1
|
Martino EA, Bruzzese A, Labanca C, Mendicino F, Lucia E, Olivito V, Stanzione G, Zimbo A, Pozzi S, Neri A, Morabito F, Vigna E, Gentile M. Investigational CXCR4 inhibitors in early phase development for the treatment of hematological malignancies. Expert Opin Investig Drugs 2024; 33:915-924. [PMID: 39096094 DOI: 10.1080/13543784.2024.2388567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION CXCR4/CXCL12 axis regulates cell proliferation, survival, and differentiation, as well as the homing and mobilization of hematopoietic stem cells (HSCs) from bone marrow niches to the peripheral blood. Furthermore, CXCR4 and CXCL12 are key mediators of cross-talk between hematological malignancies and their microenvironments. CXCR4 overexpression drives disease progression, boosts tumor cell survival, and promotes chemoresistance, leading to poor prognosis. AREAS COVERED In light of these discoveries, scientific investigations, and clinical trials have underscored the therapeutic promise found in small-molecule antagonists like plerixafor, peptides/peptidomimetics, such as BKT140, monoclonal antibodies like PF-06747143 and ulocuplumab, as well as microRNAs. Their efficacy is evident in reducing tumor burden, inducing apoptosis and sensitizing malignant cells to conventional chemotherapies. This overview delves into the pathogenic role of the CXC4/CXCL12 axis in hematological neoplasms and examines the clinical application of key CXCR4 antagonists. EXPERT OPINION The information collectively emphasizes the potential of CXCR4 antagonists as a therapeutic strategy for hematologic malignancies, showcasing advancements in preclinical and clinical studies. As these therapeutic strategies progress through clinical trials, their potential to reshape the prognosis of hematologic malignancies will become increasingly apparent.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Gaia Stanzione
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Division of Hematology, Azienda Policlinico-S. Marco, University of Catania, Catania, Italy
| | - Annamaria Zimbo
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- UOC Laboratorio Analisi Cliniche, Biomolecolari e Genetica, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Stefano Pozzi
- Ematologia Azienda USL-IRCSS Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Reggio Emilia, EmiliaRomagna, Italy
| | | | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
2
|
Liu F, Sun X, Deng S, Wu Y, Liu X, Wu C, Huang K, Li Y, Dong Z, Xiao W, Li M, Chen Z, Ju Z, Xiao J, Du J, Zeng H. Cxcl10 and Cxcr3 regulate self-renewal and differentiation of hematopoietic stem cells. Stem Cell Res Ther 2024; 15:248. [PMID: 39113086 PMCID: PMC11304843 DOI: 10.1186/s13287-024-03861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The function of hematopoietic stem cells (HSC) is regulated by HSC internal signaling pathways and their microenvironment. Chemokines and chemokine ligands play important roles in the regulation of HSC function. Yet, their functions in HSC are not fully understood. METHODS We established Cxcr3 and Cxcl10 knockout mouse models (Cxcr3-/- and Cxcl10-/-) to analyze the roles of Cxcr3 or Cxcl10 in regulating HSC function. The cell cycle distribution of LT-HSC was assessed via flow cytometry. Cxcr3-/- and Cxcl10-/- stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. To study the effects of Cxcr3 or Cxcl10 deficient bone marrow microenvironment, we transplanted CD45.1 donor cells into Cxcr3-/-or Cxcl10-/- recipient mice (CD45.2) and examined donor-contributed hematopoiesis. RESULTS Deficiency of Cxcl10 and its receptor Cxcr3 led to decreased BM cellularity in mice, with a significantly increased proportion of LT-HSC. Cxcl10-/- stem/progenitor cells showed reduced self-renewal capacity in the secondary transplantation assay. Notably, Cxcl10-/- donor-derived cells preferentially differentiated into B lymphocytes, with skewed myeloid differentiation ability. Meanwhile, Cxcr3-deficient HSCs demonstrated a reconstitution disadvantage in secondary transplantation, but the lineage bias was not significant. Interestingly, the absence of Cxcl10 or Cxcr3 in bone marrow microenvironment did not affect HSC function. CONCLUSIONS The Cxcl10 and Cxcr3 regulate the function of HSC, including self-renewal and differentiation, adding to the understanding of the roles of chemokines in the regulation of HSC function.
Collapse
Affiliation(s)
- Fangshu Liu
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Xiaofan Sun
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Suqi Deng
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Yingying Wu
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Xingcheng Liu
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Caiping Wu
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Kexiu Huang
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Zexuan Dong
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Weihao Xiao
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Manchun Li
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jia Xiao
- Clinical Medicine Research Institute, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China.
| | - Hui Zeng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
3
|
Li Z, Liu J, Sun X, Li Y. Role of the CXCR4- Gnαq- Plcβ signaling pathway in the pathogenesis of collagen-induced arthritis in rats. Heliyon 2024; 10:e27861. [PMID: 38533073 PMCID: PMC10963323 DOI: 10.1016/j.heliyon.2024.e27861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease in which immune cells and inflammatory cytokines are abnormally activated, leading to immunoregulatory dysfunction in the body and triggering systemic inflammatory responses. The interaction between CXC chemokine receptor 4 (CXCR4) and heterotrimeric G-protein α-subunit Gαq (Gnαq) activates phospholipase Cβ (PLCβ), which influences the expression of downstream effectors and participates widely in the onset and development of various diseases, thus suggesting the potential involvement of these molecules in RA pathogenesis. Therefore, the present study aimed to determine whether the CXCR4-Gnαq-PLCβ signaling pathway participates in the onset and development of RA. Using a collagen-induced arthritis (CIA) rat model, we found that compared with the control (healthy) rat group, CIA rats exhibited highly time-dependent arthritis, with the maximum arthritis score occurring in week 3. In contrast to the splenic and joint tissue of control rats, CIA rats showed obvious hyperplasia in the lymphoid white pulp and main germination centers of the spleen, narrowing of joint cavities, and inflammatory cellular infiltration on articular surfaces. The serum levels of expression of IL-1β, IL-4, IL-6, and TNF-α were significantly elevated (P < 0.05, P < 0.01). Core genes of the CXCR4-Gnαq-PLCβ pathway, namely CXCR4, Gnαq, PLCβ1, MMP1, and MMP3, also showed a significant increase in mRNA and protein expression levels (P < 0.05, P < 0.01). Proteins related to the CXCR4-Gnαq-PLCβ pathway were mainly localized to the red and white pulp regions in the spleen as well as in stromal, endothelial, and subdifferentiated synovial cells in the joints. These results indicated that CXCR4 is dependent on Gnαq for inducing the expression of PLCβ1 and stimulation of secretion of inflammatory cytokines by inflammatory cells. This consequently affects the expression of matrix metalloproteinases (MMPs), which serve as downstream effectors, thereby promoting RA pathogenesis. Our findings play an important role in elucidating the mechanisms of the onset and development of RA.
Collapse
Affiliation(s)
- Zhen Li
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, PR China
| | - Jingshu Liu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China
| | - Xiaowei Sun
- Department of Basic Medicine, Changzhi Medical College, Changzhi, 046000, PR China
| | - Yutong Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, PR China
| |
Collapse
|
4
|
Abstract
For our immune system to contain or eliminate malignant solid tumours, both myeloid and lymphoid haematopoietic cells must not only extravasate from the bloodstream into the tumour tissue but also further migrate to various specialized niches of the tumour microenvironment to functionally interact with each other, with non-haematopoietic stromal cells and, ultimately, with cancer cells. These interactions regulate local immune cell survival, proliferative expansion, differentiation and their execution of pro-tumour or antitumour effector functions, which collectively determine the outcome of spontaneous or therapeutically induced antitumour immune responses. None of these interactions occur randomly but are orchestrated and critically depend on migratory guidance cues provided by chemokines, a large family of chemotactic cytokines, and their receptors. Understanding the functional organization of the tumour immune microenvironment inevitably requires knowledge of the multifaceted roles of chemokines in the recruitment and positioning of its cellular constituents. Gaining such knowledge will not only generate new insights into the mechanisms underlying antitumour immunity or immune tolerance but also inform the development of biomarkers (or 'biopatterns') based on spatial tumour tissue analyses, as well as novel strategies to therapeutically engineer immune responses in patients with cancer. Here we will discuss recent observations on the role of chemokines in the tumour microenvironment in the context of our knowledge of their physiological functions in development, homeostasis and antimicrobial responses.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia K Lill
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukas M Altenburger
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Ezzat GM, Meki ARMA, Meligy FY, Omar H, Nassar AY. Antiapoptotic and chemotaxis-stimulating effects of poly (D, L-lactide-co-glycolide)-chitosan and whey proteins against aflatoxicosis-induced splenic and thymic atrophy. Mol Biol Rep 2023; 50:9805-9824. [PMID: 37840065 PMCID: PMC10676322 DOI: 10.1007/s11033-023-08902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Aflatoxin B (AFB) induces toxicological effects on the liver and immune organs. The whey proteins can modulate the immune response during aflatoxicosis. Our work evaluates the novel polylactic acid-glycolic acid-chitosan-encapsulated bovine and camel whey proteins against AFB-induced thymic and splenic atrophy in rats. METHODS AND RESULTS Seventy adult male Wister albino rats were divided into a control healthy group (G1) and six AFB1-intoxicated groups (G2-G7). One of the following supplements: distilled water, camel whey proteins (CWP), bovine whey proteins, poly (D, L-lactide-co-glycolide) (PLGA)- chitosan-loaded with camel whey protein microparticles (CMP), PLGA-chitosan loaded with bovine whey protein microparticles (BMP), and PLGA-chitosan nanoparticles were administered as prophylactic supplements to AFB1-intoxicated groups. The AFB-treated group showed significantly higher hepatic levels of oxidative stress and lower levels of antioxidants. In the aflatoxicated group, atrophy of the splenic lymphatic nodules and disfigurement in the organisation with an apparent decrease in the thickness of the cortex in the thymus were observed, as well as a decrease in splenic and thymic CD4+T and CD8+T lymphocytes. Moreover, CXCL12 levels were downregulated, whereas tumour necrosis factor-alpha, nuclear factor kappa B, and cleaved caspase-3 levels were upregulated. CWP, BMP, and CMP supplements markedly decreased oxidative stress, inflammation, and apoptosis, as well as significantly raised CXCL12, CD4+T, and CD8+T cells. CONCLUSIONS The CWP, BMP, and CMP supplements rescue the liver and immune tissues from the toxic effects of AFB through their antioxidant, antiapoptotic, anti-inflammatory, and chemotaxis-enhancing roles.
Collapse
Affiliation(s)
- Ghada M Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Abdel-Raheim M A Meki
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
- Biochemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, 11196, Jordan
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hend Omar
- Animal Health Research Institute, Assiut, Egypt
| | - Ahmed Y Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
6
|
Quotti Tubi L, Canovas Nunes S, Mandato E, Pizzi M, Vitulo N, D’Agnolo M, Colombatti R, Martella M, Boaro MP, Doriguzzi Breatta E, Fregnani A, Spinello Z, Nabergoj M, Filhol O, Boldyreff B, Albiero M, Fadini GP, Gurrieri C, Vianello F, Semenzato G, Manni S, Trentin L, Piazza F. CK2β Regulates Hematopoietic Stem Cell Biology and Erythropoiesis. Hemasphere 2023; 7:e978. [PMID: 38026791 PMCID: PMC10673422 DOI: 10.1097/hs9.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
The Ser-Thr kinase CK2 plays important roles in sustaining cell survival and resistance to stress and these functions are exploited by different types of blood tumors. Yet, the physiological involvement of CK2 in normal blood cell development is poorly known. Here, we discovered that the β regulatory subunit of CK2 is critical for normal hematopoiesis in the mouse. Fetal livers of conditional CK2β knockout embryos showed increased numbers of hematopoietic stem cells associated to a higher proliferation rate compared to control animals. Both hematopoietic stem and progenitor cells (HSPCs) displayed alterations in the expression of transcription factors involved in cell quiescence, self-renewal, and lineage commitment. HSPCs lacking CK2β were functionally impaired in supporting both in vitro and in vivo hematopoiesis as demonstrated by transplantation assays. Furthermore, KO mice developed anemia due to a reduced number of mature erythroid cells. This compartment was characterized by dysplasia, proliferative defects at early precursor stage, and apoptosis at late-stage erythroblasts. Erythroid cells exhibited a marked compromise of signaling cascades downstream of the cKit and erythropoietin receptor, with a defective activation of ERK/JNK, JAK/STAT5, and PI3K/AKT pathways and perturbations of several transcriptional programs as demonstrated by RNA-Seq analysis. Moreover, we unraveled an unforeseen molecular mechanism whereby CK2 sustains GATA1 stability and transcriptional proficiency. Thus, our work demonstrates new and crucial functions of CK2 in HSPC biology and in erythropoiesis.
Collapse
Affiliation(s)
- Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sara Canovas Nunes
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisa Mandato
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marco Pizzi
- Department of Medicine, Cytopathology and Surgical Pathology Unit, University of Padova, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Italy
| | - Mirco D’Agnolo
- Department of Women’s and Child’s Health, University of Padova, Italy
| | | | | | - Maria Paola Boaro
- Department of Women’s and Child’s Health, University of Padova, Italy
| | - Elena Doriguzzi Breatta
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Anna Fregnani
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Zaira Spinello
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Mitja Nabergoj
- Hematology Service, Institut Central des Hôpitaux (ICH), Hôpital du Valais, Sion, Switzerland
| | - Odile Filhol
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1036, Institute de Reserches en Technologies et Sciences pour le Vivant/Biologie du Cancer et de l’Infection, Grenoble, France
| | | | - Mattia Albiero
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
- Veneto Institute of Molecular Medicine, Experimental Diabetology Lab, Padova, Italy
| | - Gian Paolo Fadini
- Veneto Institute of Molecular Medicine, Experimental Diabetology Lab, Padova, Italy
- Department of Medicine, University of Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Fabrizio Vianello
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
7
|
Shrum SA, Nukala U, Shrimali S, Pineda EN, Krager KJ, Thakkar S, Jones DE, Pathak R, Breen PJ, Aykin-Burns N, Compadre CM. Tocotrienols Provide Radioprotection to Multiple Organ Systems through Complementary Mechanisms of Antioxidant and Signaling Effects. Antioxidants (Basel) 2023; 12:1987. [PMID: 38001840 PMCID: PMC10668991 DOI: 10.3390/antiox12111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Tocotrienols have powerful radioprotective properties in multiple organ systems and are promising candidates for development as clinically effective radiation countermeasures. To facilitate their development as clinical radiation countermeasures, it is crucial to understand the mechanisms behind their powerful multi-organ radioprotective properties. In this context, their antioxidant effects are recognized for directly preventing oxidative damage to cellular biomolecules from ionizing radiation. However, there is a growing body of evidence indicating that the radioprotective mechanism of action for tocotrienols extends beyond their antioxidant properties. This raises a new pharmacological paradigm that tocotrienols are uniquely efficacious radioprotectors due to a synergistic combination of antioxidant and other signaling effects. In this review, we have covered the wide range of multi-organ radioprotective effects observed for tocotrienols and the mechanisms underlying it. These radioprotective effects for tocotrienols can be characterized as (1) direct cytoprotective effects, characteristic of the classic antioxidant properties, and (2) other effects that modulate a wide array of critical signaling factors involved in radiation injury.
Collapse
Affiliation(s)
- Stephen A. Shrum
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA
| | - Ujwani Nukala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Shivangi Shrimali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Edith Nathalie Pineda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Kimberly J. Krager
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Shraddha Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Darin E. Jones
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Philip J. Breen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Cesar M. Compadre
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA
| |
Collapse
|
8
|
Di Donato R, Bonecchi R, Albano F. Canonical and atypical chemokine receptors in the neutrophil life cycle. Cytokine 2023; 169:156297. [PMID: 37453326 DOI: 10.1016/j.cyto.2023.156297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Chemokines are mainly studied for their local function in the control of leukocyte extravasation in homeostatic and inflammatory conditions. However, they have additional roles at the systemic level including the regulation of the hematopoietic process and leukocyte differentiation. Due to the redundancy and pleiotropicity of the chemokine system, chemokines have often multiple and complex roles in neutrophil differentiation ranging from retention and control of proliferation of progenitors to the mobilization of mature cells from the bone marrow (BM) to the bloodstream and their further differentiation in tissues. Atypical chemokine receptors (ACKRs) are regulators of the chemokine system by controlling chemokine bioavailability and chemokine receptor function. Even though ACKRs bind a wide range of chemokines, they appear to have a selective role in the process of neutrophil production and differentiation. The aim of this review is to give an overview of the current evidence regarding the role of chemokines and chemokine receptors in the life of neutrophils with a focus on the regulation exerted by ACKRs.
Collapse
Affiliation(s)
- Rachele Di Donato
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Raffaella Bonecchi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
| | - Francesca Albano
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| |
Collapse
|
9
|
Megnekou R, Nana CMM, Djontu JC, Bitye BMZ, Nana BC, Zangue BKT, Donkeu CJ, Essangui E, Salawiss RM, Seumko’o RNM, Ayong L, Leke RGF. Chemokine modulation in microscopic and submicroscopic Plasmodium falciparum malaria infection in women at delivery in Yaoundé, Cameroon. PLoS One 2023; 18:e0280615. [PMID: 36689438 PMCID: PMC9870109 DOI: 10.1371/journal.pone.0280615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
In pregnancy-associated malaria, chemokines such as CXCL-4, CXCL-13, CXCL-16, and CCL-24 play critical roles in leucocyte trafficking to tissue sites in the infected placenta where inflammatory reactions are active. However, how plasma levels of these chemokines associate with Plasmodium falciparum placental malaria and pregnancy outcomes remains not well understood. The present study analyzed the plasma levels of CXCL-4, CXCL-13, CXCL-16, and CCL-24 chemokines in matched peripheral, placental and cord blood in relation with placental malaria (PM), and with submicroscopic parasitaemia. This was a retrospective case-control study (1:3 ratio) involving samples from 134 women (34 PM+ and 100 PM-) enrolled at delivery at the Marie Reine Health Center in Yaoundé, Cameroon between June 2013 and October 2018. Samples were collected just after delivery and used to diagnose microscopic and submicroscopic Plasmodium falciparum infections. Submicroscopic infections were detected by reverse transcription LAMP whereas chemokine levels were determined by Magnetic Luminex Screening Assay. Overall, PM was associated with increased plasma levels of CXCL-13 and CXCL-16 and low levels of CXCL-4 and CCL-24 in both peripheral and placental blood (0.0002 ≤ p ≤ 0.042). Similarly, CCL-24 levels in peripheral and placental blood samples were significantly lower in submicroscopically infected women compared to healthy controls (p = 0.04 and 0.02, respectively). Maternal hemoglobin levels increased with peripheral plasma levels of CXCL-4 (p = 0.005), CXCL-16 (p = 0.03), and CCL-24 (p = 0.002) while birth weight was lower for babies born from women with high levels of peripheral CXCL-13 (p = 0.0006) and low levels of cord CXCL-4 and CCL-24 (p = 0.02 and 0.08, respectively). Together the data suggest that low levels of CXCL-4 and CCL-24 coupled with high plasma levels of CXCL-13 and for a lesser extend CXCL-16 represent signatures of PM in the study population. These findings are relevant for understanding the immunopathogenesis of PM and developing new therapeutic or preventive strategies against severe PM outcomes.
Collapse
Affiliation(s)
- Rosette Megnekou
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Chris Marco Mbianda Nana
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Claude Djontu
- The Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Bernard Marie Zambo Bitye
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Benderli Christine Nana
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Berenice Kenfack Tekougang Zangue
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Estelle Essangui
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Rodrigue Mbea Salawiss
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Reine Ndeumou Medouen Seumko’o
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Rose Gana Fomban Leke
- The Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
10
|
Klak K, Maciuszek M, Marcinkowska M, Verburg-van Kemenade BML, Chadzinska M. The importance of CXC-receptors CXCR1-2 and CXCR4 for adaptive regulation of the stress axis in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2022; 127:647-658. [PMID: 35803509 DOI: 10.1016/j.fsi.2022.06.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In an ever-changing environment, an adaptive stress response is the pivotal regulatory mechanism to maintain allostasis. Physiologic responses to stressors enable to overcome potential threat. Glucocorticoid effects can be considered compensatory and adaptive, however prolonged or excessive glucocorticoid secretion can be also maladaptive and detrimental. Therefore, it must be tightly regulated. Apart from the essential hormonal feedback regulation, evidence accrues that cytokines, e.g., proinflammatory interleukin 1β (IL-1β), also play an important regulatory role in the stress axis. Here we focused on the potential role of CXC chemokines (CXCL8 and CXCL12) and their receptors (CXCR1, 2 and 4) in the regulation of the stress response in common carp. We studied changes in gene expression of CXC chemokines and CXCRs in the stress axis organs (hypothalamus-pituitary gland-head kidney) upon 11 h of restraint stress and we established how CXCR blocking affects the activation of the stress axis and the synthesis/conversion of cortisol. During restraint stress, gene expression of the majority of the proinflammatory CXCL8 and homeostatic CXCL12 chemokines and their receptors was upregulated in the stress axis organs. Inhibition of CXCR1-2 and CXCR4 differentially affected the expression of genes encoding stress-related molecules: hormones, binding proteins, receptors as well as expression of genes encoding IL-1β and its receptor. Moreover, we observed that CXC chemokines, via interaction with their respective CXCRs, regulate gene expression of molecules involved in cortisol synthesis and conversion and consistently affect the level of cortisol released into the circulation during the stress response. We revealed that in fish, CXC chemokines and their receptors are important regulators of the stress response at multiple levels of the stress axis, with particularly pronounced effects on steroidogenesis and cortisol conversion in the head kidney.
Collapse
Affiliation(s)
- Katarzyna Klak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Magdalena Marcinkowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | | | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|
11
|
Faisal M, Hassan M, Kumar A, Zubair M, Jamal M, Menghwar H, Saad M, Kloczkowski A. Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. Int J Mol Sci 2022; 23:7285. [PMID: 35806290 PMCID: PMC9266955 DOI: 10.3390/ijms23137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized microenvironment in a peculiar anatomic location which regulates the maintenance of stem cells and controls its functions. Recent scientific progress in experimental technologies have enabled the specific detection of epigenetic factors responsible for the maintenance and quiescence of the hematopoietic niche, which has improved our knowledge of regulatory mechanisms. The aberrant role of RNA-binding proteins and their impact on the disruption of stem cell biology have been reported by a number of recent studies. Despite recent modernization in hematopoietic microenvironment research avenues, our comprehension of the signaling mechanisms and interactive pathways responsible for integration of the hematopoietic niche is still limited. In the past few decades, zebrafish usage with regards to exploratory studies of the hematopoietic niche has expanded our knowledge for deeper understanding of novel cellular interactions. This review provides an update on the functional roles of different genetic and epigenetic factors and molecular signaling events at different sections of the hematopoietic microenvironment. The explorations of different molecular approaches and interventions of latest web-based tools being used are also outlined. This will help us to get more mechanistic insights and develop therapeutic options for the malignancies.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Aman Kumar
- Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Muhammad Zubair
- Department of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan 430072, China;
| | - Harish Menghwar
- Axe Molecular Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), Laval University, Quebec City, QC G1V 4G2, Canada;
| | - Muhammad Saad
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43205, USA;
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
12
|
Mehrpouri M. The contributory roles of the CXCL12/CXCR4/CXCR7 axis in normal and malignant hematopoiesis: A possible therapeutic target in hematologic malignancies. Eur J Pharmacol 2022; 920:174831. [PMID: 35183534 DOI: 10.1016/j.ejphar.2022.174831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
|
13
|
Chemokines as Regulators of Neutrophils: Focus on Tumors, Therapeutic Targeting, and Immunotherapy. Cancers (Basel) 2022; 14:cancers14030680. [PMID: 35158948 PMCID: PMC8833344 DOI: 10.3390/cancers14030680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Neutrophils are the main leukocyte subset present in human blood and play a fundamental role in the defense against infections. Neutrophils are also an important component of the tumor stroma because they are recruited by selected chemokines produced by both cancer cells and other cells of the stroma. Even if their presence has been mostly associated with a bad prognosis, tumor-associated neutrophils are present in different maturation and activation states and can exert both protumor and antitumor activities. In addition, it is now emerging that chemokines not only induce neutrophil directional migration but also have an important role in their activation and maturation. For these reasons, chemokines and chemokine receptors are now considered targets to improve the antitumoral function of neutrophils in cancer immunotherapy. Abstract Neutrophils are an important component of the tumor microenvironment, and their infiltration has been associated with a poor prognosis for most human tumors. However, neutrophils have been shown to be endowed with both protumor and antitumor activities, reflecting their heterogeneity and plasticity in cancer. A growing body of studies has demonstrated that chemokines and chemokine receptors, which are fundamental regulators of neutrophils trafficking, can affect neutrophil maturation and effector functions. Here, we review human and mouse data suggesting that targeting chemokines or chemokine receptors can modulate neutrophil activity and improve their antitumor properties and the efficiency of immunotherapy.
Collapse
|
14
|
Das S, Saqib M, Meng RC, Chittur SV, Guan Z, Wan F, Sun W. Hemochromatosis drives acute lethal intestinal responses to hyperyersiniabactin-producing Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 2022; 119:e2110166119. [PMID: 34969677 PMCID: PMC8764673 DOI: 10.1073/pnas.2110166119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Hemachromatosis (iron-overload) increases host susceptibility to siderophilic bacterial infections that cause serious complications, but the underlying mechanisms remain elusive. The present study demonstrates that oral infection with hyperyersiniabactin (Ybt) producing Yersinia pseudotuberculosis Δfur mutant (termed Δfur) results in severe systemic infection and acute mortality to hemochromatotic mice due to rapid disruption of the intestinal barrier. Transcriptome analysis of Δfur-infected intestine revealed up-regulation in cytokine-cytokine receptor interactions, the complement and coagulation cascade, the NF-κB signaling pathway, and chemokine signaling pathways, and down-regulation in cell-adhesion molecules and Toll-like receptor signaling pathways. Further studies indicate that dysregulated interleukin (IL)-1β signaling triggered in hemachromatotic mice infected with Δfur damages the intestinal barrier by activation of myosin light-chain kinases (MLCK) and excessive neutrophilia. Inhibiting MLCK activity or depleting neutrophil infiltration reduces barrier disruption, largely ameliorates immunopathology, and substantially rescues hemochromatotic mice from lethal Δfur infection. Moreover, early intervention of IL-1β overproduction can completely rescue hemochromatotic mice from the lethal infection.
Collapse
Affiliation(s)
- Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Ryan C Meng
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY 12144
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY 12144
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208;
| |
Collapse
|
15
|
Paudel S, Ghimire L, Jin L, Jeansonne D, Jeyaseelan S. Regulation of emergency granulopoiesis during infection. Front Immunol 2022; 13:961601. [PMID: 36148240 PMCID: PMC9485265 DOI: 10.3389/fimmu.2022.961601] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
During acute infectious and inflammatory conditions, a large number of neutrophils are in high demand as they are consumed in peripheral organs. The hematopoietic system rapidly responds to the demand by turning from steady state to emergency granulopoiesis to expedite neutrophil generation in the bone marrow (BM). How the hematopoietic system integrates pathogenic and inflammatory stress signals into the molecular cues of emergency granulopoiesis has been the subject of investigations. Recent studies in the field have highlighted emerging concepts, including the direct sensing of pathogens by BM resident or sentinel hematopoietic stem and progenitor cells (HSPCs), the crosstalk of HSPCs, endothelial cells, and stromal cells to convert signals to granulopoiesis, and the identification of novel inflammatory molecules, such as C/EBP-β, ROS, IL-27, IFN-γ, CXCL1 with direct effects on HSPCs. In this review, we will provide a detailed account of emerging concepts while reassessing well-established cellular and molecular players of emergency granulopoiesis. While providing our views on the discrepant results and theories, we will postulate an updated model of granulopoiesis in the context of health and disease.
Collapse
Affiliation(s)
- Sagar Paudel
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Laxman Ghimire
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Liliang Jin
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Duane Jeansonne
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
16
|
Bai X, Yang T, Putz AM, Wang Z, Li C, Fortin F, Harding JCS, Dyck MK, Dekkers JCM, Field CJ, Plastow GS. Investigating the genetic architecture of disease resilience in pigs by genome-wide association studies of complete blood count traits collected from a natural disease challenge model. BMC Genomics 2021; 22:535. [PMID: 34256695 PMCID: PMC8278769 DOI: 10.1186/s12864-021-07835-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Genetic improvement for disease resilience is anticipated to be a practical method to improve efficiency and profitability of the pig industry, as resilient pigs maintain a relatively undepressed level of performance in the face of infection. However, multiple biological functions are known to be involved in disease resilience and this complexity means that the genetic architecture of disease resilience remains largely unknown. Here, we conducted genome-wide association studies (GWAS) of 465,910 autosomal SNPs for complete blood count (CBC) traits that are important in an animal’s disease response. The aim was to identify the genetic control of disease resilience. Results Univariate and multivariate single-step GWAS were performed on 15 CBC traits measured from the blood samples of 2743 crossbred (Landrace × Yorkshire) barrows drawn at 2-weeks before, and at 2 and 6-weeks after exposure to a polymicrobial infectious challenge. Overall, at a genome-wise false discovery rate of 0.05, five genomic regions located on Sus scrofa chromosome (SSC) 2, SSC4, SSC9, SSC10, and SSC12, were significantly associated with white blood cell traits in response to the polymicrobial challenge, and nine genomic regions on multiple chromosomes (SSC1, SSC4, SSC5, SSC6, SSC8, SSC9, SSC11, SSC12, SSC17) were significantly associated with red blood cell and platelet traits collected before and after exposure to the challenge. By functional enrichment analyses using Ingenuity Pathway Analysis (IPA) and literature review of previous CBC studies, candidate genes located nearby significant single-nucleotide polymorphisms were found to be involved in immune response, hematopoiesis, red blood cell morphology, and platelet aggregation. Conclusions This study helps to improve our understanding of the genetic basis of CBC traits collected before and after exposure to a polymicrobial infectious challenge and provides a step forward to improve disease resilience. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07835-4.
Collapse
Affiliation(s)
- Xuechun Bai
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tianfu Yang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Current: ST Genetics, Navasota, TX, USA
| | - Austin M Putz
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Changxi Li
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Frédéric Fortin
- Centre de Développement du Porc du Québec, Inc., Quebec City, QC, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael K Dyck
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - Catherine J Field
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Graham S Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Luo S, Lin H, Zhu L, Chen HT, Yang S, Li J, Liu M, Zheng L, Wu C. Optimized Intracellular Staining Reveals Heterogeneous Cytokine Production Ability of Murine and Human Hematopoietic Stem and Progenitor Cells. Front Immunol 2021; 12:654094. [PMID: 33936078 PMCID: PMC8079767 DOI: 10.3389/fimmu.2021.654094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/23/2021] [Indexed: 01/03/2023] Open
Abstract
Under stress conditions, hematopoietic stem and progenitor cells (HSPCs) can translate danger signals into a plethora of cytokine signals. These cytokines, or more precisely their combination, instruct HSPCs to modify the magnitude and composition of hematopoietic output in response to the threat, but investigations into the heterogeneous cytokine expression and regulatory mechanisms are hampered by the technical difficulty of measuring cytokine levels in HSPCs at the single-cell level. Here, we optimized a flow cytometry-based method for the simultaneous assessment of multiple intracellular cytokines in HSPCs. By selecting an optimal combination of cytokine restimulation reagents, protein transport inhibitors, and culture supplements, an optimized restimulation protocol for intracellular staining was developed. Using this method, we successfully examined expression levels of granulocyte/macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in murine and human HSPC subsets under steady-state or different stress conditions. Different cytokine expression patterns were observed, suggesting distinct regulatory modes of cytokine production dependent on the HSPC subset, cytokine, disease, organ, and species. Collectively, this technical advance may help to obtain a better understanding of the nature of HSPC heterogeneity on the basis of differential cytokine production.
Collapse
Affiliation(s)
- Shufeng Luo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Huiling Lin
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lan Zhu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hai-Tian Chen
- First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Siqian Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jinheng Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mingyu Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chong Wu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Hao W, Li M, Pang Y, Du W, Huang X. Increased chemokines levels in patients with chronic obstructive pulmonary disease: correlation with quantitative computed tomography metrics. Br J Radiol 2020; 94:20201030. [PMID: 33237823 DOI: 10.1259/bjr.20201030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE We sought to explore the relationships between multiple chemokines with spirometry, inflammatory mediators and CT findings of emphysema, small airways disease and bronchial wall thickness. METHODS All patients with COPD (n = 65) and healthy control subjects (n = 23) underwent high-resolution CT, with image analysis determining the low attenuation area (LAA), ratio of mean lung attenuation on expiratory and inspiratory scans (E/I MLD) and bronchial wall thickness of inner perimeter of a 10-mm diameter airway (Pi10). At enrollment, subjects underwent pulmonary function studies, chemokines and inflammatory mediators measurements. RESULTS Multiple chemokines (CCL2, CCL3, CCL5, CX3CL1, CXCL8, CXCL9, CXCL10, CXCL11 and CXCL12) and inflammatory mediators (MMP-9, MMP-12, IL-18 and neutrophil count) were markedly increased in the serum of COPD patients compared with healthy controls. There were associations between small airway disease (E/I MLD) and CCL11, CXCL8, CXCL10, CXCL11, CXCL12 and CX3CL1. Especially CXCL8 and CX3CL1 are strongly associated with E/I MLD (r = 0.74, p < 0.001; r = 0.76, p < 0.001, respectively). CXCL8, CXCL12 and CX3CL1 were moderately positively correlated with emphysema (%LAA) (r = 0.49, p < 0.05; r = 0.51, p < 0.05; r = 0.54, p < 0.01, respectively). Bronchial wall thickness (Pi10)showed no significant differences between the COPD and healthy controls,,but there was an association between Pi10 and FEV1% in COPD patients (r=-0.420, p = 0.048). Our statistical results showed that there were not any associations between airway wall thickness (Pi10) and chemokines. CONCLUSION Pulmonary chemokines levels are closely associated with the extent of gas trapping, small airways disease and emphysema identified on high-resolution chest CT scan. ADVANCES IN KNOWLEDGE This study combines quantitative CT analysis with multiplex chemokines and inflammatory mediators to identify a new role of pathological changes in COPD.
Collapse
Affiliation(s)
- Wendong Hao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'anJiaotong University, Xi'an, China.,Department of Respiratory Medicine, The Affiliated Hospital of Yan'an University, Yan'an, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'anJiaotong University, Xi'an, China
| | - Yamei Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'anJiaotong University, Xi'an, China
| | - Weiping Du
- Clinical Laboratory Diagnosis Department, The Affiliated Hospital of Yan'an University, Yan'an, China
| | - Xiaoqi Huang
- Department of Radiology, The Affiliated Hospital of Yan'an University, Yan'an, China
| |
Collapse
|
19
|
Capucetti A, Albano F, Bonecchi R. Multiple Roles for Chemokines in Neutrophil Biology. Front Immunol 2020; 11:1259. [PMID: 32733442 PMCID: PMC7363767 DOI: 10.3389/fimmu.2020.01259] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022] Open
Abstract
Chemokines are recognized as the most critical mediators for selective neutrophil recruitment during inflammatory conditions. Furthermore, they are considered fundamental regulators of neutrophil mobilization from the bone marrow (BM) to the bloodstream and for their homing back at the end of their life for apoptosis and clearance. However, chemokines are also important mediators of neutrophil effector functions including oxidative burst, degranulation, neutrophil extracellular trap (NET)osis, and production of inflammatory mediators. Neutrophils have been historically considered as a homogeneous population. In recent years, several maturation stages and subsets with different phenotypic profiles and effector functions were described both in physiological and pathological conditions such as infections, autoimmunity, and cancer. The aim of this review is to give an overview of the current evidence regarding the role of chemokines and chemokine receptors in neutrophil biology, including their possible role in neutrophil maturation, differentiation, and in defining emerging neutrophil subsets.
Collapse
Affiliation(s)
- Arianna Capucetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Francesca Albano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Raffaella Bonecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
20
|
Rajendiran S, Smith-Berdan S, Kunz L, Risolino M, Selleri L, Schroeder T, Forsberg EC. Ubiquitous overexpression of CXCL12 confers radiation protection and enhances mobilization of hematopoietic stem and progenitor cells. Stem Cells 2020; 38:1159-1174. [PMID: 32442338 DOI: 10.1002/stem.3205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
C-X-C motif chemokine ligand 12 (CXCL12; aka SDF1α) is a major regulator of a number of cellular systems, including hematopoiesis, where it influences hematopoietic cell trafficking, proliferation, and survival during homeostasis and upon stress and disease. A variety of constitutive, temporal, ubiquitous, and cell-specific loss-of-function models have documented the functional consequences on hematopoiesis upon deletion of Cxcl12. Here, in contrast to loss-of-function experiments, we implemented a gain-of-function approach by generating a doxycycline-inducible transgenic mouse model that enables spatial and temporal overexpression of Cxcl12. We demonstrated that ubiquitous CXCL12 overexpression led to an increase in multipotent progenitors in the bone marrow and spleen. The CXCL12+ mice displayed reduced reconstitution potential as either donors or recipients in transplantation experiments. Additionally, we discovered that Cxcl12 overexpression improved hematopoietic stem and progenitor cell mobilization into the blood, and conferred radioprotection by promoting quiescence. Thus, this new CXCL12+ mouse model provided new insights into major facets of hematopoiesis and serves as a versatile resource for studying CXCL12 function in a variety of contexts.
Collapse
Affiliation(s)
- Smrithi Rajendiran
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Stephanie Smith-Berdan
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Maurizio Risolino
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine and Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, California, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine and Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, California, USA
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
21
|
Trino S, Zoppoli P, Carella AM, Laurenzana I, Weisz A, Memoli D, Calice G, La Rocca F, Simeon V, Savino L, Del Vecchio L, Musto P, Caivano A, De Luca L. DNA methylation dynamic of bone marrow hematopoietic stem cells after allogeneic transplantation. Stem Cell Res Ther 2019; 10:138. [PMID: 31109375 PMCID: PMC6528331 DOI: 10.1186/s13287-019-1245-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (AHSCT) is a curative therapeutic approach for different hematological malignancies (HMs), and epigenetic modifications, including DNA methylation, play a role in the reconstitution of the hematopoietic system after AHSCT. This study aimed to explore global DNA methylation dynamic of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) from donors and their respective recipients affected by acute myeloid leukemia (AML), acute lymphoid leukemia (ALL) and Hodgkin lymphoma (HL) during the first year after transplant. METHODS We measured DNA methylation profile by Illumina HumanMethylationEPIC in BM HSPC of 10 donors (t0) and their matched recipients at different time points after AHSCT, at day + 30 (t1), + 60 (t2), + 120 (t3), + 180 (t4), and + 365 (t5). Differential methylation analysis was performed by using R software and CRAN/Bioconductor packages. Gene set enrichment analysis was carried out on promoter area of significantly differentially methylated genes by clusterProfiler package and the mSigDB genes sets. RESULTS Results show significant differences in the global methylation profile between HL and acute leukemias, and between patients with mixed and complete chimerism, with a strong methylation change, with prevailing hyper-methylation, occurring 30 days after AHSCT. Functional analysis of promoter methylation changes identified genes involved in hematopoietic cell activation, differentiation, shaping, and movement. This could be a consequence of donor cell "adaptation" in recipient BM niche. Interestingly, this epigenetic remodeling was reversible, since methylation returns similar to that of donor HSPCs after 1 year. Only for a pool of genes, mainly involved in dynamic shaping and trafficking, the DNA methylation changes acquired after 30 days were maintained for up to 1 year post-transplant. Finally, preliminary data suggest that the methylation profile could be used as predictor of relapse in ALL. CONCLUSIONS Overall, these data provide insights into the DNA methylation changes of HSPCs after transplantation and a new framework to investigate epigenetics of AHSCT and its outcomes.
Collapse
Affiliation(s)
- Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy
| | - Pietro Zoppoli
- Laboratory of Preclinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy
| | - Angelo Michele Carella
- SSD Unità di terapia intensiva ematologica e terapie cellulari, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Baronissi, SA Italy
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Baronissi, SA Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy
| | - Francesco La Rocca
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS - Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy
| | - Vittorio Simeon
- Medical Statistics Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucia Savino
- SSD Unità di terapia intensiva ematologica e terapie cellulari, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Luigi Del Vecchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80138 Naples, Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, IRCCS - Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy
| | - Antonella Caivano
- Laboratory of Preclinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy
| | - Luciana De Luca
- Laboratory of Preclinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy
| |
Collapse
|
22
|
Borroni EM, Savino B, Bonecchi R, Locati M. Chemokines sound the alarmin: The role of atypical chemokine in inflammation and cancer. Semin Immunol 2018; 38:63-71. [DOI: 10.1016/j.smim.2018.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022]
|