1
|
Wang X, Wen J, Tian H, Li X, Xie W, Zou K. SDF-1/CXCR4 axis maintains porcine prospermatogonia undifferentiated state through regulation of transcription suppressor PLZF. Theriogenology 2024; 234:198-207. [PMID: 39721337 DOI: 10.1016/j.theriogenology.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Prospermatogonia (ProSGs), the progenitors of spermatogonial stem cells in neonatal testes, undergo critical migration to the testicular microenvironment-a fundamental process for testicular development and subsequent spermatogenic capacity. The SDF-1/CXCR4 chemokine axis serves as an essential molecular guidance mechanism, directing ProSGs toward the basal membrane of seminiferous tubules. Nevertheless, the precise molecular mechanisms governing this axis remain incompletely understood. Utilizing a porcine in vitro model system, this investigation elucidated the molecular mechanisms underlying the SDF-1/CXCR4 axis in ProSGs fate determination. Through integrated molecular and transcriptomic analyses, we investigated the consequences of CXCR4 inhibition on ProSG cellular dynamics. Our findings demonstrated that the SDF-1/CXCR4 axis exerts regulatory control over ProSGs differentiation via the PI3K-AKT-AP-1 signaling cascade. This regulation significantly influences the transcriptional landscape of ProSGs, particularly modulating the expression of PLZF, a crucial suppressor of spermatogonial differentiation, and DMRT1, an essential mediator of germ cell differentiation. These findings elucidate the molecular mechanisms orchestrating ProSGs homing and emphasize the significance of maintaining male reproductive competence. Furthermore, this research could enhance our understanding of ProSGs biology and its relationship to boar fertility, while potentially facilitating the development of innovative reproductive technologies and sustainable livestock management strategies.
Collapse
Affiliation(s)
- Xingju Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jian Wen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hairui Tian
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenhai Xie
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Liu Y, Li Z, Lu X, Kuang YQ, Kong D, Zhang X, Yang X, Wang X, Mu T, Wang H, Zhang Y, Jin J, Xia W, Wu H, Zhang T, Moog C, Su B. Dysregulation of memory B cells and circulating T follicular helper cells is a predictor of poor immune recovery in HIV-infected patients on antiretroviral therapy. J Med Virol 2023; 95:e28559. [PMID: 36755363 DOI: 10.1002/jmv.28559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
T follicular helper (Tfh) cells and their interactions with B cells within the germinal center play extensive roles in human immunodeficiency virus (HIV) pathology. However, their association with immune reconstitution during antiretroviral therapy (ART) is still unclear. The aim of this study was to determine the impact of Tfh and memory B cell function on T helper cell recovery in patients with acute or chronic HIV infection. A total of 100 HIV-infected individuals were enrolled in our study, classified into acute and chronic HIV infection groups (60 and 40, respectively), and subsequently classified into immunological responder (IR) and immunological nonresponder (INR) subgroups according to immune recovery outcomes after 96 weeks of ART. Liquid chromatography-mass spectrometry was used to quantify the temporal regulation patterns of B and CD4+ T-cell profiles among patients, and flow cytometry was used to investigate certain subsets of B and T cells. Here we showed that the prevalence of Tfh cells in the T helper cell population correlated negatively with CD4+ T-cell recovery. The proportion of CXCR3- Tfh cells in patients with acute or chronic infection was associated with CD4+ T-cell count recovery, and the proportion of CD21+ memory B cells at baseline was significantly higher in those with improved immune recovery outcomes. Universal proteomic dysregulation of B and CD4+ T cells at baseline was detected in patients with acute infected and poor CD4+ T-cell recovery. Proteomics analysis revealed distinct temporal regulation profiles of both T helper cells and B cells between IRs and INRs among patients with acute infection. Our results suggest that the functions of memory B cells in INRs are dysregulated at the early stage of ART, possibly through disruption of Tfh cell function. The frequency and function of Tfh cells and their subsets are potential predictors of poor immune recovery.
Collapse
Affiliation(s)
- Yan Liu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tingting Mu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yihang Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junyan Jin
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Packard TA, Schwarzer R, Herzig E, Rao D, Luo X, Egedal JH, Hsiao F, Widera M, Hultquist JF, Grimmett ZW, Messer RJ, Krogan NJ, Deeks SG, Roan NR, Dittmer U, Hasenkrug KJ, Greene WC. CCL2: a Chemokine Potentially Promoting Early Seeding of the Latent HIV Reservoir. mBio 2022; 13:e0189122. [PMID: 36073812 PMCID: PMC9600577 DOI: 10.1128/mbio.01891-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
HIV infects long-lived CD4 memory T cells, establishing a latent viral reservoir that necessitates lifelong antiretroviral therapy (ART). How this reservoir is formed so quickly after infection remains unclear. We now show the innate inflammatory response to HIV infection results in CCL2 chemokine release, leading to recruitment of cells expressing the CCR2 receptor, including a subset of central memory CD4 T cells. Supporting a role for the CCL2/CCR2 axis in rapid reservoir formation, we find (i) treatment of humanized mice with anti-CCL2 antibodies during early HIV infection decreases reservoir seeding and preserves CCR2/5+ cells and (ii) CCR2/5+ cells from the blood of HIV-infected individuals on long-term ART contain significantly more integrated provirus than CCR2/5-negative memory or naive cells. Together, these studies support a model where the host's innate inflammatory response to HIV infection, including CCL2 production, leads to the recruitment of CCR2/5+ central memory CD4 T cells to zones of virus-associated inflammation, likely contributing to rapid formation of the latent HIV reservoir. IMPORTANCE There are currently over 35 million people living with HIV worldwide, and we still have no vaccine or scalable cure. One of the difficulties with HIV is its ability to rapidly establish a viral reservoir in lymphoid tissues that allows it to elude antivirals and the immune system. Thus, it is important to understand how HIV accomplishes this so we can develop preventive strategies. Our current results show that an early inflammatory response to HIV infection includes production of the chemokine CCL2, which recruits a unique subset of CCR2/5+ CD4+ T cells that become infected and form a significant reservoir for latent infection. Furthermore, we show that blockade of CCL2 in humanized mice significantly reduces persistent HIV infection. This information is relevant to the development of therapeutics to prevent and/or treat chronic HIV infections.
Collapse
Affiliation(s)
| | - Roland Schwarzer
- J. David Gladstone Institutes, San Francisco, California, USA
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Eytan Herzig
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Deepashri Rao
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Xiaoyu Luo
- J. David Gladstone Institutes, San Francisco, California, USA
| | | | - Feng Hsiao
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Judd F. Hultquist
- J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | | | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Nevan J. Krogan
- J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Nadia R. Roan
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Urology, University of California San Francisco, San Francisco, California, USA
| | - Ulf Dittmer
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Warner C. Greene
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
5
|
High circulating SDF-1and MCP-1 levels and genetic variations in CXCL12, CCL2 and CCR5: Prognostic signature of immune recovery status in treated HIV-positive patients. EBioMedicine 2020; 62:103077. [PMID: 33166788 PMCID: PMC7653063 DOI: 10.1016/j.ebiom.2020.103077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background The underlying mechanisms of incomplete immune reconstitution in treated HIV-positive patients are very complex and may be multifactorial, but perturbation of chemokine secretion could play a key role in CD4+T-cell turnover. Methods We evaluated the circulating baseline and 48-week follow-up concentrations of SDF-1/CXCL12, fractalkine/CX3CL1, MCP-1/CCL2, MIP-α/CCL3, MIP-β/CCL4 and RANTES/CCL5, and we estimated their association with CXCL12, CX3CR1, CCR2, CCL5 and CCR5 single nucleotide polymorphisms (SNPs) to investigate multiple chemokine-chemokine receptor signatures associated with immune dysregulation preceding poor immune recovery. Findings The circulating concentrations and gene expression patterns of SDF-1/CXCL12 (CXCL12 rs1801157) and MCP-1/CCL2 (CCR2 rs1799864_814) were associated with immune recovery status. CCR2 rs1799864_814 and CCR5 rs333_814 (Δ32) determine the baseline plasma RANTES and MIP-α concentrations, respectively, in participants with poor immune response. Interpretation SDF-1/CXCL12 and MCP-1/CCL2 could be considered prognostic markers of immune failure despite suppressive antiretroviral therapy. The strong linkage disequilibrium (LD) between CCR2 rs1799864_814 and CCR5 rs1800024 indicated that the alleles of each gene are inherited together more often than would be expected by chance. Funding This work was supported by Fondo de Investigacion Sanitaria and SPANISH AIDS Research Network (ISCIII-FEDER); AGAUR and Gilead Fellowship. FV and YMP are supported by grants from the Programa de Intensificación (ISCIII) and Servicio Andaluz de Salud, respectively. JVG,EY and LR are supported by the 10.13039/501100004587Instituto de Salud Carlos III (ISCIII). AR is supported by Departament de Salut, Generalitat de Catalunya and by the Instituto de Salud Carlos III (ISCIII).
Collapse
|
6
|
Gürtler LG. Cytokines and chemokines involved in the defense reaction against HIV-1 and hepatitis B virus: isn't it time to use a standardized nomenclature of the involved mediators? Virus Genes 2019; 56:120-127. [PMID: 31848887 DOI: 10.1007/s11262-019-01721-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Discovery of new mediators of immune cell activation and interaction facilitated elucidation of the various ways of defense against infectious agents and happened some 40 years ago. Each involved group of researchers named the mediators according to their scope of investigation; often the same molecules were published at the same time with different names. To avoid confusion resulting from using different names for the same mediators and to prevent a Babylonian confusion, standardization was implemented-as in the field of metrics, music, or science including virology. For cytokines and chemokines a standard nomenclature was proposed some 10 years ago and in conclusion it should be used. In this paper the most relevant biomarkers in HIV-1 and HBV infection and their contribution during viral pathogenesis are listed.
Collapse
Affiliation(s)
- Lutz G Gürtler
- Max von Pettenkofer Institut, Ludwig Maximilians Universität München, Pettenkofer Str 9A, 80336, München, Germany.
| |
Collapse
|
7
|
Kim Y, Cameron PU, Lewin SR, Anderson JL. Limitations of dual-fluorescent HIV reporter viruses in a model of pre-activation latency. J Int AIDS Soc 2019; 22:e25425. [PMID: 31855322 PMCID: PMC6922067 DOI: 10.1002/jia2.25425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION HIV latency can be established in vitro following direct infection of a resting CD4+ T cell (pre-activation latency) or infection of an activated CD4+ T cell which then returns to a resting state (post-activation latency). We modified a previously published dual-fluorescent reporter virus seeking to track the establishment and reactivation of pre-activation latency in primary CD4+ T cells. METHODS A previously published dual-fluorescent reporter virus was modified so that expression of enhanced green fluorescent protein (GFP) was under control of the elongation factor 1 alpha (EF1α) promoter to detect latent infection, and E2 crimson (E2CRM) was under control of the nef promoter to detect productive infection. NL4.3 that expressed GFP in place of nef was used as a positive control. We infected the Jurkat T-cell line and primary CD4+ T cells that were either unstimulated or stimulated with either the chemokine CCL19 or phytohaemagglutinin (PHA)/IL-2 and quantified the expression of both fluorescent proteins by flow cytometry. The study was carried out over a period of two years from September 2016 to October 2018. RESULTS AND DISCUSSION Expression of both fluorophores was detected following infection of the Jurkat T-cell line while only low levels of the latent reporter were observed following infection of primary CD4+ T cells. In unstimulated and CCL19-treated CD4+ T cells, expression of the GFP latent reporter, increased after further activation of the cells with PHA/phorbol 12-myristate 13-acetate (PMA). CONCLUSIONS Our findings demonstrate that the EF1α promoter has poor constitutive expression in resting CD4+ T cells. Therefore, dual-fluorescent reporter viruses with the EF1α promoter may underestimate the frequency of latent infection in resting CD4+ T cells.
Collapse
Affiliation(s)
- Youry Kim
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- The Peter Doherty Institute for Infection and ImmunityThe University of Melbourne and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and ImmunityThe University of Melbourne and Royal Melbourne HospitalMelbourneVictoriaAustralia
- Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and ImmunityThe University of Melbourne and Royal Melbourne HospitalMelbourneVictoriaAustralia
- Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| | - Jenny L Anderson
- The Peter Doherty Institute for Infection and ImmunityThe University of Melbourne and Royal Melbourne HospitalMelbourneVictoriaAustralia
| |
Collapse
|
8
|
Tsunetsugu-Yokota Y, Kobayahi-Ishihara M, Wada Y, Terahara K, Takeyama H, Kawana-Tachikawa A, Tokunaga K, Yamagishi M, Martinez JP, Meyerhans A. Homeostatically Maintained Resting Naive CD4 + T Cells Resist Latent HIV Reactivation. Front Microbiol 2016; 7:1944. [PMID: 27990142 PMCID: PMC5130990 DOI: 10.3389/fmicb.2016.01944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/18/2016] [Indexed: 02/03/2023] Open
Abstract
Homeostatic proliferation (HSP) is a major mechanism by which long-lived naïve and memory CD4+ T cells are maintained in vivo and suggested to contribute to the persistence of the latent HIV-1 reservoir. However, while many in vitro latency models rely on CD4+ T cells that were initially differentiated via T-cell receptor (TCR) stimulation into memory/effector cells, latent infection of naïve resting CD4+ T cells maintained under HSP conditions has not been fully addressed. Here, we describe an in vitro HSP culture system utilizing the cytokines IL-7 and IL-15 that allows studying latency in naïve resting CD4+ T cells. CD4+ T cells isolated from several healthy donors were infected with HIV pseudotypes expressing GFP and cultured under HSP conditions or TCR conditions as control. Cell proliferation, phenotype, and GFP expression were analyzed by flow cytometry. RNA expression was quantified by qRT-PCR. Under HSP culture conditions, latently HIV-1 infected naïve cells are in part maintained in the non-dividing (= resting) state. Although a few HIV-1 provirus+ cells were present in these resting GFP negative cells, the estimated level of GFP transcripts per infected cell seems to indicate a block at the post-transcriptional level. Interestingly, neither TCR nor the prototypic HDAC inhibitor SAHA were able to reactivate HIV-1 provirus from these cells. This lack of reactivation was not due to methylation of the HIV LTR. These results point to a mechanism of HIV control in HSP-cultured resting naïve CD4+ T cells that may be distinct from that in TCR-stimulated memory/effector T cells.
Collapse
Affiliation(s)
- Yasuko Tsunetsugu-Yokota
- Department of Medical Technology, School of Human Sciences, Tokyo University of TechnologyTokyo, Japan; Department of Immunology, National Institute of Infectious DiseasesTokyo, Japan
| | | | - Yamato Wada
- Department of Immunology, National Institute of Infectious DiseasesTokyo, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda UniversityTokyo, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases Tokyo, Japan
| | - Makoto Yamagishi
- Graduate School of Frontier Sciences, University of Tokyo Tokyo, Japan
| | - Javier P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, University Pompeu Fabra Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, University Pompeu FabraBarcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain
| |
Collapse
|
9
|
HIV integration and the establishment of latency in CCL19-treated resting CD4(+) T cells require activation of NF-κB. Retrovirology 2016; 13:49. [PMID: 27459960 PMCID: PMC4962537 DOI: 10.1186/s12977-016-0284-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022] Open
Abstract
Background Eradication of HIV cannot be achieved with combination antiretroviral therapy (cART) because of the persistence of long-lived latently infected resting memory CD4+ T cells. We previously reported that HIV latency could be established in resting CD4+ T cells in the presence of the chemokine CCL19. To define how CCL19 facilitated the establishment of latent HIV infection, the role of chemokine receptor signalling was explored. Results In resting CD4+ T cells, CCL19 induced phosphorylation of RAC-alpha serine/threonine-protein kinase (Akt), nuclear factor kappa B (NF-κB), extracellular-signal-regulated kinase (ERK) and p38. Inhibition of the phosphoinositol-3-kinase (PI3K) and Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/ERK signalling pathways inhibited HIV integration, without significant reduction in HIV nuclear entry (measured by Alu-LTR and 2-LTR circle qPCR respectively). Inhibiting activation of MEK1/ERK1/2, c-Jun N-terminal kinase (JNK), activating protein-1 (AP-1) and NF-κB, but not p38, also inhibited HIV integration. We also show that HIV integrases interact with Pin1 in CCL19-treated CD4+ T cells and inhibition of JNK markedly reduced this interaction, suggesting that CCL19 treatment provided sufficient signals to protect HIV integrase from degradation via the proteasome pathway. Infection of CCL19-treated resting CD4+ T cells with mutant strains of HIV, lacking NF-κB binding sites in the HIV long terminal repeat (LTR) compared to infection with wild type virus, led to a significant reduction in integration by up to 40-fold (range 1–115.4, p = 0.03). This was in contrast to only a modest reduction of 5-fold (range 1.7–11, p > 0.05) in fully activated CD4+ T cells infected with the same mutants. Finally, we demonstrated significant differences in integration sites following HIV infection of unactivated, CCL19-treated, and fully activated CD4+ T cells. Conclusions HIV integration in CCL19-treated resting CD4+ T cells depends on NF-κB signalling and increases the stability of HIV integrase, which allow subsequent integration and establishment of latency. These findings have implications for strategies needed to prevent the establishment, and potentially reverse, latent infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0284-7) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Anderson JL, Mota TM, Evans VA, Kumar N, Rezaei SD, Cheong K, Solomon A, Wightman F, Cameron PU, Lewin SR. Understanding Factors That Modulate the Establishment of HIV Latency in Resting CD4+ T-Cells In Vitro. PLoS One 2016; 11:e0158778. [PMID: 27383184 PMCID: PMC4934909 DOI: 10.1371/journal.pone.0158778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022] Open
Abstract
Developing robust in vitro models of HIV latency is needed to better understand how latency is established, maintained and reversed. In this study, we examined the effects of donor variability, HIV titre and co-receptor usage on establishing HIV latency in vitro using two models of HIV latency. Using the CCL19 model of HIV latency, we found that in up to 50% of donors, CCL19 enhanced latent infection of resting CD4+ T-cells by CXCR4-tropic HIV in the presence of low dose IL-2. Increasing the infectious titre of CXCR4-tropic HIV increased both productive and latent infection of resting CD4+ T-cells. In a different model where myeloid dendritic cells (mDC) were co-cultured with resting CD4+ T-cells, we observed a higher frequency of latently infected cells in vitro than CCL19-treated or unstimulated CD4+ T-cells in the presence of low dose IL-2. In the DC-T-cell model, latency was established with both CCR5- and CXCR4-tropic virus but higher titres of CCR5-tropic virus was required in most donors. The establishment of latency in vitro through direct infection of resting CD4+ T-cells is significantly enhanced by CCL19 and mDC, but the efficiency is dependent on virus titre, co-receptor usage and there is significant donor variability.
Collapse
Affiliation(s)
- Jenny L Anderson
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Talia M Mota
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vanessa A Evans
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nitasha Kumar
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Simin D Rezaei
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Karey Cheong
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ajantha Solomon
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Fiona Wightman
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul U Cameron
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
|
12
|
Maldarelli F. The role of HIV integration in viral persistence: no more whistling past the proviral graveyard. J Clin Invest 2016; 126:438-47. [PMID: 26829624 DOI: 10.1172/jci80564] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A substantial research effort has been directed to identifying strategies to eradicate or control HIV infection without a requirement for combination antiretroviral therapy (cART). A number of obstacles prevent HIV eradication, including low-level viral persistence during cART, long-term persistence of HIV-infected cells, and latent infection of resting CD4+ T cells. Mechanisms of persistence remain uncertain, but integration of the provirus into the host genome represents a central event in replication and pathogenesis of all retroviruses, including HIV. Analysis of HIV proviruses in CD4+ lymphocytes from individuals after prolonged cART revealed that a substantial proportion of the infected cells that persist have undergone clonal expansion and frequently have proviruses integrated in genes associated with regulation of cell growth. These data suggest that integration may influence persistence and clonal expansion of HIV-infected cells after cART is introduced, and these processes may represent key mechanisms for HIV persistence. Determining the diversity of host genes with integrants in HIV-infected cells that persist for prolonged periods may yield useful information regarding pathways by which infected cells persist for prolonged periods. Moreover, many integrants are defective, and new studies are required to characterize the role of clonal expansion in the persistence of replication-competent HIV.
Collapse
|
13
|
Donahue DA, Wainberg MA. Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology 2013; 10:11. [PMID: 23375003 PMCID: PMC3571915 DOI: 10.1186/1742-4690-10-11] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/04/2013] [Indexed: 02/06/2023] Open
Abstract
Latently infected cells represent the major barrier to either a sterilizing or a functional HIV-1 cure. Multiple approaches to reactivation and depletion of the latent reservoir have been attempted clinically, but full depletion of this compartment remains a long-term goal. Compared to the mechanisms involved in the maintenance of HIV-1 latency and the pathways leading to viral reactivation, less is known about the establishment of latent infection. This review focuses on how HIV-1 latency is established at the cellular and molecular levels. We first discuss how latent infection can be established following infection of an activated CD4 T-cell that undergoes a transition to a resting memory state and also how direct infection of a resting CD4 T-cell can lead to latency. Various animal, primary cell, and cell line models also provide insights into this process and are discussed with respect to the routes of infection that result in latency. A number of molecular mechanisms that are active at both transcriptional and post-transcriptional levels have been associated with HIV-1 latency. Many, but not all of these, help to drive the establishment of latent infection, and we review the evidence in favor of or against each mechanism specifically with regard to the establishment of latency. We also discuss the role of immediate silent integration of viral DNA versus silencing of initially active infections. Finally, we discuss potential approaches aimed at limiting the establishment of latent infection.
Collapse
Affiliation(s)
- Daniel A Donahue
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Québec, Canada.
| | | |
Collapse
|