1
|
Mukherjee S, Ghosh P, Ghosh S, Sengupta A, Sarkar S, Chatterjee R, Saha A, Bawali S, Choudhury A, Daptary AH, Gangopadhyay A, Keswani T, Bhattacharyya A. Administration of rIL-33 Restores Altered mDC/pDC Ratio, MDSC Frequency, and Th-17/Treg Ratio during Experimental Cerebral Malaria. Pathogens 2024; 13:877. [PMID: 39452748 PMCID: PMC11509898 DOI: 10.3390/pathogens13100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The onset of malaria causes the induction of various inflammatory markers in the host's body, which in turn affect the body's homeostasis and create several cerebral complications. Polarization of myeloid-derived suppressor cells (MDSCs) from the classically activated M1 to alternatively activated M2 phenotype increases the secretion of pro-inflammatory molecules. Treatment with recombinant IL-33 (rIL-33) not only alters this MDSC's polarization but also targets the glycolysis pathway of the metabolism in MDSCs, rendering them less immunosuppressive. Along with that, the Helper T-cells subset 17 (Th17)/T regulatory cells (Tregs) ratio is skewed towards Th17, which increases inflammation by producing more IL-17. However, treating with rIL-33 also helps to restore this ratio, which brings back homeostasis. During malaria infection, there is an upregulation of IL-12 production from dendritic cells along with a distorted myeloid dendritic cells (mDC)/plasmacytoid dendritic cells (pDC) ratio towards mDCs promoting inflammation. Administering rIL-33 will also subvert this IL-12 production and increase the population of pDC in the host's immune system during malaria infection, thus restoring mDC/pDC to homeostasis. Therefore, treatment with rIL-33 to reduce the pro-inflammatory signatures and maintenance of immune homeostasis along with the increase in survivability could be a potential therapeutic approach for cerebral malaria.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Pronabesh Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Anirban Sengupta
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinksa Institutet, 14152 Stockholm, Sweden;
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Rimbik Chatterjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Atreyee Saha
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Sriparna Bawali
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Abhishek Choudhury
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Altamas Hossain Daptary
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Anwesha Gangopadhyay
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| |
Collapse
|
2
|
Zhu Y, Zhou L, Mo L, Hong C, Pan L, Lin J, Qi Y, Tan S, Qian M, Hu T, Zhao Y, Qiu H, Lin P, Ma X, Yang Q. Plasmodium yoelii Infection Enhances the Expansion of Myeloid-Derived Suppressor Cells via JAK/STAT3 Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:170-186. [PMID: 38819229 DOI: 10.4049/jimmunol.2300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs), the negative immune regulators, have been demonstrated to be involved in immune responses to a variety of pathological conditions, such as tumors, chronic inflammation, and infectious diseases. However, the roles and mechanisms underlying the expansion of MDSCs in malaria remain unclear. In this study, the phenotypic and functional characteristics of splenic MDSCs during Plasmodium yoelii NSM infection are described. Furthermore, we provide compelling evidence that the sera from P. yoelii-infected C57BL/6 mice containing excess IL-6 and granulocyte-macrophage colony-stimulating factor promote the accumulation of MDSCs by inducing Bcl2 expression. Serum-induced MDSCs exert more potent suppressive effects on T cell responses than control MDSCs within both in vivo P. yoelii infection and in vitro serum-treated bone marrow cells experiments. Serum treatment increases the MDSC inhibitory effect, which is dependent on Arg1 expression. Moreover, mechanistic studies reveal that the serum effects are mediated by JAK/STAT3 signaling. By inhibiting STAT3 phosphorylation with the JAK inhibitor JSI-124, effects of serum on MDSCs are almost eliminated. In vivo depletion of MDSCs with anti-Gr-1 or 5-fluorouracil significantly reduces the parasitemia and promotes Th1 immune response in P. yoelii-infected C57BL/6 mice by upregulating IFN-γ expression. In summary, this study indicates that P. yoelii infection facilitates the accumulation and function of MDSCs by upregulating the expression of Bcl2 and Arg1 via JAK/STAT3 signaling pathway in vivo and in vitro. Manipulating the JAK/STAT3 signaling pathway or depleting MDSCs could be promising therapeutic interventions to treat malaria.
Collapse
Affiliation(s)
- Yiqiang Zhu
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Lu Zhou
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lengshan Mo
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Cansheng Hong
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lingxia Pan
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanwei Qi
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Simin Tan
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Manhongtian Qian
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tengfei Hu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhao
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huaina Qiu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Peibin Lin
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xiancai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Quan Yang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Yaseen MM, Abuharfeil NM, Darmani H. MDSC expansion during HIV infection: regulators, ART and immune reconstitution. Genes Immun 2024; 25:242-253. [PMID: 38605259 DOI: 10.1038/s41435-024-00272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) become expanded in different pathological conditions including human immunodeficiency virus (HIV) infection and this may worsen the disease status and accelerate disease progression. In HIV infection, MDSCs suppress anti-HIV immune responses and hamper immune reconstitution. Understanding the factors and mechanisms of MDSC expansion during HIV infection is central to understanding the pathophysiology of HIV infection. This may pave the way to developing new therapeutic targets or strategies. In this work we addressed (i) the mechanisms that regulate MDSC expansion, (ii) the impact of antiretroviral therapy (ART) on the frequency of MDSCs during HIV infection; (iii) the impact of MDSCs on immune reconstitution during successful ART; and (iv) the potential of MDSCs as a therapeutic target.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
4
|
Zhang Y, Chen H, Zeng M, Guo P, Liu M, Cao B, Wang R, Hao F, Zheng X, Feng W. Futoquinol improves Aβ 25-35-induced memory impairment in mice by inhibiting the activation of p38MAPK through the glycolysis pathway and regulating the composition of the gut microbiota. Phytother Res 2024; 38:1799-1814. [PMID: 38330236 DOI: 10.1002/ptr.8136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 02/10/2024]
Abstract
Futoquinol (Fut) is a compound extracted from Piper kadsura that has a nerve cell protection effect. However, it is unclear whether Fut has protective effects in Alzheimer's disease (AD). In this study, we aimed to explore the therapeutic effect of Fut in AD and its underlying mechanism. UPLC-MS/MS method was performed to quantify Fut in the hippocampus of mice brain. The cognition ability, neuronal and mitochondria damage, and levels of Aβ1-42, Aβ1-40, p-Tau, oxidative stress, apoptosis, immune cells, and inflammatory factors were measured in Aβ25-35-induced mice. The content of bacterial meta-geometry was predicted in the microbial composition based on 16S rDNA. The protein levels of HK II, p-p38MAPK, and p38MAPK were detected. PC-12 cells were cultured in vitro, and glucose was added to activate glycolysis to further explore the mechanism of action of Fut intervention in AD. Fut improved the memory and learning ability of Aβ25-35 mice, and reduced neuronal damage and the deposition of Aβ and Tau proteins. Moreover, Fut reduced mitochondrial damage, the levels of oxidative stress, apoptosis, and inflammatory factors. Fut significantly inhibited the expression of HK II and p-p38MAPK proteins. The in vitro experiment showed that p38MAPK was activated and Fut action inhibited after adding 10 mM glucose. Fut might inhibit the activation of p38MAPK through the glycolysis pathway, thereby reducing oxidative stress, apoptosis, and inflammatory factors and improving Aβ25-35-induced memory impairment in mice. These data provide pharmacological rationale for Fut in the treatment of AD.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Hui Chen
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mengnan Zeng
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Pengli Guo
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng Liu
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Bing Cao
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Ru Wang
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Fengxiao Hao
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Weisheng Feng
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| |
Collapse
|
5
|
Segbefia SP, Asandem DA, Amoah LE, Kusi KA. Cytokine gene polymorphisms implicated in the pathogenesis of Plasmodium falciparum infection outcome. Front Immunol 2024; 15:1285411. [PMID: 38404582 PMCID: PMC10884311 DOI: 10.3389/fimmu.2024.1285411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Cytokines play a critical role in the immune mechanisms involved in fighting infections including malaria. Polymorphisms in cytokine genes may affect immune responses during an infection with Plasmodium parasites and immunization outcomes during routine administration of malaria vaccines. These polymorphisms can increase or reduce susceptibility to this deadly infection, and this may affect the physiologically needed balance between anti-inflammatory and pro-inflammatory cytokines. The purpose of this review is to present an overview of the effect of selected cytokine gene polymorphisms on immune responses against malaria.
Collapse
Affiliation(s)
- Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Diana Asema Asandem
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
6
|
Ghosh P, Mukherjee S, Ghosh S, Gangopadhyay A, Keswani T, Sengupta A, Sarkar S, Bhattacharyya A. Estimating nitric oxide (NO) from MDSCs by Griess method. Methods Cell Biol 2023; 184:149-158. [PMID: 38555154 DOI: 10.1016/bs.mcb.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The functional importance of nitric oxide (NO) in the fields of immunology concerning its antimicrobial, anti-tumoral, anti-inflammatory, and immunosuppressive effects have made it inevitable to study its secretion from various cells. Nitrogen oxide synthase (NOS) is the enzyme responsible for synthesizing NO and its three isoforms function in a cell-dependent manner. NO is oxidized rapidly to Reactive nitrogen oxide species (RNOS) through which the roles of NO are being carried out. One of the major immune cells secreting NO is myeloid-derived suppressor cells (MDSCs). The function of these MDSCs in the suppression of T-cell proliferation as well as T-cell differentiation is found to be dependent on NO secretion. Apart from T-cell suppressive activity, NO is also known to interfere with natural killer (NK) cell functions. A convenient method to estimate NO secretion is by using Griess reagent named after Johann Peter Griess. In this method, NO reacts with the reagents to form a colored azo dye detectable using a microplate reader at a wavelength of 548nm. In this chapter, we summarized the detailed method of estimating NO from MDSCs by the Griess method.
Collapse
Affiliation(s)
- Pronabesh Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Anwesha Gangopadhyay
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anirban Sengupta
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, India.
| |
Collapse
|
7
|
Mukherjee S, Ghosh S, Bawali S, Chatterjee R, Saha A, Sengupta A, Keswani T, Sarkar S, Ghosh P, Chakraborty S, Khamaru P, Bhattacharyya A. Administration of soluble gp130Fc disrupts M-1 macrophage polarization, dendritic cell activation, MDSC expansion and Th-17 induction during experimental cerebral malaria. Int Immunopharmacol 2023; 123:110671. [PMID: 37494839 DOI: 10.1016/j.intimp.2023.110671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Regulatory effect of IL-6 on various immune cells plays a crucial role during experimental cerebral malaria pathogenesis. IL-6 neutralization can restore distorted ratios of myeloid dendritic cells and plasmacytoid dendritic cells as well as the balance between Th-17 and T-regulatory cells. IL-6 can also influence immune cells through classical and trans IL-6 signalling pathways. As trans IL-6 signalling is reportedly involved during malaria pathogenesis, we focused on studying the effects of trans IL-6 signalling blockade on various immune cell populations and how they regulate ECM progression. Results show that administration of sgp130Fc recombinant chimera protein lowers the parasitemia, increases the survivability of Plasmodium berghei ANKA infected mice, and restores the distorted ratios of M1/M2 macrophage, mDC/pDC, and Th-17/Treg. IL-6 trans signalling blockade has been found to affect both expansion of myeloid derived suppressor cells (MDSCs) and expression of inflammatory markers on them during Plasmodium berghei ANKA infection indicating that trans IL-6 signalling might regulate various immune cells and their function during ECM. In this work for the first time, we delineate the effect of sgp130Fc administration on influencing the immunological changes within the host secondary lymphoid organ during ECM induced by Plasmodium berghei ANKA infection.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Sriparna Bawali
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Rimbik Chatterjee
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Atreyee Saha
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Anirban Sengupta
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA 149 13th Street Charlestown, MA 02129, USA
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Pronabesh Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Sayan Chakraborty
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Poulomi Khamaru
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India.
| |
Collapse
|
8
|
Ren Y, Dong X, Liu Y, Kang H, Guan L, Huang Y, Zhu X, Tian J, Chen B, Jiang B, He Y. Rapamycin antagonizes angiogenesis and lymphangiogenesis through myeloid-derived suppressor cells in corneal transplantation. Am J Transplant 2023; 23:1359-1374. [PMID: 37225089 DOI: 10.1016/j.ajt.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/22/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Rapamycin is an immunosuppressive drug that is widely used in the postsurgery management of transplantation. To date, the mechanism by which rapamycin reduces posttransplant neovascularization has not been fully understood. Given the original avascularity and immune privilege of the cornea, corneal transplantation is considered as an ideal model to investigate neovascularization and its effects on allograft rejection. Previously, we found that myeloid-derived suppressor cells (MDSC) prolong corneal allograft survival through suppression of angiogenesis and lymphangiogenesis. Here, we show that depletion of MDSC abolished rapamycin-mediated suppression of neovascularization and elongation of corneal allograft survival. RNA-sequencing analysis revealed that rapamycin dramatically enhanced the expression of arginase 1 (Arg1). Furthermore, an Arg1 inhibitor also completely abolished the rapamycin-mediated beneficial effects after corneal transplantation. Taken together, these findings indicate that MDSC and elevated Arg1 activity are essential for the immunosuppressive and antiangiogenic functions of rapamycin.
Collapse
Affiliation(s)
- Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaonan Dong
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Lingling Guan
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yumin Huang
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Xinqi Zhu
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
9
|
Zhang M, Shi X, Zhao J, Guo W, Zhou J. Recruitment of myeloid‑derived suppressor cells and regulatory T‑cells is associated with the occurrence of acute myocardial infarction. Biomed Rep 2023; 19:55. [PMID: 37560314 PMCID: PMC10407468 DOI: 10.3892/br.2023.1637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/10/2023] [Indexed: 08/11/2023] Open
Abstract
The roles of myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs) in acute myocardial infarction (AMI) remain elusive. The present study aimed to analyze the proportions of the granulocytic and monocytic populations of MDSCs (G-MDSCs and M-MDSCs, respectively), and Tregs in the peripheral blood mononuclear cells (PBMCs) of patients with AMI. The present study recruited 34 patients with AMI and 37 healthy controls without clinical signs of myocardial ischemia. PBMCs were isolated from the peripheral blood samples of patients with AMI within 24 h following admission to the hospital and from those of the healthy controls during a physical examination. Two subsets of MDSCs, G-MDSCs (CD15+CD33+CD11b+CD14-HLA-DRlow) and M-MDSCs (CD14+CD15-CD11b+HLA-DRlow), and Tregs (CD3+CD4+CD25highCD127low T-cells) in the PBMCs derived from the patients with AMI and healthy controls were analyzed using flow cytometry. The effects of MDSCs derived from patients with AMI on naïve CD4+ T-cells were examined in the co-culture system. The results revealed that the proportions of G-MDSCs and M-MDSCs were higher in the peripheral blood of patients with AMI than in that of the healthy controls. The patients with AMI had significantly higher numbers of programmed death-ligand (PD-L)1- and PD-L2-positive G-MDSCs and M-MDSCs compared with the healthy controls (P<0.05). The MDSCs could acquire a granulocytic phenotype following AMI, and the G-MDSCs and M-MDSCs would be more likely to express PD-L2 and PD-L1, respectively. The ratios of Tregs to CD4+ T-cells and PD-1+ Tregs in the peripheral blood of patients with AMI were significantly higher than those in the healthy controls (P<0.05). The results of flow cytometry demonstrated an increase in the numbers of inducible Tregs in the co-culture system with the G-MDSCs derived from patients with AMI compared with the G-MDSCs derived from the healthy controls (P<0.01). On the whole, the findings presented herein demonstrate the accumulation of MDSCs, and the upregulation of PD-L1 and PD-L2 expression on the surface of MDSCs in patients with AMI. MDSCs can induce the expansion of Tregs by binding PD-1 on the surface of Tregs, thus playing a crucial role in AMI.
Collapse
Affiliation(s)
- Mingqiang Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Xiaohu Shi
- Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Jingquan Zhao
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Wenjia Guo
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Jie Zhou
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
10
|
Ostrand-Rosenberg S, Lamb TJ, Pawelec G. Here, There, and Everywhere: Myeloid-Derived Suppressor Cells in Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1183-1197. [PMID: 37068300 PMCID: PMC10111205 DOI: 10.4049/jimmunol.2200914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 04/19/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) were initially identified in humans and mice with cancer where they profoundly suppress T cell- and NK cell-mediated antitumor immunity. Inflammation is a central feature of many pathologies and normal physiological conditions and is the dominant driving force for the accumulation and function of MDSCs. Therefore, MDSCs are present in conditions where inflammation is present. Although MDSCs are detrimental in cancer and conditions where cellular immunity is desirable, they are beneficial in settings where cellular immunity is hyperactive. Because MDSCs can be generated ex vivo, they are being exploited as therapeutic agents to reduce damaging cellular immunity. In this review, we discuss the detrimental and beneficial roles of MDSCs in disease settings such as bacterial, viral, and parasitic infections, sepsis, obesity, trauma, stress, autoimmunity, transplantation and graft-versus-host disease, and normal physiological settings, including pregnancy and neonates as well as aging. The impact of MDSCs on vaccination is also discussed.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Tracey J. Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany, and Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
11
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
12
|
Preclinical Study of Plasmodium Immunotherapy Combined with Radiotherapy for Solid Tumors. Cells 2022; 11:cells11223600. [PMID: 36429033 PMCID: PMC9688403 DOI: 10.3390/cells11223600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint blockade therapy (ICB) is ineffective against cold tumors and, although it is effective against some hot tumors, drug resistance can occur. We have developed a Plasmodium immunotherapy (PI) that can overcome these shortcomings. However, the specific killing effect of PI on tumor cells is relatively weak. Radiotherapy (RT) is known to have strong specific lethality to tumor cells. Therefore, we hypothesized that PI combined with RT could produce synergistic antitumor effects. We tested our hypothesis using orthotopic and subcutaneous models of mouse glioma (GL261, a cold tumor) and a subcutaneous model of mouse non-small cell lung cancer (NSCLC, LLC, a hot tumor). Our results showed that, compared with each monotherapy, the combination therapy more significantly inhibited tumor growth and extended the life span of tumor-bearing mice. More importantly, the combination therapy could cure approximately 70 percent of glioma. By analyzing the immune profile of the tumor tissues, we found that the combination therapy was more effective in upregulating the perforin-expressing effector CD8+ T cells and downregulating the myeloid-derived suppressor cells (MDSCs), and was thus more effective in the treatment of cancer. The clinical transformation of PI combined with RT in the treatment of solid tumors, especially glioma, is worthy of expectation.
Collapse
|
13
|
Yan L, Lihua L, Sha Z, Hongli W, Wu Z, Guijun T, Kai Z, Yahui L. The activity of cytokines in dental pulp. J Gene Med 2022; 24:e3444. [PMID: 35999039 DOI: 10.1002/jgm.3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND After binding to their corresponding receptors, cytokines mediate a variety of biological activities. However, the activity of cytokines in dental pulp has not been studied in the single cell level. METHODS The cytokines activity of dental pulp was analyzed through CytoSig with the single cell sequencing data of dental pulp. RESULTS There are 43 cytokine signalling pathways analysed with CytoSig. The activity of TRAIL, NO, IL3, CXCL12 and IL1A was high in the majority of cells in the dental pulp. NO, TRAIL, CXCL12, BMP4 and BMP6 had higher activity in dental pulp stem cells, while CXCL12, BMP4, BMP6, BMP2 and IFN1 were the cytokines with high activity in pulp cells. CONCLUSION Our findings show the landscape of cytokine activity in dental pulp.
Collapse
Affiliation(s)
- Li Yan
- Department of Stomatology, Jingshan People's Hospital
| | - Liu Lihua
- Hanyang Outpatient Clinic, School & Hospital of Stomatology, Wuhan University
| | - Zhang Sha
- Department of Stomatology, Jingshan People's Hospital
| | - Wu Hongli
- Department of Stomatology, Jingshan People's Hospital
| | - Zhong Wu
- Department of Stomatology, Jingshan People's Hospital
| | - Tian Guijun
- Department of Stomatology, Jingshan People's Hospital
| | - Zhang Kai
- Department of Stomatology, Jingshan People's Hospital
| | - Luo Yahui
- Department of Stomatology, Jingshan People's Hospital
| |
Collapse
|