1
|
Pinazo MJ, Malchiodi E, Ioset JR, Bivona A, Gollob KJ, Dutra WO. Challenges and advancements in the development of vaccines and therapies against Chagas disease. THE LANCET. MICROBE 2024; 5:100972. [PMID: 39303738 DOI: 10.1016/j.lanmic.2024.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, presents a substantial global health burden, affecting millions of individuals worldwide and posing a continual risk of infection. Despite the high mortality and morbidity rates, effective vaccines to prevent infection by the parasite remain elusive, and the drugs currently available are suboptimal. Understanding the intricate dynamics of parasite-host interactions and the resulting immune responses, which contribute to both protection and pathology, is crucial for the development of effective vaccines and therapies against Chagas disease. In this Series paper, we discuss the challenges associated with discovering and translating prophylactic and therapeutic strategies from the laboratory bench to clinical application. We highlight ongoing efforts in vaccine and new drug development, with a focus on more advanced candidates for vaccines and drugs. We also discuss potential solutions, emphasising the importance of collaborative research efforts, sustained funding, and a comprehensive understanding of host-parasite interactions and immunopathology to advance the development of new vaccines and therapies against Chagas disease.
Collapse
Affiliation(s)
| | - Emilio Malchiodi
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU) and Instituto de Microbiologia y Parasitologia Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | | | - Augusto Bivona
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU) and Instituto de Microbiologia y Parasitologia Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Kenneth J Gollob
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Belo Horizonte, Brazil
| | - Walderez O Dutra
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Belo Horizonte, Brazil; Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Enriquez GF, Macchiaverna NP, Garbossa G, Quebrada Palacio LP, Ojeda BL, Bua J, Gaspe MS, Cimino R, Gürtler RE, Postan M, Cardinal MV. Humans seropositive for Trypanosoma cruzi co-infected with intestinal helminths have higher infectiousness, parasitaemia and Th2-type response in the Argentine Chaco. Parasit Vectors 2024; 17:340. [PMID: 39135121 PMCID: PMC11320973 DOI: 10.1186/s13071-024-06401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The Gran Chaco ecoregion is a well-known hotspot of several neglected tropical diseases (NTDs) including Chagas disease, soil-transmitted helminthiasis and multiparasitic infections. Interspecific interactions between parasite species can modify host susceptibility, pathogenesis and transmissibility through immunomodulation. Our objective was to test the association between human co-infection with intestinal parasites and host parasitaemia, infectiousness to the vector and immunological profiles in Trypanosoma cruzi-seropositive individuals residing in an endemic region of the Argentine Chaco. METHODS We conducted a cross-sectional serological survey for T. cruzi infection along with an intestinal parasite survey in two adjacent rural villages. Each participant was tested for T. cruzi and Strongyloides stercoralis infection by serodiagnosis, and by coprological tests for intestinal parasite detection. Trypanosoma cruzi bloodstream parasite load was determined by quantitative PCR (qPCR), host infectiousness by artificial xenodiagnosis and serum human cytokine levels by flow cytometry. RESULTS The seroprevalence for T. cruzi was 16.1% and for S. stercoralis 11.5% (n = 87). We found 25.3% of patients with Enterobius vermicularis. The most frequent protozoan parasites were Blastocystis spp. (39.1%), Giardia lamblia (6.9%) and Cryptosporidium spp. (3.4%). Multiparasitism occurred in 36.8% of the examined patients. Co-infection ranged from 6.9% to 8.1% for T. cruzi-seropositive humans simultaneously infected with at least one protozoan or helminth species, respectively. The relative odds of being positive by qPCR or xenodiagnosis (i.e. infectious) of 28 T. cruzi-seropositive patients was eight times higher in people co-infected with at least one helminth species than in patients with no such co-infection. Trypanosoma cruzi parasite load and host infectiousness were positively associated with helminth co-infection in a multiple regression analysis. Interferon-gamma (IFN-γ) response, measured in relation to interleukin (IL)-4 among humans infected with T. cruzi only, was 1.5-fold higher than for T. cruzi-seropositive patients co-infected with helminths. The median concentration of IL-4 was significantly higher in T. cruzi-seropositive patients with a positive qPCR test than in qPCR-negative patients. CONCLUSIONS Our results show a high level of multiparasitism and suggest that co-infection with intestinal helminths increased T. cruzi parasitaemia and upregulated the Th2-type response in the study patients.
Collapse
Affiliation(s)
- Gustavo Fabián Enriquez
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina.
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Natalia Paula Macchiaverna
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Graciela Garbossa
- Laboratorio de Parasitología Clínica y Ambiental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET-UBA), Instituto de Investigaciones en Salud Pública, Buenos Aires, Argentina
| | - Luz Piedad Quebrada Palacio
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Institute of Virology, Helmholtz Centre Munich, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Bárbara Leonor Ojeda
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina
| | - Jacqueline Bua
- Instituto Nacional de Parasitología Dr. M. Fatala Chabén, Administración Nacional de Laboratorios e Institutos de Salud Dr. C.G. Malbrán, Buenos Aires, Argentina
| | - María Sol Gaspe
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rubén Cimino
- Instituto de Investigaciones de Enfermedades Tropicales (IIET). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-CCT Salta, Universidad Nacional de Salta, Sede Regional Orán, Salta, Argentina
- Facultad de Ciencias Naturales, Cátedra de Química Biológica, Universidad Nacional de Salta, Salta, Argentina
| | - Ricardo Esteban Gürtler
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Miriam Postan
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Sadr S, Ahmadi Simab P, Niazi M, Yousefsani Z, Lotfalizadeh N, Hajjafari A, Borji H. Anti-inflammatory and immunomodulatory effects of mesenchymal stem cell therapy on parasitic drug resistance. Expert Rev Anti Infect Ther 2024; 22:435-451. [PMID: 38804866 DOI: 10.1080/14787210.2024.2360684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION The emergence of antiparasitic drug resistance poses a concerning threat to animals and humans. Mesenchymal Stem Cells (MSCs) have been widely used to treat infections in humans, pets, and livestock. Although this is an emerging field of study, the current review outlines possible mechanisms and examines potential synergism in combination therapies and the possible harmful effects of such an approach. AREAS COVERED The present study delved into the latest pre-clinical research on utilizing MSCs to treat parasitic infections. As per investigations, the introduction of MSCs to patients grappling with parasitic diseases like schistosomiasis, malaria, cystic echinococcosis, toxoplasmosis, leishmaniasis, and trypanosomiasis has shown a reduction in parasite prevalence. This intervention also alters the levels of both pro- and anti-inflammatory cytokines. Furthermore, the combined administration of MSCs and antiparasitic drugs has demonstrated enhanced efficacy in combating parasites and modulating the immune response. EXPERT OPINION Mesenchymal stem cells are a potential solution for addressing parasitic drug resistance. This is mainly because of their remarkable immunomodulatory abilities, which can potentially help combat parasites' resistance to drugs.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pouria Ahmadi Simab
- Department of Pathobiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mahta Niazi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Yousefsani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Araujo Furlan CL, Boccardo S, Rodriguez C, Mary VS, Gimenez CMS, Robson SC, Gruppi A, Montes CL, Acosta Rodríguez EV. CD39 expression by regulatory T cells participates in CD8+ T cell suppression during experimental Trypanosoma cruzi infection. PLoS Pathog 2024; 20:e1012191. [PMID: 38683845 PMCID: PMC11081507 DOI: 10.1371/journal.ppat.1012191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/09/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a role during the initial stages after T. cruzi infection, restraining the magnitude of CD8+ T cell responses and parasite control. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation, exhaustion and functional markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell immunity. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, preventing increased parasite replication in T. cruzi infected mice adoptively transferred with Treg cells. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.
Collapse
Affiliation(s)
- Cintia L. Araujo Furlan
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Santiago Boccardo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Constanza Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Verónica S. Mary
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Camila M. S. Gimenez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| |
Collapse
|
5
|
Vargas-Munévar L, Borja-Fajardo J, Sandoval-Aldana A, García WQ, Moreno EM, Henriquez JC, Stashenko E, García LT, García-Beltrán O. Microencapsulation of Theobroma cacao L polyphenols: A high-value approach with in vitro anti-Trypanosoma cruzi, immunomodulatory and antioxidant activities. Biomed Pharmacother 2024; 173:116307. [PMID: 38401521 DOI: 10.1016/j.biopha.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Chagas disease (CHD) is the highest economic burden parasitosis worldwide and the most important cardiac infection, without therapeutic alternatives to halt or reverse its progression. In CHD-experimental models, antioxidant and anti-inflammatory compounds have demonstrated therapeutic potential in cardiac dysfunction. Theobroma cacao polyphenols are potent natural antioxidants with cardioprotective and anti-inflammatory action, which are susceptible to degradation, requiring technological approaches to guarantee their protection, stability, and controlled release. Here, 21 cocoa polyphenol-rich microencapsulates were produced by spray-drying and freeze-drying techniques using two wall materials (maltodextrin and gum arabic). Chemical (total and individual phenolic content and antioxidant activity), structural (morphology), and biological parameters (cytotoxicity, trypanocidal, antioxidant, and immunomodulatory activities) were assessed to determine the most efficient microencapsulation conditions on Trypanosoma cruzi-infected myocardioblast and macrophage cells. Significant antiproliferative properties against infected cells (superior to benznidazole) were found in two microencapsulates which also exhibited cardioprotective properties against oxidative stress, inflammation, and cell death.
Collapse
Affiliation(s)
- Laura Vargas-Munévar
- Posgradute Department in Infectious Disease, Universidad de Santander, Bucaramanga 680006, Colombia
| | | | | | - Wendy Quintero García
- Posgradute Department in Infectious Disease, Universidad de Santander, Bucaramanga 680006, Colombia
| | - Erika Moreno Moreno
- Posgradute Department in Infectious Disease, Universidad de Santander, Bucaramanga 680006, Colombia
| | - Juan Camilo Henriquez
- National Research Center for the Agroindustrialization of Aromatic and Medicinal Tropical Species (CENIVAM), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Elena Stashenko
- National Research Center for the Agroindustrialization of Aromatic and Medicinal Tropical Species (CENIVAM), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Liliana Torcoroma García
- Posgradute Department in Infectious Disease, Universidad de Santander, Bucaramanga 680006, Colombia.
| | - Olimpo García-Beltrán
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O' Higgins, Santiago 8370854, Chile; Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Ibagué 730002, Colombia.
| |
Collapse
|
6
|
Moreira LR, Silva AC, da Costa-Oliveira CN, da Silva-Júnior CD, Oliveira KKDS, Torres DJL, Barros MD, Rabello MCDS, de Lorena VMB. Interaction between peripheral blood mononuclear cells and Trypanosoma cruzi-infected adipocytes: implications for treatment failure and induction of immunomodulatory mechanisms in adipose tissue. Front Immunol 2024; 15:1280877. [PMID: 38533504 PMCID: PMC10963431 DOI: 10.3389/fimmu.2024.1280877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Background/Introduction Adipose tissue (AT) has been highlighted as a promising reservoir of infection for viruses, bacteria and parasites. Among them is Trypanosoma cruzi, which causes Chagas disease. The recommended treatment for the disease in Brazil is Benznidazole (BZ). However, its efficacy may vary according to the stage of the disease, geographical origin, age, immune background of the host and sensitivity of the strains to the drug. In this context, AT may act as an ally for the parasite survival and persistence in the host and a barrier for BZ action. Therefore, we investigated the immunomodulation of T. cruzi-infected human AT in the presence of peripheral blood mononuclear cells (PBMC) where BZ treatment was added. Methods We performed indirect cultivation between T. cruzi-infected adipocytes, PBMC and the addition of BZ. After 72h of treatment, the supernatant was collected for cytokine, chemokine and adipokine assay. Infected adipocytes were removed to quantify T. cruzi DNA, and PBMC were removed for immunophenotyping. Results Our findings showed elevated secretion of interleukin (IL)-6, IL-2 and monocyte chemoattractant protein-1 (MCP-1/CCL2) in the AT+PBMC condition compared to the other controls. In contrast, there was a decrease in tumor necrosis factor (TNF) and IL-8/CXCL-8 in the groups with AT. We also found high adipsin secretion in PBMC+AT+T compared to the treated condition (PBMC+AT+T+BZ). Likewise, the expression of CD80+ and HLA-DR+ in CD14+ cells decreased in the presence of T. cruzi. Discussion Thus, our findings indicate that AT promotes up-regulation of inflammatory products such as IL-6, IL-2, and MCP-1/CCL2. However, adipogenic inducers may have triggered the downregulation of TNF and IL-8/CXCL8 through the peroxisome proliferator agonist gamma (PPAR-g) or receptor expression. On the other hand, the administration of BZ only managed to reduce inflammation in the microenvironment by decreasing adipsin in the infected culture conditions. Therefore, given the findings, we can see that AT is an ally of the parasite in evading the host's immune response and the pharmacological action of BZ.
Collapse
Affiliation(s)
- Leyllane Rafael Moreira
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Brazil
- Department of Immunology, Aggeu Magalhães Institute, Recife, Brazil
| | - Ana Carla Silva
- Department of Immunology, Aggeu Magalhães Institute, Recife, Brazil
| | | | - Claudeir Dias da Silva-Júnior
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Brazil
- Department of Immunology, Aggeu Magalhães Institute, Recife, Brazil
| | | | - Diego José Lira Torres
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Brazil
- Department of Immunology, Aggeu Magalhães Institute, Recife, Brazil
| | | | | | | |
Collapse
|
7
|
Lozano KJG, Gonçalves Santos E, Vilas Boas DF, Oliveira RRG, Diniz LF, Benedetti MD, Carneiro CM, C Bandeira L, Faria G, Gonçalves RV, Novaes RD, Caldas S, Caldas IS. Schistosoma mansoni co-infection modulates Chagas disease development but does not impair the effect of benznidazole-based chemotherapy. Int Immunopharmacol 2024; 128:111467. [PMID: 38211479 DOI: 10.1016/j.intimp.2023.111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/05/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
The adequate management of parasite co-infections represents a challenge that has not yet been overcome, especially considering that the pathological outcomes and responses to treatment are poorly understood. Thus, this study aimed to evaluate the impact of Schistosoma mansoni infection on the efficacy of benznidazole (BZN)-based chemotherapy in Trypanosoma cruzi co-infected mice. BALB/c mice were maintained uninfected or co-infected with S. mansoni and T. cruzi, and were untreated or treated with BZN. Body weight, mortality, parasitemia, cardiac parasitism, circulating cytokines (Th1/Th2/Th17); as well as heart, liver and intestine microstructure were analyzed. The parasitemia peak was five times higher and myocarditis was more severe in co-infected than T. cruzi-infected mice. After reaching peak, parasitemia was effectively controlled in co-infected animals. BZN successfully controlled parasitemia in both co-infected and T. cruzi-infected mice and improved body mass, cardiac parasitism, myocarditis and survival in co-infected mice. Co-infection dampened the typical cytokine response to either parasite, and BZN reduced anti-inflammatory cytokines in co-infected mice. Despite BZN normalizing splenomegaly and liver cellular infiltration, it exacerbated hepatomegaly in co-infected mice. Co-infection or BZN exerted no effect on hepatic granulomas, but increased pulmonary and intestinal granulomas. Marked granulomatous inflammation was identified in the small intestine of all schistosomiasis groups. Taken together, our findings indicate that BZN retains its therapeutic efficacy against T. cruzi infection even in the presence of S. mansoni co-infection, but with organ-specific repercussions, especially in the liver.
Collapse
Affiliation(s)
- Kelly J G Lozano
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Elda Gonçalves Santos
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Diego F Vilas Boas
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Raphaela R G Oliveira
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Lívia F Diniz
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Monique D Benedetti
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Cláudia M Carneiro
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University, Ouro Preto 35400-000, MG, Brazil
| | - Lorena C Bandeira
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University, Ouro Preto 35400-000, MG, Brazil
| | - Gilson Faria
- Department of Research and Development., Ezequiel Dias Foundation, 30510-010, Belo Horizonte, MG, Brazil
| | - Reggiani V Gonçalves
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Rômulo D Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil
| | - Sérgio Caldas
- Department of Research and Development., Ezequiel Dias Foundation, 30510-010, Belo Horizonte, MG, Brazil
| | - Ivo S Caldas
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil.
| |
Collapse
|
8
|
Ramos-Rincon JM, Torrús-Tendero D, García-Morante H, Gimeno-Gascón A, Marco F, Gil-Anguita C, Wikman-Jorgensen P, Lucas-Dato A, Rodriguez-Diaz JC, Amador C, Llenas-García J. Cytokine profile levels and their relationship with parasitemia and cardiomyopathy in people with Chagas disease in Spain. A prospective observational study. Parasitol Res 2023; 123:66. [PMID: 38133693 PMCID: PMC10746755 DOI: 10.1007/s00436-023-08042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Immunoregulatory networks may have a role in controlling parasitemia in the chronic phase of human Chagas disease. The aim was to describe the serum cytokine profile of Trypanosoma cruzi in chronically infected patients and to evaluate its relationship with parasitemia and Chagas cardiomyopathy.This prospective observational study included adult patients with chronic Chagas disease. Demographic and clinical data were collected, and peripheral blood samples were used to perform T. cruzi real-time polymerase chain reaction (RT-PCR) and determine the serum cytokine profile.Fifty-eight patients were included; 17 (29.3%) had positive RT-PCR results. This group had a higher median concentration of TNF-α (p = 0.003), IL-6 (p = 0.021), IL-4 (p = 0.031), IL-1β (p = 0.036), and IL-17A (p = 0.043) than those with a negative RT-PCR. Patients with cardiac involvement had a higher median concentration of IL-5 (p = 0.016) than those without.These results reinforce the key role that cytokines play in Chagas disease patients with parasitemia and cardiac involvement.
Collapse
Affiliation(s)
- Jose-Manuel Ramos-Rincon
- Internal Medicine Department, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010, Alicante, Spain.
- Clinical Medicine Department, Miguel Hernández University of Elche, Alicante, Spain.
| | - Diego Torrús-Tendero
- Reference Unit of Imported Diseases and International Health & Infectious Diseases Unit, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Parasitology Area, Miguel Hernández University of Elche, Alicante, Spain
| | - Hilarion García-Morante
- Internal Medicine Department, Vega Baja Hospital, Orihuela, Alicante, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), Valencia, Spain
| | - Adelina Gimeno-Gascón
- Clinical Unit of Infectious Diseases, Microbiology, and Parasitology, Virgen del Rocío University Hospital, Seville, Spain
- Clinical and Molecular Microbiology Research Group, Institute of Biomedicine of Seville (IBiS), Seville, Spain
| | - Francisco Marco
- Immunology Department, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | | | - Philip Wikman-Jorgensen
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), Valencia, Spain
- Internal Medicine Department, General University Hospital of Elda, Alicante, Spain
| | - Ana Lucas-Dato
- Internal Medicine Department, Vega Baja Hospital, Orihuela, Alicante, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), Valencia, Spain
| | - Juan-Carlos Rodriguez-Diaz
- Microbiology Department, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Microbiology Department, Miguel Hernández University of Elche, Elche, Spain
| | - Concepción Amador
- Internal Medicine Department, Marina Baixa Hospital, Villajoyosa, Alicante, Spain
| | - Jara Llenas-García
- Clinical Medicine Department, Miguel Hernández University of Elche, Alicante, Spain
- Internal Medicine Department, Vega Baja Hospital, Orihuela, Alicante, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), Valencia, Spain
| |
Collapse
|
9
|
de Souza G, Teixeira SC, Fajardo Martínez AF, Silva RJ, Luz LC, de Lima Júnior JP, Rosini AM, dos Santos NCL, de Oliveira RM, Paschoalino M, Barbosa MC, Alves RN, Gomes AO, da Silva CV, Ferro EAV, Barbosa BF. Trypanosoma cruzi P21 recombinant protein modulates Toxoplasma gondii infection in different experimental models of the human maternal-fetal interface. Front Immunol 2023; 14:1243480. [PMID: 37915581 PMCID: PMC10617204 DOI: 10.3389/fimmu.2023.1243480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease that affects about one-third of the human population. Most infected individuals are asymptomatic, but severe cases can occur such as in congenital transmission, which can be aggravated in individuals infected with other pathogens, such as HIV-positive pregnant women. However, it is unknown whether infection by other pathogens, such as Trypanosoma cruzi, the etiologic agent of Chagas disease, as well as one of its proteins, P21, could aggravate T. gondii infection. Methods In this sense, we aimed to investigate the impact of T. cruzi and recombinant P21 (rP21) on T. gondii infection in BeWo cells and human placental explants. Results Our results showed that T. cruzi infection, as well as rP21, increases invasion and decreases intracellular proliferation of T. gondii in BeWo cells. The increase in invasion promoted by rP21 is dependent on its binding to CXCR4 and the actin cytoskeleton polymerization, while the decrease in proliferation is due to an arrest in the S/M phase in the parasite cell cycle, as well as interleukin (IL)-6 upregulation and IL-8 downmodulation. On the other hand, in human placental villi, rP21 can either increase or decrease T. gondii proliferation, whereas T. cruzi infection increases T. gondii proliferation. This increase can be explained by the induction of an anti-inflammatory environment through an increase in IL-4 and a decrease in IL-6, IL-8, macrophage migration inhibitory factor (MIF), and tumor necrosis factor (TNF)-α production. Discussion In conclusion, in situations of coinfection, the presence of T. cruzi may favor the congenital transmission of T. gondii, highlighting the importance of neonatal screening for both diseases, as well as the importance of studies with P21 as a future therapeutic target for the treatment of Chagas disease, since it can also favor T. gondii infection.
Collapse
Affiliation(s)
- Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Luana Carvalho Luz
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Joed Pires de Lima Júnior
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Natália Carine Lima dos Santos
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rafael Martins de Oliveira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marina Paschoalino
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Matheus Carvalho Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rosiane Nascimento Alves
- Department of Agricultural and Natural Science, Universidade do Estado de Minas Gerais, Ituiutaba, MG, Brazil
| | - Angelica Oliveira Gomes
- Institute of Natural and Biological Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Claudio Vieira da Silva
- Laboratory of Trypanosomatids, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
10
|
Poveda C, Leão AC, Mancino C, Taraballi F, Chen YL, Adhikari R, Villar MJ, Kundu R, Nguyen DM, Versteeg L, Strych U, Hotez PJ, Bottazzi ME, Pollet J, Jones KM. Heterologous mRNA-protein vaccination with Tc24 induces a robust cellular immune response against Trypanosoma cruzi, characterized by an increased level of polyfunctional CD8 + T-cells. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100066. [PMID: 37534309 PMCID: PMC10393535 DOI: 10.1016/j.crimmu.2023.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Tc24 is a Trypanosoma cruzi-derived flagellar protein that, when formulated with a TLR-4 agonist adjuvant, induces a balanced immune response in mice, elevating IgG2a antibody titers and IFN-γ levels. Furthermore, vaccination with the recombinant Tc24 protein can reduce parasite levels and improve survival during acute infection. Although some mRNA vaccines have been proven to elicit a stronger immune response than some protein vaccines, they have not been used against T. cruzi. This work evaluates the immunogenicity of a heterologous prime/boost vaccination regimen using protein and mRNA-based Tc24 vaccines. Mice (C57BL/6) were vaccinated twice subcutaneously, three weeks apart, with either the Tc24-C4 protein + glucopyranosyl A (GLA)-squalene emulsion, Tc24 mRNA Lipid Nanoparticles, or with heterologous protein/mRNA or mRNA/protein combinations, respectively. Two weeks after the last vaccination, mice were euthanized, spleens were collected to measure antigen-specific T-cell responses, and sera were collected to evaluate IgG titers and isotypes. Heterologous presentation of the Tc24 antigen generated antigen-specific polyfunctional CD8+ T cells, a balanced Th1/Th2/Th17 cytokine profile, and a balanced humoral response with increased serum IgG, IgG1 and IgG2c antibody responses. We conclude that heterologous vaccination using Tc24 mRNA to prime and Tc24-C4 protein to boost induces a broad and robust antigen-specific immune response that was equivalent or superior to two doses of a homologous protein vaccine, the homologous mRNA vaccine and the heterologous Tc24-C4 Protein/mRNA vaccine.
Collapse
Affiliation(s)
- Cristina Poveda
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Ana Carolina Leão
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Yi-Lin Chen
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Rakesh Adhikari
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Maria Jose Villar
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Rakhi Kundu
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Duc M. Nguyen
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Leroy Versteeg
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
- Cell Biology and Immunology Group, Wageningen University & Research, the Netherlands
| | - Ulrich Strych
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Peter J. Hotez
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| | - Jeroen Pollet
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Kathryn M. Jones
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Brochet P, Mouren JC, Hannouche L, Lopez F, Ballester B, Cunha-Neto E, Spinelli L, Chevillard C. ChagasDB: 80 years of publicly available data on the molecular host response to Trypanosoma cruzi infection in a single database. Database (Oxford) 2023; 2023:7176384. [PMID: 37221041 DOI: 10.1093/database/baad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Chagas disease is a parasitical disease caused by Trypanosoma cruzi which affects ∼7 million people worldwide. Per year, ∼10 000 people die from this pathology. Indeed, ∼30% of humans develop severe chronic forms, including cardiac, digestive or neurological disorders, for which there is still no treatment. In order to facilitate research on Chagas disease, a manual curation of all papers corresponding to 'Chagas disease' referenced on PubMed has been performed. All deregulated molecules in hosts (all mammals, humans, mice or others) following T. cruzi infection were retrieved and included in a database, named ChagasDB. A website has been developed to make this database accessible to all. In this article, we detail the construction of this database, its contents and how to use it. Database URL https://chagasdb.tagc.univ-amu.fr.
Collapse
Affiliation(s)
- Pauline Brochet
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille 13288, France
| | - Jean-Christophe Mouren
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille 13288, France
| | - Laurent Hannouche
- C2VN, INSERM, INRA, Aix Marseille Université, Marseille 13005, France
| | - Fabrice Lopez
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille 13288, France
| | - Benoit Ballester
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille 13288, France
| | - Edecio Cunha-Neto
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille 13288, France
| | - Lionel Spinelli
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo 05403-900, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo 05403-900, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo 05403-900, Brazil
| | - Christophe Chevillard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille 13288, France
| |
Collapse
|
12
|
Rodríguez-Morales O, Mendoza-Téllez EJ, Morales-Salinas E, Arce-Fonseca M. Effectiveness of Nitazoxanide and Electrolyzed Oxiding Water in Treating Chagas Disease in a Canine Model. Pharmaceutics 2023; 15:pharmaceutics15051479. [PMID: 37242721 DOI: 10.3390/pharmaceutics15051479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Chagas disease (CD) is caused by the protozoan Trypanosoma cruzi, and affects seven million people in Latin America. Side effects and the limited efficacy of current treatment have led to new drug research. The objective of this work was to evaluate the effectiveness of nitazoxanide (NTZ) and electrolyzed oxidizing water (EOW) in a canine model of experimental CD. Náhuatl dogs were infected with the T. cruzi H8 strain and NTZ- or EOW-treated orally for 10 days. Seronegativity was shown at 12 months post-infection (mpi) in the NTZ-, EOW-, and benznidazole (BNZ)-treated groups. The NTZ and BNZ groups had high levels of IFN-γ, TNF-α, IL-6, IL-12B, and IL-1β at 1.5 mpi and low levels of IL-10. Electrocardiographic studies showed alterations from 3 mpi and worsening at 12 mpi; NTZ treatment produced fewer cardiac pathomorphological changes compared to EOW, similar to BNZ treatment. There was no cardiomegaly in any group. In conclusion, although NTZ and EOW did not prevent changes in cardiac conductivity, they were able to avoid the severity of heart damage in the chronic phase of CD. NTZ induced a favorable proinflammatory immune response after infection, being a better option than EOW as a possible treatment for CD after BNZ.
Collapse
Affiliation(s)
- Olivia Rodríguez-Morales
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology of Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Erika Jocelin Mendoza-Téllez
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology of Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Elizabeth Morales-Salinas
- Department of Pathology of Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Minerva Arce-Fonseca
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology of Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
13
|
Garcez EM, Gomes N, Moraes AS, Pogue R, Uenishi RH, Hecht M, Carvalho JL. Extracellular vesicles in the context of Chagas Disease - A systematic review. Acta Trop 2023; 242:106899. [PMID: 36935050 DOI: 10.1016/j.actatropica.2023.106899] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Extracellular vesicle (EVs) traffic is considered an important cellular communication process between cells that can be part of a single organism or belong to different living beings. The relevance of EV-mediated cellular communication is increasingly studied and appreciated, especially in relation to pathological conditions, including parasitic disorders, in which the EV release and uptake processes have been documented. In the context of Chagas Disease (CD), EVs have been explored, however, current data have not been systematically revised in order to provide an overview of the published literature and the main results obtained thus far. In this systematic review, 25 studies involving the investigation of EVs in CD were identified. The studies involved Trypanosoma cruzi (Tc)-derived EVs (Tc-EVs), as well as EVs derived from T. cruzi-infected mammalian cells-derived EVs, mainly isolated by ultracentrifugation and poorly characterized. The objectives of the identified studies included the characterization of the protein and RNA cargo of Tc-EVs, as well as investigation of EVs in parasitic infections and immune-related processes. Overall, our systematic review reveals that EVs play critical roles in several mechanisms related to the interaction between T. cruzi and mammalian hosts, their contribution to immune system evasion by the parasite, and to chronic inflammation in the host. Future studies will benefit from the consolidation of isolation and characterization methods, as well as the elucidation of the role of EVs in CD.
Collapse
Affiliation(s)
- Emãnuella Melgaço Garcez
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Nélio Gomes
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Aline Silva Moraes
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Robert Pogue
- Genomic Sciences and Biotechnology Program. Catholic University of Brasília, 71966-700, Brasília, DF, Brazil
| | - Rosa Harumi Uenishi
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Mariana Hecht
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil; Genomic Sciences and Biotechnology Program. Catholic University of Brasília, 71966-700, Brasília, DF, Brazil.
| |
Collapse
|
14
|
Reséndiz-Mora A, Barrera-Aveleida G, Sotelo-Rodríguez A, Galarce-Sosa I, Nevárez-Lechuga I, Santiago-Hernández JC, Nogueda-Torres B, Meza-Toledo S, Gómez-Manzo S, Wong-Baeza I, Baeza I, Wong-Baeza C. Effect of B-NIPOx in Experimental Trypanosoma cruzi Infection in Mice. Int J Mol Sci 2022; 24:ijms24010333. [PMID: 36613783 PMCID: PMC9820238 DOI: 10.3390/ijms24010333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi and represents a major public health problem, which is endemic in Latin America and emerging in the rest of the world. The two drugs that are currently available for its treatment, Benznidazole and Nifurtimox, are partially effective in the chronic phase of the disease. In this study, we designed and synthesized the benzyl ester of N-isopropyl oxamic acid (B-NIPOx), which is a non-polar molecule that crosses cell membranes. B-NIPOx is cleaved inside the parasite by carboxylesterases, releasing benzyl alcohol (a molecule with antimicrobial activity), and NIPOx, which is an inhibitor of α-hydroxy acid dehydrogenase isozyme II (HADH-II), a key enzyme in T. cruzi metabolism. We evaluated B-NIPOx cytotoxicity, its toxicity in mice, and its inhibitory activity on purified HADH-II and on T. cruzi homogenates. We then evaluated the trypanocidal activity of B-NIPOx in vitro and in vivo and its effect in the intestine of T. cruzi-infected mice. We found that B-NIPOx had higher trypanocidal activity on epimastigotes and trypomastigotes than Benznidazole and Nifurtimox, that it was more effective to reduce blood parasitemia and amastigote nests in infected mice, and that, in contrast to the reference drugs, it prevented the development of Chagasic enteropathy.
Collapse
Affiliation(s)
- Albany Reséndiz-Mora
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Giovanna Barrera-Aveleida
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Anahi Sotelo-Rodríguez
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Iván Galarce-Sosa
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Irene Nevárez-Lechuga
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan Carlos Santiago-Hernández
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Benjamín Nogueda-Torres
- Laboratorio de Helmintología, Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Sergio Meza-Toledo
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Isabel Wong-Baeza
- Laboratorio de Inmunología Molecular II, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Isabel Baeza
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (I.B.); (C.W.-B.); Tel.: +52-55-5729-6000 (ext. 62326) (I.B. & C.W.-B.)
| | - Carlos Wong-Baeza
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (I.B.); (C.W.-B.); Tel.: +52-55-5729-6000 (ext. 62326) (I.B. & C.W.-B.)
| |
Collapse
|
15
|
Rossi IV, Nunes MAF, Sabatke B, Ribas HT, Winnischofer SMB, Ramos ASP, Inal JM, Ramirez MI. An induced population of Trypanosoma cruzi epimastigotes more resistant to complement lysis promotes a phenotype with greater differentiation, invasiveness, and release of extracellular vesicles. Front Cell Infect Microbiol 2022; 12:1046681. [PMID: 36590580 PMCID: PMC9795005 DOI: 10.3389/fcimb.2022.1046681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi, which uses blood-feeding triatomine bugs as a vector to finally infect mammalian hosts. Upon entering the host, the parasite needs to effectively evade the attack of the complement system and quickly invade cells to guarantee an infection. In order to accomplish this, T. cruzi expresses different molecules on its surface and releases extracellular vesicles (EVs). Methods Here, we have selected a population of epimastigotes (a replicative form) from T. cruzi through two rounds of exposure to normal human serum (NHS), to reach 30% survival (2R population). This 2R population was characterized in several aspects and compared to Wild type population. Results The 2R population had a favored metacyclogenesis compared with wild-type (WT) parasites. 2R metacyclic trypomastigotes had a two-fold increase in resistance to complementmediated lysis and were at least three times more infective to eukaryotic cells, probably due to a higher GP82 expression in the resistant population. Moreover, we have shown that EVs from resistant parasites can transfer the invasive phenotype to the WT population. In addition, we showed that the virulence phenotype of the selected population remains in the trypomastigote form derived from cell culture, which is more infective and also has a higher rate of release of trypomastigotes from infected cells. Conclusions Altogether, these data indicate that it is possible to select parasites after exposure to a particular stress factor and that the phenotype of epimastigotes remained in the infective stage. Importantly, EVs seem to be an important virulence fator increasing mechanism in this context of survival and persistence in the host.
Collapse
Affiliation(s)
- Izadora Volpato Rossi
- Graduate Program in Cell and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil,Carlos Chagas Institute, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba, PR, Brazil
| | | | - Bruna Sabatke
- Carlos Chagas Institute, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba, PR, Brazil,Graduate Program in Microbiology, Pathology and Parasitology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Hennrique Taborda Ribas
- Graduate Program in Biochemistry Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Sheila Maria Brochado Winnischofer
- Graduate Program in Biochemistry Sciences, Federal University of Paraná, Curitiba, PR, Brazil,Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Jameel Malhador Inal
- School of Human Sciences, London Metropolitan University, London, United Kingdom,School of Life and Medical Sciences, University of Hertfordshire, London, United Kingdom
| | - Marcel Ivan Ramirez
- Carlos Chagas Institute, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba, PR, Brazil,*Correspondence: Marcel Ivan Ramirez,
| |
Collapse
|
16
|
Maldonado E, Rojas DA, Urbina F, Valenzuela-Pérez L, Castillo C, Solari A. Trypanosoma cruzi DNA Polymerase β Is Phosphorylated In Vivo and In Vitro by Protein Kinase C (PKC) and Casein Kinase 2 (CK2). Cells 2022; 11:cells11223693. [PMID: 36429121 PMCID: PMC9688435 DOI: 10.3390/cells11223693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
DNA polymerase β plays a fundamental role in the life cycle of Trypanosoma cruzi since it participates in the kinetoplast DNA repair and replication. This enzyme can be found in two forms in cell extracts of T. cruzi epimastigotes form. The H form is a phosphorylated form of DNA polymerase β, while the L form is not phosphorylated. The protein kinases which are able to in vivo phosphorylate DNA polymerase β have not been identified yet. In this work, we purified the H form of this DNA polymerase and identified the phosphorylation sites. DNA polymerase β is in vivo phosphorylated at several amino acid residues including Tyr35, Thr123, Thr137 and Ser286. Thr123 is phosphorylated by casein kinase 2 and Thr137 and Ser286 are phosphorylated by protein kinase C-like enzymes. Protein kinase C encoding genes were identified in T. cruzi, and those genes were cloned, expressed in bacteria and the recombinant protein was purified. It was found that T. cruzi possesses three different protein kinase C-like enzymes named TcPKC1, TcPKC2, and TcPKC3. Both TcPKC1 and TcPKC2 were able to in vitro phosphorylate recombinant DNA polymerase β, and in addition, TcPKC1 gets auto phosphorylated. Those proteins contain several regulatory domains at the N-terminus, which are predicted to bind phosphoinositols, and TcPKC1 contains a lipocalin domain at the C-terminus that might be able to bind free fatty acids. Tyr35 is phosphorylated by an unidentified protein kinase and considering that the T. cruzi genome does not contain Tyr kinase encoding genes, it is probable that Tyr35 could be phosphorylated by a dual protein kinase. Wee1 is a eukaryotic dual protein kinase involved in cell cycle regulation. We identified a Wee1 homolog in T. cruzi and the recombinant kinase was assayed using DNA polymerase β as a substrate. T. cruzi Wee1 was able to in vitro phosphorylate recombinant DNA polymerase β, although we were not able to demonstrate specific phosphorylation on Tyr35. Those results indicate that there exists a cell signaling pathway involving PKC-like kinases in T. cruzi.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Correspondence: (E.M.); (A.S.)
| | - Diego A. Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Lucía Valenzuela-Pérez
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Christian Castillo
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago 7500975, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Correspondence: (E.M.); (A.S.)
| |
Collapse
|
17
|
Sabino EC, Franco LAM, Venturini G, Velho Rodrigues M, Marques E, de Oliveira-da Silva LC, Martins LNA, Ferreira AM, Almeida PEC, Silva FDD, Leite SF, Nunes MDCP, Haikal DS, Oliveira CDL, Cardoso CS, Seidman JG, Seidman CE, Casas JP, Ribeiro ALP, Krieger JE, Pereira AC. Genome-wide association study for Chagas Cardiomyopathy identify a new risk locus on chromosome 18 associated with an immune-related protein and transcriptional signature. PLoS Negl Trop Dis 2022; 16:e0010725. [PMID: 36215317 PMCID: PMC9550069 DOI: 10.1371/journal.pntd.0010725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chronic Chagas Cardiomyopathy (CCC) usually develops between 10 and 20 years after the first parasitic infection and is one of the leading causes of end-stage heart failure in Latin America. Despite the great inter-individual variability in CCC susceptibility (only 30% of infected individuals ever present CCC), there are no known predictors for disease development in those chronically infected. METHODOLOGY/PRINCIPAL FINDINGS We describe a new susceptibility locus for CCC through a GWAS analysis in the SaMi-Trop cohort, a population-based study conducted in a Chagas endemic region from Brazil. This locus was also associated with CCC in the REDS II Study. The newly identified locus (rs34238187, OR 0.73, p-value 2.03 x 10-9) spans a haplotype of approximately 30Kb on chromosome 18 (chr18: 5028302-5057621) and is also associated with 80 different traits, most of them blood protein traits significantly enriched for immune-related biological pathways. Hi-C data show that the newly associated locus is able to interact with chromatin sites as far as 10Mb on chromosome 18 in a number of different cell types and tissues. Finally, we were able to confirm, at the tissue transcriptional level, the immune-associated blood protein signature using a multi-tissue differential gene expression and enrichment analysis. CONCLUSIONS/SIGNIFICANCE We suggest that the newly identified locus impacts CCC risk among T cruzi infected individuals through the modulation of a downstream transcriptional and protein signature associated with host-parasite immune response. Functional characterization of the novel risk locus is warranted.
Collapse
Affiliation(s)
- Ester Cerdeira Sabino
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Lucas Augusto Moysés Franco
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Gabriela Venturini
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mariliza Velho Rodrigues
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
| | - Emanuelle Marques
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
| | - Lea Campos de Oliveira-da Silva
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Ariela Mota Ferreira
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Felipe Dias Da Silva
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | | | | | | | | | - Jonathan G. Seidman
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine E. Seidman
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Juan P. Casas
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Antonio Luiz Pinho Ribeiro
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Telehealth Center, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jose E. Krieger
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
| | - Alexandre C. Pereira
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Chronic rapamycin pretreatment modulates arginase/inducible nitric oxide synthase balance attenuating aging-dependent susceptibility to Trypanosoma cruzi infection and acute myocarditis. Exp Gerontol 2022; 159:111676. [DOI: 10.1016/j.exger.2021.111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
|
19
|
Selenium, TGF-Beta and Infectious Endemic Cardiopathy: Lessons from Benchwork to Clinical Application in Chagas Disease. Biomolecules 2022; 12:biom12030349. [PMID: 35327541 PMCID: PMC8944995 DOI: 10.3390/biom12030349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
Abstract
For over 60 years, selenium (Se) has been known as an essential microelement to many biological functions, including cardiovascular homeostasis. This review presents a compilation of studies conducted in the past 20 years related to chronic Chagas disease cardiomyopathy (CCC), caused by Trypanosoma cruzi infection, a neglected disease that represents a global burden, especially in Latin America. Experimental and clinical data indicate that Se may be used as a complementary therapy to prevent heart failure and improve heart function. Starting from the main questions “Is Se deficiency related to heart inflammation and arrhythmogenesis in CCC?” and “Could Se be recommended as a therapeutic strategy for CCC?”, we show evidence implicating the complex and multidetermined CCC physiopathology, discussing its possible interplays with the multifunctional cytokine TGF-β as regulators of immune response and fibrosis. We present two new proposals to face this global public health challenge in vulnerable populations affected by this parasitic disease: fibrosis modulation mediated by TGF-β pathways and the possible use of selenoproteins as antioxidants regulating the increased reactive oxygen stress present in CCC inflammatory environments. We assess the opportunity to consider the beneficial effects of Se in preventing heart failure as a concept to be applied for CCC patients.
Collapse
|
20
|
Vieira RDS, Nascimento MS, Noronha IH, Vasconcelos JRC, Benvenuti LA, Barber GN, Câmara NOS, Kalil J, Cunha-Neto E, Almeida RR. STING Signaling Drives Production of Innate Cytokines, Generation of CD8 + T Cells and Enhanced Protection Against Trypanosoma cruzi Infection. Front Immunol 2022; 12:775346. [PMID: 35095849 PMCID: PMC8795786 DOI: 10.3389/fimmu.2021.775346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
A variety of signaling pathways are involved in the induction of innate cytokines and CD8+ T cells, which are major players in protection against acute Trypanosoma cruzi infection. Previous data have demonstrated that a TBK-1/IRF3-dependent signaling pathway promotes IFN-β production in response to Trypanosoma cruzi, but the role for STING, a main interactor of these proteins, remained to be addressed. Here, we demonstrated that STING signaling is required for production of IFN-β, IL-6, and IL-12 in response to Trypanosoma cruzi infection and that STING absence negatively impacts activation of IRF-dependent pathways in response to the parasite. We reported no significant activation of IRF-dependent pathways and cytokine expression in RAW264.7 macrophages in response to heat-killed trypomastigotes. In addition, we showed that STING is essential for T. cruzi DNA-mediated induction of IFN-β, IL-6, and IL-12 gene expression in RAW264.7 macrophages. We demonstrated that STING-knockout mice have significantly higher parasitemia from days 5 to 8 of infection and higher heart parasitism at day 13 after infection. Although we observed similar heart inflammatory infiltrates at day 13 after infection, IFN-β, IL-12, CXCL9, IFN-γ, and perforin gene expression were lower in the absence of STING. We also showed an inverse correlation between parasite DNA and the expression of CXCL9, IFN-γ, and perforin genes in the hearts of infected animals at day 13 after infection. Finally, we reported that STING signaling is required for splenic IFN-β and IL-6 expression early after infection and that STING deficiency results in lower numbers of splenic parasite-specific IFN-γ and IFN-γ/perforin-producing CD8+ T cells, indicating a pivotal role for STING signaling in immunity to Trypanosoma cruzi.
Collapse
Affiliation(s)
- Raquel de Souza Vieira
- Laboratório de Imunologia, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marilda Savoia Nascimento
- Laboratório de Imunologia, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Isaú Henrique Noronha
- Laboratório de Vacinas Recombinantes, Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| | | | - Luiz Alberto Benvenuti
- Divisão de Patologia, Instituto do Coração (INCOR), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Glen N Barber
- Department of Cell Biology, University of Miami, Miami, FL, United States
| | - Niels Olsen Saraiva Câmara
- Laboratório de Imunologia Experimental e Clínica, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Laboratório de Imunologia de Transplantes, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratório de Imunologia, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia (III), Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratório de Imunologia, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia (III), Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratório de Imunologia, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|