1
|
Hu H, Wang S, Chen C. Pathophysiological role and potential drug target of NLRP3 inflammasome in the metabolic disorders. Cell Signal 2024; 122:111320. [PMID: 39067838 DOI: 10.1016/j.cellsig.2024.111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
NLRP3 plays a role in the development of autoinflammatory diseases. NLRP3, ASC, and Caspases 1 or 8 make up the NLRP3 inflammasome, which is an important part of innate immune system. The NLRP3 inflammasome-mediated inflammatory cytokines may also participate in metabolic disorders, such as diabetes, hyperlipidemia, atherosclerosis, non-alcoholic fatty liver disease, and gout. Hence, an overview of the NLRP3 regulation in these metabolic diseases and the potential drugs targeting NLRP3 is the focus of this review.
Collapse
Affiliation(s)
- Huiming Hu
- School of pharmacy, Nanchang Medical College, Nanchang, Jiangxi, China; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia; Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Jiangxi, China
| | - Shuwen Wang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Yoon SZ, Park JJ, Jung JS, Kim JE, Lee SH, Lee J, Kim EH. Effects of intravenous inflammasome inhibitor (NuSepin) on suppression of proinflammatory cytokines release induced by cardiopulmonary bypass in swine model: a pilot study. Sci Rep 2024; 14:12797. [PMID: 38834773 DOI: 10.1038/s41598-024-62944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
The systemic inflammatory response syndrome can occur due to an inflammatory reaction to the release of cytokines, and it has been linked to the circulation of pro- and anti-inflammatory cytokines. The cardiopulmonary bypass (CPB) system is known to activate numerous inflammatory pathways. Applying CPB in large animals for an extended period may be useful as a controlled experimental model for systemic inflammatory responses. The authors hypothesized that 0.2 mg/kg NuSepin® would inhibit CBP-induced proinflammatory cytokine release, and attenuate CPB-induced vasoplegia. CPB was maintained for 2 h in 8 male Yorkshire pigs. Ten ml of saline was administered intravenously to the control group, while the study group received 10 ml of NuSepin® (0.2 mg/kg), before start of CPB. Blood samples were collected at four different time points to evaluating the level of cytokine (TNF-α, IL-1β, IL-6, IL-8) release during and after CBP. All vital signals were recorded as continuous waveforms using the vital recorder®. Our study demonstrated that IL-6 increased in both groups during CPB remained unchanged. However, in the Nusepin group, IL-6 levels rapidly decreased when CPB was stopped and the proinflammatory reaction subsided. Furthermore, the dose of norepinephrine required to maintain a mean pressure of 60 mmHg was also lower in the Nusepin group.
Collapse
Affiliation(s)
- Seung Zhoo Yoon
- Department of Anesthesiology and Pain Medicine, Korea University College of Medicine, Seoul, Korea.
| | - Jeong Jun Park
- Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Jae Seung Jung
- Department of Thoracic and Cardiovascular Surgery, Korea University College of Medicine, Seoul, Korea
| | - Ji Eon Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University College of Medicine, Seoul, Korea
| | - Seung Hyong Lee
- Department of Thoracic and Cardiovascular Surgery, Korea University College of Medicine, Seoul, Korea
| | - Jeonghoon Lee
- Department of Anesthesiology and Pain Medicine, Korea University College of Medicine, Seoul, Korea
| | - Eung Hwi Kim
- Institute for Healthcare Innovation, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Alnaaim SA, Al-Kuraishy HM, Alexiou A, Papadakis M, Saad HM, Batiha GES. Role of Brain Liver X Receptor in Parkinson's Disease: Hidden Treasure and Emerging Opportunities. Mol Neurobiol 2024; 61:341-357. [PMID: 37606719 PMCID: PMC10791998 DOI: 10.1007/s12035-023-03561-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease due to the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). The liver X receptor (LXR) is involved in different neurodegenerative diseases. Therefore, the objective of the present review was to clarify the possible role of LXR in PD neuropathology. LXRs are the most common nuclear receptors of transcription factors that regulate cholesterol metabolism and have pleiotropic effects, including anti-inflammatory effects and reducing intracellular cholesterol accumulation. LXRs are highly expressed in the adult brain and act as endogenous sensors for intracellular cholesterol. LXRs have neuroprotective effects against the development of neuroinflammation in different neurodegenerative diseases by inhibiting the expression of pro-inflammatory cytokines. LXRs play an essential role in mitigating PD neuropathology by reducing the expression of inflammatory signaling pathways, neuroinflammation, oxidative stress, mitochondrial dysfunction, and enhancement of BDNF signaling.In conclusion, LXRs, through regulating brain cholesterol homeostasis, may be effectual in PD. Also, inhibition of node-like receptor pyrin 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-κB) by LXRs could effectively prevent neuroinflammation in PD. Taken together, LXRs play a crucial role in PD neuropathology by inhibiting neuroinflammation and associated degeneration of DNs.
Collapse
Affiliation(s)
- Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, 14132, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
4
|
Martins GL, Ferreira CN, Palotás A, Rocha NP, Reis HJ. Role of Oxysterols in the Activation of the NLRP3 Inflammasome as a Potential Pharmacological Approach in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:202-212. [PMID: 35339182 PMCID: PMC10190144 DOI: 10.2174/1570159x20666220327215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a complex clinical condition with multifactorial origin posing a major burden to health care systems across the world. Even though the pathophysiological mechanisms underlying the disease are still unclear, both central and peripheral inflammation has been implicated in the process. Piling evidence shows that the nucleotide-binding domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated in AD. As dyslipidemia is a risk factor for dementia, and cholesterol can also activate the inflammasome, a possible link between lipid levels and the NLRP3 inflammasome has been proposed in Alzheimer's. It is also speculated that not only cholesterol but also its metabolites, the oxysterols, may be involved in AD pathology. In this context, mounting data suggest that NLRP3 inflammasome activity can be modulated by different peripheral nuclear receptors, including liver-X receptors, which present oxysterols as endogenous ligands. In light of this, the current review explores whether the activation of NLRP3 by nuclear receptors, mediated by oxysterols, may also be involved in AD and could serve as a potential pharmacological avenue in dementia.
Collapse
Affiliation(s)
- Gabriela L. Martins
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| | | | - András Palotás
- Kazan Federal University, Kazan, Russia
- Asklepios Med, Szeged, Hungary
| | - Natália P. Rocha
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Helton J. Reis
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| |
Collapse
|
5
|
El-Darzi N, Mast N, Buchner DA, Saadane A, Dailey B, Trichonas G, Pikuleva IA. Low-Dose Anti-HIV Drug Efavirenz Mitigates Retinal Vascular Lesions in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:902254. [PMID: 35721135 PMCID: PMC9198296 DOI: 10.3389/fphar.2022.902254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
A small dose of the anti-HIV drug efavirenz (EFV) was previously discovered to activate CYP46A1, a cholesterol-eliminating enzyme in the brain, and mitigate some of the manifestation of Alzheimer's disease in 5XFAD mice. Herein, we investigated the retina of these animals, which were found to have genetically determined retinal vascular lesions associated with deposits within the retinal pigment epithelium and subretinal space. We established that EFV treatment activated CYP46A1 in the retina, enhanced retinal cholesterol turnover, and diminished the lesion frequency >5-fold. In addition, the treatment mitigated fluorescein leakage from the aberrant blood vessels, deposit size, activation of retinal macrophages/microglia, and focal accumulations of amyloid β plaques, unesterified cholesterol, and Oil Red O-positive lipids. Studies of retinal transcriptomics and proteomics identified biological processes enriched with differentially expressed genes and proteins. We discuss the mechanisms of the beneficial EFV effects on the retinal phenotype of 5XFAD mice. As EFV is an FDA-approved drug, and we already tested the safety of small-dose EFV in patients with Alzheimer's disease, our data support further clinical investigation of this drug in subjects with retinal vascular lesions or neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Natalia Mast
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - David A. Buchner
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aicha Saadane
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Brian Dailey
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Georgios Trichonas
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Irina A. Pikuleva
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States,*Correspondence: Irina A. Pikuleva,
| |
Collapse
|
6
|
Alatshan A, Benkő S. Nuclear Receptors as Multiple Regulators of NLRP3 Inflammasome Function. Front Immunol 2021; 12:630569. [PMID: 33717162 PMCID: PMC7952630 DOI: 10.3389/fimmu.2021.630569] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are important bridges between lipid signaling molecules and transcription responses. Beside their role in several developmental and physiological processes, many of these receptors have been shown to regulate and determine the fate of immune cells, and the outcome of immune responses under physiological and pathological conditions. While NLRP3 inflammasome is assumed as key regulator for innate and adaptive immune responses, and has been associated with various pathological events, the precise impact of the nuclear receptors on the function of inflammasome is hardly investigated. A wide variety of factors and conditions have been identified as modulators of NLRP3 inflammasome activation, and at the same time, many of the nuclear receptors are known to regulate, and interact with these factors, including cellular metabolism and various signaling pathways. Nuclear receptors are in the focus of many researches, as these receptors are easy to manipulate by lipid soluble molecules. Importantly, nuclear receptors mediate regulatory mechanisms at multiple levels: not only at transcription level, but also in the cytosol via non-genomic effects. Their importance is also reflected by the numerous approved drugs that have been developed in the past decade to specifically target nuclear receptors subtypes. Researches aiming to delineate mechanisms that regulate NLRP3 inflammasome activation draw a wide range of attention due to their unquestionable importance in infectious and sterile inflammatory conditions. In this review, we provide an overview of current reports and knowledge about NLRP3 inflammasome regulation from the perspective of nuclear receptors, in order to bring new insight to the potentially therapeutic aspect in targeting NLRP3 inflammasome and NLRP3 inflammasome-associated diseases.
Collapse
Affiliation(s)
- Ahmad Alatshan
- Departments of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Departments of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Zhao H, Xu J, Wang R, Tang W, Kong L, Wang W, Wang L, Zhang Y, Ma W. Plantaginis Semen polysaccharides ameliorate renal damage through regulating NLRP3 inflammasome in gouty nephropathy rats. Food Funct 2021; 12:2543-2553. [PMID: 33624653 DOI: 10.1039/d0fo03143g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gouty nephropathy (GN) is considered to be a prevalent renal disease and is an inflammatory event mainly induced by MSU crystals. Plantaginis Semen is a traditional Chinese herb that has been used in the treatment of gout, gouty arthritis and GN, but the mechanism and ingredients have been unclear. In this study, we explored and evaluated the preliminary structural characterizations of Plantaginis Semen polysaccharides (PSPs) and the activity of protecting against renal damage in GN rats. Three polysaccharide fractions, PSP-D, PSP-H and PSP-S, were sequentially extracted by different processes from the seed of Plantago asiatica L. The Fourier transform infrared spectral (FTIR) results showed that there were significant differences between PSP-S and the other two polysaccharides (PSP-D and PSP-H). PSP-D and PSP-H have pyrene monomers and linkages of β-glycosides in their structures, and PSP-S has furanoside in the molecular structure. The scanning electron microscope (SEM) images of three polysaccharides showed that PSP-D has a smooth surface and a small curve, PSP-H is block-like and uneven in magnitude, whereas PSP-S is sea-tent-like and its surface is very distinct from the others. Main components and molar ratios are also different. Rats were randomly divided into six groups (n1/6 8 per group): the control group, model group, positive group, and three treatment groups (PSP-D, PSP-H and PSP-S). For all groups except the control group, rats were intragastrically administered the adenine suspension (50 mg kg-1 d-1) and fed with a high-yeast diet (15 g kg-1 d-1) for 28 days. On the 9th day, the control group and the model group were administered normal saline at the same time. Treatment groups were individually given corresponding drugs for 20 days. We found that PSPs could prevent renal damage, including decreasing the inflammatory response and regulating the (NOD)-like receptor protein 3 (NLRP3) protein in renal tissue. The underlying mechanism was related to NLRP3 inflammasome signal pathways, and it could take effect through the down-regulation of the protein expression levels of NLRP3, ASC and caspase-1 and inhibit the release of downstream inflammatory factors. PSPs are promising polysaccharides that could protect against renal injury through ameliorating renal inflammation in GN rats. Plantaginis Semen polysaccharides are potential functional food ingredients or pharmacological agents for treating GN in clinical practice.
Collapse
Affiliation(s)
- Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhao L, Lei W, Deng C, Wu Z, Sun M, Jin Z, Song Y, Yang Z, Jiang S, Shen M, Yang Y. The roles of liver X receptor α in inflammation and inflammation-associated diseases. J Cell Physiol 2020; 236:4807-4828. [PMID: 33305467 DOI: 10.1002/jcp.30204] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Liver X receptor α (LXRα; also known as NR1H3), an isoform of LXRs, is a member of the nuclear receptor family of transcription factors and plays essential roles in the transcriptional control of cholesterol homeostasis. Previous in-depth phenotypic analyses of mouse models with deficient LXRα have also demonstrated various physiological functions of this receptor within inflammatory responses. LXRα activation exerts a combination of metabolic and anti-inflammatory actions resulting in the modulation and the amelioration of inflammatory disorders. The tight "repercussions" between LXRα and inflammation, as well as cholesterol homeostasis, have suggested that LXRα could be pharmacologically targeted in pathologies such as atherosclerosis, acute lung injury, and Alzheimer's disease. This review gives an overview of the recent advances in understanding the roles of LXRα in inflammation and inflammation-associated diseases, which will help in the design of future experimental researches on the potential of LXRα and advance the investigation of LXRα as pharmacological inflammatory targets.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China.,Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhen Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yanbin Song
- Department of Cardiology, Affiliated Hospital, Yan'an University, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Mingzhi Shen
- Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Sanya, Hainan, China.,Hainan Branch of National Clinical Reasearch Center of Geriatrics Disease, Sanya, Hainan, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| |
Collapse
|
9
|
Liu Y, Wu X, Wang Y, Jin W, Guo Y. The immunoenhancement effects of starfish Asterias rollestoni polysaccharides in macrophages and cyclophosphamide-induced immunosuppression mouse models. Food Funct 2020; 11:10700-10708. [PMID: 33220676 DOI: 10.1039/d0fo01488e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The water-soluble polysaccharide, SF-2, obtained from starfish (Asterias rollestoni), belongs to the group of polysaccharides known as mannoglucan sulfate. It is composed of mannose as well as glucose and contains 13.85% SO42-. We aimed to detect the immunoenhancement effects of SF-2 in macrophages and cyclophosphamide (CYP)-induced immunosuppression mouse models. RAW 264.7 macrophage cells were treated with SF-2 for different periods of time (0 h, 0.5 h, 1 h, 3 h, 6 h, and 9 h) and the results showed that SF-2 promoted the production of nitric oxide and up-regulated the levels of pro-inflammatory cytokines and related proteins, such as TNF-α, IL-1β, IL-6, COX-2, MMP-9, and iNOS in a time-dependent manner. In addition, SF-2 activated NLRP3 inflammasome and the MAPK/NF-κB signaling pathway, thus promoting its immunoenhancement effects. Moreover, we co-cultured the primary peritoneal macrophages with SF-2 for 6 h and found that SF-2 enhanced the expression of NLRP3 inflammasome and the release of cytokines. Furthermore, SF-2 significantly increased the body weight, spleen index, thymus index, and inflammatory cell counts in CYP-induced immunosuppression mouse models. These results indicate that SF-2 is a potential immunoenhancement mediator that acts by activating the NLRP3 inflammasome and MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Yingjuan Liu
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | | | | | | | | |
Collapse
|
10
|
Ma L, Wang L, Nelson AT, Han C, He S, Henn MA, Menon K, Chen JJ, Baek AE, Vardanyan A, Shahoei SH, Park S, Shapiro DJ, Nanjappa SG, Nelson ER. 27-Hydroxycholesterol acts on myeloid immune cells to induce T cell dysfunction, promoting breast cancer progression. Cancer Lett 2020; 493:266-283. [PMID: 32861706 DOI: 10.1016/j.canlet.2020.08.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
Breast cancer remains one of the leading causes of cancer mortality in the US. Elevated cholesterol is a major risk factor for breast cancer onset and recurrence, while cholesterol-lowering drugs, such as statins, are associated with a good prognosis. Previous work in murine models showed that cholesterol increases breast cancer metastasis, and the pro-metastatic effects of cholesterol were due to its primary metabolite, 27-hydroxycholesterol (27HC). In our prior work, myeloid cells were found to be required for the pro-metastatic effects of 27HC, but their precise contribution remains unclear. Here we report that 27HC impairs T cell expansion and cytotoxic function through its actions on myeloid cells, including macrophages, in a Liver X receptor (LXR) dependent manner. Many oxysterols and LXR ligands had similar effects on T cell expansion. Moreover, their ability to induce the LXR target gene ABCA1 was associated with their effectiveness in impairing T cell expansion. Induction of T cell apoptosis was likely one mediator of this impairment. Interestingly, the enzyme responsible for the synthesis of 27HC, CYP27A1, is highly expressed in myeloid cells, suggesting that 27HC may have important autocrine or paracrine functions in these cells, a hypothesis supported by our finding that breast cancer metastasis was reduced in mice with a myeloid specific knockout of CYP27A1. Importantly, pharmacologic inhibition of CYP27A1 reduced metastatic growth and improved the efficacy of checkpoint inhibitor, anti-PD-L1. Taken together, our work suggests that targeting the CYP27A1 axis in myeloid cells may present therapeutic benefits and improve the response rate to immune therapies in breast cancer.
Collapse
Affiliation(s)
- Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lawrence Wang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA; University of Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Adam T Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Chaeyeon Han
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Karan Menon
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joy J Chen
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Amy E Baek
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Anna Vardanyan
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Som G Nanjappa
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
11
|
Inflammasome-Mediated Inflammation in Liver Ischemia-Reperfusion Injury. Cells 2019; 8:cells8101131. [PMID: 31547621 PMCID: PMC6829519 DOI: 10.3390/cells8101131] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Ischemia-reperfusion injury is an important cause of liver damage occurring during surgical procedures including hepatic resection and liver transplantation, and represents the main underlying cause of graft dysfunction and liver failure post-transplantation. To date, ischemia-reperfusion injury is an unsolved problem in clinical practice. In this context, inflammasome activation, recently described during ischemia-reperfusion injury, might be a potential therapeutic target to mitigate the clinical problems associated with liver transplantation and hepatic resections. The present review aims to summarize the current knowledge in inflammasome-mediated inflammation, describing the experimental models used to understand the molecular mechanisms of inflammasome in liver ischemia-reperfusion injury. In addition, a clear distinction between steatotic and non-steatotic livers and between warm and cold ischemia-reperfusion injury will be discussed. Finally, the most updated therapeutic strategies, as well as some of the scientific controversies in the field will be described. Such information may be useful to guide the design of better experimental models, as well as the effective therapeutic strategies in liver surgery and transplantation that can succeed in achieving its clinical application.
Collapse
|
12
|
LXRα promotes cell metastasis by regulating the NLRP3 inflammasome in renal cell carcinoma. Cell Death Dis 2019; 10:159. [PMID: 30770793 PMCID: PMC6377709 DOI: 10.1038/s41419-019-1345-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 11/25/2022]
Abstract
Notwithstanding the researches on biomarkers and targeted therapies in renal cell carcinomas (RCC) have made progress in the last decades, the application of the biomarkers and targeted therapy agents for RCC in clinic are restricted because of their limitation or side effects. Liver X receptors (LXRs) and the NLRP3 inflammasome have been the research hotspots in recent years. In our study, we integrated bioinformatics analysis, molecular biology experiments and biological function experiments to study the roles of LXRα and the NLRP3 inflammasome in RCC. The study demonstrated that the elevated LXRα expression is correlated with a poor prognosis in RCC. Furthermore, our study revealed the expression levels and roles of the NLRP3 inflammasome in RCC for the first time. This research demonstrated that LXRα could promote the metastasis of RCC cells by suppressing the expression of the NLRP3 inflammasome. In Brief, LXRα had the possibility to be a novel diagnostic and prognostic biomarker and therapeutic target in renal cell cancer and LXRα could regulate the metastasis of renal cell cancer via NLRP3 inflammamsome.
Collapse
|
13
|
Castro-Alves VC, Shiga TM, Nascimento JROD. Polysaccharides from chayote enhance lipid efflux and regulate NLRP3 inflammasome priming in macrophage-like THP-1 cells exposed to cholesterol crystals. Int J Biol Macromol 2019; 127:502-510. [PMID: 30658148 DOI: 10.1016/j.ijbiomac.2019.01.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 01/14/2023]
Abstract
The contribution of dietary fiber to decrease the risk of atherosclerosis may occur through other mechanisms besides the increased excretion of cholesterol. Although macrophages are crucial for lipid clearance, the excessive uptake of cholesterol crystals (CC) by these cells induce NLRP3 inflammasome and foam cell formation. Thus, we investigated whether the water-soluble DF from chayote (WSP) regulate CC-pretreated macrophage-like THP-1 cells. Linkage analysis indicated that WSP is composed mainly of pectic homogalacturonan and highly branched type I rhamnogalacturonan as well as hemicellulosic material including glucomannan, xyloglucan, and glucurono(arabino)xylan. WSP reduced interleukin (IL)-1β and chemokine release in CC-pretreated macrophages. Notably, WSP also reduced lipid accumulation in cells previously exposed to CC. Furthermore, WSP upregulated liver X receptor alpha expression, which may account for increased lipid efflux, and reduced matrix metallopeptidase 9 expression. WSP also reduced active caspase-1 protein levels, and downregulated NLRP3 and IL-1β gene expression in CC-pretreated cells, suggesting that this polysaccharide fraction regulates the priming signals required for NLRP3 inflammasome activation. Thus, WSP regulate lipid efflux and suppress inflammasome priming in macrophages, suggesting that the health benefits of this dietary fiber could go beyond its physical properties on the gastrointestinal tract.
Collapse
Affiliation(s)
- Victor Costa Castro-Alves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Tânia Misuzu Shiga
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - João Roberto Oliveira do Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Sebti Y, Ferri L, Zecchin M, Beauchamp J, Mogilenko D, Staels B, Duez H, Pourcet B. The LPS/D-Galactosamine-Induced Fulminant Hepatitis Model to Assess the Role of Ligand-Activated Nuclear Receptors on the NLRP3 Inflammasome Pathway In Vivo. Methods Mol Biol 2019; 1951:189-207. [PMID: 30825154 DOI: 10.1007/978-1-4939-9130-3_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The NLRP3 inflammasome is a cellular sensor of danger signals such as extracellular ATP or abnormally accumulating molecules like crystals. Activation of NLRP3 by such compounds triggers a sterile inflammatory response that may be involved in numerous pathologies including rheumatoid arthritis, atherosclerosis, diabetes, and Alzheimer's disease. A better understanding of the mechanisms that govern NLRP3 inflammasome activation is an important step toward the development of novel therapeutic strategies to dampen over-activation of the immune system. Recent findings demonstrate that ligand-activated nuclear receptors regulate the NLRP3 inflammasome pathway, thus representing possible therapeutic targets. It is therefore important to assess the potential of these putative targets in the regulation of the NLRP3 inflammasome activation in the most appropriate pathophysiological models. Fulminant hepatitis (FH) results from massive hepatocyte apoptosis, hemorrhagic necrosis, and inflammation. Low doses of LPS in combination with the specific hepatotoxic agent D-galactosamine (D-GalN) promote liver injury in mice and induce the production of inflammatory cytokines associated with increased NLRP3 protein and caspase 1 activity, thus recapitulating the clinical picture of FH in humans. We provide a simple method to examine the involvement of nuclear receptors in NLRP3-driven fulminant hepatitis, consisting in the induction of FH, in the isolation of liver macrophages, and in the extraction and analysis of RNA content.
Collapse
Affiliation(s)
- Yasmine Sebti
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Lise Ferri
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Mathilde Zecchin
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Justine Beauchamp
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Denis Mogilenko
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Hélène Duez
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Benoit Pourcet
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France.
- UNIV LILLE, Lille, France.
- INSERM UMR 1011, Lille, France.
- CHU Lille, Lille, France.
- Institut Pasteur de Lille, Lille, France.
| |
Collapse
|
15
|
Wu MY, Yiang GT, Cheng PW, Chu PY, Li CJ. Molecular Targets in Hepatocarcinogenesis and Implications for Therapy. J Clin Med 2018; 7:jcm7080213. [PMID: 30104473 PMCID: PMC6112027 DOI: 10.3390/jcm7080213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocarcinogenesis comprises of multiple, complex steps that occur after liver injury and usually involve several pathways, including telomere dysfunction, cell cycle, WNT/β-catenin signaling, oxidative stress and mitochondria dysfunction, autophagy, apoptosis, and AKT/mTOR signaling. Following liver injury, gene mutations, accumulation of oxidative stress, and local inflammation lead to cell proliferation, differentiation, apoptosis, and necrosis. The persistence of this vicious cycle in turn leads to further gene mutation and dysregulation of pro- and anti-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-10, IL-12, IL-13, IL-18, and transforming growth factor (TGF)-β, resulting in immune escape by means of the NF-κB and inflammasome signaling pathways. In this review, we summarize studies focusing on the roles of hepatocarcinogenesis and the immune system in liver cancer. In addition, we furnish an overview of recent basic and clinical studies to provide a strong foundation to develop novel anti-carcinogenesis targets for further treatment interventions.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Giuo-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Pei-Wen Cheng
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung 807, Taiwan.
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 704, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| |
Collapse
|
16
|
Liver X Receptor Inverse Agonist SR9243 Suppresses Nonalcoholic Steatohepatitis Intrahepatic Inflammation and Fibrosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8071093. [PMID: 29670908 PMCID: PMC5835296 DOI: 10.1155/2018/8071093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022]
Abstract
Abnormal metabolism of cholesterol may be a contributing factor in nonalcoholic steatohepatitis (NASH) pathogenesis. Accumulating evidence has shown that liver X receptor (LXR) is closely related to intrahepatic inflammation and fibrosis. In this study, we evaluated the effects of a novel liver-specific LXR inverse agonist, SR9243, on antifibrosis in NASH mice. A high-cholesterol diet was employed to induce NASH in BALB/c mice by either carbon tetrachloride (CCL4) administration or bile-duct ligation (BDL). Once NASH was induced, mice were treated with SR9243 for one month by intraperitoneal (i.p.) injection. Liver tissues were collected to determine the degree of fibrosis and intrahepatic inflammation via pathological examination and QPCR; serum was collected to analyze the plasma lipid levels and liver function by clinical biochemistry. The mice developed hepatic steatosis, severe hepatic inflammation, and fibrosis by BDL or CCL4. Treatment with SR9243 significantly reduced the severity of hepatic inflammation and ameliorated hepatic fibrosis; simultaneously, body weight, serum glucose, and plasma lipid levels were controlled effectively. Our data demonstrate that SR9243 exerts an antifibrotic and anti-inflammatory effect in NASH mice; hence these findings highly suggest that LXR inverse agonist could be therapeutically important in NASH treatment.
Collapse
|
17
|
Lv M, Zeng H, He Y, Zhang J, Tan G. Dexmedetomidine promotes liver regeneration in mice after 70% partial hepatectomy by suppressing NLRP3 inflammasome not TLR4/NFκB. Int Immunopharmacol 2018; 54:46-51. [DOI: 10.1016/j.intimp.2017.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/30/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023]
|
18
|
Wu X, Dong L, Lin X, Li J. Relevance of the NLRP3 Inflammasome in the Pathogenesis of Chronic Liver Disease. Front Immunol 2017; 8:1728. [PMID: 29312290 PMCID: PMC5732938 DOI: 10.3389/fimmu.2017.01728] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/22/2017] [Indexed: 12/28/2022] Open
Abstract
Inflammation is a common characteristic of chronic liver disease (CLD). Inflammasomes are multiprotein complexes that can sense and recognize various exogenous and endogenous danger signals, eventually activating interleukin (IL)-1β and IL-18. The sensor component of the inflammasome system is a nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). The NLRs family pyrin domain containing 3 (NLRP3) inflammasome has been involved in the initiation and progression of CLD. However, the molecular mechanisms by which it triggers liver inflammation and damage remain unclear. Here, we focus on recent advances on the potential role of NLRP3 inflammasome activation in the progression of CLD, including viral hepatitis, non-alcoholic steatohepatitis and alcoholic liver disease, and in particular, its ability to alleviate liver inflammation in animal models. Additionally, we also discuss various pharmacological inhibitors identifying the NLRP3 inflammasome signaling cascade as novel therapeutic targets in the treatment of CLD. In summary, this review summarizes the relevance of the NLRP3 inflammasome in the initiation and progression of CLD, and provides critical targets to suppress the development of CLD in clinical management.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Department of Cardiology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States.,School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILDAMU, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Lei Dong
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States.,School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xianhe Lin
- Department of Cardiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILDAMU, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|