1
|
Nazziwa J, Freyhult E, Hong MG, Johansson E, Årman F, Hare J, Gounder K, Rezeli M, Mohanty T, Kjellström S, Kamali A, Karita E, Kilembe W, Price MA, Kaleebu P, Allen S, Hunter E, Ndung'u T, Gilmour J, Rowland-Jones SL, Sanders E, Hassan AS, Esbjörnsson J. Dynamics of the blood plasma proteome during hyperacute HIV-1 infection. Nat Commun 2024; 15:10593. [PMID: 39632834 PMCID: PMC11618498 DOI: 10.1038/s41467-024-54848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
The complex dynamics of protein expression in plasma during hyperacute HIV-1 infection and its relation to acute retroviral syndrome, viral control, and disease progression are largely unknown. Here, we quantify 1293 blood plasma proteins from 157 longitudinally linked plasma samples collected before, during, and after hyperacute HIV-1 infection of 54 participants from four sub-Saharan African countries. Six distinct longitudinal expression profiles are identified, of which four demonstrate a consistent decrease in protein levels following HIV-1 infection. Proteins involved in inflammatory responses, immune regulation, and cell motility are significantly altered during the transition from pre-infection to one month post-infection. Specifically, decreased ZYX and SCGB1A1 levels, and increased LILRA3 levels are associated with increased risk of acute retroviral syndrome; increased NAPA and RAN levels, and decreased ITIH4 levels with viral control; and increased HPN, PRKCB, and ITGB3 levels with increased risk of disease progression. Overall, this study provides insight into early host responses in hyperacute HIV-1 infection, and present potential biomarkers and mechanisms linked to HIV-1 disease progression and viral load.
Collapse
Affiliation(s)
- Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund University, Lund, Sweden
| | - Eva Freyhult
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Mun-Gwan Hong
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Emil Johansson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund University, Lund, Sweden
| | - Filip Årman
- BioMS-Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, UK
- IAVI, New York, NY, USA
- IAVI, Nairobi, Kenya
| | - Kamini Gounder
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - Melinda Rezeli
- BioMS-Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Tirthankar Mohanty
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sven Kjellström
- BioMS-Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
| | | | | | | | - Matt A Price
- IAVI, New York, NY, USA
- IAVI, Nairobi, Kenya
- UCSF Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Pontiano Kaleebu
- Uganda Research Unit, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Entebbe, Uganda
| | - Susan Allen
- Center for Family Health Research, Kigali, Rwanda
- Center for Family Health Research, Lusaka, Zambia
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Eric Hunter
- Center for Family Health Research, Kigali, Rwanda
- Center for Family Health Research, Lusaka, Zambia
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Jill Gilmour
- Department of Infectious Diseases, Infection and Immunity, Faculty of Medicine, Imperial College, London, UK
| | | | - Eduard Sanders
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- The Aurum Institute, Johannesburg, South Africa
| | - Amin S Hassan
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund University, Lund, Sweden
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Human Development, Aga Khan University, Nairobi, Kenya
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Lund, Sweden.
- Lund University Virus Centre, Lund University, Lund, Sweden.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Ma Y, Xiao Y, Xiao Z, Li J. Development of DNA Insertion-specific Markers Based on the Intron Region of Oplegnathus punctatus itih4b for Genetic Sex Identification. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1120-1128. [PMID: 39136869 DOI: 10.1007/s10126-024-10359-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/08/2024] [Indexed: 11/07/2024]
Abstract
Spotted knifejaw (Oplegnathus punctatus) is a significant marine fish species that exhibits pronounced sexual dimorphism, with males generally exhibiting greater weight and growth rates than females. Therefore, the farming of O. punctatus with a high proportion of males is beneficial for improving the quality and efficiency of the O. punctatus aquaculture industry. Furthermore, the development of a rapid technique in sexing O. punctatus fry will facilitate the selection and breeding of superior male varieties of O. punctatus. In this study, genome-wide scanning, comparative genomics, and structural variation analysis methods were employed to identify and extract the homologous region of the inter-alpha-trypsin inhibitor heavy chain 4 (itih4b) gene on the X and Y chromosomes from the complete genome sequence of O. punctatus. This analysis revealed the presence of a large segment of DNA insertion markers on the Y chromosome in the region. Itih4b plays an important role in the mechanisms that regulate inflammatory and immune responses in multicellular organisms. The method described here involved the design of a pair of primers to amplify two bands of 532 bp and 333 bp in males (individuals with DNA insertion variants in the intron of the itih4b gene). In females (individuals without DNA insertion), only one band of 333 bp could be distinguished by agarose gel electrophoresis. This method shortened the time required to accurately characterize intronic DNA insertion variants and genetic sexes in O. punctatus, thereby improving detection efficiency. This study has significant value for the large-scale breeding of O. punctatus all-male seedlings and provides a reference point for the study of intron variation regulation and RNA shearing in the itih4b gene.
Collapse
Affiliation(s)
- Yuting Ma
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Yongshuang Xiao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jun Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
3
|
Joshi L, Chakraborty D, Kumar V, Biswas S. ITIH4 in Rheumatoid Arthritis Pathogenesis: Network Pharmacology and Molecular Docking Analysis Identify CXCR4 as a Potential Receptor. PATHOPHYSIOLOGY 2024; 31:514-530. [PMID: 39311312 PMCID: PMC11417925 DOI: 10.3390/pathophysiology31030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
Elevated levels of Inter-alpha-trypsin-inhibitor heavy chain 4 (ITIH4) have grabbed attention in rheumatoid arthritis (RA) pathogenesis, though its precise mechanisms remain unexplored. To elucidate these mechanisms, a comprehensive strategy employing network pharmacology and molecular docking was utilized. RA targets were sourced from the DisGeNET Database while interacting targets of ITIH4 were retrieved from the STRING and Literature databases. Venny 2.1 was used to identify overlapping genes, followed by Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) through Cytoscape 3.10.2 software, and molecular docking was performed in the ClusPro server. The study identified 18 interacting proteins of ITIH4 associated with RA, demonstrating their major involvement in the chemokine signaling pathway by enrichment analysis. Molecular docking of ITIH4 with the 18 proteins revealed that C-X-C chemokine-receptor type 4 (CXCR4), a major protein associated with chemokine signaling, has the highest binding affinity with ITIH4 with energy -1705.7 kcal/mol forming 3 Hydrogen bonds in the active site pocket of ITIH4 with His441, Arg288, Asp443 amino acids. The effect of ITIH4 on CXCR4 was analyzed via knockdown studies in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), demonstrating the significant downregulation of CXCR4 protein expression validated by Western blot in RA-FLS. In conclusion, it was speculated that CXCR4 might serve as a potential receptor for ITIH4 to activate the chemokine signaling, exacerbating RA pathogenesis.
Collapse
Affiliation(s)
- Lovely Joshi
- Department of Integrative & Functional Biology, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debolina Chakraborty
- Department of Integrative & Functional Biology, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay Kumar
- Department of Orthopaedics, All India Institute of Medical Science (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Sagarika Biswas
- Department of Integrative & Functional Biology, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Tian L, Zhao S, Zhang R. ITIH4 is a predictor for coronary thrombus in coronary arteriography patients. Future Cardiol 2024; 20:547-554. [PMID: 39041488 PMCID: PMC11485701 DOI: 10.1080/14796678.2024.2377924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: To explore potential value of inter-alpha-trypsin inhibitor heavy chain-4 (ITIH4) for coronary artery disease (CAD) diagnosis.Patients & methods: We recruited the patients who received coronary arteriography (CAG) examination. The enzyme-linked immunosorbent assay was used to detect plasma ITIH4.Results: ITIH4 level was lower expression in CAD patients than that in patients of control group, and was negatively correlated with C-reactive protein (CRP). ITIH4 level is no differences between ST-elevated myocardial infarction (STEMI) and non-ST-elevated myocardial infarction (NSTEMI) patients. However, its expression was significantly correlated with D-Dimer and thrombin time, and the logistic analysis confirmed predictive value of ITIH4 for visible thrombus in coronary.Conclusion: ITIH4 may be a useful biomarker in CAD diagnosis, and to predict visible thrombus in coronary.
Collapse
Affiliation(s)
- Lei Tian
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Su Zhao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Ravindran A, Holappa L, Niskanen H, Skovorodkin I, Kaisto S, Beter M, Kiema M, Selvarajan I, Nurminen V, Aavik E, Aherrahrou R, Pasonen-Seppänen S, Fortino V, Laakkonen JP, Ylä-Herttuala S, Vainio S, Örd T, Kaikkonen MU. Translatome profiling reveals Itih4 as a novel smooth muscle cell-specific gene in atherosclerosis. Cardiovasc Res 2024; 120:869-882. [PMID: 38289873 PMCID: PMC11218691 DOI: 10.1093/cvr/cvae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
AIMS Vascular smooth muscle cells (SMCs) and their derivatives are key contributors to the development of atherosclerosis. However, studying changes in SMC gene expression in heterogeneous vascular tissues is challenging due to the technical limitations and high cost associated with current approaches. In this paper, we apply translating ribosome affinity purification sequencing to profile SMC-specific gene expression directly from tissue. METHODS AND RESULTS To facilitate SMC-specific translatome analysis, we generated SMCTRAP mice, a transgenic mouse line expressing enhanced green fluorescent protein (EGFP)-tagged ribosomal protein L10a (EGFP-L10a) under the control of the SMC-specific αSMA promoter. These mice were further crossed with the atherosclerosis model Ldlr-/-, ApoB100/100 to generate SMCTRAP-AS mice and used to profile atherosclerosis-associated SMCs in thoracic aorta samples of 15-month-old SMCTRAP and SMCTRAP-AS mice. Our analysis of SMCTRAP-AS mice showed that EGFP-L10a expression was localized to SMCs in various tissues, including the aortic wall and plaque. The TRAP fraction demonstrated high enrichment of known SMC-specific genes, confirming the specificity of our approach. We identified several genes, including Cemip, Lum, Mfge8, Spp1, and Serpina3, which are known to be involved in atherosclerosis-induced gene expression. Moreover, we identified several novel genes not previously linked to SMCs in atherosclerosis, such as Anxa4, Cd276, inter-alpha-trypsin inhibitor-4 (Itih4), Myof, Pcdh11x, Rab31, Serpinb6b, Slc35e4, Slc8a3, and Spink5. Among them, we confirmed the SMC-specific expression of Itih4 in atherosclerotic lesions using immunofluorescence staining of mouse aortic roots and spatial transcriptomics of human carotid arteries. Furthermore, our more detailed analysis of Itih4 showed its link to coronary artery disease through the colocalization of genome-wide association studies, splice quantitative trait loci (QTL), and protein QTL signals. CONCLUSION We generated a SMC-specific TRAP mouse line to study atherosclerosis and identified Itih4 as a novel SMC-expressed gene in atherosclerotic plaques, warranting further investigation of its putative function in extracellular matrix stability and genetic evidence of causality.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Apolipoprotein B-100/genetics
- Apolipoprotein B-100/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Aarthi Ravindran
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Lari Holappa
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Henri Niskanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Ilya Skovorodkin
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Susanna Kaisto
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Mustafa Beter
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Miika Kiema
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Ilakya Selvarajan
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Valtteri Nurminen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Einari Aavik
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Rédouane Aherrahrou
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Seppo Vainio
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Tiit Örd
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| |
Collapse
|
6
|
Curtis A, Dobes P, Marciniak J, Hurychova J, Hyrsl P, Kavanagh K. Characterization of Aspergillus fumigatus secretome during sublethal infection of Galleria mellonella larvae. J Med Microbiol 2024; 73:001844. [PMID: 38836745 PMCID: PMC11261830 DOI: 10.1099/jmm.0.001844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction. The fungal pathogen Aspergillus fumigatus can induce prolonged colonization of the lungs of susceptible patients, resulting in conditions such as allergic bronchopulmonary aspergillosis and chronic pulmonary aspergillosis.Hypothesis. Analysis of the A. fumigatus secretome released during sub-lethal infection of G. mellonella larvae may give an insight into products released during prolonged human colonisation.Methodology. Galleria mellonella larvae were infected with A. fumigatus, and the metabolism of host carbohydrate and proteins and production of fungal virulence factors were analysed. Label-free qualitative proteomic analysis was performed to identify fungal proteins in larvae at 96 hours post-infection and also to identify changes in the Galleria proteome as a result of infection.Results. Infected larvae demonstrated increasing concentrations of gliotoxin and siderophore and displayed reduced amounts of haemolymph carbohydrate and protein. Fungal proteins (399) were detected by qualitative proteomic analysis in cell-free haemolymph at 96 hours and could be categorized into seven groups, including virulence (n = 25), stress response (n = 34), DNA repair and replication (n = 39), translation (n = 22), metabolism (n = 42), released intracellular (n = 28) and cellular development and cell cycle (n = 53). Analysis of the Gallerial proteome at 96 hours post-infection revealed changes in the abundance of proteins associated with immune function, metabolism, cellular structure, insect development, transcription/translation and detoxification.Conclusion. Characterizing the impact of the fungal secretome on the host may provide an insight into how A. fumigatus damages tissue and suppresses the immune response during long-term pulmonary colonization.
Collapse
Affiliation(s)
- Aaron Curtis
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Pavel Dobes
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jacek Marciniak
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jana Hurychova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Hyrsl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
7
|
Xu M, Wang H, Ren S, Wang B, Yang W, Lv L, Sha X, Li W, Wang Y. Identification of crucial inflammaging related risk factors in multiple sclerosis. Front Mol Neurosci 2024; 17:1398665. [PMID: 38836117 PMCID: PMC11148336 DOI: 10.3389/fnmol.2024.1398665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Background Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelinating lesions in the central nervous system. Studies have shown that the inflammation is vital to both the onset and progression of MS, where aging plays a key role in it. However, the potential mechanisms on how aging-related inflammation (inflammaging) promotes MS have not been fully understood. Therefore, there is an urgent need to integrate the underlying mechanisms between inflammaging and MS, where meaningful prediction models are needed. Methods First, both aging and disease models were developed using machine learning methods, respectively. Then, an integrated inflammaging model was used to identify relative risk factors, by identifying essential "aging-inflammation-disease" triples. Finally, a series of bioinformatics analyses (including network analysis, enrichment analysis, sensitivity analysis, and pan-cancer analysis) were further used to explore the potential mechanisms between inflammaging and MS. Results A series of risk factors were identified, such as the protein homeostasis, cellular homeostasis, neurodevelopment and energy metabolism. The inflammaging indices were further validated in different cancer types. Therefore, various risk factors were integrated, and even both the theories of inflammaging and immunosenescence were further confirmed. Conclusion In conclusion, our study systematically investigated the potential relationships between inflammaging and MS through a series of computational approaches, and could present a novel thought for other aging-related diseases.
Collapse
Affiliation(s)
- Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Huize Wang
- Department of Nursing, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bing Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenyan Yang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ling Lv
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenya Li
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Liu X, Wu S, Peng Y, Gao L, Huang X, Deng R, Lu J. Delineation of renal protein profiles in aristolochic acid I-induced nephrotoxicity in mice by label-free quantitative proteomics. Front Pharmacol 2024; 15:1341854. [PMID: 38783935 PMCID: PMC11111959 DOI: 10.3389/fphar.2024.1341854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction: Aristolochic acid nephropathy (AAN) is a kidney injury syndrome caused by aristolochic acids exposure. Our study used label-free quantitative proteomics to delineate renal protein profiles and identify key proteins after exposure to different doses of aristolochic acid I (AAI). Methods: Male C57BL/6 mice received AAI (1.25 mg/kg/d, 2.5 mg/kg/d, or 5 mg/kg/d) or vehicle for 5 days. Results and discussion: The results showed that AAI induced dose-dependent nephrotoxicity. Differences in renal protein profiles between the control and AAI groups increased with AAI dose. Comparing the control with the low-, medium-, and high-dose AAI groups, we found 58, 210, and 271 differentially expressed proteins, respectively. Furthermore, protein-protein interaction network analysis identified acyl-CoA synthetase medium-chain family member 3 (Acsm3), cytochrome P450 family 2 subfamily E member 1 (Cyp2e1), microsomal glutathione S-transferase 1 (Mgst1), and fetuin B (Fetub) as the key proteins. Proteomics revealed that AAI decreased Acsm3 and Cyp2e1 while increasing Mgst1 and Fetub expression in mice kidneys, which was further confirmed by Western blotting. Collectively, in AAI-induced nephrotoxicity, renal protein profiles were dysregulated and exacerbated with increasing AAI dose. Acsm3, Cyp2e1, Mgst1, and Fetub may be the potential therapeutic targets for AAN.
Collapse
Affiliation(s)
- Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Shanshan Wu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yu Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Liwen Gao
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xi Huang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ruyu Deng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Li J, Ma J, Liu M, Li M, Zhang M, Yin W, Wu M, Li X, Zhang Q, Zhang H, Zheng H, Mao C, Sun J, Wang W, Lyu W, Yue X, Weng W, Li J, Chen F, Zhu Y, Leng L. Large-Scale Proteome Profiling Identifies Biomarkers Associated with Suspected Neurosyphilis Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307744. [PMID: 38380496 PMCID: PMC11040343 DOI: 10.1002/advs.202307744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Neurosyphilis (NS) is a central nervous system (CNS) infection caused by Treponema pallidum (T. pallidum). NS can occur at any stage of syphilis and manifests as a broad spectrum of clinical symptoms. Often referred to as "the great imitator," NS can be easily overlooked or misdiagnosed due to the absence of standard diagnostic tests, potentially leading to severe and irreversible organ dysfunction. In this study, proteomic and machine learning model techniques are used to characterize 223 cerebrospinal fluid (CSF) samples to identify diagnostic markers of NS and provide insights into the underlying mechanisms of the associated inflammatory responses. Three biomarkers (SEMA7A, SERPINA3, and ITIH4) are validated as contributors to NS diagnosis through multicenter verification of an additional 115 CSF samples. We anticipate that the identified biomarkers will become effective tools for assisting in diagnosis of NS. Our insights into NS pathogenesis in brain tissue may inform therapeutic strategies and drug discoveries for NS patients.
Collapse
Affiliation(s)
- Jun Li
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
- Stem cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jie Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - MingJuan Liu
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Mansheng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ming Zhang
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wenhao Yin
- The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Zhejiang, 314001, China
| | - Mengyin Wu
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Xiao Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Qiyu Zhang
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
- Stem cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hanlin Zhang
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Heyi Zheng
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Chenhui Mao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China
| | - Jian Sun
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Lyu
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xueping Yue
- Department of Dermatology and Venereology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Wenjia Weng
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Juan Li
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Fengxin Chen
- Infections Disease Center, Beijing Ditan Hospital, Capital Medical University, Beijing, 100102, China
| | - Yunping Zhu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Basic Medical School, Anhui Medical University, Anhui, 230032, China
| | - Ling Leng
- Stem cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
10
|
Tian H, Wang G, Zhong Q, Zhou H. Usability of serum inter-α-trypsin inhibitor heavy chain 4 as a biomarker for assessing severity and predicting functional outcome after human aneurysmal subarachnoid hemorrhage: A prospective observational cohort study at a single institution. Clin Chim Acta 2024; 552:117679. [PMID: 38000457 DOI: 10.1016/j.cca.2023.117679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Inter-α-trypsin inhibitor heavy chain 4 (ITIH4) may harbor anti-inflammatory activities. We sought to discern the predictive significance of serum ITIH4 for delayed cerebral ischemia (DCI) and clinical outcomes of human aneurysmal subarachnoid hemorrhage (aSAH). METHODS At a single institution, we performed a prospective and observational cohort study of 148 patients with aSAH and 52 healthy controls. Poststroke six-month extended Glasgow Outcome Scale (GOSE) score of 1-4 was designated as a poor prognosis. Prognosis associations were verified using multivariate analysis. RESULTS As compared to controls, patients had significantly declined serum ITIH4 concentrations from admission until day 10, with the lowest concentrations at days 1-3 after stroke. Serum ITIH4 concentrations, which were substantially decreased with the increasing Hunt-Hess scores or modified Fisher scores, were independently correlated with the two scores. Moreover, serum ITIH4 concentrations, which were markedly elevated in the order of GOSE scores from 1 to 8, together with Hunt-Hess scores and modified Fisher scores were independently related to GOSE scores and poor prognosis. However, serum ITIH4 concentrations were not independently predictive of DCI. Prediction model of poor prognosis integrating the preceding three variables were delineated using the nomogram, were verified under the calibration curve, and displayed high discriminatory efficiencies under the receiver operating characteristic curve. CONCLUSIONS A significant decline of serum ITIH4 concentrations during the early phase after aSAH was closely related to severity and poor prognosis, assuming that serum ITIH4 may represent a promising prognostic biomarker of aSAH.
Collapse
Affiliation(s)
- Heping Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, People's Republic of China
| | - Genghuan Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, People's Republic of China
| | - Qi Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, People's Republic of China
| | - Haihang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, People's Republic of China.
| |
Collapse
|
11
|
Sun Z, Zhang Y, Zhou H, Li J, Zhou Y, Wang L. Serum interα-trypsin inhibitor heavy chain H4 may be an anti-inflammatory marker reflecting disease risk, activity and treatment outcome of ankylosing spondylitis. Scand J Clin Lab Invest 2023; 83:540-547. [PMID: 38156824 DOI: 10.1080/00365513.2023.2250986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/28/2023] [Accepted: 08/19/2023] [Indexed: 01/03/2024]
Abstract
Interα-trypsin inhibitor heavy chain H4 (ITIH4) modulates inflammation and immunity, which take part in the pathogenesis of ankylosing spondylitis (AS). The current research intended to discover the clinical value of serum ITIH4 quantification for AS management. Serum ITIH4 among 80 AS patients before current treatment initiation (baseline) at weeks (W) 4, 8 and 12 after treatment was detected by ELISA. Serum ITIH4 from 20 disease controls (DCs) and 20 healthy controls (HCs) was detected. ITIH4 expression was lower in AS patients than in DCs (p = 0.002) and HCs (p < 0.001). Among AS patients, ITIH4 was negatively associated with C-reactive protein (CRP) (r = -0.311, p = 0.005), bath AS disease activity index (BASDAI) (r = -0.223, p = 0.047), total pack pain (r = -0.273, p = 0.014) and AS disease activity score (ASDAS) (CRP) (r = -0.265, p = 0.018). Meanwhile, ITIH4 was negatively related to tumor necrosis factor (TNF)-α (r = -0.364, p = 0.001), interleukin (IL)-1β (r = -0.251, p = 0.025), IL-6 (r = -0.292, p = 0.009) and IL-17A (r = -0.254, p = 0.023). After treatment, the assessment of the spondylitis arthritis international society 40 response rate was 28.7% at W4, 46.3% at W8 and 55.0% at W12; ITIH4 showed an increasing trend from baseline to W12 (p < 0.001). Furthermore, ITIH4 at W8 (p = 0.020) and W12 (p = 0.035), but not at baseline or W4 (both p > 0.05), was enhanced in response patients vs. nonresponse patients. Additionally, ITIH4 at W12 was increased in AS patients receiving TNF inhibitors vs. those receiving nonsteroidal anti-inflammatory drugs (NSAIDs) (p = 0.024). Serum ITIH4 increases after treatment, and its augmentation is correlated with lower disease activity, decreased inflammation and enhanced treatment response in AS patients.
Collapse
Affiliation(s)
- Zhumin Sun
- Department of Rheumatology and Immunology, Shuyang County Hospital of Traditional Chinese Medicine, Suqian, P.R. China
| | - Yang Zhang
- Department of Rheumatology and Immunology, Shuyang County Hospital of Traditional Chinese Medicine, Suqian, P.R. China
| | - Haiyan Zhou
- Department of Rheumatology and Immunology, Shuyang County Hospital of Traditional Chinese Medicine, Suqian, P.R. China
| | - Jingyun Li
- Department of Rheumatology and Immunology, Shuyang County Hospital of Traditional Chinese Medicine, Suqian, P.R. China
| | - Yue Zhou
- Department of Rheumatology and Immunology, Shuyang County Hospital of Traditional Chinese Medicine, Suqian, P.R. China
| | - Liyun Wang
- Department of Pharmacy, Shuyang County Hospital of Traditional Chinese Medicine, Suqian, P.R. China
| |
Collapse
|
12
|
Shentu HS, Chen YH, Cheng ZY, Fu B, Fu YH, Zheng SF, Li C. A Prospective Cohort Study of Inter-Alpha-Trypsin Inhibitor Heavy Chain 4 as a Serologic Marker in Relation to Severity and Functional Outcome of Acute Intracerebral Hemorrhage. Neuropsychiatr Dis Treat 2023; 19:2363-2379. [PMID: 37954033 PMCID: PMC10637248 DOI: 10.2147/ndt.s433264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
Background The inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) may regulate immunity and inflammation. The current study was conducted to determine its role as a biomarker for reflecting the severity and predicting outcomes of intracerebral hemorrhage (ICH). Methods In this prospective cohort study, 185 patients with supratentorial ICH were enrolled, among whom 62 had blood obtained not only at admission but also on days 1, 3, 5, 7, 10, and 14. In addition, 62 healthy controls underwent blood collection at the start of the study. The serum ITIH4 levels were then quantified. We recorded early neurological deterioration (END) and poor prognosis (modified Rankin Scale [mRS] scores of 3-6]) six months after ICH. Results Serum ITIH4 levels decreased prominently in the early phase after ICH, continued to decline until day 5, then gradually increased until day 14, and were significantly lower during 14 days in patients than in controls. Serum ITIH4 levels on admission were independently associated with serum C-reactive protein levels, National Institutes of Health Stroke Scale (NIHSS) scores and hematoma volume. Admission serum ITIH4 levels were independently associated with mRS scores, END, and poor prognosis. No substantial differences existed in the areas under the receiver operating characteristic curve of END and poor prognosis prediction between the serum ITIH4 levels, NIHSS scores, and hematoma volume. Prediction models, in which serum ITIH4 levels, NIHSS scores, and hematoma volume were integrated, were relatively reliable and stable using a series of statistical methods. In addition, the prediction model of poor prognosis had a higher discriminatory ability than the NIHSS scores and hematoma volume alone. Conclusion A dramatic decline in serum ITIH4 levels during the early period following ICH is independently related to the inflammatory response, stroke severity, and poor neurologic outcomes, suggesting that serum ITIH4 may be a useful prognostic biomarker of ICH.
Collapse
Affiliation(s)
- Hua-Song Shentu
- Department of Neurosurgery, Jinhua People’s Hospital, Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, 321000, People’s Republic of China
| | - Yi-Hua Chen
- Department of Neurosurgery, Jinhua People’s Hospital, Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, 321000, People’s Republic of China
| | - Zhen-Yu Cheng
- Department of Neurosurgery, Jinhua People’s Hospital, Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, 321000, People’s Republic of China
| | - Bin Fu
- Department of Neurosurgery, Jinhua People’s Hospital, Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, 321000, People’s Republic of China
| | - Yuan-Hao Fu
- Department of Neurosurgery, Jinhua People’s Hospital, Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, 321000, People’s Republic of China
| | - Shu-Feng Zheng
- Department of Endocrinology, Jinhua People’s Hospital, Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, 321000, People’s Republic of China
| | - Chan Li
- Department of Neurosurgery, Jinhua People’s Hospital, Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, 321000, People’s Republic of China
| |
Collapse
|
13
|
Botía M, Ortín-Bustillo A, López-Martínez MJ, Fuentes P, Escribano D, González-Bulnes A, Manzanilla EG, Martínez-Subiela S, Tvarijonaviciute A, López-Arjona M, Cerón JJ, Tecles F, Muñoz-Prieto A. Gaining knowledge about biomarkers of the immune system and inflammation in the saliva of pigs: The case of myeloperoxidase, S100A12, and ITIH4. Res Vet Sci 2023; 164:104997. [PMID: 37657394 DOI: 10.1016/j.rvsc.2023.104997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
An assay for the measurement of myeloperoxidase (Mpx) in porcine saliva was developed and validated, and factors influencing Mpx and another two biomarkers of inflammation and immune system, the protein S100A12 and the inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4), were studied. The spectrophotometric method for Mpx measurement validated in this assay showed an adequate analytical performance including precision and accuracy. When a group of twenty healthy pigs was sampled every 4 h from 8 a.m. until 8 p.m., Mpx and S100A12 showed significant increases at 4 p.m., whereas ITIH4 concentration showed a significant decrease at 12 a.m. Increases were also seen in salivary Mpx, S100A12, and ITIH4 levels 24 h after the intramuscular administration of Escherichia coli lipopolysaccharide in five pigs; whereas in a non-septic inflammation after the subcutaneous administration of turpentine oil to five pigs changes were seen in S100A12 at 3 h and in ITIH4 at 48 h. When a stressful situation consisting of the transportation and stay of 4 h to a slaughterhouse of 24 pigs was performed, all analytes were increased after 4 h of lairage in the slaughterhouse compared with the values that were obtained the day before at the same time of the day. Mpx can be measured in the saliva of pigs with the automated assay described in this report. Mpx, S100A12, and ITIH4 salivary levels can change depending on the hour of the day in which the sample is taken, and increases can be produced due to sepsis, non-septic inflammation and stress.
Collapse
Affiliation(s)
- María Botía
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100, Espinardo, Murcia, Spain
| | - Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100, Espinardo, Murcia, Spain
| | - María J López-Martínez
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100, Espinardo, Murcia, Spain
| | | | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100, Espinardo, Murcia, Spain; Department of Animal Production, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100, Espinardo, Murcia, Spain
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Edgar G Manzanilla
- Pig Development Department, The Irish Food and Agriculture Authority, Teagasc, Moorepark, P61 C996, Fermoy, Co Cork, Ireland; School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100, Espinardo, Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100, Espinardo, Murcia, Spain
| | - Marina López-Arjona
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, Cerdanyola de Vallés, 08193 Barcelona, Spain
| | - José J Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100, Espinardo, Murcia, Spain
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100, Espinardo, Murcia, Spain.
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100, Espinardo, Murcia, Spain
| |
Collapse
|
14
|
Li W, Larsen A, Murphy B, Fregulia P. Liver microbial community and associated host transcriptome in calves with feed induced acidosis. Front Vet Sci 2023; 10:1193473. [PMID: 37941815 PMCID: PMC10630030 DOI: 10.3389/fvets.2023.1193473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction In the dairy industry, calves are typically fed diets rich in highly fermentable carbohydrates and low in fibrous feeds to maximize ruminal papillae and tissue development. Calves on such diets are vulnerable at developing ruminal acidosis. Prevalent in cattle, liver abscess (LA) is considered a sequela to ruminal acidosis. LAs can cause significant liver function condemnation and decreased growth and production. Currently, we know little about the liver microbiome in calves with feed-induced acidosis. Methods Using our established model of ruminal acidosis, where young calves were fed an acidosis-inducing (AC) or -blunting (control) diet starting at birth until 17-week of age, we investigated microbial community changes in the liver resultant from ruminal acidosis. Eight calves were randomly assigned to each diet, with four animals per treatment. Rumen epithelium and liver tissues were collected at 17 weeks of age right after euthanasia. Total RNAs were extracted and followed by whole transcriptome sequencing. Microbial RNA reads were enriched bioinformatically and used for microbial taxonomy classification using Kraken2. Results AC Calves showed significantly less weight gain over the course of the experiment, in addition to significantly lower ruminal pH, and rumen degradation comparison to the control group (p < 0.05). In the liver, a total of 29 genera showed a significant (p < 0.05) abundance change (> 2-fold) between the treatments at 17-week of age. Among these, Fibrobacter, Treponema, Lactobacillus, and Olsenella have been reported in abscessed liver in cattle. Concurrent abundance changes in 9 of the genera were observed in both the liver and rumen tissues collected at 17-week of age, indicating potential crosstalk between the liver and rumen epithelial microbial communities. Significant association was identified between host liver gene and its embedded microbial taxa. Aside from identifying previously reported microbial taxa in cattle abscessed liver, new repertoire of actively transcribed microbial taxa was identified in this study. Discussion By employing metatranscriptome sequencing, our study painted a picture of liver microbiome in young calves with or without feed induced acidosis. Our study suggested that liver microbiome may have a critical impact on host liver physiology. Novel findings of this study emphasize the need for further in-depth analysis to uncover the functional roles of liver resident microbiome in liver metabolic acidosis resultant from feed-related ruminal acidosis.
Collapse
Affiliation(s)
- Wenli Li
- US Dairy Forage Research Center, USDA-Agricultural Research Service, Madison, WI, United States
| | - Anna Larsen
- US Dairy Forage Research Center, USDA-Agricultural Research Service, Madison, WI, United States
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Brianna Murphy
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Priscila Fregulia
- US Dairy Forage Research Center, USDA-Agricultural Research Service, Madison, WI, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| |
Collapse
|
15
|
Zou W, Fu Z, Guo X, Yao L, Hong H, Luo Y, Tan Y. Whey Protein Hydrolysate Exerts Anti-Inflammatory Effects to Alleviate Dextran Sodium Sulfate (DSS)-Induced Colitis via Microbiome Restoration. Nutrients 2023; 15:4393. [PMID: 37892468 PMCID: PMC10610201 DOI: 10.3390/nu15204393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Whey protein hydrolysate (WPH) has been shown to have a variety of bioactivities. This study aimed to investigate the preventive effect of WPH on dextran sodium sulfate (DSS)-induced colitis in C57BL/6J mice. The results indicated that WPH intervention for 37 days was effective in delaying the development of colonic inflammation, and high doses of WPH significantly inhibited weight loss (9.16%, n = 8, p < 0.05), protected the colonic mucosal layer, and significantly reduced the levels of inflammatory factors TNF-α, IL-6, and IL-1β in mice with colitis (n = 8, p < 0.05). In addition, WPH intervention was able to up-regulate the short-chain fatty acids secretion and restore the gut microbiome imbalance in mice with colitis. Notably, high-dose WPH intervention increased the relative abundance of norank_f_Muribaculaceae by 1.52-fold and decreased the relative abundance of Romboutsia and Enterobacter by 3.77-fold and 2.45-fold, respectively, compared with the Model group. WPH intervention protected colitis mice mainly by reversing the microbiome imbalance and regulating the major histocompatibility complex (MHC) class I pathway. This study showed that WPH has anti-inflammatory activity and a promising colitis management future.
Collapse
Affiliation(s)
- Wenrong Zou
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| | - Zixin Fu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| | - Xiaohong Guo
- Department of Product and Development, Hebei Dongkang Dairy Co., Ltd., Shijiazhuang 052165, China; (X.G.); (L.Y.)
| | - Lei Yao
- Department of Product and Development, Hebei Dongkang Dairy Co., Ltd., Shijiazhuang 052165, China; (X.G.); (L.Y.)
| | - Hui Hong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| | - Yongkang Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| | - Yuqing Tan
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| |
Collapse
|
16
|
Wu X, Chen J, Sun W, Hart DA, Ackermann PW, Ahmed AS. Network proteomic analysis identifies inter-alpha-trypsin inhibitor heavy chain 4 during early human Achilles tendon healing as a prognostic biomarker of good long-term outcomes. Front Immunol 2023; 14:1191536. [PMID: 37483617 PMCID: PMC10358850 DOI: 10.3389/fimmu.2023.1191536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
The suboptimal or protracted regeneration of injured connective tissues often results in significant dysfunction, pain, and functional disability. Despite the prevalence of the condition, few studies have been conducted which focused on biomarkers or key molecules involved in processes governing healing outcomes. To gain insight into injured connective tissue repair, and using the Achilles tendon as a model system, we utilized quantitative proteomic and weighted co-expression network analysis of tissues acquired from Achilles tendon rupture (ATR) patients with different outcomes at 1-year postoperatively. Two modules were detected to be associated with prognosis. The initial analysis identified inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) as a biomarker or hub protein positively associated with better healing outcomes. Additional analysis identified the beneficial role of ITIH4 in inflammation, cell viability, apoptosis, proliferation, wound healing, and for the synthesis of type I collagen in cultured fibroblasts. Functionally, the effects of ITIH4 were found to be mediated by peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathways. Taken together, these findings suggest that ITIH4 plays an important role in processes of connective tissue repair and advocate for the potential of ITIH4 as a therapeutic target for injured connective tissue repair. Trial registration http://clinicaltrials.gov, identifiers NCT02318472, NCT01317160.
Collapse
Affiliation(s)
- Xinjie Wu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Junyu Chen
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wei Sun
- Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - David A. Hart
- Department of Surgery, Faculty of Kinesiology and the McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Paul W. Ackermann
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aisha S. Ahmed
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Chen X, Wang J, Wang J, Ye J, Di P, Dong C, Lei H, Wang C. Several Potential Serum Proteomic Biomarkers for Diagnosis of Osteoarticular Tuberculosis Based on Mass Spectrometry. Clin Chim Acta 2023:117447. [PMID: 37353136 DOI: 10.1016/j.cca.2023.117447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Osteoarticular tuberculosis is one of the extrapulmonary tuberculosis (EPTB) diseases, which is mainly caused by infection of Mycobacterium tuberculosis (MTB) in bone and joints. The limitation of current clinical test methods is leading to a high misdiagnosis rate and affecting the treatment and prognosis. This study aims to search serum biomarkers that can assist in the diagnosis of osteoarticular tuberculosis. METHODS Proteomics can serve as an important method in the discovery of disease biomarkers. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze proteins in 90 serum samples, which were collected from June 2020 to December 2021, then evaluated by statistical analysis to screen potential biomarkers. After that, potential biomarkers were validated by ELISA and diagnostic models were also established for observation of multi-index diagnostic efficacy. RESULTS 118 differential expressed proteins (DEPs) were obtained in serum after statistical analysis. After the diagnostic efficacy evaluation and clinical verification, inter-alpha-trypsin inhibitor heavy chain H2 (ITIH2), complement factor H-related protein 2 (CFHR2), complement factor H-related protein 3 (CFHR3) and complement factor H-related protein 5 (CFHR5) were found as potential biomarkers, with 0.7167 (95%CI: 0.5846-0.8487), 0.8600 (95%CI: 0.7701-0.9499), 0.8150 (95%CI: 0.6998-0.9302), and 0.9978 (95%CI: 0.9918-1.0040) AUC value, respectively. The remaining DEPs except CFHR5 were constructed as diagnostic models, the diagnostic model contained CFHR2 and CFHR3 had good diagnostic efficacy with 0.942 (95%CI: 0.872-0.980) AUC value compared to other models. CONCLUSION This study provides a reference for the discovery of serum protein markers for osteoarticular tuberculosis diagnosis, and the screened DEPs can also provide directions for subsequent pathogenesis research.
Collapse
Affiliation(s)
- Ximeng Chen
- Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, China; Department of Clinical Laboratory Medicine, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, China
| | - Jianan Wang
- Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, China; Department of Clinical Laboratory Medicine, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, China
| | - Jinyang Wang
- Department of Clinical Laboratory Medicine, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, China
| | - Jingyun Ye
- Department of Clinical Laboratory Medicine, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, China
| | - Ping Di
- Department of Clinical Laboratory Medicine, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, China
| | - Chang Dong
- Department of Clinical Laboratory Medicine, The Eighth Medical Center, Chinese PLA General Hospital, No.17A Heishanhu Road, Haidian District, Beijing, China
| | - Hong Lei
- Department of Clinical Laboratory Medicine, The Eighth Medical Center, Chinese PLA General Hospital, No.17A Heishanhu Road, Haidian District, Beijing, China.
| | - Chengbin Wang
- Department of Clinical Laboratory Medicine, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, China.
| |
Collapse
|
18
|
Qi X, Feng T, Ma Z, Zheng L, Liu H, Shi Z, Shen C, Li P, Wu P, Ru Y, Li D, Zhu Z, Tian H, Wu S, Zheng H. Deletion of DP148R, DP71L, and DP96R Attenuates African Swine Fever Virus, and the Mutant Strain Confers Complete Protection against Homologous Challenges in Pigs. J Virol 2023; 97:e0024723. [PMID: 37017515 PMCID: PMC10134827 DOI: 10.1128/jvi.00247-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
The African swine fever virus (ASFV) has caused a devastating pandemic in domestic and wild swine, causing economic losses to the global swine industry. Recombinant live attenuated vaccines are an attractive option for ASFV treatment. However, safe and effective vaccines against ASFV are still scarce, and more high-quality experimental vaccine strains need to be developed. In this study, we revealed that deletion of the ASFV genes DP148R, DP71L, and DP96R from the highly virulent isolate ASFV CN/GS/2018 (ASFV-GS) substantially attenuated virulence in swine. Pigs infected with 104 50% hemadsorbing doses of the virus with these gene deletions remained healthy during the 19-day observation period. No ASFV infection was detected in contact pigs under the experimental conditions. Importantly, the inoculated pigs were protected against homologous challenges. Additionally, RNA sequence analysis showed that deletion of these viral genes induced significant upregulation of the host histone H3.1 gene (H3.1) and downregulation of the ASFV MGF110-7L gene. Knocking down the expression of H3.1 resulted in high levels of ASFV replication in primary porcine macrophages in vitro. These findings indicate that the deletion mutant virus ASFV-GS-Δ18R/NL/UK is a novel potential live attenuated vaccine candidate and one of the few experimental vaccine strains reported to induce full protection against the highly virulent ASFV-GS virus strain. IMPORTANCE Ongoing outbreaks of African swine fever (ASF) have considerably damaged the pig industry in affected countries. Thus, a safe and effective vaccine is important to control African swine fever spread. Here, an ASFV strain with three gene deletions was developed by knocking out the viral genes DP148R (MGF360-18R), NL (DP71L), and UK (DP96R). The results showed that the recombinant virus was completely attenuated in pigs and provided strong protection against parental virus challenge. Additionally, no viral genomes were detected in the sera of pigs housed with animals infected with the deletion mutant. Furthermore, transcriptome sequencing (RNA-seq) analysis revealed significant upregulation of histone H3.1 in virus-infected macrophage cultures and downregulation of the ASFV MGF110-7L gene after viral DP148R, UK, and NL deletion. Our study provides a valuable live attenuated vaccine candidate and potential gene targets for developing strategies for anti-ASFV treatment.
Collapse
Affiliation(s)
- Xiaolan Qi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhao Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Linlin Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengwang Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chaochao Shen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Panxue Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
19
|
PGK1 modulates balance between pro- and anti-inflammatory cytokines by interacting with ITI-H4. Biomed Pharmacother 2023; 161:114437. [PMID: 36841032 DOI: 10.1016/j.biopha.2023.114437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Inter-α-trypsin inhibitor heavy chain 4 (ITI-H4) is one of the acute phase proteins and is mainly related with inflammatory diseases such as bacterial bloodstream infection and recurrent pregnancy loss (RPL). In a previous study, ITI-H4 was reported to be cleaved by kallikrein B1 (KLKB1) and its cleaved form induces the imbalance between pro- and anti-inflammatory cytokines. Therefore, in this study, putative substrates of ITI-H4 were isolated by immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis. Of those, phosphoglycerate kinase 1 (PGK1) was found to be a binding protein of ITI-H4. PGK1 increases the level of ITI-H4 expression and blocks the cleavage of ITI-H4 mediated by KLKB1. It also inhibits pro-inflammatory response by inhibiting the JAK2/STAT3 signaling pathway. Therefore, PGK1, a novel binding partner of ITI-H4, is expected to have cellular functions in the pathogenesis of ITI-H4-related inflammatory diseases.
Collapse
|
20
|
Zhang J, Hu J, Zhao W. Longitudinal Change of Serum Inter-α-Trypsin Inhibitor Heavy Chain H4 and its Relation with Inflammation, Disease Recurrence, and Mortality in Acute Ischemic Stroke Patients. TOHOKU J EXP MED 2023; 259:221-227. [PMID: 36596502 DOI: 10.1620/tjem.2022.j116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inter-α-trypsin inhibitor heavy chain H4 (ITIH4) modulates atherosclerosis, lipid, and inflammation, which is involved in the development of acute ischemic stroke. Hence, this study aimed to investigate the longitudinal change and prognostic role of ITIH4 in acute ischemic stroke. In 267 patients with acute ischemic stroke, serum ITIH4 after admission (baseline), the 1st day after admission (D1), D3, D7, and D30, and inflammatory cytokines at baseline were detected by enzyme-linked immunosorbent assay (ELISA). Additionally, serum ITIH4 of 30 controls after enrollment was detected by ELISA. ITIH4 was reduced in acute ischemic stroke patients than controls [median (interquartile range, IQR): 131.0 (95.5-194.3) vs. 418.6 (241.5-506.8) ng/mL] (P < 0.001). Among acute ischemic stroke patients, ITIH4 was negatively associated with tumor necrosis factor-alpha (r = -0.211, P = 0.001), interleukin (IL)-1β (r = -0.164, P = 0.007), IL-6 (r = -0.121, P = 0.049), and IL-17A (r = -0.188, P = 0.002). ITIH4 presented a decreased trend from admission to D3, then increased from D3 to D30 (P < 0.001). The 1-year, 2-year, and 3-year cumulative recurrence rate was 7.5%, 18.0%, and 19.1%, respectively; meanwhile, 1-year, 2-year, and 3-year cumulative death rate was 2.2%, 7.1%, and 7.1%, accordingly. The further analysis presented that ITIH4 at baseline (P = 0.002), D1 (P = 0.049), D3 (P = 0.003), D7 (P < 0.001), and D30 (P < 0.001) was decreased in recurrent patients than non-recurrent patients; besides, ITIH4 at D3 (P = 0.017), D7 (P = 0.004), and D30 (P = 0.002), but not at baseline (P = 0.151) or D1 (P = 0.013), was decreased in deaths than survivors. Serum ITIH4 declines at first and then elevates with time, and its reduction is correlated with higher inflammation, increased risk of recurrence and mortality in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Jianli Zhang
- Department of Neurology, Lishui Municipal Central Hospital, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University
| | - Jingchun Hu
- Department of Anesthesiology, Lishui Municipal Central Hospital, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University
| | - Weiwei Zhao
- Department of Rehabilitation, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University
| |
Collapse
|
21
|
Zhao X, Guo Y, Li L, Li Y. Longitudinal change of serum inter-alpha-trypsin inhibitor heavy chain H4, and its correlation with inflammation, multiorgan injury, and death risk in sepsis. J Clin Lab Anal 2023; 37:e24834. [PMID: 36725250 PMCID: PMC9978082 DOI: 10.1002/jcla.24834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) inhibits infection-induced inflammation and multiorgan injury through several methods. The present study aimed to estimate the association of serum ITIH4 with inflammatory cytokines, multiorgan injury, and death risk in sepsis patients. METHODS Serum samples were collected to detect ITIH4 by enzyme-linked immunosorbent assay in 127 sepsis patients at admission (baseline), day (D)1, D3, and D7 after admission, as well as in 30 healthy controls (HCs). Additionally, 28-day mortality was recorded in sepsis patients. RESULTS ITIH4 was reduced in sepsis patients versus HCs (median [interquartile range]: 147.9 [78.2-208.8] vs. 318.8 [237.2-511.4] ng/ml) (p < 0.001). In sepsis patients, ITIH4 was associated with the absence of cardiovascular and cerebrovascular disease history (p = 0.021). Additionally, ITIH4 was negatively correlated with tumor necrosis factor-α (p < 0.001), interleukin (IL)-1β (p < 0.001), IL-6 (p = 0.019), IL-17A (p = 0.002), and C-reactive protein (p = 0.001), but positively related to IL-10 (p = 0.007). Moreover, ITIH4 was also inversely associated with Acute Physiology and Chronic Health Evaluation II score (p = 0.002), Sequential Organ Failure Assessment (SOFA) score (p < 0.001), SOFA-respiratory system score (p = 0.023), and SOFA-renal system score (p = 0.007). Interestingly, ITIH4 gradually increased from baseline to D7 (p < 0.001); besides, ITIH4 at baseline (p = 0.009), D1 (p = 0.002), D3 (p < 0.001), and D7 (p = 0.015) were all decreased in sepsis deaths versus sepsis survivors. CONCLUSION Serum ITIH4 is raised from baseline to D7 after disease onset, and it reflects the reduction of systemic inflammation, disease severity, and 28-day mortality for sepsis. However, further verification is required.
Collapse
Affiliation(s)
- Xiangwang Zhao
- Department of Emergency Medicine, Shanghai East Hospital, Shanghai, China
| | - Yong Guo
- Department of Intensive Care Medicine, The Third People's Hospital, Qingdao, China
| | - Lingyu Li
- Department of Emergency Medicine, Shanghai East Hospital, Shanghai, China
| | - Yusheng Li
- Department of Emergency Medicine, Shanghai East Hospital, Shanghai, China
| |
Collapse
|
22
|
Larsen JB, Pihl R, Aggerbeck MA, Larsen KM, Hvas CL, Johnsen N, Christensen MG, Praetorius H, Hvas AM, Thiel S. Inter-α-inhibitor heavy chain H4 and sepsis-related coagulation disturbances: Another link between innate immunity and coagulation. Res Pract Thromb Haemost 2023; 7:100078. [PMID: 36876284 PMCID: PMC9974438 DOI: 10.1016/j.rpth.2023.100078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/15/2022] [Accepted: 01/08/2023] [Indexed: 02/10/2023] Open
Abstract
Background The protease inhibitor inter-α-inhibitor heavy chain H4 (ITIH4) has been described as an acute-phase reactant and could potentially aid in sepsis monitoring and prognostication. Objectives To investigate ITIH4 plasma levels in sepsis patients compared with healthy controls and to examine the association between ITIH4 and acute-phase response markers, blood coagulation, and organ dysfunction in sepsis. Methods We performed a post hoc study to a prospective cohort study. Patients with septic shock (n = 39) were enrolled upon intensive care unit admission. ITIH4 was analyzed using an in-house immunoassay. Standard coagulation parameters, thrombin generation, fibrin formation and lysis, C-reactive protein, organ dysfunction markers, Sequential Organ Failure Assessment score, and disseminated intravascular coagulation (DIC) score were registered. ITIH4 levels were also investigated in a murine Escherichia coli sepsis model. Results ITIH4 did not display acute-phase behavior as mean ITIH4 levels were not increased in patients with septic shock or in E. coli-infected mice. However, ITIH4 exhibited large interindividual variation in patients with septic shock compared with healthy controls. Low ITIH4 was associated with sepsis-related coagulopathy, including a high DIC score (mean ITIH4: DIC, 203 μg/mL vs non-DIC, 267 μg/mL, P = .01), low antithrombin (r = 0.70, P < .0001) and decreased thrombin generation (mean ITIH4: first peak thrombin tertile, 210 μg/mL vs third peak thrombin tertile, 303 μg/mL, P = .01). ITIH4 showed moderate correlation with arterial blood lactate (ρ = -0.50, P < .001) but only weak correlations with C-reactive protein, alanine transaminase, bilirubin, and Sequential Organ Failure Assessment score (all, ρ < 0.26, P > .05). Conclusion ITIH4 is associated with sepsis-related coagulopathy but is not an acute-phase reactant during septic shock.
Collapse
Affiliation(s)
- Julie Brogaard Larsen
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus Pihl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mathies Appel Aggerbeck
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Kim Michael Larsen
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Christine Lodberg Hvas
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Nanna Johnsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Ruiz-Sanmartín A, Ribas V, Suñol D, Chiscano-Camón L, Palmada C, Bajaña I, Larrosa N, González JJ, Canela N, Ferrer R, Ruiz-Rodríguez JC. Characterization of a proteomic profile associated with organ dysfunction and mortality of sepsis and septic shock. PLoS One 2022; 17:e0278708. [PMID: 36459524 PMCID: PMC9718383 DOI: 10.1371/journal.pone.0278708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION The search for new biomarkers that allow an early diagnosis in sepsis and predict its evolution has become a necessity in medicine. The objective of this study is to identify, through omics techniques, potential protein biomarkers that are expressed in patients with sepsis and their relationship with organ dysfunction and mortality. METHODS Prospective, observational and single-center study that included adult patients (≥ 18 years) who were admitted to a tertiary hospital and who met the criteria for sepsis. A mass spectrometry-based approach was used to analyze the plasma proteins in the enrolled subjects. Subsequently, using recursive feature elimination classification and cross-validation with a vector classifier, an association of these proteins with mortality and organ dysfunction was established. The protein-protein interaction network was analyzed with String software. RESULTS 141 patients were enrolled in this study. Mass spectrometry identified 177 proteins. Of all of them, and by recursive feature elimination, nine proteins (GPX3, APOB, ORM1, SERPINF1, LYZ, C8A, CD14, APOC3 and C1QC) were associated with organ dysfunction (SOFA > 6) with an accuracy of 0.82 ± 0.06, precision of 0.85 ± 0.093, sensitivity 0.81 ± 0.10, specificity 0.84 ± 0.10 and AUC 0.82 ± 0.06. Twenty-two proteins (CLU, LUM, APOL1, SAA1, CLEBC3B, C8A, ITIH4, KNG1, AGT, C7, SAA2, APOH, HRG, AFM, APOE, APOC1, C1S, SERPINC1, IGFALS, KLKB1, CFB and BTD) were associated with mortality with an accuracy of 0.86 ± 0.05, a precision of 0.91 ± 0.05, a sensitivity of 0.91 ± 0.05, a specificity of 0.72 ± 0.17, and an area under the curve (AUC) of 0.81 ± 0.08 with a confidence interval of 95%. CONCLUSION In sepsis there are proteomic patterns associated with organ dysfunction and mortality.
Collapse
Affiliation(s)
- Adolfo Ruiz-Sanmartín
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicent Ribas
- Eurecat, Centre Tecnològic de Catalunya, Digital Health Unit, Barcelona, Spain
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health Unit, Barcelona, Spain
| | - Luis Chiscano-Camón
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Palmada
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Iván Bajaña
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Nieves Larrosa
- Department of Clinical Microbiology, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERINFEC, ISCIII–CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan José González
- Department of Clinical Microbiology, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERINFEC, ISCIII–CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Ricard Ferrer
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Carlos Ruiz-Rodríguez
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
24
|
Huo Y, Lai Y, Feng Q, Wang Q, Li J. Serum ITIH4 in coronary heart disease: a potential anti-inflammatory biomarker related to stenosis degree and risk of major adverse cardiovascular events. Biomark Med 2022; 16:1279-1288. [PMID: 36891881 DOI: 10.2217/bmm-2022-0673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Aim: This study aimed to investigate the correlation of ITIH4 with inflammatory cytokines, stenosis degrees and prognosis in coronary heart disease (CHD) patients. Methods: Serum ITIH4 levels of 300 CHD patients and 30 controls, together with levels of TNF-α, IL-6, IL-8 and IL-17A of CHD patients, were determined using ELISA. Results: Serum ITIH4 was reduced in CHD patients versus controls (p < 0.001). ITIH4 was negatively linked with TNF-α, IL-6, IL-8, IL-17A, C-reactive protein, serum creatinine and Gensini score in CHD patients (all p < 0.050). ITIH4 quartile level negatively correlated with the cumulative major adverse cardiovascular event rate (p = 0.041). Conclusion: Serum ITIH4 may serve as an anti-inflammatory biomarker that negatively associates with stenosis degree and major adverse cardiovascular event risk in CHD patients.
Collapse
Affiliation(s)
- Yanfei Huo
- Physical Examination Center, HanDan Central Hospital, HanDan, 056002, China
| | - Yungang Lai
- Eight Departments of General Surgery, Handan First Hospital, HanDan, 056004, China
| | - Qiang Feng
- Department of Cardiology, HanDan Central Hospital, HanDan, 056002, China
| | - Qingxiang Wang
- Physical Examination Center, HanDan Central Hospital, HanDan, 056002, China
| | - Junhua Li
- Physical Examination Center, HanDan Central Hospital, HanDan, 056002, China
| |
Collapse
|
25
|
Schmidt BM, Holmes CM, Najarian K, Gallagher K, Haus JM, Shadiow J, Ye W, Ang L, Burant A, Baker N, Katona A, Martin CL, Pop-Busui R. On diabetic foot ulcer knowledge gaps, innovation, evaluation, prediction markers, and clinical needs. J Diabetes Complications 2022; 36:108317. [PMID: 36215794 PMCID: PMC10087892 DOI: 10.1016/j.jdiacomp.2022.108317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
Abstract
Diabetic foot ulcers (DFUs) remain a very prevalent and challenging complication of diabetes worldwide due to high morbidity, high risks of lower extremity amputation and associated mortality. Despite major advances in diabetes treatment in general, there is a paucity of FDA approved technologies and therapies to promote successful healing. Furthermore, accurate biomarkers to identify patients at risk of non-healing and monitor response-to-therapy are significantly lacking. To date, research has been slowed by a lack of coordinated efforts among basic scientists and clinical researchers and confounded by non-standardized heterogenous collection of biospecimen and patient associated data. Novel technologies, especially those in the single and 'multiomics' arena, are being used to advance the study of diabetic foot ulcers but require pragmatic study design to ensure broad adoption following validation. These high throughput analyses offer promise to investigate potential biomarkers across wound trajectories and may support information on wound healing and pathophysiology not previously well understood. Additionally, these biomarkers may be used at the point-of-care. In combination with national scalable research efforts, which seek to address the limitations and better inform clinical practice, coordinated and integrative insights may lead to improved limb salvage rates.
Collapse
Affiliation(s)
- Brian M Schmidt
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America.
| | - Crystal M Holmes
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Kayvan Najarian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States of America
| | - Katherine Gallagher
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Abor, MI 48109, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Wen Ye
- Biostatistics Department, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Lynn Ang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Aaron Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Nicole Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Aimee Katona
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Catherine L Martin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Rodica Pop-Busui
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|
26
|
Alpha7 Nicotinic Acetylcholine Receptor Antagonists Prevent Meningitic Escherichia coli-Induced Blood–Brain Barrier Disruptions by Targeting the CISH/JAK2/STAT5b Axis. Biomedicines 2022; 10:biomedicines10102358. [PMID: 36289622 PMCID: PMC9598402 DOI: 10.3390/biomedicines10102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the availability of antibiotics over the last several decades, excessive antibiotic treatments for bacterial sepsis and meningitis (BSM) in children may result in several adverse outcomes. Hematogenous pathogens may directly induce permeability increases in human brain microvascular endothelial cells (HBMECs) and blood–brain barrier (BBB) dysfunctions. Our preliminary studies demonstrated that the alpha7 nicotinic acetylcholine receptor (α7nAChR) played an important role in the pathogenesis of BSM, accompanied by increasing cytokine-inducible SH2-containing protein (CISH) at the transcriptome level, but it has remained unclear how α7nAChR-CISH works mechanistically. The study aims to explore the underlying mechanism of α7nAChR and CISH during E. coli-induced BSM in vitro (HBMECs) and in vivo (α7nAChR-KO mouse). We found that in the stage of E. coli K1-induced BBB disruptions, α7nAChR functioned as the key regulator that affects the integrity of HBMECs by activating the JAK2–STAT5 signaling pathway, while CISH inhibited JAK2–STAT5 activation and exhibited protective effects against E. coli infection. Notably, we first validated that the expression of CISH could be regulated by α7nAChR in HBMECs. In addition, we determined the protective effects of MLA (methyllycaconitine citrate) and MEM (memantine hydrochloride) (functioning as α7nAChR antagonists) on infected HBMECs and suggested that the α7nAChR–CISH axis could explain the protective effects of the two small-molecule compounds on E. coli-induced HBMECs injuries and BBB disruptions. In conclusion, we dissected the α7nAChR/CISH/JAK2/STAT5 axis as critical for the pathogenesis of E. coli-induced brain microvascular leakage and BBB disruptions and provided novel evidence for the development of α7nAChR antagonists in the prevention of pediatric E. coli BSM.
Collapse
|
27
|
He K, He S, Su M. Inter‐alpha‐trypsin inhibitor heavy chain 4: A serologic marker relating to disease risk, activity, and treatment outcomes of rheumatoid arthritis. J Clin Lab Anal 2022; 36:e24231. [PMID: 35064701 PMCID: PMC8906037 DOI: 10.1002/jcla.24231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/07/2022] Open
Abstract
Objective Inter‐alpha‐trypsin inhibitor heavy chain 4 (ITIH4) regulates immunity and inflammation, but its clinical role in rheumatoid arthritis (RA) patients remains unclear. Hence, this study was conducted to explore the association of circulating ITIH4 with disease risk, clinical features, inflammatory cytokines, and treatment outcomes of RA. Methods After the enrollment of 93 active RA patients and 50 health controls (HCs), their serum ITIH4 level was analyzed by enzyme‐linked immunosorbent assay (ELISA). For RA patients only, serum ITIH4 level at week (W) 6 and W12 after treatment was also analyzed. Besides, serum tumor necrosis factor‐alpha (TNF‐α), interleukin (IL)‐1β, IL‐6, and IL‐17A at baseline of RA patients were also detected by ELISA. Results ITIH4 was downregulated in RA patients (151.1 (interquartile range (IQR): 106.2–213.5) ng/mL) than in HCs (306.8 (IQR: 238.9–435.1) ng/mL) (p < 0.001). Furthermore, ITIH4 was negatively related to C‐reactive protein (CRP) (rs = −0.358, p < 0.001) and 28‐joint disease activity score using erythrocyte sedimentation rate (DAS28‐ESR) (rs = −0.253, p = 0.014) in RA patients, but not correlated with other clinical features (all p > 0.05). Besides, ITIH4 was negatively linked with TNF‐α (rs = −0.337, p = 0.001), IL‐6 (rs = −0.221, p = 0.033), and IL‐17A (rs = −0.368, p < 0.001) in RA patients, but not correlated with IL‐1β (rs = −0.195, p = 0.061). Moreover, ITIH4 was gradually elevated in RA patients from baseline to W12 after treatment (p < 0.001). Additionally, the increment of ITIH4 at W6 and W12 was linked with treatment response and remission in RA patients (all p < 0.05). Conclusion Circulating ITIH4 possesses clinical utility in monitoring disease risk, inflammation, disease activity, and treatment outcomes of RA.
Collapse
Affiliation(s)
- Kejian He
- Department of Rheumatology The First College of Clinical Medical Science Three Gorges University & Yichang Central People’s Hospital Yichang China
| | - Sanshan He
- Department of Rheumatism Immunology Minda Hospital of Hubei Minzu University Enshi China
| | - Min Su
- Department of Rheumatology and Immunology The People’s Hospital of China Three Gorges UniversityThe First People’s Hospital of YichangThe Institute of Autoimmune Disease of China Three Gorges University Hubei China
| |
Collapse
|
28
|
Jia Z, Liu L, Zhang S, Zhao X, Luo L, Tang Y, Shen B, Chen M. Proteomics changes after negative pressure wound therapy in diabetic foot ulcers. Mol Med Rep 2021; 24:834. [PMID: 34608502 PMCID: PMC8503750 DOI: 10.3892/mmr.2021.12474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/23/2021] [Indexed: 01/13/2023] Open
Abstract
Label-free quantitative mass spectrometry was used to analyze the differences in the granulation tissue protein expression profiles of patients with diabetic foot ulcers (DFUs) before and after negative-pressure wound therapy (NPWT) to understand how NPWT promotes the healing of diabetic foot wounds. A total of three patients with DFUs hospitalized for Wagner grade 3 were enrolled. The patients received NPWT for one week. The granulation tissue samples of the patients prior to and following NPWT for one week were collected. The protein expression profiles were analyzed with label-free quantitative mass spectrometry and the differentially expressed proteins (DEPs) in the DFU patients prior to and following NPWT for one week were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to annotate the DEPs and DEP-associated signaling pathways. Western blotting and ELISA were performed to validate the results. By comparing the differences in the protein profiles of granulation tissue samples prior to and following NPWT for one week, 36 proteins with significant differences were identified (P<0.05); 33 of these proteins were upregulated and three proteins were downregulated. NPWT altered proteins mainly associated with antioxidation and detoxification, the cytoskeleton, regulation of the inflammatory response, complement and coagulation cascades and lipid metabolism. The functional validation of the DEPs demonstrated that the levels of cathepsin S in peripheral blood and granulation tissue were significantly lower than those prior to NPWT (P<0.05), while the levels of protein S isoform 1, inter α-trypsin inhibitor heavy chain H4 and peroxiredoxin-2 in peripheral blood and granulation tissue were significantly higher than those prior to NPWT (P<0.05). The present study identified multiple novel proteins altered by NPWT and laid a foundation for further studies investigating the mechanism of action of NPWT.
Collapse
Affiliation(s)
- Zeguo Jia
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lei Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shiqian Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Li Luo
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yizhong Tang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
29
|
Bao J, Ma Y, Ding M, Wang C, Du G, Zhou Y, Guo L, Kang H, Wang C, Gu B. Preliminary exploration on the serum biomarkers of bloodstream infection with carbapenem-resistant Klebsiella pneumoniae based on mass spectrometry. J Clin Lab Anal 2021; 35:e23915. [PMID: 34331328 PMCID: PMC8418493 DOI: 10.1002/jcla.23915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Carbapenem-resistant K. pneumoniae (CRKP) bloodstream infections (BSI) must be rapidly identified to improve patient survival rates. This study investigated a new mass spectrometry-based method for improving the identification of CRKP BSI and explored potential biomarkers that could differentiate CRKP BSI from sensitive. METHODS Mouse models of BSI were first established. MALDI-TOF MS was then used to profile serum peptides in CRKP BSI versus normal samples before applying BioExplorer software to establish a diagnostic model to distinguish CRKP from normal. The diagnostic value of the model was then tested against 32 clinical CRKP BSI and 27 healthy serum samples. Finally, the identities of the polypeptides used to establish the diagnostic model were determined by secondary mass spectrometry. RESULTS 107 peptide peaks were shared between the CRKP and normal groups, with 18 peaks found to be differentially expressed. Five highly expressed peptides in the CRKP group (m/z 1349.8, 2091.3, 2908.2, 4102.1, and 8129.5) were chosen to establish a diagnostic model. The accuracy, specificity and sensitivity of the model were determined as 79.66%, 81.48%, and 78.12%, respectively. Secondary mass spectrometry identified the Fibrinogen alpha chain (FGA), Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) and Serum amyloid A-2 protein (SAA2) as the source of the 5 serum peptides. CONCLUSIONS We successfully established a serum peptide-based diagnostic model that distinguished clinical CRKP BSI samples from normal healthy controls. The application of MALDI-TOF MS to measure serum peptides, therefore, represents a promising approach for early BSI diagnosis of BSI, especially for multidrug-resistant bacteria where identification is urgent.
Collapse
Affiliation(s)
- Jinfeng Bao
- College of Medical TechnologyXuzhou Medical UniversityXuzhouChina
- Department of Clinical LaboratoryThe First Medical CentreThe PLA General HospitalBeijingChina
| | - Yating Ma
- Department of Clinical LaboratoryThe First Medical CentreThe PLA General HospitalBeijingChina
| | - Mengshan Ding
- College of Medical TechnologyXuzhou Medical UniversityXuzhouChina
- Department of Clinical LaboratoryThe First Medical CentreThe PLA General HospitalBeijingChina
| | - Chi Wang
- Department of Clinical LaboratoryThe First Medical CentreThe PLA General HospitalBeijingChina
| | - Gaofei Du
- College of Medical TechnologyXuzhou Medical UniversityXuzhouChina
| | - Yuan Zhou
- College of Medical TechnologyXuzhou Medical UniversityXuzhouChina
| | - Ling Guo
- Department of Clinical LaboratoryThe First Medical CentreThe PLA General HospitalBeijingChina
| | - Haiquan Kang
- College of Medical TechnologyXuzhou Medical UniversityXuzhouChina
| | - Chengbin Wang
- Department of Clinical LaboratoryThe First Medical CentreThe PLA General HospitalBeijingChina
| | - Bing Gu
- College of Medical TechnologyXuzhou Medical UniversityXuzhouChina
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
30
|
Durán A, Rebolledo-Jaramillo B, Olguin V, Rojas-Herrera M, Las Heras M, Calderón JF, Zanlungo S, Priestman DA, Platt FM, Klein AD. Identification of genetic modifiers of murine hepatic β-glucocerebrosidase activity. Biochem Biophys Rep 2021; 28:101105. [PMID: 34458595 PMCID: PMC8379285 DOI: 10.1016/j.bbrep.2021.101105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
The acid β-glucocerebrosidase (GCase) enzyme cleaves glucosylceramide into glucose and ceramide. Loss of function variants in the gene encoding for GCase can lead to Gaucher disease and Parkinson's disease. Therapeutic strategies aimed at increasing GCase activity by targeting a modulating factor are attractive and poorly explored. To identify genetic modifiers, we measured hepatic GCase activity in 27 inbred mouse strains. A genome-wide association study (GWAS) using GCase activity as a trait identified several candidate modifier genes, including Dmrtc2 and Arhgef1 (p=2.1x10−7), and Grik5 (p=2.1x10−7). Bayesian integration of the gene mapping with transcriptomics was used to build integrative networks. The analysis uncovered additional candidate GCase regulators, highlighting modules of the acute phase response (p=1.01x10−8), acute inflammatory response (p=1.01x10−8), fatty acid beta-oxidation (p=7.43x10−5), among others. Our study revealed previously unknown candidate modulators of GCase activity, which may facilitate the design of therapies for diseases with GCase dysfunction. Hepatic GCase activity significantly differs among mouse strains. Genome-wide association study revealed putative modifier genes of GCase activity. Bayesian integration of multi-omics identified a regulatory network of GCase activity. This study may facilitate the design of therapies for diseases with GCase dysfunction.
Collapse
Affiliation(s)
- Anyelo Durán
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Boris Rebolledo-Jaramillo
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Valeria Olguin
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Marcelo Rojas-Herrera
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Juan F Calderón
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David A Priestman
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
31
|
Liu L, Maharjan S, Sun JL, Li YC, Cheng HJ. Prevalence and clinical characteristics of septicemia in children with Mycoplasma pneumoniae pneumonia. J Int Med Res 2021; 49:3000605211021733. [PMID: 34167353 PMCID: PMC8236790 DOI: 10.1177/03000605211021733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Mycoplasma pneumoniae (MP) pneumonia in children can be challenging to treat, and the impact of MP blood infection is unclear. The present study aims to determine the prevalence and clinical characteristics of MP septicemia among pediatric patients. Methods Children hospitalized at our center for MP pneumonia between October 2017 and June 2018 were included. Healthy controls visiting our outpatient clinic for regular physical examinations were also enrolled. MP was detected by real-time polymerase chain reaction (qPCR) analysis of plasma and peripheral blood mononuclear cell (PBMC) samples. Results Sixty-one children with MP pneumonia and 30 healthy children were included. Among children with MP infection, 31 (50.8%) were positive for MP by qPCR (19 in plasma samples, 8 in PBMC samples, and 4 in both). All healthy controls were negative for MP by qPCR. Conclusions The prevalence of MP septicemia in children with MP pneumonia is moderate. However, detection of MP in blood samples may have limited clinical value for guiding treatment.
Collapse
Affiliation(s)
- Li Liu
- Department of Pediatric Pulmonology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shobha Maharjan
- Department of Pediatric Pulmonology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jia-Liang Sun
- Department of Pediatric Pulmonology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yan-Chun Li
- Department of Pediatric Pulmonology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Huan-Ji Cheng
- Department of Pediatric Pulmonology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
32
|
Zhai Y, Zhao B, Wang Y, Li L, Li J, Li X, Chang L, Chen Q, Liao Z. Construction of the optimization prognostic model based on differentially expressed immune genes of lung adenocarcinoma. BMC Cancer 2021; 21:213. [PMID: 33648465 PMCID: PMC7923649 DOI: 10.1186/s12885-021-07911-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common pathology subtype of lung cancer. In recent years, immunotherapy, targeted therapy and chemotherapeutics conferred a certain curative effects. However, the effect and prognosis of LUAD patients are different, and the efficacy of existing LUAD risk prediction models is unsatisfactory. Methods The Cancer Genome Atlas (TCGA) LUAD dataset was downloaded. The differentially expressed immune genes (DEIGs) were analyzed with edgeR and DESeq2. The prognostic DEIGs were identified by COX regression. Protein-protein interaction (PPI) network was inferred by STRING using prognostic DEIGs with p value< 0.05. The prognostic model based on DEIGs was established using Lasso regression. Immunohistochemistry was used to assess the expression of FERMT2, FKBP3, SMAD9, GATA2, and ITIH4 in 30 cases of LUAD tissues. Results In total,1654 DEIGs were identified, of which 436 genes were prognostic. Gene functional enrichment analysis indicated that the DEIGs were involved in inflammatory pathways. We constructed 4 models using DEIGs. Finally, model 4, which was constructed using the 436 DEIGs performed the best in prognostic predictions, the receiver operating characteristic curve (ROC) was 0.824 for 3 years, 0.838 for 5 years, 0.834 for 10 years. High levels of FERMT2, FKBP3 and low levels of SMAD9, GATA2, ITIH4 expression are related to the poor overall survival in LUAD (p < 0.05). The prognostic model based on DEIGs reflected infiltration by immune cells. Conclusions In our study, we built an optimal prognostic signature for LUAD using DEIGs and verified the expression of selected genes in LUAD. Our result suggests immune signature can be harnessed to obtain prognostic insights. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07911-8.
Collapse
Affiliation(s)
- Yang Zhai
- Department of Oncology, Tumor Hospital of Shaanxi Province, Xi'an, 710061, People's Republic of China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Bin Zhao
- Department of Epidemiology, Shaanxi Provincial Tumor Hospital, Xi'an, 710061, China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuzhen Wang
- Department of Oncology, Tumor Hospital of Shaanxi Province, Xi'an, 710061, People's Republic of China
| | - Lina Li
- Department of Oncology, Tumor Hospital of Shaanxi Province, Xi'an, 710061, People's Republic of China
| | - Jingjin Li
- Department of Vasculocardiology, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, 710061, PR China
| | - Xu Li
- Department of Oncology, Tumor Hospital of Shaanxi Province, Xi'an, 710061, People's Republic of China
| | - Linhan Chang
- Xi'an Medical University, Xi'an, 710061, PR China
| | - Qian Chen
- Department of Reproduction, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, Shaanxi, 710061, PR China.
| | - Zijun Liao
- Department of Oncology, Tumor Hospital of Shaanxi Province, Xi'an, 710061, People's Republic of China.
| |
Collapse
|