IL-10 altered the phenotype and function of resultant macrophages that are linked with OXPHOS changes. Interleukin-10 enhanced the mitochondrial complex I and III activity of THP-1 cell-differentiated macrophages and increased the mitochondrial membrane potential, intracellular adenosine triphosphate, and reactive oxygen species levels. Oxidative phosphorylation blockage with oligomycin changed the cell morphology of IL-10-generated macrophages and the expression levels of cytokines, such as transforming growth factor beta, tumor necrosis factor-alpha, interferon gamma, and IL-10, apart from changes in the expression level of the surface markers CD206, CD209, and CD163. Moreover, in vivo IL-10 administration reduced the lipopolysaccharide (LPS)-induced embryo resorption rate, and this effect was diminished when OXPHOS was inhibited, demonstrating that OXPHOS is important for the improved pregnancy outcomes of IL-10 in LPS-induced abortion-prone mice. Our findings provide deep insights into the roles of IL-10 in macrophage biology and pregnancy maintenance. Nevertheless, the direct evidence that OXPHOS is involved in decidual macrophage differentiation needs further investigations.
Collapse
Affiliation(s)
- Huan Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Liling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Guangshun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xinxiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Chunyan Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
5
|
Chirivi M, Cortes D, Rendon CJ, Contreras GA. Lipolysis inhibition as a treatment of clinical ketosis in dairy cows: Effects on adipose tissue metabolic and immune responses. J Dairy Sci 2024; 107:5104-5121. [PMID: 38278290 DOI: 10.3168/jds.2023-23998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Dairy cows with clinical ketosis (CK) exhibit excessive adipose tissue (AT) lipolysis and systemic inflammation. Lipolysis in cows can be induced by the canonical (hormonally induced) and inflammatory lipolytic pathways. Currently, the most common treatment for CK is oral propylene glycol (PG); however, PG does not reduce lipolysis or inflammation. Niacin (NIA) can reduce the activation of canonical lipolysis, whereas cyclooxygenase inhibitors such as flunixin meglumine (FM) can limit inflammation and inhibit the inflammatory lipolytic pathway. The objective of this study was to determine the effects of including NIA and FM in the standard PG treatment for postpartum CK on AT function. Multiparous Jersey cows (n = 18; 7.1 ± 3.8 DIM) were selected from a commercial dairy. Inclusion criteria were CK symptoms (lethargy, depressed appetite, and drop in milk yield) and high blood levels of BHB (≥1.2 mmol/L). Cows with CK were randomly assigned to one of 3 treatments: (1) PG: 310 g administered orally once per day for 5 d, (2) PG+NIA: 24 g administered orally once per day for 3 d, and (3) PG+NIA+FM: 1.1 mg/kg administered IV once per day for 3 d. Healthy control cows (HC; n = 6) matched by lactation and DIM (±2 d) were sampled. Subcutaneous AT explants were collected at d 0 and d 7 relative to enrollment. To assess AT insulin sensitivity, explants were treated with insulin (1 µL/L) during lipolysis stimulation with a β-adrenergic receptor agonist (isoproterenol, 1 µM). Lipolysis was quantified by glycerol release in the media. Lipid mobilization and inflammatory gene networks were evaluated using quantitative PCR. Protein biomarkers of lipolysis, insulin signaling, and AT inflammation, including hormone-sensitive lipase, protein kinase B (Akt), and ERK1/2, were quantified by capillary immunoassays. Flow cytometry of AT cellular components was used to characterize macrophage inflammatory phenotypes. Statistical significance was determined by a nonparametric t-test when 2 groups (HC vs. CK) were analyzed and an ANOVA test with Tukey adjustment when 3 treatment groups (PG vs. PG+NIA vs. PG+NIA+FM) were evaluated. At d 0, AT from CK cows showed higher mRNA expression of lipolytic enzymes ABHD5, LIPE, and LPL, as well as increased phosphorylation of hormone-sensitive lipase compared with HC. At d 0, insulin reduced lipolysis by 41% ± 8% in AT from HC, but CK cows were unresponsive (-2.9 ± 4%). Adipose tissue from CK cows exhibited reduced Akt phosphorylation compared with HC. Cows with CK had increased AT expression of inflammatory gene markers, including CCL2, IL8, IL10, TLR4, and TNF, along with ERK1/2 phosphorylation. Adipose tissue from CK cows showed increased macrophage infiltration compared with HC. By d 7, AT from PG+NIA+FM cows had a more robust response to insulin, as evidenced by reduced glycerol release (36.5% ± 8% compared with PG at 26.9% ± 7% and PG+NIA at 7.4% ± 8%) and enhanced phosphorylation of Akt. By d 7, PG+NIA+FM cows presented lower inflammatory markers, including ERK1/2 phosphorylation, and reduced macrophage infiltration, compared with PG and PG+NIA. These data suggest that including NIA and FM in CK treatment improves AT insulin sensitivity and reduces AT inflammation and macrophage infiltration.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - Daniela Cortes
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - C Javier Rendon
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
6
|
Yuan D, Yang J, Wu W, Amier Y, Li X, Wan W, Huang Y, Li J, Yu X. The immune factors have complex causal regulation effects on kidney stone disease: a mendelian randomization study. BMC Immunol 2024; 25:34. [PMID: 38877395 PMCID: PMC11177369 DOI: 10.1186/s12865-024-00627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
PURPOSE Previous studies have reported the potential impact of immune cells on kidney stone disease (KSD), but definitive causal relationships have yet to be established. The purpose of this paper is to elucidate the potential causal association between immune cells and KSD by Mendelian randomization (MR) analysis. METHODS In our study, a thorough two-sample Mendelian randomization (MR) analysis was performed by us to determine the potential causal relationship between immune cell traits and kidney stone disease. We included a total of four immune traits (median fluorescence intensity (MFI), relative cellular (RC), absolute cellular (AC), and morphological parameters (MP)), which are publicly available data. GWAS summary data related to KSD (9713 cases and 366,693 controls) were obtained from the FinnGen consortium. The primary MR analysis method was Inverse variance weighted. Cochran's Q test, MR Egger, and MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) were used to assess the stability of the results. RESULTS After FDR correction, the CD8 on HLA DR + CD8br (OR = 0.95, 95% CI = 0.93-0.98, p-value = 7.20 × 10- 4, q-value = 0.088) was determined to be distinctly associated with KSD, and we also found other 25 suggestive associations between immune cells and KSD, of which 13 associations were suggested as protective factors and 12 associations were suggested as risk factors. There was no horizontal pleiotropy or significant heterogeneity in our MR analysis, as determined by the p-value results of our Cochrane Q-test, MR Egger's intercept test, and MR-PRESSO, which were all > 0.05. CONCLUSIONS Our study has explored the potential causal connection between immune cells and KSD by Mendelian randomization analysis, thus providing some insights for future clinical studies.
Collapse
Affiliation(s)
- Dongfeng Yuan
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junyi Yang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weisong Wu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yirixiatijiang Amier
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianmiu Li
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenlong Wan
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yisheng Huang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiabo Li
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Yu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, China.
| |
Collapse
|
7
|
Hendrix SV, Mreyoud Y, McNehlan ME, Smirnov A, Chavez SM, Hie B, Chamberland MM, Bradstreet TR, Webber AM, Kreamalmeyer D, Taneja R, Bryson BD, Edelson BT, Stallings CL. BHLHE40 Regulates Myeloid Cell Polarization through IL-10-Dependent and -Independent Mechanisms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1766-1781. [PMID: 38683120 PMCID: PMC11105981 DOI: 10.4049/jimmunol.2200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/16/2024] [Indexed: 05/01/2024]
Abstract
Better understanding of the host responses to Mycobacterium tuberculosis infections is required to prevent tuberculosis and develop new therapeutic interventions. The host transcription factor BHLHE40 is essential for controlling M. tuberculosis infection, in part by repressing Il10 expression, where excess IL-10 contributes to the early susceptibility of Bhlhe40-/- mice to M. tuberculosis infection. Deletion of Bhlhe40 in lung macrophages and dendritic cells is sufficient to increase the susceptibility of mice to M. tuberculosis infection, but how BHLHE40 impacts macrophage and dendritic cell responses to M. tuberculosis is unknown. In this study, we report that BHLHE40 is required in myeloid cells exposed to GM-CSF, an abundant cytokine in the lung, to promote the expression of genes associated with a proinflammatory state and better control of M. tuberculosis infection. Loss of Bhlhe40 expression in murine bone marrow-derived myeloid cells cultured in the presence of GM-CSF results in lower levels of proinflammatory associated signaling molecules IL-1β, IL-6, IL-12, TNF-α, inducible NO synthase, IL-2, KC, and RANTES, as well as higher levels of the anti-inflammatory-associated molecules MCP-1 and IL-10 following exposure to heat-killed M. tuberculosis. Deletion of Il10 in Bhlhe40-/- myeloid cells restored some, but not all, proinflammatory signals, demonstrating that BHLHE40 promotes proinflammatory responses via both IL-10-dependent and -independent mechanisms. In addition, we show that macrophages and neutrophils within the lungs of M. tuberculosis-infected Bhlhe40-/- mice exhibit defects in inducible NO synthase production compared with infected wild-type mice, supporting that BHLHE40 promotes proinflammatory responses in innate immune cells, which may contribute to the essential role for BHLHE40 during M. tuberculosis infection in vivo.
Collapse
Affiliation(s)
- Skyler V. Hendrix
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael E. McNehlan
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sthefany M. Chavez
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Hie
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megan M. Chamberland
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tara R. Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ashlee M. Webber
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan D. Bryson
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Ruiz Luque J, Cevey ÁC, Pieralisi AV, Poncini C, Erra Díaz F, Azevedo Reis MV, Donato M, Mirkin GA, Goren NB, Penas FN. Fenofibrate Induces a Resolving Profile in Heart Macrophage Subsets and Attenuates Acute Chagas Myocarditis. ACS Infect Dis 2024; 10:1793-1807. [PMID: 38648355 DOI: 10.1021/acsinfecdis.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Chagas disease, caused by Trypanosoma cruzi, stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection. PPARα are ligand-dependent transcription factors involved in lipid metabolism and inflammation regulation. However, the role of fenofibrate, a PPARα ligand, in the activation profile of cardiac macrophages as well as its effect on the early inflammatory and fibrotic response in the heart remains unexplored. The present study demonstrates that fenofibrate significantly reduces not only the serum activity of tissue damage biomarker enzymes (LDH and GOT) but also the circulating proportions of pro-inflammatory monocytes (CD11b+ LY6Chigh). Furthermore, both CD11b+ Ly6Clow F4/80high macrophages (MΦ) and recently differentiated CD11b+ Ly6Chigh F4/80high monocyte-derived macrophages (MdMΦ) shift toward a resolving phenotype (CD206high) in the hearts of fenofibrate-treated mice. This shift correlates with a reduction in fibrosis, inflammation, and restoration of ventricular function in the early stages of Chagas disease. These findings encourage the repositioning of fenofibrate as a potential ancillary immunotherapy adjunct to antiparasitic drugs, addressing inflammation to mitigate Chagas disease symptoms.
Collapse
Affiliation(s)
- Javier Ruiz Luque
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Ágata Carolina Cevey
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Azul Victoria Pieralisi
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Carolina Poncini
- CONICET - Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires C1121A6B, Argentina
| | - Fernando Erra Díaz
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Marcus Vinicius Azevedo Reis
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Martin Donato
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Buenos Aires C1121A6B, Argentina
| | - Gerardo Ariel Mirkin
- CONICET - Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires C1121A6B, Argentina
| | - Nora Beatriz Goren
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Federico Nicolás Penas
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| |
Collapse
|
9
|
Oatis D, Herman H, Balta C, Ciceu A, Simon-Repolski E, Mihu AG, Lepre CC, Russo M, Trotta MC, Gravina AG, D’Amico M, Hermenean A. Dynamic shifts in lung cytokine patterns in post-COVID-19 interstitial lung disease patients: a pilot study. Ther Adv Chronic Dis 2024; 15:20406223241236257. [PMID: 38560720 PMCID: PMC10981850 DOI: 10.1177/20406223241236257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction The pathogenesis of post-COVID interstitial lung disease, marked by lung tissue scarring and functional decline, remains largely unknown. Objectives We aimed to elucidate the temporal cytokine/chemokine changes in bronchoalveolar lavage (BAL) from patients with post-COVID interstitial lung disease to uncover potential immune drivers of pulmonary complications. Design We evaluated 16 females diagnosed with post-COVID interstitial lung disease, originating from moderate to severe cases during the second epidemic wave in the Autumn of 2020, treated at the Pneumology Department of the Arad County Clinical Hospital, Romania. Their inflammatory response over time was compared to a control group. Methods A total of 48 BAL samples were collected over three intervals (1, 3, and 6 months) and underwent cytology, gene, and protein expression analyses for pro/anti-inflammatory lung cytokines and chemokines using reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Results One month after infection, there were significant increases in the levels of IL-6 and IL-8. These levels decreased gradually over the course of 6 months but were still higher than those seen in control. Interferon-gamma and tumor necrosis factor alpha exhibited similar patterns. Persistent elevations were found in IL-10, IL-13, and pro-fibrotic M2 macrophages' chemokines (CCL13 and CCL18) for 6 months. Furthermore, pronounced neutrophilia was observed at 1 month post-COVID, highlighting persistent inflammation and lung damage. Neutrophil efferocytosis, aiding inflammation resolution and tissue repair, was evident at the 1-month time interval. A notable time-dependent reduction in CD28 was also noticed. Conclusion Our research provides insight into the immunological processes that may lead to the fibrotic changes noted in the lungs following COVID-19.
Collapse
Affiliation(s)
- Daniela Oatis
- Department of Infectious Disease, Faculty of Medicine, “Vasile Goldis” Western University of Arad, Arad, Romania
- Multidisciplinary Doctoral School, “Vasile Goldis” Western University of Arad, Arad, Romania
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, Arad, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, Arad, Romania
| | - Erika Simon-Repolski
- Department of Pneumology, Faculty of Medicine, “Vasile Goldis” Western University of Arad, Arad, Romania
- Department of Pneumology, Arad Clinical Emergency Hospital, Arad, Romania
| | - Alin Gabriel Mihu
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, Arad, Romania
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marina Russo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine and Complex Operative Unit of Hepatogastroenterology and Digestive Endoscopy, University Hospital, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Anca Hermenean
- Department of Histology, Faculty of Medicine, “Vasile Goldis” Western University of Arad, 94-96 Revolutiei Av., Arad 310025, Romania
| |
Collapse
|
10
|
Kopczyńska J, Kowalczyk M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Front Immunol 2024; 15:1380476. [PMID: 38605957 PMCID: PMC11008232 DOI: 10.3389/fimmu.2024.1380476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.
Collapse
Affiliation(s)
- Julia Kopczyńska
- Laboratory of Lactic Acid Bacteria Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
11
|
Khandibharad S, Singh S. Single-cell ATAC sequencing identifies sleepy macrophages during reciprocity of cytokines in L. major infection. Microbiol Spectr 2024; 12:e0347823. [PMID: 38299832 PMCID: PMC10913457 DOI: 10.1128/spectrum.03478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
The hallmark characteristic of macrophages lies in their inherent plasticity, allowing them to adapt to dynamic microenvironments. Leishmania strategically modulates the phenotypic plasticity of macrophages, creating a favorable environment for intracellular survival and persistent infection through regulatory cytokine such as interleukin (IL)-10. Nevertheless, these effector cells can counteract infection by modulating crucial cytokines like IL-12 and key components involved in its production. Using sophisticated tool of single-cell assay for transposase accessible chromatin (ATAC) sequencing, we systematically examined the regulatory axis of IL-10 and IL-12 in a time-dependent manner during Leishmania major infection in macrophages Our analysis revealed the cellular heterogeneity post-infection with the regulators of IL-10 and IL-12, unveiling a reciprocal relationship between these cytokines. Notably, our significant findings highlighted the presence of sleepy macrophages and their pivotal role in mediating reciprocity between IL-10 and IL-12. To summarize, the roles of cytokine expression, transcription factors, cell cycle, and epigenetics of host cell machinery were vital in identification of sleepy macrophages, which is a transient state where transcription factors controlled the epigenetic remodeling and expression of genes involved in pro-inflammatory cytokine expression and recruitment of immune cells.IMPORTANCELeishmaniasis is an endemic affecting 99 countries and territories globally, as outlined in the 2022 World Health Organization report. The disease's severity is compounded by compromised host immune systems, emphasizing the pivotal role of the interplay between parasite and host immune factors in disease regulation. In instances of cutaneous leishmaniasis induced by L. major, macrophages function as sentinel cells. Our findings indicate that the plasticity and phenotype of macrophages can be modulated to express a cytokine profile involving IL-10 and IL-12, mediated by the regulation of transcription factors and their target genes post-L. major infection in macrophages. Employing sophisticated methodologies such as single-cell ATAC sequencing and computational genomics, we have identified a distinctive subset of macrophages termed "sleepy macrophages." These macrophages exhibit downregulated housekeeping genes while expressing a unique set of variable features. This data set constitutes a valuable resource for comprehending the intricate host-parasite interplay during L. major infection.
Collapse
Affiliation(s)
- Shweta Khandibharad
- Systems Medicine Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Shailza Singh
- Systems Medicine Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| |
Collapse
|
12
|
Colombo G, Pessolano E, Talmon M, Genazzani AA, Kunderfranco P. Getting everyone to agree on gene signatures for murine macrophage polarization in vitro. PLoS One 2024; 19:e0297872. [PMID: 38330065 PMCID: PMC10852255 DOI: 10.1371/journal.pone.0297872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Macrophages, key players in the innate immune system, showcase remarkable adaptability. Derived from monocytes, these phagocytic cells excel in engulfing and digesting pathogens and foreign substances as well as contributing to antigen presentation, initiating and regulating adaptive immunity. Macrophages are highly plastic, and the microenvironment can shaper their phenotype leading to numerous distinct polarized subsets, exemplified by the two ends of the spectrum: M1 (classical activation, inflammatory) and M2 (alternative activation, anti-inflammatory). RNA sequencing (RNA-Seq) has revolutionized molecular biology, offering a comprehensive view of transcriptomes. Unlike microarrays, RNA-Seq detects known and novel transcripts, alternative splicing, and rare transcripts, providing a deeper understanding of genome complexity. Despite the decreasing costs of RNA-Seq, data consolidation remains limited, hindering noise reduction and the identification of authentic signatures. Macrophages polarization is routinely ascertained by qPCR to evaluate those genes known to be characteristic of M1 or M2 skewing. Yet, the choice of these genes is literature- and experience-based, lacking therefore a systematic approach. This manuscript builds on the significant increase in deposited RNA-Seq datasets to determine an unbiased and robust murine M1 and M2 polarization profile. We now provide a consolidated list of global M1 differentially expressed genes (i.e. robustly modulated by IFN-γ, LPS, and LPS+ IFN-γ) as well as consolidated lists of genes modulated by each stimulus (IFN-γ, LPS, LPS+ IFN-γ, and IL-4).
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Emanuela Pessolano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Maria Talmon
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Paolo Kunderfranco
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
13
|
Kumar P, Laurence E, Crossman DK, Assimos DG, Murphy MP, Mitchell T. Oxalate disrupts monocyte and macrophage cellular function via Interleukin-10 and mitochondrial reactive oxygen species (ROS) signaling. Redox Biol 2023; 67:102919. [PMID: 37806112 PMCID: PMC10565874 DOI: 10.1016/j.redox.2023.102919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023] Open
Abstract
Oxalate is a small compound found in certain plant-derived foods and is a major component of calcium oxalate (CaOx) kidney stones. Individuals that consume oxalate enriched meals have an increased risk of forming urinary crystals, which are precursors to CaOx kidney stones. We previously reported that a single dietary oxalate load induces nanocrystalluria and reduces monocyte cellular bioenergetics in healthy adults. The purpose of this study was to extend these investigations to identify specific oxalate-mediated mechanisms in monocytes and macrophages. We performed RNA-Sequencing analysis on monocytes isolated from healthy subjects exposed to a high oxalate (8 mmol) dietary load. RNA-sequencing revealed 1,198 genes were altered and Ingenuity Pathway Analysis demonstrated modifications in several pathways including Interleukin-10 (IL-10) anti-inflammatory cytokine signaling, mitochondrial metabolism and function, oxalic acid downstream signaling, and autophagy. Based on these findings, we hypothesized that oxalate induces mitochondrial and lysosomal dysfunction in monocytes and macrophages via IL-10 and reactive oxygen species (ROS) signaling which can be reversed with exogenous IL-10 or Mitoquinone (MitoQ; a mitochondrial targeted antioxidant). We exposed monocytes and macrophages to oxalate in an in-vitro setting which caused oxidative stress, a decline in IL-10 cytokine levels, mitochondrial and lysosomal dysfunction, and impaired autophagy in both cell types. Administration of exogenous IL-10 and MitoQ attenuated these responses. These findings suggest that oxalate impairs metabolism and immune response via IL-10 signaling and mitochondrial ROS generation in both monocytes and macrophages which can be potentially limited or reversed. Future studies will examine the benefits of these therapies on CaOx crystal formation and growth in vivo.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emma Laurence
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dean G Assimos
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Wang L, Gu W, Zou B, Kalady M, Xin W, Zhou L. Loss of HES1 expression is associated with extracellular matrix remodeling and tumor immune suppression in KRAS mutant colon adenocarcinomas. Sci Rep 2023; 13:15999. [PMID: 37749297 PMCID: PMC10519992 DOI: 10.1038/s41598-023-42234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023] Open
Abstract
The loss of HES1, a canonical Notch signaling target, may cooperate with KRAS mutations to remodel the extracellular matrix and to suppress the anti-tumor immune response. While HES1 expression is normal in benign hyperplastic polyps and normal colon tissue, HES1 expression is often lost in sessile serrated adenomas/polyps (SSAs/SSPs) and colorectal cancers (CRCs) such as those right-sided CRCs that commonly harbor BRAF or KRAS mutations. To develop a deeper understanding of interaction between KRAS and HES1 in colorectal carcinogenesis, we selected microsatellite stable (MSS) and KRAS mutant or KRAS wild type CRCs that show aberrant expression of HES1 by immunohistochemistry. By comparing the transcriptional landscapes of microsatellite stable (MSS) CRCs with or without nuclear HES1 expression, we investigated differentially expressed genes and activated pathways. We identified pathways and markers in the extracellular matrix and immune microenvironment that are associated with mutations in KRAS. We found that loss of HES1 expression positively correlated with matrix remodeling and epithelial-mesenchymal transition but negatively correlated with tumor cell proliferation. Furthermore, loss of HES1 expression in KRAS mutant CRCs correlates with a higher M2 macrophage polarization and activation of IL6 and IL10 immunosuppressive signature. Identifying these HES1-related markers may be useful for prognosis stratification and developing treatment for KRAS-mutant CRCs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Bingqing Zou
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Matthew Kalady
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, USA
- Division of Colon and Rectal Surgery, Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Wei Xin
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, University of South Alabama Hospital, Mobile, AL, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
15
|
Khan MA, Lau CL, Krupnick AS. Monitoring regulatory T cells as a prognostic marker in lung transplantation. Front Immunol 2023; 14:1235889. [PMID: 37818354 PMCID: PMC10561299 DOI: 10.3389/fimmu.2023.1235889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Lung transplantation is the major surgical procedure, which restores normal lung functioning and provides years of life for patients suffering from major lung diseases. Lung transplant recipients are at high risk of primary graft dysfunction, and chronic lung allograft dysfunction (CLAD) in the form of bronchiolitis obliterative syndrome (BOS). Regulatory T cell (Treg) suppresses effector cells and clinical studies have demonstrated that Treg levels are altered in transplanted lung during BOS progression as compared to normal lung. Here, we discuss levels of Tregs/FOXP3 gene expression as a crucial prognostic biomarker of lung functions during CLAD progression in clinical lung transplant recipients. The review will also discuss Treg mediated immune tolerance, tissue repair, and therapeutic strategies for achieving in-vivo Treg expansion, which will be a potential therapeutic option to reduce inflammation-mediated graft injuries, taper the toxic side effects of ongoing immunosuppressants, and improve lung transplant survival rates.
Collapse
|
16
|
Awwad L, Shofti R, Haas T, Aronheim A. Tumor Growth Ameliorates Cardiac Dysfunction. Cells 2023; 12:1853. [PMID: 37508517 PMCID: PMC10378697 DOI: 10.3390/cells12141853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Heart failure and cancer are the deadliest diseases worldwide. Murine models for cardiac remodeling and heart failure demonstrate that cardiac dysfunction promotes cancer progression and metastasis spread. Yet, no information is available on whether and how tumor progression affects cardiac remodeling. Here, we examined cardiac remodeling following transverse aortic constriction (TAC) in the presence or absence of proliferating cancer cells. We show that tumor-bearing mice, of two different cancer cell lines, display reduced cardiac hypertrophy, lower fibrosis and improved cardiac contractile function following pressure overload induced by TAC surgery. Integrative analysis of qRT-PCR, flow cytometry and immunofluorescence identified tumor-dependent M1-to-M2 polarization in the cardiac macrophage population as a mediator of the beneficial tumor effect on the heart. Importantly, tumor-bearing mice lacking functional macrophages fail to improve cardiac function and display sustained fibrosis.
Collapse
Affiliation(s)
- Lama Awwad
- Department of Cell Biology and Cancer Science, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Rona Shofti
- Pre-Clinical Research Authority Unit, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tali Haas
- Pre-Clinical Research Authority Unit, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ami Aronheim
- Department of Cell Biology and Cancer Science, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| |
Collapse
|
17
|
Pan Y, Yang D, Zhou M, Liu Y, Pan J, Wu Y, Huang L, Li H. Advance in topical biomaterials and mechanisms for the intervention of pressure injury. iScience 2023; 26:106956. [PMID: 37378311 PMCID: PMC10291478 DOI: 10.1016/j.isci.2023.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Pressure injuries (PIs) are localized tissue damage resulting from prolonged compression or shear forces on the skin or underlying tissue, or both. Different stages of PIs share common features include intense oxidative stress, abnormal inflammatory response, cell death, and subdued tissue remodeling. Despite various clinical interventions, stage 1 or stage 2 PIs are hard to monitor for the changes of skin or identify from other disease, whereas stage 3 or stage 4 PIs are challenging to heal, painful, expensive to manage, and have a negative impact on quality of life. Here, we review the underlying pathogenesis and the current advances of biochemicals in PIs. We first discuss the crucial events involved in the pathogenesis of PIs and key biochemical pathways lead to wound delay. Then, we examine the recent progress of biomaterials-assisted wound prevention and healing and their prospects.
Collapse
Affiliation(s)
- Yingying Pan
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dejun Yang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Min Zhou
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yong Liu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Jiandan Pan
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunlong Wu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lijiang Huang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Huaqiong Li
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| |
Collapse
|
18
|
Barbosa-de-Oliveira MC, Oliveira-Melo P, Gonçalves da Silva MH, Santos da Silva F, Andrade Carvalho da Silva F, Silva de Araujo BV, Franco de Oliveira M, Tadeu Correia A, Miyoshi Sakamoto S, Valença SS, Lanzetti M, Schmidt M, Kennedy-Feitosa E. Modulation of Alveolar Macrophage Activity by Eugenol Attenuates Cigarette-Smoke-Induced Acute Lung Injury in Mice. Antioxidants (Basel) 2023; 12:1258. [PMID: 37371988 DOI: 10.3390/antiox12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigates the role of eugenol (EUG) on CS-induced acute lung injury (ALI) and how this compound is able to modulate macrophage activity. C57BL/6 mice were exposed to 12 cigarettes/day/5days and treated 15 min/day/5days with EUG. Rat alveolar macrophages (RAMs) were exposed to CSE (5%) and treated with EUG. In vivo, EUG reduced morphological changes inflammatory cells, oxidative stress markers, while, in vitro, it induced balance in the oxidative stress and reduced the pro-inflammatory cytokine release while increasing the anti-inflammatory one. These results suggest that eugenol reduced CS-induced ALI and acted as a modulator of macrophage activity.
Collapse
Affiliation(s)
- Maria Clara Barbosa-de-Oliveira
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | - Paolo Oliveira-Melo
- Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
| | | | - Flávio Santos da Silva
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | - Felipe Andrade Carvalho da Silva
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | - Bruno Vinicios Silva de Araujo
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | | | - Aristides Tadeu Correia
- Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
| | - Sidnei Miyoshi Sakamoto
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | - Samuel Santos Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil
| | - Manuella Lanzetti
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, Building 3211, Room 406, 9713 AV Groningen, The Netherlands
- Groningen Research Institute of Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Emanuel Kennedy-Feitosa
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| |
Collapse
|
19
|
Kuntzel T, Spenlé C, Pham-Van LD, Birmpili D, Riou A, Loeuillet A, Charmarke-Askar I, Bagnard D. Implication of the Transmembrane Domain in the Interleukin 10 Receptor Platform Oligomerisation. Cells 2023; 12:1361. [PMID: 37408195 DOI: 10.3390/cells12101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 07/07/2023] Open
Abstract
Interleukin 10 (IL-10) exerts anti-inflammatory and immune regulatory roles through its fixation to the IL-10 receptor (IL-10R). The two subunits (IL-10Rα and IL-10Rβ) organise themselves to form a hetero-tetramer to induce the activation of the transcription factor STAT3. We analysed the activation patterns of the IL-10R, especially the contribution of the transmembrane (TM) domain of the IL-10Rα and IL-10Rβ subunits, as evidence accumulates that this short domain has tremendous implications in receptor oligomerisation and activation. We also addressed whether targeting the TM domain of IL-10R with peptides mimicking the TM sequences of the subunits translates into biological consequences. The results illustrate the involvement of the TM domains from both subunits in receptor activation and feature a distinctive amino acid crucial for the interaction. The TM peptide targeting approach also appears to be suitable for modulating the activation of the receptor through its action on the dimerization capabilities of the TM domains and thereby constitutes a potential new strategy for the modulation of the inflammation in pathologic contexts.
Collapse
Affiliation(s)
- Thomas Kuntzel
- UMR7242 Biotechnology and Cell Signalling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Caroline Spenlé
- UMR7242 Biotechnology and Cell Signalling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Lucas D Pham-Van
- UMR7242 Biotechnology and Cell Signalling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Dafni Birmpili
- UMR7242 Biotechnology and Cell Signalling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Aurélien Riou
- UMR7242 Biotechnology and Cell Signalling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Aurore Loeuillet
- UMR7242 Biotechnology and Cell Signalling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Imane Charmarke-Askar
- UMR7242 Biotechnology and Cell Signalling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Dominique Bagnard
- UMR7242 Biotechnology and Cell Signalling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France
- Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
20
|
Bouzazi D, Mami W, Mosbah A, Marrakchi N, Ben Ahmed M, Messadi E. Natriuretic-like Peptide Lebetin 2 Mediates M2 Macrophage Polarization in LPS-Activated RAW264.7 Cells in an IL-10-Dependent Manner. Toxins (Basel) 2023; 15:toxins15040298. [PMID: 37104236 PMCID: PMC10142756 DOI: 10.3390/toxins15040298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Snake natriuretic peptide (NP) Lebetin 2 (L2) has been shown to improve cardiac function and reduce fibrosis as well as inflammation by promoting M2-type macrophages in a reperfused myocardial infarction (MI) model. However, the inflammatory mechanism of L2 remains unclear. Therefore, we investigated the effect of L2 on macrophage polarization in lipopolysaccharide (LPS)-activated RAW264.7 cells in vitro and explored the associated underlying mechanisms. TNF-α, IL-6 and IL-10 levels were assessed using an ELISA assay, and M2 macrophage polarization was determined by flow cytometry. L2 was used at non-cytotoxic concentrations determined by a preliminary MTT cell viability assay, and compared to B-type natriuretic peptide (BNP). In LPS-activated cells, both peptides reduced TNF-α and IL-6 release compared to controls. However, only L2 increased IL-10 release in a sustained manner and promoted downstream M2 macrophage polarization. Pretreatment of LPS-activated RAW264.7 cells with the selective NP receptor (NPR) antagonist isatin abolished both IL-10 and M2-like macrophage potentiation provided by L2. In addition, cell pretreatment with the IL-10 inhibitor suppressed L2-induced M2 macrophage polarization. We conclude that L2 exerts an anti-inflammatory response to LPS by regulating the release of inflammatory cytokines via stimulating of NP receptors and promoting M2 macrophage polarization through activation of IL-10 signaling.
Collapse
Affiliation(s)
- Dorsaf Bouzazi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Wael Mami
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Amor Mosbah
- Laboratory of Biotechnology and Bio-Geo Resources Valorization (LR11ES31), Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Tunis 2010, Tunisia
| | - Naziha Marrakchi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Melika Ben Ahmed
- Laboratoire de Transmission, Department of Clinical Immunology, Contrôle et Immunobiologie des Infections, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
21
|
Witt KD. Role of MHC class I pathways in Mycobacterium tuberculosis antigen presentation. Front Cell Infect Microbiol 2023; 13:1107884. [PMID: 37009503 PMCID: PMC10050577 DOI: 10.3389/fcimb.2023.1107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
MHC class I antigen processing is an underappreciated area of nonviral host–pathogen interactions, bridging both immunology and cell biology, where the pathogen’s natural life cycle involves little presence in the cytoplasm. The effective response to MHC-I foreign antigen presentation is not only cell death but also phenotypic changes in other cells and stimulation of the memory cells ready for the next antigen reoccurrence. This review looks at the MHC-I antigen processing pathway and potential alternative sources of the antigens, focusing on Mycobacterium tuberculosis (Mtb) as an intracellular pathogen that co-evolved with humans and developed an array of decoy strategies to survive in a hostile environment by manipulating host immunity to its own advantage. As that happens via the selective antigen presentation process, reinforcement of the effective antigen recognition on MHC-I molecules may stimulate subsets of effector cells that act earlier and more locally. Vaccines against tuberculosis (TB) could potentially eliminate this disease, yet their development has been slow, and success is limited in the context of this global disease’s spread. This review’s conclusions set out potential directions for MHC-I-focused approaches for the next generation of vaccines.
Collapse
Affiliation(s)
- Karolina D. Witt
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Karolina D. Witt,
| |
Collapse
|
22
|
Lee HY, Kim DS, Hwang GY, Lee JK, Lee HL, Jung JW, Hwang SY, Baek SW, Yoon SL, Ha Y, Kim KN, Han I, Han DK, Lee CK. Multi-modulation of immune-inflammatory response using bioactive molecule-integrated PLGA composite for spinal fusion. Mater Today Bio 2023; 19:100611. [PMID: 36969699 PMCID: PMC10034518 DOI: 10.1016/j.mtbio.2023.100611] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Despite current developments in bone substitute technology for spinal fusion, there is a lack of adequate materials for bone regeneration in clinical applications. Recombinant human bone morphogenetic protein-2 (rhBMP-2) is commercially available, but a severe inflammatory response is a known side effect. Bone graft substitutes that enhance osteogenesis without adverse effects are needed. We developed a bioactive molecule-laden PLGA composite with multi-modulation for bone fusion. This bioresorbable composite scaffold was considered for bone tissue engineering. Among the main components, magnesium hydroxide (MH) aids in reduction of acute inflammation affecting disruption of new bone formation. Decellularized bone extracellular matrix (bECM) and demineralized bone matrix (DBM) composites were used for osteoconductive and osteoinductive activities. A bioactive molecule, polydeoxyribonucleotide (PDRN, PN), derived from trout was used for angiogenesis during bone regeneration. A nano-emulsion method that included Span 80 was used to fabricate bioactive PLGA-MH-bECM/DBM-PDRN (PME2/PN) composite to obtain a highly effective and safe scaffold. The synergistic effect provided by PME2/PN improved not only osteogenic and angiogenic gene expression for bone fusion but also improved immunosuppression and polarization of macrophages that were important for bone tissue repair, using a rat model of posterolateral spinal fusion (PLF). It thus had sufficient biocompatibility and bioactivity for spinal fusion.
Collapse
Affiliation(s)
- Hye Yeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Gwang Yong Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ji-Won Jung
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Sae Yeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Sol lip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoon Ha
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Keung Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bungdang Medical Center, Gyeonggi-do, 13496, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
- Corresponding author.
| | - Chang Kyu Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Corresponding author.
| |
Collapse
|
23
|
Xu S, Xiong Y, Fu B, Guo D, Sha Z, Lin X, Wu H. Bacteria and macrophages in the tumor microenvironment. Front Microbiol 2023; 14:1115556. [PMID: 36825088 PMCID: PMC9941202 DOI: 10.3389/fmicb.2023.1115556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer and microbial infections are significant worldwide health challenges. Numerous studies have demonstrated that bacteria may contribute to the emergence of cancer. In this review, we assemble bacterial species discovered in various cancers to describe their variety and specificity. The relationship between bacteria and macrophages in cancer is also highlighted, and we look for ample proof to establish a biological basis for bacterial-induced macrophage polarization. Finally, we quickly go over the potential roles of metabolites, cytokines, and microRNAs in the regulation of the tumor microenvironment by bacterially activated macrophages. The complexity of bacteria and macrophages in cancer will be revealed as we gain a better understanding of their pathogenic mechanisms, which will lead to new therapeutic approaches for both inflammatory illnesses and cancer.
Collapse
Affiliation(s)
| | | | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing, China
| | | | | |
Collapse
|
24
|
Ye C, Guo X, Wu J, Wang M, Ding H, Ren X. CCL20/CCR6 Mediated Macrophage Activation and Polarization Can Promote Adenoid Epithelial Inflammation in Adenoid Hypertrophy. J Inflamm Res 2022; 15:6843-6855. [PMID: 36583131 PMCID: PMC9793726 DOI: 10.2147/jir.s390210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Adenoid hypertrophy (AH) is a chronic or acute obstruction-related ailment of the upper respiratory tract that arises as an inflammatory response to exposure of bacteria, viruses or allergies. Activation and polarization of macrophages are key processes in inflammation-related disorders like AH and CCL20/CCR6 axis is a critical therapeutic target. Purpose To determine that CCL20/CCR6 mediated macrophage activation and polarization can promote adenoid epithelial inflammation in AH. Methods To support this claim, CCL20 and CCR6 expressions were studied in clinical AH samples. In addition, the expressions of cytokines such as TNF-α, IL-1β, IL-6, IL-17, IL-10 and TGF-β were analysed. In vitro, human adenoid epithelial cells were co-cultured with polarized THP-1 and T lymphocyte H9 cells to study the expressions of several inflammatory markers. Results The expressions of M1 macrophage markers CD86 and IL-17 were significantly increased, whereas the expressions of M2 macrophage markers CD206 and FOXP3 were significantly decreased. The THP-1 cells were successfully polarized to M0, M1 and M2 macrophages. The survival of macrophages improved after 24 hr of induction and enhanced TGF-β expression was observed. The expressions of the inflammatory cytokines IL-6, TNF-α, IL-1β and CCL20 increased significantly. Conclusion Collectively, these results suggest that the CCL20/CCR6 mediated macrophage activation and polarization into M1-type macrophages can promote adenoid epithelial inflammation in AH. Further studies are warranted to determine the roles of inflammatory markers in the pathophysiology of AH and identifying potential targets.
Collapse
Affiliation(s)
- Chenchen Ye
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, People’s Republic of China,Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Xinxue Guo
- Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Jiani Wu
- Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Minhua Wang
- Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Haiyan Ding
- Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Xianzhi Ren
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, People’s Republic of China,Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, People’s Republic of China,Department of Pediatrics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210046, People’s Republic of China,Correspondence: Xianzhi Ren, Department of Pediatrics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210046, People’s Republic of China, Email
| |
Collapse
|
25
|
Pan PK, Wu TM, Tsai HY, Cho IC, Tseng HW, Lin TD, Nan FH, Wu YS. Acid external and internal environment exchange the Oreochromis niloticus tissue immune gene expression compared to the mouse macrophage polarization model. Front Immunol 2022; 13:1012078. [PMID: 36225935 PMCID: PMC9549756 DOI: 10.3389/fimmu.2022.1012078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The water environment plays an important role in animal physiology. In this study, we sought to evaluate the effect of the acid environment on the Oreochromis niloticus (Nile tilapia) internal microenvironment immune response compare to the mouse macrophage model (J77A.1). The acid environment treated mouse macrophage J774A.1 model have shown that acidic treatment is able to polarize macrophages into M2-like macrophages via an increase in Ym1, Tgm2, Arg1, Fizz1, and IL-10 expression. Metabolic analysis of mouse macrophages (J774A.1) at pH 2 vs. pH 7 and pH 4 vs. pH 7 have been shown to promote the expression of intracellular acetylcholine, choline, prochlorperazine, L-leucine, and bisphenol A,2-amino-3-methylimidazo[4,5-f] quinolone metabolites in the M2-like macrophage. Immune gene expression of the O. niloticus spleen and liver treated at pH 2, 4, and 7 was shown to reduce TNF-α, IL-1 β, IL-8, and IL-12 expression compared to pH 7 treatment. Immune gene was induced in O. niloticus following culture at pH 5, 6, and 7 fresh water environment. Taken together, we found that the acid internal environment polarizes tissues into an M2 macrophage developmental microenvironment. However, if the external environment is acid, tissues are exposed to an M1 macrophage developmental microenvironment.
Collapse
Affiliation(s)
- Po-Kai Pan
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hsin-Yuan Tsai
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - I-Cheng Cho
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hsin-Wei Tseng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Tai-Du Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
- *Correspondence: Yu-Sheng Wu,
| |
Collapse
|
26
|
Actor JK, Nguyen TKT, Wasik-Smietana A, Kruzel ML. Modulation of TDM-induced granuloma pathology by human lactoferrin: a persistent effect in mice. Biometals 2022; 36:603-615. [PMID: 35976499 DOI: 10.1007/s10534-022-00434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022]
Abstract
Lactoferrin (LTF), an iron binding protein, is known to exhibit immune modulatory effects on pulmonary pathology during insult-induced models of primary Mycobacterium tuberculosis (Mtb) infection. The effects of LTF correlate with modulation of the immune related development of the pathology, and altering of the histological nature of the physically compact and dense lung granuloma in mice. Specifically, a recombinant human version of LTF limits immediate progression of granulomatous severity following administration of the Mtb cell wall mycolic acid, trehalose 6,6'-dimycolate (TDM), in part through reduced pro-inflammatory responses known to control these events. This current study investigates a limited course of LTF to modulate not only initiation, but also maintenance and resolution of pathology post development of the granulomatous response in mice. Comparison is made to a fusion of LTF with the Fc domain of IgG2 (FcLTF), which is known to extend LTF half-life in circulation. TDM induced granulomas were examined at extended times post insult (day 7 and 14). Both LTF and the novel FcLTF exerted sustained effects on lung granuloma pathology. Reduction of pulmonary pro-inflammatory cytokines TNF-α and IL-1β occurred, correlating with reduced pathology. Increase in IL-6, known to regulate granuloma maintenance, was also seen with the LTFs. The FcLTF demonstrated greater impact than the recombinant LTF, and was superior in limiting damage to pulmonary tissues while limiting residual inflammatory cytokine production.
Collapse
Affiliation(s)
- Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, MSB 2.214, 6431 Fannin, Houston, TX, 77030, USA.
| | - Thao K T Nguyen
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | | | | |
Collapse
|
27
|
Mir MA, Mir B, Kumawat M, Alkhanani M, Jan U. Manipulation and exploitation of host immune system by pathogenic Mycobacterium tuberculosis for its advantage. Future Microbiol 2022; 17:1171-1198. [PMID: 35924958 DOI: 10.2217/fmb-2022-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can become a long-term infection by evading the host immune response. Coevolution of Mtb with humans has resulted in its ability to hijack the host's immune systems in a variety of ways. So far, every Mtb defense strategy is essentially dependent on a subtle balance that, if shifted, can promote Mtb proliferation in the host, resulting in disease progression. In this review, the authors summarize many important and previously unknown mechanisms by which Mtb evades the host immune response. Besides recently found strategies by which Mtb manipulates the host molecular regulatory machinery of innate and adaptive immunity, including the intranuclear regulatory machinery, costimulatory molecules, the ubiquitin system and cellular intrinsic immune components will be discussed. A holistic understanding of these immune-evasion mechanisms is of foremost importance for the prevention, diagnosis and treatment of tuberculosis and will lead to new insights into tuberculosis pathogenesis and the development of more effective vaccines and treatment regimens.
Collapse
Affiliation(s)
- Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bilkees Mir
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, UP, India
| | - Manoj Kumawat
- Department of Microbiology, Indian Council of Medical Research (ICMR)-NIREH, Bhopal, MP, India
| | - Mustfa Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafar Al Batin, Saudi Arabia
| | - Ulfat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
28
|
Liu X, Ren X, Zhou L, Liu K, Deng L, Qing Q, Li J, Zhi F, Li M. Tollip Orchestrates Macrophage Polarization to Alleviate Intestinal Mucosal Inflammation. J Crohns Colitis 2022; 16:1151-1167. [PMID: 35134154 DOI: 10.1093/ecco-jcc/jjac019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/13/2021] [Accepted: 01/29/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Regulation of macrophage polarization is a promising strategy for treating inflammatory bowel disease [IBD]. Tollip is an important negative regulator of Toll-like receptor [TLR]-mediated innate immunity with downregulated expression in the colon tissues of patients with IBD. This study aimed to regulate the expression of Tollip to affect macrophage polarization. METHODS A molecular, targeted immunotherapy method was developed by linking mannose-modified trimethyl chitosan [MTC] with Tollip-expressing plasmids via ionic cross-linking, forming MTC-Tollip nanoparticles with a targeting function. MTC-Tollip selectively targeted mouse intestinal macrophages to regulate the polarization of macrophages for mucosal repair. RESULTS Orally administered MTC-Tollip significantly elevated Tollip expression in intestinal tissue. Compared with MTC-negative control [NC]-treated mice in which colitis was induced with dextran sodium sulphate [DSS], the MTC-Tollip nanoparticle-treated mice exhibited decreased body weight loss and colon shortening, lower proinflammatory cytokine expression in colon tissues, and greater mucosal barrier integrity. MTC-Tollip treatment decreased TNF-α and iNOS expression but increased CD206 and Arg-1 expression in colon tissue. Tollip overexpression in mouse peritoneal macrophages inhibited lipopolysaccharide [LPS]-induced proinflammatory cytokine production and promoted IL-4-induced M2 expression. The progression of peritoneal macrophages extracted from Tollip-/- mice confirmed the effect of Tollip on macrophage polarization. Western blots showed that Tollip overexpression attenuated the upregulation of TLR pathway-associated targets in M1 macrophages. CONCLUSIONS MTC nanoparticles can be 'intelligent' carriers in immunotherapy. The modulation of Tollip expression in macrophages may be a novel treatment approach for IBD.
Collapse
Affiliation(s)
- Xiaoming Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingxing Ren
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lifeng Zhou
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Gastroenterology, Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ke Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liangjun Deng
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Qing Qing
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
29
|
Ertveldt T, De Beck L, De Ridder K, Locy H, de Mey W, Goyvaerts C, Lecocq Q, Ceuppens H, De Vlaeminck Y, Awad RM, Keyaerts M, Devoogdt N, D'Huyvetter M, Breckpot K, Krasniqi A. Targeted Radionuclide Therapy with Low and High-Dose Lutetium-177-Labeled Single Domain Antibodies Induces Distinct Immune Signatures in a Mouse Melanoma Model. Mol Cancer Ther 2022; 21:1136-1148. [PMID: 35499391 PMCID: PMC9377759 DOI: 10.1158/1535-7163.mct-21-0791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 01/07/2023]
Abstract
Targeted radionuclide therapy (TRT) using probes labeled with Lutetium-177 (177Lu) represents a new and growing type of cancer therapy. We studied immunologic changes in response to TRT with 177Lu labeled anti-human CD20 camelid single domain antibodies (sdAb) in a B16-melanoma model transfected to express human CD20, the target antigen, and ovalbumin, a surrogate tumor antigen. High-dose TRT induced melanoma cell death, calreticulin exposure, and ATP-release in vitro. Melanoma-bearing mice received fractionated low and high-dose TRT via tumor targeting anti-human CD20 sdAbs, as opposed to control sdAbs. Tumor growth was delayed with both doses. Low- and high-dose TRT increased IL10 serum levels. Low-dose TRT also decreased CCL5 serum levels. At the tumor, high-dose TRT induced a type I IFN gene signature, while low-dose TRT induced a proinflammatory gene signature. Low- and high-dose TRT increased the percentage of PD-L1pos and PD-L2pos myeloid cells in tumors with a marked increase in alternatively activated macrophages after high-dose TRT. The percentage of tumor-infiltrating T cells was not changed, yet a modest increase in ovalbumin-specific CD8pos T-cells was observed after low-dose TRT. Contradictory, low and high-dose TRT decreased CD4pos Th1 cells in addition to double negative T cells. In conclusion, these data suggest that low and high-dose TRT induce distinct immunologic changes, which might serve as an anchoring point for combination therapy.
Collapse
Affiliation(s)
- Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Corresponding Authors: Karine Breckpot, Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium. Phone: 322-477-4566; Fax: 322-477-4506; E-mail: ; and Thomas Ertveldt, E-mail:
| | - Lien De Beck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hanne Locy
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wout de Mey
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marleen Keyaerts
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Nuclear Medicine, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Corresponding Authors: Karine Breckpot, Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium. Phone: 322-477-4566; Fax: 322-477-4506; E-mail: ; and Thomas Ertveldt, E-mail:
| | - Ahmet Krasniqi
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
30
|
Ye H, Pan J, Cai X, Yin Z, Li L, Gong E, Xu C, Zheng H, Cao Z, Chen E, Qian J. IL‑10/IL‑10 receptor 1 pathway promotes the viability and collagen synthesis of pulmonary fibroblasts originated from interstitial pneumonia tissues. Exp Ther Med 2022; 24:518. [PMID: 35837039 PMCID: PMC9257754 DOI: 10.3892/etm.2022.11445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/04/2021] [Indexed: 11/07/2022] Open
Abstract
Interstitial pneumonia is a pulmonary interstitial inflammatory and fibrosis disease with a variety of causes that causes respiratory disorders and threatens the lives of patients. The present study aimed to investigate the expression of interleukin (IL)-10 in peripheral blood of patients with interstitial pneumonia and its biological functions in pulmonary fibroblasts. A total of 42 patients with idiopathic pulmonary fibrosis (IPF) and 20 healthy subjects were included. ELISA was used to determine IL-10 concentration in serum from the patients and healthy subjects. Primary fibroblasts were isolated from lung tissue successfully and determined by morphology. The CCK-8 assay was performed to determine the effect of IL-10 expression on cell viability. Western blotting was used to determine COL1a1, COL1a2 and IL-10R1 protein expression. Flow cytometry was used for cell cycle analysis and to determine the number of IL-10+ cells. Expression of IL-10 in serum from IPF patients was higher compared to that from healthy subjects. IL-10 promoted the viability and collagen synthesis and secretion of MRC-5 cells and primary pulmonary fibroblasts. IL-10 and IL-10 receptor (R) 1 served regulatory roles in the viability and collagen synthesis of MRC-5 cells. The ratio of peripheral mononuclear lymphocytes with positive expression of IL-10 was elevated in peripheral blood from patients with IPF. The present study demonstrated that IL-10 expression in peripheral blood of patients with IPF is increased significantly compared with healthy subjects. Activation of the IL-10/IL-10R1 signaling pathway promoted the viability and collagen synthesis and secretion of pulmonary fibroblasts, leading to pulmonary fibrosis. The present study provided experimental basis for further understanding the development mechanism of pulmonary fibrosis.
Collapse
Affiliation(s)
- Hong Ye
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Jiongwei Pan
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Xiaoping Cai
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Zhangyong Yin
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Lu Li
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Enhui Gong
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Cunlai Xu
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Hao Zheng
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Zhuo Cao
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Enguo Chen
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Affiliated to Zhejiang University School of Medicine, Hangzhou, Zheijang 310016, P.R. China
| | - Junfeng Qian
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| |
Collapse
|
31
|
Li W, Wang C, Wang Z, Gou L, Zhou Y, Peng G, Zhu M, Zhang J, Li R, Ni H, Wu L, Zhang W, Liu J, Tian Y, Chen Z, Han YP, Tong N, Fu X, Zheng X, Berggren PO. Physically Cross-Linked DNA Hydrogel-Based Sustained Cytokine Delivery for In Situ Diabetic Alveolar Bone Rebuilding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25173-25182. [PMID: 35638566 DOI: 10.1021/acsami.2c04769] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of a biodegradable and shape-adaptable bioscaffold that can enhance local cytokine retention and bioactivity is essential for the application of immunotherapy in periodontal diseases. Here, we report a biodegradable, anti-inflammatory, and osteogenic ILGel that uses a physically cross-linked DNA hydrogel as a soft bioscaffold for the long-term sustained release of cytokine interleukin-10 (IL-10) to accelerate diabetic alveolar bone rebuilding. Porous microstructures of ILGel favored the encapsulation of IL-10 and maintained IL-10 bioactivity for at least 7 days. ILGel can be gradually degraded or hydrolyzed under physiological conditions, avoiding the potential undesired side effects on dental tissues. Long-term sustained release of bioactive IL-10 from ILGel not only promoted M2 macrophage polarization and attenuated periodontal inflammation but also triggered osteogenesis of mesenchymal stem cells (MSCs), leading to accelerated alveolar bone formation and healing of alveolar bone defects under diabetic conditions in vivo. ILGel treatment significantly accelerated the defect healing rate of diabetic alveolar injury up to 93.42 ± 4.6% on day 21 post treatment compared to that of free IL-10 treatment (63.30 ± 7.39%), with improved trabecular architectures. Our findings imply the potential application of the DNA hydrogel as the bioscaffold for cytokine-based immunotherapy in diabetic alveolar bone injury and other periodontal diseases.
Collapse
Affiliation(s)
- Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China.,The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayi Zhang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruoqing Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Hengfan Ni
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanli Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaye Liu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yali Tian
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhong Chen
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Per-Olof Berggren
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China.,The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| |
Collapse
|
32
|
Zhou Y, Takano T, Li X, Wang Y, Wang R, Zhu Z, Tanokura M, Miyakawa T, Hachimura S. β-elemene regulates M1-M2 macrophage balance through the ERK/JNK/P38 MAPK signaling pathway. Commun Biol 2022; 5:519. [PMID: 35641589 PMCID: PMC9156783 DOI: 10.1038/s42003-022-03369-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Macrophages are classified into classically activated M1 macrophages and alternatively activated M2 macrophages, and the two phenotypes of macrophages are present during the development of various chronic diseases, including obesity-induced inflammation. In the present study, β-elemene, which is contained in various plant substances, is predicted to treat high-fat diet (HFD)-induced macrophage dysfunction based on the Gene Expression Omnibus (GEO) database and experimental validation. β-elemene impacts the imbalance of M1-M2 macrophages by regulating pro-inflammatory cytokines in mouse white adipose tissue both in vitro and in vivo. In addition, the RAW 264 cell line, which are macrophages from mouse ascites, is used to identify the effects of β-elemene on inhibiting bacterial endotoxin lipopolysaccharide (LPS)-induced phosphorylation of mitogen-activated protein kinase (MAPK) pathways. These pathways both induce and are activated by pro-inflammatory cytokines, and they also participate in the process of obesity-induced inflammation. The results highlight that β-elemene may represent a possible macrophage-mediated therapeutic medicine.
Collapse
Affiliation(s)
- Yingyu Zhou
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomohiro Takano
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Xuyang Li
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yimei Wang
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Rong Wang
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Zhangliang Zhu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, P. R. China
| | - Masaru Tanokura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
33
|
Wang H, Xia Y, Li B, Li Y, Fu C. Reverse Adverse Immune Microenvironments by Biomaterials Enhance the Repair of Spinal Cord Injury. Front Bioeng Biotechnol 2022; 10:812340. [PMID: 35646849 PMCID: PMC9136098 DOI: 10.3389/fbioe.2022.812340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/29/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a severe and traumatic disorder that ultimately results in the loss of motor, sensory, and autonomic nervous function. After SCI, local immune inflammatory response persists and does not weaken or disappear. The interference of local adverse immune factors after SCI brings great challenges to the repair of SCI. Among them, microglia, macrophages, neutrophils, lymphocytes, astrocytes, and the release of various cytokines, as well as the destruction of the extracellular matrix are mainly involved in the imbalance of the immune microenvironment. Studies have shown that immune remodeling after SCI significantly affects the survival and differentiation of stem cells after transplantation and the prognosis of SCI. Recently, immunological reconstruction strategies based on biomaterials have been widely explored and achieved good results. In this review, we discuss the important factors leading to immune dysfunction after SCI, such as immune cells, cytokines, and the destruction of the extracellular matrix. Additionally, the immunomodulatory strategies based on biomaterials are summarized, and the clinical application prospects of these immune reconstructs are evaluated.
Collapse
|
34
|
Chang SJ, Chao CT, Kwan AL, Chai CY. The Diagnostic Significance of CXCL13 in M2 Tumor Immune Microenvironment of Human Astrocytoma. Pathol Oncol Res 2022; 28:1610230. [PMID: 35570844 PMCID: PMC9095826 DOI: 10.3389/pore.2022.1610230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022]
Abstract
Background: CXCL13 may act as a mediator of tumor-associated macrophage immunity during malignant progression. Objective: The present study clarifies the clinicopathological significances of CXCL13 and its corresponding trend with M2 macrophage in human astrocytoma. Methods: The predictive potential of CXCL13 was performed using 695 glioma samples derived from TCGA lower-grade glioma and glioblastoma (GBMLGG) dataset. CXCL13 and M2 biomarker CD163 were observed by immunohistochemistry in 112 astrocytoma tissues. Results: An in-depth analysis showed that CXCL13 expression was related to the poor prognosis of glioma patients (p = 0.0002) derive from TCGA analysis. High level of CXCL13 was detected in 43 (38.39%) astrocytoma and CXCL13/CD163 coexpression was expressed in 33 (29.46%) cases. The immunoreactivities of CXCL13 and CXCL13/CD163 were found in the malignant lesions, which were both significantly associated with grade, patient survival, and IDH1 mutation. Single CXCL13 and CXCL13/CD163 coexpression predicted poor overall survival in astrocytoma (p = 0.0039 and p = 0.0002, respectively). Multivariate Cox regression analyses manifested CXCL13/CD163 phenotype was a significant independent prognostic indicator of patient outcome in astrocytoma (CXCL13, p = 0.0642; CXCL13/CD163, p = 0.0368). Conclusion: CXCL13 overexpression is strongly linked to CD163+ M2 infiltration in malignant astrocytoma. CXCL13/CD163 coexpression would imply M2c-related aggressive characteristics existing in astrocytoma progression could also provide predictive trends of patient outcomes.
Collapse
Affiliation(s)
- Shu-Jyuan Chang
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Te Chao
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
35
|
Tsai H, Wang Y, Liao C, Su C, Huang C, Chiu M, Yeh Y. Safety and the probiotic potential of
Bifidobacterium animalis
CP‐9. J Food Sci 2022; 87:2211-2228. [DOI: 10.1111/1750-3841.16129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Hui‐Yun Tsai
- Department of Nutrition and Health Science Fooyin University Kaohsiung Taiwan
- Aging and Disease Prevention Research Center Fooyin University Kaohsiung Taiwan
| | - Ya‐Chin Wang
- Department of Medical Laboratory Sciences and Biotechnology Fooyin University Kaohsiung Taiwan
| | - Chorng‐An Liao
- Aging and Disease Prevention Research Center Fooyin University Kaohsiung Taiwan
- Biomed Analysis Center Fooyin University Hospital Pingtung Taiwan
| | - Chia‐Yan Su
- Aging and Disease Prevention Research Center Fooyin University Kaohsiung Taiwan
- School of Pharmacy Kaohsiung Medical University Kaohsiung Taiwan
| | - Cheng‐Hsieh Huang
- Aging and Disease Prevention Research Center Fooyin University Kaohsiung Taiwan
- Ph. D. Program in Environmental and Occupational Medicine College of Medicine, Kaohsiung Medical University and National Health Research Institutes Kaohsiung Taiwan
| | - Min‐Hsi Chiu
- Aging and Disease Prevention Research Center Fooyin University Kaohsiung Taiwan
- Department of Medical Laboratory Sciences and Biotechnology Fooyin University Kaohsiung Taiwan
- Biomed Analysis Center Fooyin University Hospital Pingtung Taiwan
| | - Yao‐Tsung Yeh
- Aging and Disease Prevention Research Center Fooyin University Kaohsiung Taiwan
- Department of Medical Laboratory Sciences and Biotechnology Fooyin University Kaohsiung Taiwan
- Biomed Analysis Center Fooyin University Hospital Pingtung Taiwan
| |
Collapse
|
36
|
Hong JY, Kim SH, Seo Y, Jeon J, Davaa G, Hyun JK, Kim SH. Self-assembling peptide gels promote angiogenesis and functional recovery after spinal cord injury in rats. J Tissue Eng 2022; 13:20417314221086491. [PMID: 35340425 PMCID: PMC8943448 DOI: 10.1177/20417314221086491] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) leads to disruption of the blood–spinal cord barrier,
hemorrhage, and tissue edema, which impair blood circulation and induce
ischemia. Angiogenesis after SCI is an important step in the repair of damaged
tissues, and the extent of angiogenesis strongly correlates with the neural
regeneration. Various biomaterials have been developed to promote angiogenesis
signaling pathways, and angiogenic self-assembling peptides are useful for
producing diverse supramolecular structures with tunable functionality. RADA16
(Ac-RARADADARARADADA-NH2), which forms nanofiber networks under physiological
conditions, is a self-assembling peptide that can provide mechanical support for
tissue regeneration and reportedly has diverse roles in wound healing. In this
study, we applied an injectable form of RADA16 with or without the neuropeptide
substance P to the contused spinal cords of rats and examined angiogenesis
within the damaged spinal cord and subsequent functional improvement.
Histological and immunohistochemical analyses revealed that the inflammatory
cell population in the lesion cavity was decreased, the vessel number and
density around the damaged spinal cord were increased, and the levels of
neurofilaments within the lesion cavity were increased in SCI rats that received
RADA16 and RADA16 with substance P (rats in the RADA16/SP group). Moreover,
real-time PCR analysis of damaged spinal cord tissues showed that IL-10
expression was increased and that locomotor function (as assessed by the Basso,
Beattie, and Bresnahan (BBB) scale and the horizontal ladder test) was
significantly improved in the RADA16/SP group compared to the control group. Our
findings indicate that RADA16 modified with substance P effectively stimulates
angiogenesis within the damaged spinal cord and is a candidate agent for
promoting functional recovery post-SCI.
Collapse
Affiliation(s)
- Jin Young Hong
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Su Hee Kim
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
- Medifab Ltd., Seoul, Republic of
Korea
| | - Yoojin Seo
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
| | - Jooik Jeon
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Ganchimeg Davaa
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Jung Keun Hyun
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Rehabilitation Medicine,
College of Medicine, Dankook University, Cheonan, Republic of Korea
- Jung Keun Hyun, Department of
Rehabilitation Medicine, College of Medicine, Dankook University, 119 Dandae-ro,
Anseo-dong, Dongnam-gu, Cheonan 31116, Republic of Korea.
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
- Korea Institute of Science and
Technology Europe, Saarbrücken, Germany
- NBIT, KU-KIST Graduate School of
Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Gu Y, Forget A, Shastri VP. Biobridge: An Outlook on Translational Bioinks for 3D Bioprinting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103469. [PMID: 34862764 PMCID: PMC8787414 DOI: 10.1002/advs.202103469] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/20/2021] [Indexed: 05/30/2023]
Abstract
3D-bioprinting (3DBP) possesses several elements necessary to overcome the deficiencies of conventional tissue engineering, such as defining tissue shape a priori, and serves as a bridge to clinical translation. This transformative potential of 3DBP hinges on the development of the next generation of bioinks that possess attributes for clinical use. Toward this end, in addition to physicochemical characteristics essential for printing, bioinks need to possess proregenerative attributes, while enabling printing of stable structures with a defined biological function that survives implantation and evolves in vivo into functional tissue. With a focus on bioinks for extrusion-based bioprinting, this perspective review advocates a rigorous biology-based approach to engineering bioinks, emphasizing efficiency, reproducibility, and a streamlined translation process that places the clinical endpoint front and center. A blueprint for engineering the next generation of bioinks that satisfy the aforementioned performance criteria for various translational levels (TRL1-5) and a characterization tool kit is presented.
Collapse
Affiliation(s)
- Yawei Gu
- Institute for Macromolecular ChemistryUniversity of FreiburgFreiburg79104Germany
| | - Aurelien Forget
- Institute for Macromolecular ChemistryUniversity of FreiburgFreiburg79104Germany
| | - V. Prasad Shastri
- Institute for Macromolecular ChemistryUniversity of FreiburgFreiburg79104Germany
- Bioss‐Centre for Biological Signalling StudiesUniversity of FreiburgBreisgau79104Germany
| |
Collapse
|
38
|
Liu CW, Su BC, Chen JY. Tilapia Piscidin 4 (TP4) Reprograms M1 Macrophages to M2 Phenotypes in Cell Models of Gardnerella vaginalis-Induced Vaginosis. Front Immunol 2021; 12:773013. [PMID: 34925343 PMCID: PMC8674419 DOI: 10.3389/fimmu.2021.773013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 01/24/2023] Open
Abstract
Gardnerella vaginalis is associated with bacterial vaginosis (BV). The virulence factors produced by G. vaginalis are known to stimulate vaginal mucosal immune response, which is largely driven by activated macrophages. While Tilapia piscidin 4 (TP4), an antimicrobial peptide isolated from Nile tilapia, is known to display a broad range of antibacterial functions, it is unclear whether TP4 can affect macrophage polarization in the context of BV. In this study, we used the culture supernatants from G. vaginalis to stimulate differentiation of THP-1 and RAW264.7 cells to an M1 phenotype. The treatment activated the NF-κB/STAT1 signaling pathway, induced reactive nitrogen and oxygen species, and upregulated inflammatory mediators. We then treated the induced M1 macrophages directly with a non-toxic dose of TP4 or co-cultured the M1 macrophages with TP4-treated vaginal epithelial VK2 cells. The results showed that TP4 could not only decrease pro-inflammatory mediators in the M1 macrophages, but it also enriched markers of M2 macrophages. Further, we found that direct treatment with TP4 switched M1 macrophages toward a resolving M2c phenotype via the MAPK/ERK pathway and IL-10-STAT3 signaling. Conversely, tissue repair M2a macrophages were induced by TP4-treated VK2 cells; TP4 upregulated TSG-6 in VK2 cells, which subsequently activated STAT6 and M2a-related gene expression in the macrophages. In conclusion, our results imply that TP4 may be able to attenuate the virulence of G. vaginalis by inducing resolving M2c and tissue repair M2a macrophage polarizations, suggesting a novel strategy for BV therapy.
Collapse
Affiliation(s)
- Chia-Wen Liu
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Taiwan
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Taiwan.,The iEGG and Animal Biotechnology Center, The Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
39
|
Jang HW, An JH, Kim KB, Lee JH, Oh YI, Park SM, Chae HK, Youn HY. Canine peripheral blood mononuclear cell-derived B lymphocytes pretreated with lipopolysaccharide enhance the immunomodulatory effect through macrophage polarization. PLoS One 2021; 16:e0256651. [PMID: 34807933 PMCID: PMC8608335 DOI: 10.1371/journal.pone.0256651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Preconditioning with lipopolysaccharide (LPS) is used to improve the secretion of anti-inflammatory agents in B cells. However, there are only a few studies on canine B cells. OBJECTIVE This study aimed to evaluate the immune regulatory capacity of canine peripheral blood mononuclear cell-derived B cells pretreated with LPS. METHODS Canine B cells were isolated from canine peripheral blood mononuclear cells, which were obtained from three healthy canine donors. The B cells were preconditioned with LPS, and then cell viability and the expression of the regulatory B cell marker were assessed. Finally, RNA extraction and immunofluorescence analysis were performed. RESULTS LPS primed B cells expressed the interleukin (IL)-10 surface marker and immunoregulatory gene expression, such as IL-10, programmed death-ligand 1, and transforming growth factor beta. Macrophages in the inflammatory condition cocultured with primed B cells were found to have significantly down-regulated pro-inflammatory cytokine, such as tumor necrosis factor-α, and up-regulated anti-inflammatory cytokines such as IL-10. Additionally, it was revealed that co-culture with primed B cells re-polarized M1 macrophages to M2 macrophages. CONCLUSIONS This study revealed that LPS-primed B cells have an anti-inflammatory effect and can re-polarize macrophages, suggesting the possibility of using LPS-primed B cells as a therapeutic agent for its anti-inflammatory effects and immune modulation.
Collapse
Affiliation(s)
- Hee-Won Jang
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyeong Bo Kim
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Lee
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ye-In Oh
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Kyu Chae
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Chang Z, Wang Y, Liu C, Smith W, Kong L. Natural Products for Regulating Macrophages M2 Polarization. Curr Stem Cell Res Ther 2021; 15:559-569. [PMID: 31120001 DOI: 10.2174/1574888x14666190523093535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/23/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Macrophages M2 polarization have been taken as an anti-inflammatory progression during inflammation. Natural plant-derived products, with potential therapeutic and preventive activities against inflammatory diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities. However, the molecular mechanisms about how different kinds of natural compounds regulate macrophages polarization still unclear. Therefore, in the current review, we summarized the detailed research progress on the active compounds derived from herbal plants with regulating effects on macrophages, especially M2 polarization. These natural occurring compounds including flavonoids, terpenoids, glycosides, lignans, coumarins, alkaloids, polyphenols and quinones. In addition, we extensively discussed the cellular mechanisms underlying the M2 polarization for each compound, which could provide potential therapeutic strategies aiming macrophages M2 polarization.
Collapse
Affiliation(s)
- Zhen Chang
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Youhan Wang
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Chang Liu
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lingbo Kong
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| |
Collapse
|
41
|
Balaji S, Kim U, Muthukkaruppan V, Vanniarajan A. Emerging role of tumor microenvironment derived exosomes in therapeutic resistance and metastasis through epithelial-to-mesenchymal transition. Life Sci 2021; 280:119750. [PMID: 34171378 DOI: 10.1016/j.lfs.2021.119750] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment (TME) constitutes multiple cell types including cancerous and non-cancerous cells. The intercellular communication between these cells through TME derived exosomes may either enhance or suppress the tumorigenic processes. The tumor-derived exosomes could convert an anti-tumor environment into a pro-tumor environment by inducing the differentiation of stromal cells into tumor-associated cells. The exosomes from tumor-associated stromal cells reciprocally trigger epithelial-to-mesenchymal transition (EMT) in tumor cells, which impose therapeutic resistance and metastasis. It is well known that these exosomes contain the signals of EMT, but how these signals execute chemoresistance and metastasis in tumors remains elusive. Understanding the significance and molecular signatures of exosomes transmitting EMT signals would aid in developing appropriate methods of inhibiting them. In this review, we focus on molecular signatures of exosomes that shuttle between cancer cells and their stromal populations in TME to explicate their impact on therapeutic resistance and metastasis through EMT. Especially Wnt signaling is found to be involved in multiple ways of exosomal transport and hence we decipher the biomolecules of Wnt signaling trafficked through exosomes and their potential in serving as therapeutic targets.
Collapse
Affiliation(s)
- Sekaran Balaji
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Ocular Oncology, Aravind Eye Hospital, Madurai, Tamil Nadu 625 020, India
| | - Veerappan Muthukkaruppan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India.
| |
Collapse
|
42
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
43
|
Wang J, Li G, Deng L, Mamtilahun M, Jiang L, Qiu W, Zheng H, Sun J, Xie Q, Yang GY. Transcranial Focused Ultrasound Stimulation Improves Neurorehabilitation after Middle Cerebral Artery Occlusion in Mice. Aging Dis 2021; 12:50-60. [PMID: 33532127 PMCID: PMC7801287 DOI: 10.14336/ad.2020.0623] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022] Open
Abstract
Transcranial focused ultrasound stimulation (tFUS) regulates neural activity in different brain regions in humans and animals. However, the role of ultrasound stimulation in modulating neural activity and promoting neurorehabilitation in the ischemic brain is largely unknown. In the present study, we explored the effect of tFUS on neurological rehabilitation and the underlying mechanism. Adult male ICR mice (n=42) underwent transient middle cerebral artery occlusion. One week after brain ischemia, low frequency (0.5 MHz) tFUS was applied to stimulate the ischemic hemisphere of mice for 7 consecutive days (10 minutes daily). Brain infarct volume, neurobehavioral tests, microglia activation, IL-10 and IL-10R levels were further assessed for up to 14 days. We found that the brain infarct volume was significantly reduced in the tFUS treated mice compared to that in the non-treated mice (p<0.05). Similarly, neurological severity scores, elevated body swing test, and corner test improved in the tFUS treated mice (p<0.05). We also demonstrated that tFUS resulted in increased M2 microglia in the ischemic brain region. The expression of IL-10R and IL-10 levels were also substantially upregulated (p<0.05). We concluded that tFUS served as a unique technique to promote neurorehabilitation after brain ischemia by promoting microglia polarization and further regulating IL-10 signaling in the ischemic brain.
Collapse
Affiliation(s)
- Jixian Wang
- 1Department of Rehabilitation, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guofeng Li
- 3Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China.,4School of Information Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Lidong Deng
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Muyassar Mamtilahun
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lu Jiang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weibao Qiu
- 3Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- 3Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junfeng Sun
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qing Xie
- 1Department of Rehabilitation, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guo-Yuan Yang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
44
|
Luo P, Peng S, Yan Y, Ji P, Xu J. IL-37 inhibits M1-like macrophage activation to ameliorate temporomandibular joint inflammation through the NLRP3 pathway. Rheumatology (Oxford) 2021; 59:3070-3080. [PMID: 32417913 DOI: 10.1093/rheumatology/keaa192] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES IL-37 has been identified as an important anti-inflammatory and immunosuppressive factor. This study was undertaken to explore how IL-37 affects M1/M2-like macrophage polarization and thus contributes to anti-inflammatory processes in the temporomandibular joint. METHODS Western blotting, quantitative real-time PCR (qRT-PCR) and immunofluorescence were used to verify the IL-37-induced polarization shift from the M1 phenotype to the M2 phenotype, and the related key pathways were analysed by western blotting. Human chondrocytes were stimulated with M1-conditioned medium (CM) or IL-37-pretreated M1-CM, and inflammatory cytokines were detected. siRNA-IL-1R8 and MCC-950 were used to investigate the mechanism underlying the anti-inflammatory effects of IL-37. Complete Freund's adjuvant-induced and disc perforation-induced inflammation models were used for in vivo studies. Haematoxylin and eosin, immunohistochemical and safranin-O staining protocols were used to analyse histological changes in the synovium and condyle. RESULTS Western blotting, qRT-PCR and immunofluorescence showed that IL-37 inhibited M1 marker expression and upregulated M2 marker expression. Western blotting and qRT-PCR showed that pretreatment with IL-37 suppressed inflammatory cytokine expression in chondrocytes. IL-37 inhibited the expression of NLRP3 and upregulated the expression of IL-1R8. Si-IL-1R8 and MCC-950 further confirmed that the anti-inflammatory properties of IL-37 were dependent on the presence of IL-1R8 and NLRP3. In vivo, IL-37 reduced synovial M1 marker expression and cartilage degeneration and increased M2 marker expression. CONCLUSION IL-37 shifting of the polarization of macrophages from the pro-inflammatory M1 phenotype to the beneficial anti-inflammatory M2 phenotype seems to be a promising therapeutic strategy for treating temporomandibular joint inflammation.
Collapse
Affiliation(s)
- Ping Luo
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sisi Peng
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yin Yan
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping Ji
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Xu
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
45
|
Chen JY, Fu EJ, Patel PR, Hostetler AJ, Sawan HA, Moss KA, Hocevar SE, Anderson AJ, Chestek CA, Shea LD. Lentiviral Interleukin-10 Gene Therapy Preserves Fine Motor Circuitry and Function After a Cervical Spinal Cord Injury in Male and Female Mice. Neurotherapeutics 2021; 18:503-514. [PMID: 33051853 PMCID: PMC8116384 DOI: 10.1007/s13311-020-00946-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
In mammals, spinal cord injuries often result in muscle paralysis through the apoptosis of lower motor neurons and denervation of neuromuscular junctions. Previous research shows that the inflammatory response to a spinal cord injury can cause additional tissue damage after the initial trauma. To modulate this inflammatory response, we delivered lentiviral anti-inflammatory interleukin-10, via loading onto an implantable biomaterial scaffold, into a left-sided hemisection at the C5 vertebra in mice. We hypothesized that improved behavioral outcomes associated with anti-inflammatory treatment are due to the sparing of fine motor circuit components. We examined behavioral recovery using a ladder beam, tissue sparing using histology, and electromyogram recordings using intraspinal optogenetic stimulation at 2 weeks post-injury. Ladder beam analysis shows interleukin-10 treatment results in significant improvement of behavioral recovery at 2 and 12 weeks post-injury when compared to mice treated with a control virus. Histology shows interleukin-10 results in greater numbers of lower motor neurons, axons, and muscle innervation at 2 weeks post-injury. Furthermore, electromyogram recordings suggest that interleukin-10-treated animals have signal-to-noise ratios and peak-to-peak amplitudes more similar to that of uninjured controls than to that of control injured animals at 2 weeks post-injury. These data show that gene therapy using anti-inflammatory interleukin-10 can significantly reduce tissue damage and subsequent motor deficits after a spinal cord injury. Together, these results suggest that early modulation of the injury response can preserve muscle function with long-lasting benefits.
Collapse
Affiliation(s)
- Jessica Y Chen
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Emily J Fu
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Paras R Patel
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Alexander J Hostetler
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Hasan A Sawan
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Kayla A Moss
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Sarah E Hocevar
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
- Robotics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
46
|
Ahangar P, Mills SJ, Smith LE, Gronthos S, Cowin AJ. Human gingival fibroblast secretome accelerates wound healing through anti-inflammatory and pro-angiogenic mechanisms. NPJ Regen Med 2020; 5:24. [PMID: 33303754 PMCID: PMC7728777 DOI: 10.1038/s41536-020-00109-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Healing of the skin and oral mucosa utilises similar mechanisms of tissue repair, however, scarring and the rate of wound closure is vastly superior in the oral cavity suggesting differences between these two environments. One key difference is the phenotype of dermal fibroblasts compared to fibroblasts of gingival tissues. Human gingival fibroblasts (hGFs) are undifferentiated cells with multi-differentiation and self-renewal capacities. This study aimed to examine if delivering hGFs or their secretome, contained in hGF-conditioned media (hGF-CM), would improve healing of the skin and recapitulate features of oral healing. Human fibroblasts, keratinocytes and endothelial cells were first treated with hGF-CM and showed improved migration, proliferation and angiogenic functions. A significant reduction in macroscopic wound area and histologic dermal wound width, as well as an increased rate of re-epithelialisation, were observed in both hGFs and hGF-CM treated murine excisional wounds. This improvement was associated with reduced inflammation, increased angiogenesis and elevated collagen deposition. These findings demonstrate that treatment of dermal wounds with either hGFs or hGF-CM may provide beneficial gingival-like properties to dermal wounds and may be a potential opportunity for improving healing of the skin.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia.,Cell Therapy Manufacturing Cooperative Research Centre, Adelaide, SA, 5000, Australia
| | - Stuart J Mills
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia
| | - Louise E Smith
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia.,Cell Therapy Manufacturing Cooperative Research Centre, Adelaide, SA, 5000, Australia
| | - Stan Gronthos
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
47
|
Han L, Lu Y, Wang X, Zhang S, Wang Y, Wu F, Zhang W, Wang X, Zhang L. Regulatory role and mechanism of the inhibition of the Mcl-1 pathway during apoptosis and polarization of H37Rv-infected macrophages. Medicine (Baltimore) 2020; 99:e22438. [PMID: 33080678 PMCID: PMC7572003 DOI: 10.1097/md.0000000000022438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Myeloid cell leukemia-1 (Mcl-1) plays an important role in the clearance of Mycobacterium tuberculosis (MTB) infection. It has the effect of anti-apoptosis, protecting macrophages that have engulfed pathogens and preventing pathogen clearance. Meanwhile, the MAPK signaling pathway plays a significant role in regulating Mcl-1 expression during tuberculosis infection. In the case of latent infection and active infection, the apoptosis and polarization of macrophages have a great influence during MTB infection, so we discussed the effect of Mcl-1 on apoptosis and polarization. Then, further discussed its mechanism. METHODS An infected RAW264.7 macrophage model was established to investigate the regulatory role and mechanism of the Mcl-1 pathway inhibition during apoptosis and polarization of H37Rv infection. First, Mcl-1 protein and mRNA was identified by western blotting and Real-Time Polymerase Chain Reaction (RT-PCR). RAW264.7 macrophage apoptosis was detected by flow cytometry. RT-PCR was utilized to detect Bax, Caspase-3, Cyt-c and Bcl-2 mRNA expression. Next, Then the expression levels of inflammation factors CD86, CD206, iNOS, Fizz1, IL-6, IL-10, TNF-α, and TGF-β was detected by ELISA. SEM was used to observe macrophages phenotype. Finally, Bax, Bcl-2 and Bcl-xl the expression was detected by western blotting. Confocal microscopy was used to analyze mitochondrial membrane potential using the JC-10 kit. RESULTS In this study, we found that inhibiting the Mcl-1 expression signaling pathway led to infection by different virulence Mycobacterium tuberculosis, as well as changes in Mcl-1 protein and mRNA expression. Concomitantly macrophage apoptosis rate also changed, While, two phenotypic states of M1 and M2 appeared in the infected cells. We also found that the mitochondrial pathway was activated, the expression of its related genes Bax, casepase3, and Cyt-c, increased, whereas that of Bcl-2 decreased, and the mitochondrial membrane depolarization function was changed. CONCLUSIONS We found that Mcl-1 affected the apoptosis and polarization of macrophages infected by Mycobacterium tuberculosis, mainly M1 in the early stage and M2 in the later stage. In addition, mitochondria played a crucial role in this process.
Collapse
Affiliation(s)
- Ling Han
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yang Lu
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Xiaofang Wang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Shujun Zhang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yingzi Wang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Fang Wu
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Wanjiang Zhang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Xinmin Wang
- Department of Urinary Surgery, The First Affiliated Hospital, Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Le Zhang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| |
Collapse
|
48
|
Thiriot JD, Martinez-Martinez YB, Endsley JJ, Torres AG. Hacking the host: exploitation of macrophage polarization by intracellular bacterial pathogens. Pathog Dis 2020; 78:5739920. [PMID: 32068828 DOI: 10.1093/femspd/ftaa009] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages play an integral role in host defenses against intracellular bacterial pathogens. A remarkable plasticity allows for adaptation to the needs of the host to orchestrate versatile innate immune responses to a variety of microbial threats. Several bacterial pathogens have adapted to macrophage plasticity and modulate the classical (M1) or alternative (M2) activation bias towards a polarization state that increases fitness for intracellular survival. Here, we summarize the current understanding of the host macrophage and intracellular bacterial interface; highlighting the roles of M1/M2 polarization in host defense and the mechanisms employed by several important intracellular pathogens to modulate macrophage polarization to favor persistence or proliferation. Understanding macrophage polarization in the context of disease caused by different bacterial pathogens is important for the identification of targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joseph D Thiriot
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Yazmin B Martinez-Martinez
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Janice J Endsley
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA.,Department of Pathology, University of Texas Medical Branch , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| |
Collapse
|
49
|
Chen YC, Chang YP, Hsiao CC, Wu CC, Wang YH, Chao TY, Leung SY, Fang WF, Lee CP, Wang TY, Hsu PY, Lin MC. Blood M2a monocyte polarization and increased formyl peptide receptor 1 expression are associated with progression from latent tuberculosis infection to active pulmonary tuberculosis disease. Int J Infect Dis 2020; 101:210-219. [PMID: 32971238 DOI: 10.1016/j.ijid.2020.09.1056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES This study aims to explore the role of M2a polarization and formyl peptide receptor (FPR) regulation in the reactivation of Mycobacterium tuberculosis (Mtb) infection. METHODS M1/M2a monocyte percentage and FPR1/2/3 protein expression of blood immune cells were measured in 38 patients with sputum culture (+) active pulmonary TB disease, 18 subjects with latent TB infection (LTBI), and 28 noninfected healthy subjects (NIHS) using flow cytometry method. RESULTS M1 percentage was decreased in active TB versus either NIHS or LTBI group, while M2a percentage and M2a/M1 percentage ratio were increased. FPR1 expression on M1/M2a, FPR2 expression on M1, and FPR3 expression of M1 were all decreased in active TB versus LTBI group, while FPR1 over FPR2 expression ratio on NK T cell was increased in active TB versus either NIHS or LTBI group. In 11 patients with active TB disease, M1 percentage became normal again after anti-TB treatment. In vitro Mtb-specific antigen stimulation of monocytic THP-1 cells resulted in M2a polarization in association with increased FPR2 expression on M2a. CONCLUSIONS Increased M2a and decreased M1 phenotypes of blood monocyte may serve as a marker for active TB disease, while decreased FPR1 on blood monocyte may indicate LTBI status.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Graduate Institute of Clinical Medical Sciences and Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Graduate Institute of Clinical Medical Sciences and Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Yi-Hsi Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Tung-Ying Chao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Wen-Feng Fang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chiu-Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| |
Collapse
|
50
|
Zadka Ł, Grybowski DJ, Dzięgiel P. Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cell Oncol (Dordr) 2020; 43:539-575. [PMID: 32488850 PMCID: PMC7363737 DOI: 10.1007/s13402-020-00519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor initiation and subsequent progression are usually long-term processes, spread over time and conditioned by diverse aspects. Many cancers develop on the basis of chronic inflammation; however, despite dozens of years of research, little is known about the factors triggering neoplastic transformation under these conditions. Molecular characterization of both pathogenetic states, i.e., similarities and differences between chronic inflammation and cancer, is also poorly defined. The secretory activity of tumor cells may change the immunophenotype of immune cells and modify the extracellular microenvironment, which allows the bypass of host defense mechanisms and seems to have diagnostic and prognostic value. The phenomenon of immunosuppression is also present during chronic inflammation, and the development of cancer, due to its duration, predisposes patients to the promotion of chronic inflammation. The aim of our work was to discuss the above issues based on the latest scientific insights. A theoretical mechanism of cancer immunosuppression is also proposed. CONCLUSIONS Development of solid tumors may occur both during acute and chronic phases of inflammation. Differences in the regulation of immune responses between precancerous states and the cancers resulting from them emphasize the importance of immunosuppressive factors in oncogenesis. Cancer cells may, through their secretory activity and extracellular transport mechanisms, enhance deterioration of the immune system which, in turn, may have prognostic implications.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland.
| | - Damian J Grybowski
- Orthopedic Surgery, University of Illinois, 900 S. Ashland Avenue (MC944) Room 3356, Molecular Biology Research Building Chicago, Chicago, IL, 60607, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| |
Collapse
|