1
|
Tandon S, Muthuswami R, Madhubala R. Role of two aminoacyl-tRNA synthetase associated proteins (Endothelial Monocyte Activating Polypeptides 1 and 2) of Leishmania donovani in chemotaxis of human monocytes. Acta Trop 2021; 224:106128. [PMID: 34509454 DOI: 10.1016/j.actatropica.2021.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/26/2022]
Abstract
Visceral leishmaniasis is caused by the protozoan parasite Leishmania donovani. It is a fatal form of leishmaniasis prevalent in Indian subcontinent. Since there are no human licensed vaccines available for leishmaniasis, chemotherapeutic drugs remain the only means for combating parasitic infections. We have earlier identified a total of 26 amino-acyl tRNA synthetases (aaRS) along with five stand-alone editing domains and two aaRS-associated proteins in Leishmania donovani. In addition to their canonical role of tRNA aminoacylation, aaRS have been involved in novel functions by acquiring novel domains during evolution. The aaRS-associated proteins have been reported to be analogous to a human cytokine, EMAP II, as they possess a modified version of the heptapeptide motif responsible for the cytokine activity. In this manuscript, we report the characterization of two L. donovani aminoacyl-tRNA synthetase associated proteins which showed a human chemokine like activity. Both the proteins, L. donovani EMAP-1 and EMAP-2, possess a modified form of the heptapeptide motif, which is responsible for cytokine activity in human EMAP-2. LdEMAP-1 and LdEMAP-2 were cloned, expressed, and purified. Both LdEMAP-1 and LdEMAP-2 proteins in the promastigote stage were found to be localized in cytoplasm as confirmed by immunofluorescence. In case of L. donovani infected human THP-1 derived macrophages, secretion of LdEMAP-1 and LdEMAP-2 proteins in the cytosol of the macrophages was observed. The role of LdEMAP-1 and LdEMAP-2 in the aminoacylation of rLdTyrRS was also tested and LdEMAP-2 but not LdEMAP-1 increased the rate of aminoacylation of tyrosyl tRNA synthetase (rLdTyrRS). L. donovani EMAP-1 and EMAP-2 proteins managed to exhibit the capability of attracting human origin cells as determined by chemotaxis assay, and also were able to induce the secretion of cytokines from macrophages like their human counterpart (EMAP II). Our working hypothesis is that both of these proteins might be involved in helping the parasite to establish the infection within the host.
Collapse
|
2
|
Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical Chemokines. Front Med (Lausanne) 2019; 6:3. [PMID: 30729111 PMCID: PMC6351468 DOI: 10.3389/fmed.2019.00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
When the human genome was sequenced, it came as a surprise that it contains “only” 21,306 protein-coding genes. However, complexity and diversity are multiplied by alternative splicing, non-protein-coding transcripts, or post-translational modifications (PTMs) on proteome level. Here, we discuss how the multi-tasking potential of proteins can substantially enhance the complexity of the proteome further, while at the same time offering mechanisms for the fine-regulation of cell responses. Discoveries over the past two decades have led to the identification of “surprising” and previously unrecognized functionalities of long known cytokines, inflammatory mediators, and intracellular proteins that have established novel molecular networks in physiology, inflammation, and cardiovascular disease. In this mini-review, we focus on alarmins and atypical chemokines such as high-mobility group box protein-1 (HMGB-1) and macrophage migration-inhibitory factor (MIF)-type proteins that are prototypical examples of these classes, featuring a remarkable multitasking potential that allows for an elaborate fine-tuning of molecular networks in the extra- and intracellular space that may eventually give rise to novel “task”-based precision medicine intervention strategies.
Collapse
Affiliation(s)
- Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Ozgun Gokce
- System Neuroscience Laboratory, Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
3
|
Lee EY, Kim S, Kim MH. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases. Biochem Pharmacol 2018; 154:424-434. [PMID: 29890143 PMCID: PMC7092877 DOI: 10.1016/j.bcp.2018.06.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Despite remarkable advances in medical science, infection-associated diseases remain among the leading causes of death worldwide. There is a great deal of interest and concern at the rate at which new pathogens are emerging and causing significant human health problems. Expanding our understanding of how cells regulate signaling networks to defend against invaders and retain cell homeostasis will reveal promising strategies against infection. It has taken scientists decades to appreciate that eukaryotic aminoacyl-tRNA synthetases (ARSs) play a role as global cell signaling mediators to regulate cell homeostasis, beyond their intrinsic function as protein synthesis enzymes. Recent discoveries revealed that ubiquitously expressed standby cytoplasmic ARSs sense and respond to danger signals and regulate immunity against infections, indicating their potential as therapeutic targets for infectious diseases. In this review, we discuss ARS-mediated anti-infectious signaling and the emerging role of ARSs in antimicrobial immunity. In contrast to their ability to defend against infection, host ARSs are inevitably co-opted by viruses for survival and propagation. We therefore provide a brief overview of the communication between viruses and the ARS system. Finally, we discuss encouraging new approaches to develop ARSs as therapeutics for infectious diseases.
Collapse
Affiliation(s)
- Eun-Young Lee
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
EMAP-II in metabolic syndrome. Fam Med 2018. [DOI: 10.30841/2307-5112.1.2018.136056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Yu Q, Liu L, Wang P, Yao Y, Xue Y, Liu Y. EMAP-II sensitize U87MG and glioma stem-like cells to temozolomide via induction of autophagy-mediated cell death and G2/M arrest. Cell Cycle 2017; 16:1085-1092. [PMID: 28436750 DOI: 10.1080/15384101.2017.1315492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite the fact that temozolomide (TMZ) has been widely accepted as the key chemotherapeutic agent to prolong the survival of patients with glioblastoma, failure and recurrence cases can still be observed in clinics. Glioma stem-like cells (GSCs) are thought to be responsible for the drug resistance. In this study, we investigate whether endothelial monocyte-activating polypeptide-II (EMAP-II), a pro-inflammatory cytokine, can enhance TMZ cytotoxicity on U87MG and GSCs or not. As described in prior research, GSCs have been isolated from U87MG and maintained in the serum-free DMEM/F12 medium containing EGF, b-FGF, and B27. TMZ and/or EMAP-II administration were performed for 72 h, respectively. The results showed that TMZ combined with EMAP-II inhibit the proliferation of U87MG and GSCs by a larger measure than TMZ single treatment by decreasing the IC50. EMAP-II also enhanced TMZ-induced autophagy-mediated cell death and G2/M arrest. Moreover, we found that EMAP-II functioned a targeted suppression on mTOR, which may involve in the anti-neoplasm mechanism. The results suggest that EMAP-II could be considered as a combined chemotherapeutic agent against glioblastoma by sensitizing U87MG and GSCs to TMZ.
Collapse
Affiliation(s)
- Qi Yu
- a Department of Neurosurgery , Shengjing Hospital of China Medical University , Shenyang , China.,b Liaoning Research Center for Translational Medicine in Nervous System Disease , Shenyang China
| | - Libo Liu
- c Department of Neurobiology , College of Basic Medicine, China Medical University , Shenyang China.,d Key Laboratory of Cell Biology , Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang China
| | - Ping Wang
- c Department of Neurobiology , College of Basic Medicine, China Medical University , Shenyang China.,d Key Laboratory of Cell Biology , Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang China
| | - Yilong Yao
- a Department of Neurosurgery , Shengjing Hospital of China Medical University , Shenyang , China.,b Liaoning Research Center for Translational Medicine in Nervous System Disease , Shenyang China
| | - Yixue Xue
- c Department of Neurobiology , College of Basic Medicine, China Medical University , Shenyang China.,d Key Laboratory of Cell Biology , Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang China
| | - Yunhui Liu
- a Department of Neurosurgery , Shengjing Hospital of China Medical University , Shenyang , China.,b Liaoning Research Center for Translational Medicine in Nervous System Disease , Shenyang China
| |
Collapse
|
6
|
Tasiemski A, Salzet M. Neuro-immune lessons from an annelid: The medicinal leech. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:33-42. [PMID: 27381717 DOI: 10.1016/j.dci.2016.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/09/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
An important question that remains unanswered is how the vertebrate neuroimmune system can be both friend and foe to the damaged nervous tissue. Some of the difficulty in obtaining responses in mammals probably lies in the conflation in the central nervous system (CNS), of the innate and adaptive immune responses, which makes the vertebrate neuroimmune response quite complex and difficult to dissect. An alternative strategy for understanding the relation between neural immunity and neural repair is to study an animal devoid of adaptive immunity and whose CNS is well described and regeneration competent. The medicinal leech offers such opportunity. If the nerve cord of this annelid is crushed or partially cut, axons grow across the lesion and conduction of signals through the damaged region is restored within a few days, even when the nerve cord is removed from the animal and maintained in culture. When the mammalian spinal cord is injured, regeneration of normal connections is more or less successful and implies multiple events that still remain difficult to resolve. Interestingly, the regenerative process of the leech lesioned nerve cord is even more successful under septic than under sterile conditions suggesting that a controlled initiation of an infectious response may be a critical event for the regeneration of normal CNS functions in the leech. Here are reviewed and discussed data explaining how the leech nerve cord sensu stricto (i.e. excluding microglia and infiltrated blood cells) recognizes and responds to microbes and mechanical damages.
Collapse
Affiliation(s)
- Aurélie Tasiemski
- Université de Lille, CNRS UMR8198, Unité d'Evolution, Ecologie et Paléontologie (EEP), Species Interactions and Comparative Immunology (SPICI) Team, 59655 Villeneuve d'Ascq, France.
| | - Michel Salzet
- Université de Lille, INSERM U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), 59655 Villeneuve d'Ascq, France
| |
Collapse
|
7
|
Kapps D, Cela M, Théobald-Dietrich A, Hendrickson T, Frugier M. OB or Not OB: Idiosyncratic utilization of the tRNA-binding OB-fold domain in unicellular, pathogenic eukaryotes. FEBS Lett 2016; 590:4180-4191. [PMID: 27714804 DOI: 10.1002/1873-3468.12441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 11/11/2022]
Abstract
In this review, we examine the so-called OB-fold, a tRNA-binding domain homologous to the bacterial tRNA-binding protein Trbp111. We highlight the ability of OB-fold homologs to bind tRNA species and summarize their distribution in evolution. Nature has capitalized on the advantageous effects acquired when an OB-fold domain binds to tRNA by evolutionarily selecting this domain for fusion to different enzymes. Here, we review our current understanding of how the complexity of OB-fold-containing proteins and enzymes developed to expand their functions, especially in unicellular, pathogenic eukaryotes.
Collapse
Affiliation(s)
- Delphine Kapps
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| | - Marta Cela
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| | | | | | - Magali Frugier
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| |
Collapse
|
8
|
Mogylnytska LA, Mogylnytska OE. SERUM LEVELS OF ENDOTHELIAL MONOCYTE ACTIVATING PEPTIDE II IN TYPE 1 DIABETES. ACTA ACUST UNITED AC 2016. [PMID: 29537208 DOI: 10.15407/fz62.01.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Was investigated serum level of endothelial monocyte activating peptide II (EMAP-II) and endothelium-dependent dilatation in type 1 diabetes and possible relation between those. We found an increase serum level of EMAP-II and decrease of endothelium-dependent dilatation in type 1 diabetes. It was significant correlation between EMAP-II and HbAc1, blood glucose, total cholesterol, LDL, triglycerides and inverse correlation between EMAP-II and HDL, endotheliumdependent dilatation. The revealed change of EMAP-II serum level reflects an endothelial dysfunction in type 1 diabetes, alteration of carbohydrate and lipid metabolism could influence of this pathway.
Collapse
MESH Headings
- Adolescent
- Blood Glucose/metabolism
- Body Mass Index
- Case-Control Studies
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/physiopathology
- Dilatation, Pathologic/blood
- Dilatation, Pathologic/genetics
- Dilatation, Pathologic/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Gene Expression
- Hemoglobins/genetics
- Hemoglobins/metabolism
- Humans
- Male
- Microtubule-Associated Proteins/blood
- Microtubule-Associated Proteins/genetics
- Monocytes/metabolism
- Monocytes/pathology
- Triglycerides/blood
- Young Adult
Collapse
|
9
|
Abstract
Apoptosis is a carefully choreographed process of cellular self-destruction in the absence of inflammation. During the death process, apoptotic cells actively communicate with their environment, signaling to both their immediate neighbors as well as distant sentinels. Some of these signals direct the anti-inflammatory immune response, instructing specific subsets of phagocytes to participate in the limited and careful clearance of dying cellular debris. These immunomodulatory signals can also regulate the activation state of the engulfing phagocytes. Other signals derived from apoptotic cells contribute to tissue growth control with the common goal of maintaining tissue integrity. Derangements in these growth control signals during prolonged apoptosis can lead to excessive cell loss or proliferation. Here, we highlight some of the most intriguing signals produced by apoptotic cells during the course of normal development as well as during physiological disturbances such as atherosclerosis and cancer.
Collapse
|
10
|
Xu H, Malinin NL, Awasthi N, Schwarz RE, Schwarz MA. The N terminus of pro-endothelial monocyte-activating polypeptide II (EMAP II) regulates its binding with the C terminus, arginyl-tRNA synthetase, and neurofilament light protein. J Biol Chem 2015; 290:9753-66. [PMID: 25724651 DOI: 10.1074/jbc.m114.630533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 12/17/2022] Open
Abstract
Pro-endothelial monocyte-activating polypeptide II (EMAP II), one component of the multi-aminoacyl tRNA synthetase complex, plays multiple roles in physiological and pathological processes of protein translation, signal transduction, immunity, lung development, and tumor growth. Recent studies have determined that pro-EMAP II has an essential role in maintaining axon integrity in central and peripheral neural systems where deletion of the C terminus of pro-EMAP II has been reported in a consanguineous Israeli Bedouin kindred suffering from Pelizaeus-Merzbacher-like disease. We hypothesized that the N terminus of pro-EMAP II has an important role in the regulation of protein-protein interactions. Using a GFP reporter system, we defined a putative leucine zipper in the N terminus of human pro-EMAP II protein (amino acid residues 1-70) that can form specific strip-like punctate structures. Through GFP punctum analysis, we uncovered that the pro-EMAP II C terminus (amino acids 147-312) can repress GFP punctum formation. Pulldown assays confirmed that the binding between the pro-EMAP II N terminus and its C terminus is mediated by a putative leucine zipper. Furthermore, the pro-EMAP II 1-70 amino acid region was identified as the binding partner of arginyl-tRNA synthetase, a polypeptide of the multi-aminoacyl tRNA synthetase complex. We also determined that the punctate GFP pro-EMAP II 1-70 amino acid aggregate colocalizes and binds to the neurofilament light subunit protein that is associated with pathologic neurofilament network disorganization and degeneration of motor neurons. These findings indicate the structure and binding interaction of pro-EMAP II protein and suggest a role of this protein in pathological neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiming Xu
- From the Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 and
| | - Nikolay L Malinin
- the Indiana University School of Medicine, South Bend, Indiana 46617
| | - Niranjan Awasthi
- the Indiana University School of Medicine, South Bend, Indiana 46617
| | | | - Margaret A Schwarz
- From the Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 and the Indiana University School of Medicine, South Bend, Indiana 46617
| |
Collapse
|
11
|
Kawai M, Zhao J, Ishiguro H, Takeyama H. Carbon dioxide‑pneumoperitoneum in rats reduces ischemia/reperfusion‑induced hepatic apoptosis and inflammatory responses by stimulating sensory neurons. Mol Med Rep 2014; 10:1303-8. [PMID: 24938740 DOI: 10.3892/mmr.2014.2329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 04/16/2014] [Indexed: 11/05/2022] Open
Abstract
Laparoscopic surgery induces a milder inflammatory response than open surgery, however, the precise mechanisms underlying this phenomenon remain to be elucidated. Our previous study demonstrated that stimulation of sensory neurons inhibited hepatic apoptosis and inflammatory responses in rats subjected to hepatic ischemia/reperfusion (I/R). Since carbon dioxide (CO2) has been demonstrated to stimulate sensory neurons, it was hypothesized that CO2‑pneumoperitoneum, as used in laparoscopic surgery, may attenuate inflammatory responses by stimulating sensory neurons. This hypothesis was examined using rats subjected to hepatic I/R. The rats were subjected to partial hepatic ischemia for 60 min followed by reperfusion. Abdominal insufflation with CO2 or air was performed for 30 min prior to hepatic I/R. Hepatic I/R‑induced hepatocellular apoptosis and expression of the neutrophil chemoattractant endothelial monocyte‑activated polypeptide‑II, were inhibited by CO2‑pneumoperitoneum, however, not by air‑pneumoperitoneum. Pretreatment with the transient receptor potential vanilloid 1 antagonist SB366791 reversed the protective effects of CO2‑pneumoperitoneum. The results from the present study demonstrated that CO2‑pneumoperitoneum attenuates hepatic apoptosis and inflammatory responses in rats subjected to hepatic I/R, possibly by stimulating sensory neurons. These findings suggested that CO2‑pneumoperitoneum contributed to the attenuated inflammatory response observed following laparoscopic surgery.
Collapse
Affiliation(s)
- Miho Kawai
- Department of Gastroenterological Surgery, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Juan Zhao
- Department of Translational Medical Science Research, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Hideyuki Ishiguro
- Department of Gastroenterological Surgery, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| | - Hiromitsu Takeyama
- Department of Gastroenterological Surgery, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan
| |
Collapse
|
12
|
Stathaki M, Armakolas A, Dimakakos A, Kaklamanis L, Vlachos I, Konstantoulakis MM, Zografos G, Koutsilieris M. Kisspeptin effect on endothelial monocyte activating polypeptide II (EMAP-II)-associated lymphocyte cell death and metastases in colorectal cancer patients. Mol Med 2014; 20:80-92. [PMID: 24395571 DOI: 10.2119/molmed.2013.00151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/23/2013] [Indexed: 12/28/2022] Open
Abstract
Kisspeptin is an antimetastatic agent in some cancers that has also been associated with lymphoid cell apoptosis, a phenomenon favoring metastases. Our aim was to determine the association of kisspeptin with lymphocyte apoptosis and the presence of metastases in colorectal cancer patients. Blood was drawn from 69 colon cancer patients and 20 healthy volunteers. Tissue specimens from healthy and pathological tissue were immunohistochemically analyzed for kisspeptin and endothelial monocyte activating polypeptide II (EMAP-II) expression. Blood EMAP-II and soluble Fas ligand (sFasL) levels were examined by an enzyme-linked immunosorbent assay method. The kisspeptin and EMAP-II expression and secretion levels in the DLD-1 and HT-29 colon cancer cell lines were examined by quantitative real-time polymerase chain reaction, Western analysis and enzyme-linked immunosorbent assay, whereas lymphocyte viability was assessed by flow cytometry. The effect of kisspeptin on the viability of colon cancer cells was examined by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. Exogenous, synthetic and naturally produced, kisspeptin induces through the G-protein-coupled receptor 54 (GPR54; also known as the kisspeptin receptor) the EMAP-II expression and secretion in colon cancer cell lines, inducing in vitro lymphocyte apoptosis, as verified by the use of an anti-EMAP-II antibody. These results were reversed with the use of kisspeptin inhibitors and by kisspeptin-silencing experiments. Tumor kisspeptin expression was associated with the tumor EMAP-II expression (p < 0.001). Elevated kisspeptin and EMAP-II expression in colon cancer tissues was associated with lack of metastases (p < 0.001) in colon cancer patients. These data indicate the antimetastatic effect of tumor-elevated kisspeptin in colon cancer patients that may be mediated by the effect of kisspeptin on EMAP-II expression in colon cancer tumors in patients with normal serum EMAP-II levels. These findings provide new insight into the role of kisspeptin in the context of metastases in colon cancer patients.
Collapse
Affiliation(s)
- Martha Stathaki
- First Propadeutic Surgical Clinic, Athens Medical School, National and Kapodestrian University of Athens, Athens, Greece Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Athens, Greece
| | - Andreas Dimakakos
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Athens, Greece
| | | | - Ioannis Vlachos
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Athens, Greece
| | - Manoussos M Konstantoulakis
- First Propadeutic Surgical Clinic, Athens Medical School, National and Kapodestrian University of Athens, Athens, Greece
| | - George Zografos
- First Propadeutic Surgical Clinic, Athens Medical School, National and Kapodestrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Lal CV, Schwarz MA. Vascular mediators in chronic lung disease of infancy: role of endothelial monocyte activating polypeptide II (EMAP II). ACTA ACUST UNITED AC 2014; 100:180-8. [PMID: 24619875 DOI: 10.1002/bdra.23234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/25/2014] [Accepted: 02/04/2014] [Indexed: 01/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity. Over the years, the BPD phenotype has evolved, but despite various advances in neonatal management approaches, the reduction in the BPD burden is minimal. With the advent of surfactant, glucocorticoids, and new ventilation strategies, BPD has evolved from a disease of structural injury into a new BPD, marked by an arrest in alveolar growth in the lungs of extremely premature infants. This deficient alveolar growth has been associated with a diminution of pulmonary vasculature. Several investigators have described the epithelial / vascular co-dependency and the significant role of crosstalk between vessel formation, alveologenesis, and lung dysplasia's; hence identification and study of factors that regulate pulmonary vascular emergence and inflammation has become crucial in devising effective therapeutic approaches for this debilitating condition. The potent antiangiogenic and proinflammatory protein Endothelial Monocyte Activating Polypeptide II (EMAP II) has been described as a mediator of pulmonary vascular and alveolar formation and its expression is inversely related to the periods of vascularization and alveolarization in the developing lung. Hence the study of EMAP II could play a vital role in studying and devising appropriate therapeutics for diseases of aberrant lung development, such as BPD. Herein, we review the vascular contribution to lung development and the implications that vascular mediators such as EMAP II have in distal lung formation during the vulnerable stage of alveolar genesis.
Collapse
Affiliation(s)
- Charitharth Vivek Lal
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | | |
Collapse
|
14
|
Lee SW, Kim G, Kim S. Aminoacyl-tRNA synthetase-interacting multi-functional protein 1/p43: an emerging therapeutic protein working at systems level. Expert Opin Drug Discov 2013; 3:945-57. [PMID: 23484969 DOI: 10.1517/17460441.3.8.945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Drug discovery programs are based on the presumption of one drug-one action-one disease, which is frustrated by the complexity of biological systems. Because the aberration of a single gene often leads to multiple pathological symptoms, we should understand the functional network of the disease-related proteins to develop effective therapy. OBJECTIVES To describe how activities of proteins are reflected in phenotypes and their pathological implications using aminoacyl-tRNA synthetase-interacting multi-functional protein 1 (AIMP1). METHODS The physiological activities of AIMP1 are unveiled through in vitro approaches and in vivo phenotyptic investigation. Bioinformatics tool was used to combine all AIMP1-target proteins. CONCLUSION Although a cytosolic protein, AIMP1 can be secreted as a cytokine to control immune response, angiogenesis and wound healing, and as a glucagon-like hormone for glucose homeostasis. It is involved in the regulation of autoimmune control and TGF-β signaling within the cells. AIMP1-deficient mice developed multiple phenotypes in immune systems, metabolism and body growth. The therapeutic potential of this multi-functional protein with associated biological activities are discussed.
Collapse
Affiliation(s)
- Sang Won Lee
- Seoul National University of Education, Department of Science and Technology Education for Life, 1650, Seocho-dong, Seocho-gu, Seoul 137-742, Korea
| | | | | |
Collapse
|
15
|
Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol 2013; 4:18. [PMID: 23459929 PMCID: PMC3586682 DOI: 10.3389/fneur.2013.00018] [Citation(s) in RCA: 512] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/10/2013] [Indexed: 12/18/2022] Open
Abstract
Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia, and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (Interleukin-1, Tumor Necrosis Factor, Interleukin-6), the anti-inflammatory cytokines (IL-4, Interleukin-10, and TGF-beta), and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region. Such mechanisms have been demonstrated in animal models, mostly in rodents, as well as in human brain. Whilst the humoral immune response is particularly pronounced in the acute phase following Traumatic brain injury (TBI), the activation of glial cells seems to be a rather prolonged effect lasting for several months. The complex interaction of cytokines and cell types installs a network of events, which subsequently intersect with adjacent pathological cascades including oxidative stress, excitotoxicity, or reparative events including angiogenesis, scarring, and neurogenesis. It is well accepted that neuroinflammation is responsible of beneficial and detrimental effects, contributing to secondary brain damage but also facilitating neurorepair. Although such mediators are clear markers of immune activation, to what extent cytokines can be defined as diagnostic factors reflecting brain injury or as predictors of long term outcome needs to be further substantiated. In clinical studies some groups reported a proportional cytokine production in either the cerebrospinal fluid or intraparenchymal tissue with initial brain damage, mortality, or poor outcome scores. However, the validity of cytokines as biomarkers is not broadly accepted. This review article will discuss the evidence from both clinical and laboratory studies exploring the validity of immune markers as a correlate to classification and outcome following TBI.
Collapse
Affiliation(s)
- Thomas Woodcock
- Australian School of Advanced Medicine, Macquarie University Sydney, NSW, Australia
| | | |
Collapse
|
16
|
Son SH, Park MC, Kim S. Extracellular activities of aminoacyl-tRNA synthetases: new mediators for cell-cell communication. Top Curr Chem (Cham) 2013; 344:145-66. [PMID: 24352603 DOI: 10.1007/128_2013_476] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last decade, many reports have discussed aminoacyl-tRNA synthetases (ARSs) in extracellular space. Now that so many of them are known to be secreted with distinct activities in the broad range of target cells including endothelial, various immune cells, and fibroblasts, they need to be classified as a new family of extracellular signal mediators. In this chapter the identity of the secreted ARSs, receptors, and their physiological and pathological implications will be described.
Collapse
Affiliation(s)
- Sung Hwa Son
- Medicinal Bioconvergence Research Center, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | | | | |
Collapse
|
17
|
Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol 2013; 4:18. [PMID: 23459929 DOI: 10.3389/fneur.2013.00018.ecollection2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/10/2013] [Indexed: 05/19/2023] Open
Abstract
Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia, and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (Interleukin-1, Tumor Necrosis Factor, Interleukin-6), the anti-inflammatory cytokines (IL-4, Interleukin-10, and TGF-beta), and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region. Such mechanisms have been demonstrated in animal models, mostly in rodents, as well as in human brain. Whilst the humoral immune response is particularly pronounced in the acute phase following Traumatic brain injury (TBI), the activation of glial cells seems to be a rather prolonged effect lasting for several months. The complex interaction of cytokines and cell types installs a network of events, which subsequently intersect with adjacent pathological cascades including oxidative stress, excitotoxicity, or reparative events including angiogenesis, scarring, and neurogenesis. It is well accepted that neuroinflammation is responsible of beneficial and detrimental effects, contributing to secondary brain damage but also facilitating neurorepair. Although such mediators are clear markers of immune activation, to what extent cytokines can be defined as diagnostic factors reflecting brain injury or as predictors of long term outcome needs to be further substantiated. In clinical studies some groups reported a proportional cytokine production in either the cerebrospinal fluid or intraparenchymal tissue with initial brain damage, mortality, or poor outcome scores. However, the validity of cytokines as biomarkers is not broadly accepted. This review article will discuss the evidence from both clinical and laboratory studies exploring the validity of immune markers as a correlate to classification and outcome following TBI.
Collapse
Affiliation(s)
- Thomas Woodcock
- Australian School of Advanced Medicine, Macquarie University Sydney, NSW, Australia
| | | |
Collapse
|
18
|
Abstract
Although aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multi-functional proteins (AIMPs) have long been recognized as housekeeping proteins, evidence indicating that they play a key role in regulating cancer is now accumulating. In this chapter we will review the conventional and non-conventional functions of ARSs and AIMPs with respect to carcinogenesis. First, we will address how ARSs and AIMPs are altered in terms of expression, mutation, splicing, and post-translational modifications. Second, the molecular mechanisms for ARSs' and AIMPs' involvement in the initiation, maintenance, and progress of carcinogenesis will be covered. Finally, we will introduce the development of therapeutic approaches that target ARSs and AIMPs with the goal of treating cancer.
Collapse
|
19
|
Abstract
Many secreted polypeptide regulators of angiogenesis are devoid of signal peptides. These proteins are released through nonclassical pathways independent of endoplasmic reticulum and Golgi. In most cases, the nonclassical protein export is induced by stress. It usually serves to stimulate repair or inflammation in damaged tissues. We review the secreted signal peptide-less regulators of angiogenesis and discuss the mechanisms and biological significance of their unconventional export.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|
20
|
Lylo VV, Matsevich LL, Kotsarenko EV, Babenko LA, Kornelyuk AI, Sukhorada EM, Lukash LL. Activation of gene expression of the O6-methylguanine-DNA-transferase repair enzyme upon the influence of EMAP II cytokine in human cells in vitro. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711060053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Castro de Moura M, Miro F, Han JM, Kim S, Celada A, Ribas de Pouplana L. Entamoeba lysyl-tRNA synthetase contains a cytokine-like domain with chemokine activity towards human endothelial cells. PLoS Negl Trop Dis 2011; 5:e1398. [PMID: 22140588 PMCID: PMC3226552 DOI: 10.1371/journal.pntd.0001398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 09/30/2011] [Indexed: 11/18/2022] Open
Abstract
Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II). This Entamoeba EMAPII-like polypeptide (EELP) is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS) that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity.
Collapse
Affiliation(s)
| | - Francesc Miro
- Institute for Research in Biomedicine, Barcelona, Spain
| | - Jung Min Han
- Center for Medicinal Protein Network and Systems Biology, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sunghoon Kim
- Center for Medicinal Protein Network and Systems Biology, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Antonio Celada
- Institute for Research in Biomedicine, Barcelona, Spain
- Department of Immunology and Physiology, School of Biology, University of Barcelona, Barcelona, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
22
|
Hundt W, Yuh EL, Burbelko M, Kiessling A, Bednarski MD, Steinbach S. Gene expression analysis of SCC tumor cells in muscle tissue. Eur Arch Otorhinolaryngol 2011; 269:1653-63. [PMID: 22002462 DOI: 10.1007/s00405-011-1799-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/26/2011] [Indexed: 10/17/2022]
Abstract
The purpose of this study was to evaluate microarray technology of HNSCC cells in muscle tissue. 200 SCCVII tumor cells were injected intramuscularly into the right flank of ten C3H/Km mice each. One week later the animals were killed and the tissue taken out. Histology (H&E staining) and microarray of the tissue were performed. Histology showed a few tumor cells between the muscle fibers. Microarray technology showed different gene expression pattern of the muscle tissue with SCCVII cells in comparison with normal muscle tissue. Only those genes showing a fold change difference of 5 or higher were considered. Gene expression analysis revealed changes in the expression levels of SCCVII cells in muscle tissue in 220 genes. Significant gene expression differences between SCCVII cells in muscle tissue and pure muscle tissue could be seen.
Collapse
Affiliation(s)
- Walter Hundt
- Department of Radiology, Philipps University Marburg, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Over the past decade, the identification of cancer-associated factors has been a subject of primary interest not only for understanding the basic mechanisms of tumorigenesis but also for discovering the associated therapeutic targets. However, aminoacyl-tRNA synthetases (ARSs) have been overlooked, mostly because many assumed that they were simply 'housekeepers' that were involved in protein synthesis. Mammalian ARSs have evolved many additional domains that are not necessarily linked to their catalytic activities. With these domains, they interact with diverse regulatory factors. In addition, the expression of some ARSs is dynamically changed depending on various cellular types and stresses. This Analysis article addresses the potential pathophysiological implications of ARSs in tumorigenesis.
Collapse
Affiliation(s)
- Sunghoon Kim
- Medicinal Bioconvergence Research Center, WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| | | | | |
Collapse
|
24
|
Liao Y, Zhang Z, Liu J, Schluesener HJ, Zhang Z, Wu Y. Lesional expression of EMAPII in macrophages/microglia following cerebral ischemia in rats. Int J Neurosci 2010; 121:58-64. [PMID: 21047177 DOI: 10.3109/00207454.2010.529210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Cerebral ischemia triggers acute inflammation, which exacerbates primary brain damage. Characterization of cytokine expression to the early damaged tissue might aid in further understanding of lesion development and contribute to definition of molecular targets for selective immunotherapy. Endothelial monocyte-activating polypeptide II (EMAPII) is a proinflammatory, antiangiogenic cytokine whose expression following cerebral ischemia remained unknown. Therefore, we studied the spatiotemporal expression of EMAPII in early brain lesions after cerebral ischemia-reperfusion injury. METHODS Unilateral transient focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 1 hr followed by different reperfusion periods using male Sprague-Dawley rats. Subsequently, rats were sacrificed on Day 1, 3, 5, or 7 following surgery. EMAPII expression was investigated by immunohistochemistry. RESULTS EMAPII-positive cell accumulation was observed as early as Day 1 postreperfusion and increased steadily. Significant accumulation of EMAPII-positive cells was seen in lesion and penumbra areas but not in the translateral hemisphere. Both amoeboid and ramified EMAPII-positive cells were observed and mainly localized to lesion and penumbra areas, respectively. CONCLUSION The known pathological functions together with abundant cellular accumulation in cerebral ischemia lesions suggest that EMAPII might contribute to pathophysiological consequences of cerebral ischemia.
Collapse
Affiliation(s)
- Yiliu Liao
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Martinet W, De Meyer I, Cools N, Timmerman V, Bult H, Bosmans J, De Meyer GR. Cell Death–Mediated Cleavage of the Attraction Signal p43 in Human Atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30:1415-22. [DOI: 10.1161/atvbaha.110.206029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Apoptosis is a key feature of advanced atherosclerotic plaques. Attraction signals such as p43 released from apoptotic cells play a crucial role in the timely removal of the apoptotic remnants by recruiting fresh phagocytes. Here, we sought to determine whether p43 may link apoptosis to inflammation and plaque progression.
Methods and Results—
RT-PCR and immunohistochemistry showed that p43 was abundantly expressed in human plaques compared with nonatherosclerotic mammary arteries and colocalized with splicing factor SC-35. Cell culture experiments indicated that p43 expression was associated with enhanced protein translation. On initiation of apoptosis or necrosis, p43 was cleaved by calpains and released as truncated protein p43(apoptosis-released factor [ARF]). Processing of p43 into endothelial monocyte activating polypeptide II was not observed. Full-length p43, but not p43(ARF) or endothelial monocyte activating polypeptide II, activated THP1 monocytes (upregulation of tumor necrosis factor α, interleukin 1β, interleukin 8, macrophage inflammatory protein (MIP)-1α, MIP1β, MIP2α) and endothelial cells (enhanced synthesis of E-selectin, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, tissue factor). The chemotactic activity of p43 or fragments thereof was poor compared with ATP. Treatment of smooth muscle cells with p43 did not induce cell death.
Conclusion—
p43 is cleaved during apoptosis by calpains and released as a truncated protein that is harmless for the structure of the plaque.
Collapse
Affiliation(s)
- Wim Martinet
- From Division of Pharmacology (W.M., I.D.M., H.B., G.R.Y.D.M.), Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (N.C.), and VIB Department of Molecular Genetics (V.T.), University of Antwerp, Antwerp, Belgium; Division of Cardiology, Antwerp University Hospital, Antwerp, Belgium (J.B.)
| | - Inge De Meyer
- From Division of Pharmacology (W.M., I.D.M., H.B., G.R.Y.D.M.), Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (N.C.), and VIB Department of Molecular Genetics (V.T.), University of Antwerp, Antwerp, Belgium; Division of Cardiology, Antwerp University Hospital, Antwerp, Belgium (J.B.)
| | - Nathalie Cools
- From Division of Pharmacology (W.M., I.D.M., H.B., G.R.Y.D.M.), Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (N.C.), and VIB Department of Molecular Genetics (V.T.), University of Antwerp, Antwerp, Belgium; Division of Cardiology, Antwerp University Hospital, Antwerp, Belgium (J.B.)
| | - Vincent Timmerman
- From Division of Pharmacology (W.M., I.D.M., H.B., G.R.Y.D.M.), Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (N.C.), and VIB Department of Molecular Genetics (V.T.), University of Antwerp, Antwerp, Belgium; Division of Cardiology, Antwerp University Hospital, Antwerp, Belgium (J.B.)
| | - Hidde Bult
- From Division of Pharmacology (W.M., I.D.M., H.B., G.R.Y.D.M.), Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (N.C.), and VIB Department of Molecular Genetics (V.T.), University of Antwerp, Antwerp, Belgium; Division of Cardiology, Antwerp University Hospital, Antwerp, Belgium (J.B.)
| | - Johan Bosmans
- From Division of Pharmacology (W.M., I.D.M., H.B., G.R.Y.D.M.), Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (N.C.), and VIB Department of Molecular Genetics (V.T.), University of Antwerp, Antwerp, Belgium; Division of Cardiology, Antwerp University Hospital, Antwerp, Belgium (J.B.)
| | - Guido R.Y. De Meyer
- From Division of Pharmacology (W.M., I.D.M., H.B., G.R.Y.D.M.), Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (N.C.), and VIB Department of Molecular Genetics (V.T.), University of Antwerp, Antwerp, Belgium; Division of Cardiology, Antwerp University Hospital, Antwerp, Belgium (J.B.)
| |
Collapse
|
26
|
auf dem Keller U, Prudova A, Gioia M, Butler GS, Overall CM. A statistics-based platform for quantitative N-terminome analysis and identification of protease cleavage products. Mol Cell Proteomics 2010; 9:912-27. [PMID: 20305283 PMCID: PMC2871423 DOI: 10.1074/mcp.m000032-mcp201] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Terminal amine isotopic labeling of substrates (TAILS), our recently introduced platform for quantitative N-terminome analysis, enables wide dynamic range identification of original mature protein N-termini and protease cleavage products. Modifying TAILS by use of isobaric tag for relative and absolute quantification (iTRAQ)-like labels for quantification together with a robust statistical classifier derived from experimental protease cleavage data, we report reliable and statistically valid identification of proteolytic events in complex biological systems in MS2 mode. The statistical classifier is supported by a novel parameter evaluating ion intensity-dependent quantification confidences of single peptide quantifications, the quantification confidence factor (QCF). Furthermore, the isoform assignment score (IAS) is introduced, a new scoring system for the evaluation of single peptide-to-protein assignments based on high confidence protein identifications in the same sample prior to negative selection enrichment of N-terminal peptides. By these approaches, we identified and validated, in addition to known substrates, low abundance novel bioactive MMP-2 targets including the plasminogen receptor S100A10 (p11) and the proinflammatory cytokine proEMAP/p43 that were previously undescribed.
Collapse
Affiliation(s)
- Ulrich auf dem Keller
- Department of Biochemistry and Molecular Biology, Centre for Blood Research, University of British Columbia, 4.401 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
27
|
Shalak V, Kaminska M, Mirande M. Translation initiation from two in-frame AUGs generates mitochondrial and cytoplasmic forms of the p43 component of the multisynthetase complex. Biochemistry 2009; 48:9959-68. [PMID: 19775078 DOI: 10.1021/bi901236g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In humans, nine aminoacyl-tRNA synthetases form a stable multiprotein complex with the three auxiliary proteins p18, p38, and p43. The N-terminal moiety of p43 is involved in its anchoring to the complex, and its C-terminal moiety has a potent tRNA binding capacity. The p43 component of the complex is also the precursor of p43(ARF), an apoptosis-released factor, and of p43(EMAPII), the endothelial-monocyte activating polypeptide II. Here we identified a new translation product of the gene of p43, which contains nine additional N-terminal amino acid residues. This gene product is targeted to the mitochondria and accounts for 2% of p43 expressed in human cells. The cytoplasmic and mitochondrial species of p43 are produced from the same mRNA by a mechanism of leaky scanning of the AUG codon at position -27, which is in an unfavorable sequence context for translation initiation. The finding that a mitochondrial species of p43 exists in human cells further exemplifies the multifaceted implications of p43 and opens new perspectives for the understanding of the role of p43 in the apoptotic cell.
Collapse
Affiliation(s)
- Vyacheslav Shalak
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
28
|
Schikorski D, Cuvillier-Hot V, Boidin-Wichlacz C, Slomianny C, Salzet M, Tasiemski A. Deciphering the Immune Function and Regulation by a TLR of the Cytokine EMAPII in the Lesioned Central Nervous System Using a Leech Model. THE JOURNAL OF IMMUNOLOGY 2009; 183:7119-28. [DOI: 10.4049/jimmunol.0900538] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Yao C, Williams AJ, Ottens AK, Lu XCM, Liu MC, Hayes RL, Wang KK, Tortella FC, Dave JR. P43/pro-EMAPII: a potential biomarker for discriminating traumatic versus ischemic brain injury. J Neurotrauma 2009; 26:1295-305. [PMID: 19317603 PMCID: PMC2850301 DOI: 10.1089/neu.2008.0811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To gain additional insights into the pathogenic cellular and molecular mechanisms underlying different types of brain injury (e.g., trauma versus ischemia), recently attention has focused on the discovery and study of protein biomarkers. In previous studies, using a high-throughput immunoblotting (HTPI) technique, we reported changes in 29 out of 998 proteins following acute injuries to the rat brain (penetrating traumatic versus focal ischemic). Importantly, we discovered that one protein, endothelial monocyte-activating polypeptide II precursor (p43/pro-EMAPII), was differentially expressed between these two types of brain injury. Among other functions, p43/pro-EMAPII is a known pro-inflammatory cytokine involved in the progression of apoptotic cell death. Our current objective was to verify the changes in p43/pro-EMAPII expression, and to evaluate the potentially important implications that the differential regulation of this protein has on injury development. At multiple time points following either a penetrating ballistic-like brain injury (PBBI), or a transient middle cerebral artery occlusion (MCAo) brain injury, tissue samples (6-72 h), CSF samples (24 h), and blood samples (24 h) were collected from rats for analysis. Changes in protein expression were assessed by Western blot analysis and immunohistochemistry. Our results indicated that p43/pro-EMAPII was significantly increased in brain tissues, CSF, and plasma following PBBI, but decreased after MCAo injury compared to their respective sham control samples. This differential expression of p43/pro-EMAPII may be a useful injury-specific biomarker associated with the underlying pathologies of traumatic versus ischemic brain injury, and provide valuable information for directing injury-specific therapeutics.
Collapse
Affiliation(s)
- Changping Yao
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Anthony J. Williams
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Andrew K. Ottens
- Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - X.-C. May Lu
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Ming Cheng Liu
- Center of Innovative Research, Banyan Biomarkers Inc., Alachua, Florida
| | - Ronald L. Hayes
- Department of Anesthesiology, The University of Florida, Gainesville, Florida.,Center of Innovative Research, Banyan Biomarkers Inc., Alachua, Florida
| | - Kevin K. Wang
- Department of Psychiatry, The University of Florida, Gainesville, Florida.,Center of Innovative Research, Banyan Biomarkers Inc., Alachua, Florida
| | - Frank C. Tortella
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jitendra R. Dave
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
30
|
Yao C, Williams AJ, Ottens A, Lu XCM, Liu MC, Hayes RL, Wang KK, Tortella FC, Dave JR. P43/pro-EMAP-II: A POTENTIAL BIOMARKER FOR DISCRIMINATING TRAUMATIC VERSUS ISCHEMIC BRAIN INJURY. J Neurotrauma 2009. [DOI: 10.1089/neu.2008-0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
Awasthi N, Schwarz MA, Verma V, Cappiello C, Schwarz RE. Endothelial monocyte activating polypeptide II interferes with VEGF-induced proangiogenic signaling. J Transl Med 2009; 89:38-46. [PMID: 19002109 DOI: 10.1038/labinvest.2008.106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Endothelial monocyte activating polypeptide II (EMAP II) is a proinflammatory cytokine with antiangiogenic properties. EMAP II functions as a potent inhibitor of primary and metastatic tumor growth, has strong inhibitory effects on endothelial cells (ECs), and can reduce intratumoral expression of the angiogenesis inducer vascular endothelial growth factor (VEGF). VEGF influences EC functions such as proliferation, migration, survival and tube formation. Therapeutic strategies that target VEGF have been demonstrated to reduce the tumor growth. We investigated the effects of EMAP II on VEGF-induced angiogenesis signaling. Primary human fetal lung ECs (HFLECs) and human umbilical vein ECs (HUVECs) were grown in E-Stim medium. Protein binding was analyzed using enzyme-linked immunosorbent assay (ELISA). Protein expression was determined by western blot analysis. EC proliferation and migration was determined using WST-1 reagent and transwell membrane, respectively. EMAP II efficiently and dose dependently binds to VEGF receptor 1 (VEGFR1) and VEGF receptor 2 (VEGFR2) as observed by ELISA. B(max) values for VEGFR1 and VEGFR2 were 0.45 and 0.17, respectively. In addition, EMAP II inhibited binding of VEGF to VEGFR1 and VEGFR2. EMAP II significantly reduced VEGF-induced expression of phosphorylated VEGFR1 (in HFLEC and HUVEC) by >50%, and of phosphorylated VEGFR2 (in HUVEC) by 66%. EMAP II also inhibited downstream VEGF signaling. Although VEGF-induced phosphorylation of Akt, Erk1/2, p38 and Raf 2.8-, 1.5-, 2.2- and 3.6-fold, respectively, EMAP II preincubation blocked this induction in phosphorylation to control levels. VEGF-induced EC proliferation 2.5-fold, and EMAP II pretreatment abrogated this effect. Similarly, VEGF-induced EC migration (2.5-fold) was significantly inhibited by EMAP II. These finding suggest that inhibition of VEGF signaling is one possible antiangiogenic mechanism of EMAP II, which may explain its in vivo antitumor activity and delineate therapeutic strategies to enhance anti-VEGF therapy to inhibit tumor growth.
Collapse
Affiliation(s)
- Niranjan Awasthi
- Department of Surgery, University of Texas Southwestern Medical Center, UT Southwestern School of Medicine, Dallas, TX 75390-8548, USA
| | | | | | | | | |
Collapse
|
32
|
Haridas S, Bowers M, Tusano J, Mehojah J, Kirkpatrick M, Burnham DK. The impact of Meth A fibrosarcoma derived EMAP II on dendritic cell migration. Cytokine 2008; 44:304-9. [PMID: 18951814 DOI: 10.1016/j.cyto.2008.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 08/19/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
Studies have suggested that tumors are capable of modulating dendritic cell (DC) phenotype. A soluble protein produced by certain tumors, endothelial monocyte-activating polypeptide II (EMAP II) has been suggested as an anti-tumor agent based on its anti-angiogenic activity. However, this factor has not been evaluated for effects on DC. In this study, we analyzed the effect of Meth A fibrosarcoma supernatant and recombinant human EMAP II on DC migration. This included the migration of Langerhans cells from mouse ear skin sections and the migration of cells of a dendritic cell line (JAWS II) in a transwell culture system. The results of these studies indicated that EMAP II stimulates the migration of DC. Additional studies showed that the presence of the ascites form of the Meth A tumor led to a decrease in Langerhans cell (LC) numbers in the skin, and this decrease could be partially blocked by neutralizing antibody specific for EMAP II. Subcutaneous injection at the base of the ear of recombinant human EMAP II also led to a decrease in epidermal LC similar to that observed in tumor bearing mice. Together, these results suggest novel roles for EMAP II in modulating the migration of DC and suggest that these effects may modify Meth A tumor/host interactions.
Collapse
Affiliation(s)
- Seema Haridas
- Department of Microbiology and Molecular Genetics, 307 LSE, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
33
|
Cai W, Kerner ZJ, Hong H, Sun J. Targeted Cancer Therapy with Tumor Necrosis Factor-Alpha. BIOCHEMISTRY INSIGHTS 2008. [DOI: 10.4137/bci.s901] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α), a member of the TNF superfamily, was the first cytokine to be evaluated for cancer biotherapy. However, the clinical use of TNF-α is severely limited by its toxicity. Currently, TNF-α is administered only through locoregional drug delivery systems such as isolated limb perfusion and isolated hepatic perfusion. To reduce the systemic toxicity of TNF-α, various strategies have been explored over the last several decades. This review summarizes current state-of-the-art targeted cancer therapy using TNF-α. Passive targeting, cell-based therapy, gene therapy with inducible or tissue-specific promoters, targeted polymer-DNA complexes, tumor pre-targeting, antibody-TNF-α conjugate, scFv/TNF-α fusion proteins, and peptide/TNF-α fusion proteins have all been investigated to combat cancer. Many of these agents are already in advanced clinical trials. Molecular imaging, which can significantly speed up the drug development process, and nanomedicine, which can integrate both imaging and therapeutic components, has the potential to revolutionize future cancer patient management. Cooperative efforts from scientists within multiple disciplines, as well as close partnerships among many organizations/entities, are needed to quickly translate novel TNF-α-based therapeutics into clinical investigation.
Collapse
Affiliation(s)
- Weibo Cai
- Departments of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin–-Madison, Madison, Wisconsin, U.S.A
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, Madison, Wisconsin, U.S.A
| | - Zachary J. Kerner
- Departments of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin–-Madison, Madison, Wisconsin, U.S.A
| | - Hao Hong
- Departments of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin–-Madison, Madison, Wisconsin, U.S.A
| | - Jiangtao Sun
- Departments of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin–-Madison, Madison, Wisconsin, U.S.A
| |
Collapse
|
34
|
Journeay WS, Suri SS, Moralez JG, Fenniri H, Singh B. Low inflammatory activation by self-assembling Rosette nanotubes in human Calu-3 pulmonary epithelial cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:817-823. [PMID: 18535989 DOI: 10.1002/smll.200700700] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rosette nanotubes (RNT) are a new class of metal-free organic nanotubes synthesized through self-assembly. Because of the wide range of potential biomedical applications associated with these materials, it is necessary to evaluate their potential in vitro toxicity. Here the cytotoxicity of a lysine-functionalized nanotube (RNT-K) in a human Calu-3 pulmonary epithelial cell line is investigated. The cells were treated with media only (control), lysine (50 mg mL(-1)), RNT-K (1, 5, and 50 microg mL(-1)), Min-U-Sil quartz microparticles (QM; 80 microg mL(-1)), and lipopolysaccharide (LPS; 1 microg mL(-1)). The supernatants were analyzed at 1, 6, and 24 h after treatment for the expression of three proinflammatory mediators: IL-8, TNF-alpha and EMAP-II. Cellular viability determined with the Trypan blue assay is significantly reduced in the QM and high-dose RNT-treated groups. TNF-alpha and EMAP-II are undetectable by enzyme-linked-immunosorbent assay (ELISA) in the supernatant of all groups. Although IL-8 concentrations do not differ between treatments, its concentrations increase with time within each of the groups. Quantitative reverse-transcriptase polymerase chain reaction (qRTPCR) of IL-8 mRNA shows increased expression in the high-dose RNT-treated groups at both 1 and 6 h, while an adhesion molecule, ICAM-1 mRNA, shows the greatest increase at 6 h in the QM-treated group. In summary, RNT-K neither reduces cell viability at moderate doses nor does it induce a time-dependent inflammatory response in pulmonary epithelial cells in vitro.
Collapse
Affiliation(s)
- W Shane Journeay
- Immunology Research Group, Toxicology Graduate Program and Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | | | | | | | | |
Collapse
|
35
|
Sen E, Ulger F, Kaya A, Akar N, Gonullu U. Serum Endothelial Monocyte-Activating Polypeptide–II: A Novel Biomarker in Patients with Non–Small-Cell Lung Cancer. Clin Lung Cancer 2008; 9:166-70. [DOI: 10.3816/clc.2008.n.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Ferret-Bernard S, Curwen RS, Mountford AP. Proteomic profiling reveals that Th2-inducing dendritic cells stimulated with helminth antigens have a 'limited maturation' phenotype. Proteomics 2008; 8:980-93. [PMID: 18324723 DOI: 10.1002/pmic.200700538] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic cells (DCs) are important in the initiation of primary immune responses against pathogens. To aid understanding of how DCs guide T helper (Th)2-type responses, we employed 2-DE in association with MS/MS to identify proteins which characterise pro-Th2 DCs (matured with zero-to-three hours released proteins (0-3hRP), released by Schistosoma mansoni cercariae) versus pro-Th1 DCs (matured with lipopolysaccharide, LPS) and immature DCs. Software analysis of average 2-DE gels (three replicates per DC type) showed many similarities in the pattern of spots between the three groups of DCs but also marked changes. The major and significant changes in protein expression mainly affected cytoskeletal proteins. Other differences included chaperone proteins and enzymes involved in protein folding, S100 calcium-binding proteins, peroxiredoxin 1, superoxide dismutase 1, several annexins and arginase 1. Our study demonstrates that pro-Th2 DCs matured with 0-3hRP exhibit a proteome that is intermediate between that of immature DCs and pro-Th1 DCs. Finally, the differential regulation of protein spots identified by MALDI-MS/MS as having cytoskeletal and morphological functions was confirmed by contrast, confocal and scanning electron microscopy examination of DCs. Together, our results support the view that Th2 differentiation results from a 'limited maturation' of DCs.
Collapse
|
37
|
Crippa L, Gasparri A, Sacchi A, Ferrero E, Curnis F, Corti A. Synergistic damage of tumor vessels with ultra low-dose endothelial-monocyte activating polypeptide-II and neovasculature-targeted tumor necrosis factor-alpha. Cancer Res 2008; 68:1154-61. [PMID: 18281491 DOI: 10.1158/0008-5472.can-07-2085] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-dose endothelial-monocyte activating polypeptide II (EMAP-II), a tumor-derived antiangiogenic cytokine, can sensitize tumor vasculature to the damaging activity of high-dose tumor necrosis factor (TNF)-alpha. However, this combination cannot be used for systemic treatment of patients because of prohibitive toxicity. We have found that this limitation can be overcome by combining a TNF-targeting strategy with the use of ultra low-dose EMAP-II. Coadministration of 0.1 ng of EMAP-II and 0.1 ng of CNGRCG-TNF (NGR-TNF), a peptide-TNF conjugate able to target tumor blood vessels, inhibited lymphoma and melanoma growth in mice, with no evidence of toxicity. This drug combination induced endothelial cell apoptosis in vivo and, at later time points, caused reduction of vessel density and massive apoptosis of tumor cells. Ligand-directed targeting of TNF was critical because the combination of nontargeted TNF with EMAP-II was inactive in these murine models. The synergism was progressively lost when the dose of EMAP-II was increased in the nanogram to microgram range, supporting the concept that the use of low-dose EMAP-II is critical. Studies on the mechanism of this paradoxical behavior showed that EMAP-II doses >1 ng induce the release of soluble TNF receptor 1 in circulation, a strong counter-regulatory inhibitor of TNF. Tumor vascular targeting with extremely low amounts of these cytokines may represent a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Luca Crippa
- Department of Oncology, Cancer Immunotherapy-Gene Therapy Program and IIT Network Research Unit of Molecular Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Journeay S, Singh B. EMAP-II antibody detects both proEMAP/p43 and mature EMAP-II molecules. Acta Neuropathol 2007; 114:435; author reply 437-8. [PMID: 17704929 DOI: 10.1007/s00401-007-0253-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 06/06/2007] [Accepted: 06/06/2007] [Indexed: 01/09/2023]
|
39
|
Reply: p43 and endothelial monocyte activation polypeptide II (EMAP-II) in CNS pathology. Acta Neuropathol 2007. [DOI: 10.1007/s00401-007-0268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|