1
|
Ebeid TA, Al-Homidan IH, Saleh AA, Barakat HA. Physiological and immunological aspects of feed restriction and its beneficial impacts in fattening rabbits' productivity-an updated review. Trop Anim Health Prod 2024; 56:33. [PMID: 38183493 DOI: 10.1007/s11250-023-03881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Two feed restriction (FR) regimens are utilized with weaned rabbits including a quantitative FR (amount-limited feed or time-restricted admission to feed) and a qualitative FR (modulation of diet content especially protein and energy). The use of post-weaning FR may help in preventing post-weaning digestive disorders, stimulating compensating growth, improving feed efficiency, and decreasing carcass fat content. Interestingly, FR may contribute to changing meat's chemical composition and its physical quality attributes by regulating the morphological and biochemical characteristics of muscle fibers. Also, FR could enhance the gastrointestinal tract development, its histomorphology, and improve feed digestibility and absorption. Furthermore, FR regimens are involved in establishing gut microbial balance and enhancing the host immunological response. It might be concluded that post-weaning FR is involved in influencing the physiological and immunological aspects of growing rabbits. It might be documented that light to mild FR (i.e., 80-90% AL), early (i.e., at the first 2 weeks post-weaning), and relatively short in duration (i.e., for 2-3 weeks) had no negative effects on live body weight, while severing FR reduced live body weight in comparison with ad libitum rabbits.
Collapse
Affiliation(s)
- Tarek Amin Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, 51452, Buraydah, Saudi Arabia.
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Ibrahim Hamad Al-Homidan
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Ahmed Ali Saleh
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Hassan Ahmed Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, 51452, Buraydah, Saudi Arabia
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
2
|
Rodríguez S, García-García A, Garcia-Calvo E, Esteban V, Pastor-Vargas C, Díaz-Perales A, García T, Martín R. Generation of an Ovomucoid-Immune scFv Library for the Development of Novel Immunoassays in Hen's Egg Detection. Foods 2023; 12:3831. [PMID: 37893724 PMCID: PMC10606182 DOI: 10.3390/foods12203831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Hen's egg allergy is the second most common food allergy among infants and young children. The possible presence of undeclared eggs in foods poses a significant risk to sensitized individuals. Therefore, reliable egg allergen detection methods are needed to ensure compliance with food labeling and improve consumer protection. This work describes for the first time the application of phage display technology for the generation of a recombinant antibody aimed at the specific detection of hen's ovomucoid. First, a single-chain variable fragment (scFv) library was constructed from mRNA isolated from the spleen of a rabbit immunized with ovomucoid. After rounds of biopanning, four binding clones were isolated and characterized. Based on the best ovomucoid-binding candidate SR-G1, an indirect phage enzyme-linked immunosorbent assay (phage-ELISA) was developed, reaching limits of detection and quantitation of 43 and 79 ng/mL of ovomucoid, respectively. The developed ELISA was applied to the analysis of a wide variety of food products, obtaining a good correlation with a commercial egg detection assay used as a reference. Finally, in silico modeling of the antigen-antibody complex revealed that the main interactions most likely occur between the scFv heavy chain and the ovomucoid domain-III, the most immunogenic region of this allergen.
Collapse
Affiliation(s)
- Santiago Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Aina García-García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Eduardo Garcia-Calvo
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Vanesa Esteban
- Departamento de Alergia e Inmunología, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), 28040 Madrid, Spain;
| | - Carlos Pastor-Vargas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Araceli Díaz-Perales
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), 28223 Madrid, Spain;
| | - Teresa García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Rosario Martín
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| |
Collapse
|
3
|
Early Introduction of Plant Polysaccharides Drives the Establishment of Rabbit Gut Bacterial Ecosystems and the Acquisition of Microbial Functions. mSystems 2022; 7:e0024322. [PMID: 35674393 PMCID: PMC9239267 DOI: 10.1128/msystems.00243-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In mammals, the introduction of solid food is pivotal for the establishment of the gut microbiota. However, the effects of the first food consumed on long-term microbiota trajectory and host response are still largely unknown. This study aimed to investigate the influences of (i) the timing of first solid food ingestion and (ii) the consumption of plant polysaccharides on bacterial community dynamics and host physiology using a rabbit model. To modulate the first exposure to solid nutrients, solid food was provided to suckling rabbits from two different time points (3 or 15 days of age). In parallel, food type was modulated with the provision of diets differing in carbohydrate content throughout life: the food either was formulated with a high proportion of rapidly fermentable fibers (RFF) or was starch-enriched. We found that access to solid food as of 3 days of age accelerated the gut microbiota maturation. Our data revealed differential effects according to the digestive segment: precocious solid food ingestion influenced to a greater extent the development of bacterial communities of the appendix vermiformis, whereas life course polysaccharides ingestion had marked effects on the cecal microbiota. Greater ingestion of RFF was assumed to promote pectin degradation as revealed by metabolomics analysis. However, transcriptomic and phenotypic host responses remained moderately affected by experimental treatments, suggesting little outcomes of the observed microbiome modulations on healthy subjects. In conclusion, our work highlighted the timing of solid food introduction and plant polysaccharides ingestion as two different tools to modulate microbiota implantation and functionality. IMPORTANCE Our study was designed to gain a better understanding of how different feeding patterns affect the dynamics of gut microbiomes and microbe–host interactions. This research showed that the timing of solid food introduction is a key component of the gut microbiota shaping in early developmental stages, though with lower impact on settled gut microbiota profiles in older individuals. This study also provided in-depth analysis of dietary polysaccharide effects on intestinal microbiota. The type of plant polysaccharides reaching the gut through the lifetime was described as an important modulator of the cecal microbiome and its activity. These findings will contribute to better define the interventions that can be employed for modulating the ecological succession of young mammal gut microbiota.
Collapse
|
4
|
Wu M, Zhao H, Tang X, Zhao W, Yi X, Li Q, Sun X. Organization and Complexity of the Yak (Bos Grunniens) Immunoglobulin Loci. Front Immunol 2022; 13:876509. [PMID: 35615368 PMCID: PMC9124968 DOI: 10.3389/fimmu.2022.876509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
As important livestock in Qinghai-Tibet Plateau, yak provides meat and other necessities for Tibetans living. Plateau yak has resistance to diseases and stress, yet is nearly unknown in the structure and expression mechanism of yak immunoglobulin loci. Based on the published immunoglobulin genes of bovids (cattle, sheep and goat), the genomic organization of the yak immunoglobulin heavy chain (IgH) and immunoglobulin light chain (IgL) were described. The assemblage diversity of IgH, Igλ and Igκ in yak was similar to that in bovids, and contributes little to the antibody lineage compared with that in humans and mice. Somatic hypermutation (SHM) had a greater effect on immunoglobulin diversity in yak than in goat and sheep, and in addition to the complementarity-determining region (CDR), some loci in the framework region (FR) also showed high frequency mutations. CDR3 diversity showed that immunological lineages in yak were overwhelmingly generated through linkage diversity in IgH rearrangements. The emergence of new high-throughput sequencing technologies and the yak whole genome (2019) publication have greatly improved our understanding of the immune response in yaks. We had a more comprehensive analysis of yak immunoglobulin expression diversity by PE300, which avoided the disadvantage of missing low-frequency recombination in traditional Sanger sequencing. In summary, we described the schematic structure of the genomic organization of yak IgH loci and IgL loci. The analysis of immunoglobulin expression diversity showed that yak made up for the deficiency of V(D)J recombinant diversity by junctional diversity and CDR3 diversity. In addition, yak, like cattle, also had the same ultra-long IgH CDR3 (CDR3H), which provided more contribution to the diverse expression of yak immunoglobulin. These findings might provide a theoretical basis for disease resistance breeding and vaccine development in yak.
Collapse
Affiliation(s)
- Mingli Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wanxia Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- *Correspondence: Xiuzhu Sun,
| |
Collapse
|
5
|
Dias JNR, Almeida A, André AS, Aguiar SI, Bule P, Nogueira S, Oliveira SS, Carrapiço B, Gil S, Tavares L, Aires-da-Silva F. Characterization of the canine CD20 as a therapeutic target for comparative passive immunotherapy. Sci Rep 2022; 12:2678. [PMID: 35177658 PMCID: PMC8854400 DOI: 10.1038/s41598-022-06549-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Anti-CD20 therapies have revolutionized the treatment of B-cell malignancies. Despite these advances, relapsed and refractory disease remains a major treatment challenge. The optimization of CD20-targeted immunotherapies is considered a promising strategy to improve current therapies. However, research has been limited by the scarcity of preclinical models that recapitulate the complex interaction between the immune system and cancers. The addition of the canine lymphoma (cNHL) model in the development of anti-CD20 therapies may provide a clinically relevant approach for the translation of improved immunotherapies. Still, an anti-CD20 therapy for cNHL has not been established stressing the need of a comprehensive target characterization. Herein, we performed an in-depth characterization on canine CD20 mRNA transcript and protein expression in a cNHL biobank and demonstrated a canine CD20 overexpression in B-cell lymphoma samples. Moreover, CD20 gene sequencing analysis identified six amino acid differences in patient samples (C77Y, L147F, I159M, L198V, A201T and G273E). Finally, we reported the use of a novel strategy for the generation of anti-CD20 mAbs, with human and canine cross-reactivity, by exploring our rabbit derived single-domain antibody platform. Overall, these results support the rationale of using CD20 as a target for veterinary settings and the development of novel therapeutics and immunodiagnostics.
Collapse
Affiliation(s)
- Joana N R Dias
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - André Almeida
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Ana S André
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Sandra I Aguiar
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Sara Nogueira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Soraia S Oliveira
- Technophage SA, Avenida Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisbon, Portugal
| | - Belmira Carrapiço
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Solange Gil
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Luís Tavares
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Frederico Aires-da-Silva
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal.
| |
Collapse
|
6
|
van Haaren MM, McCoy LE, Torres JL, Lee W, Cottrell CA, Copps JL, van der Woude P, Yasmeen A, de Taeye SW, Torrents de la Peña A, Moore JP, Burton DR, Klasse PJ, Ward AB, Sanders RW, van Gils MJ. Antibodies from Rabbits Immunized with HIV-1 Clade B SOSIP Trimers Can Neutralize Multiple Clade B Viruses by Destabilizing the Envelope Glycoprotein. J Virol 2021; 95:e0009421. [PMID: 34076487 PMCID: PMC8354326 DOI: 10.1128/jvi.00094-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
The high viral diversity of HIV-1 is a formidable hurdle for the development of an HIV-1 vaccine. Elicitation of broadly neutralizing antibodies (bNAbs) would offer a solution, but so far immunization strategies have failed to efficiently elicit bNAbs. To overcome these obstacles, it is important to understand the immune responses elicited by current HIV-1 envelope glycoprotein (Env) immunogens. To gain more insight, we characterized monoclonal antibodies (MAbs) isolated from rabbits immunized with Env SOSIP trimers based on the clade B isolate AMC008. Four rabbits that were immunized three times with AMC008 trimer developed robust autologous and sporadic low-titer heterologous neutralizing responses. Seventeen AMC008 trimer-reactive MAbs were isolated using antigen-specific single B-cell sorting. Four of these MAbs neutralized the autologous AMC008 virus and several other clade B viruses. When visualized by electron microscopy, the complex of the neutralizing MAbs with the AMC008 trimer showed binding to the gp41 subunit with unusual approach angles, and we observed that their neutralization ability depended on their capacity to induce Env trimer dissociation. Thus, AMC008 SOSIP trimer immunization induced clade B-neutralizing MAbs with unusual approach angles with neutralizing effects that involve trimer destabilization. Optimizing these responses might provide an avenue to the induction of trimer-dissociating bNAbs. IMPORTANCE Roughly 32 million people have died as a consequence of HIV-1 infection since the start of the epidemic, and 1.7 million people still get infected with HIV-1 annually. Therefore, a vaccine to prevent HIV-1 infection is urgently needed. Current HIV-1 immunogens are not able to elicit the broad immune responses needed to provide protection against the large variation of HIV-1 strains circulating globally. A better understanding of the humoral immune responses elicited by immunization with state-of-the-art HIV-1 immunogens should facilitate the design of improved HIV-1 vaccine candidates. We identified antibodies with the ability to neutralize multiple HIV-1 viruses by destabilization of the envelope glycoprotein. Their weak but consistent cross-neutralization ability indicates the potential of this epitope to elicit broad responses. The trimer-destabilizing effect of the neutralizing MAbs, combined with detailed characterization of the neutralization epitope, can be used to shape the next generation of HIV-1 immunogens to elicit improved humoral responses after vaccination.
Collapse
Affiliation(s)
- M. M. van Haaren
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - L. E. McCoy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - J. L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - W. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - C. A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - J. L. Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - P. van der Woude
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - S. W. de Taeye
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Torrents de la Peña
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J. P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - D. R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative–Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - P. J. Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - A. B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative–Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - R. W. Sanders
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - M. J. van Gils
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
SSEA-4 Antigen Is Expressed on Rabbit Lymphocyte Subsets. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7070094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SSEA-4 antigen can be mainly found in embryos and embryonic stem cells. However, its expression has been observed also in adult stem and progenitor cells, or even in some differentiated cells. Moreover, we found a considerable number of SSEA-4 positive (SSEA-4+) cells within the rabbit peripheral blood and bone marrow mononuclear cells (PBMCs and BMMCs) in our previous study. Since no information about such cells can be found anywhere in the literature, the aim of this study was to identify their origin. At first, phenotypic analyses of fresh rabbit PBMCs and BMMCs were performed using flow cytometry and specific antibodies against SSEA-4 and leukocyte subsets. Then, SSEA-4+ were enriched using magnetic activated cell sorting (MACS) and analyzed for their phenotype using qPCR. We found significant SSEA-4+ cell population in PBMCs (~50%) and BMMCs (~20%). All those cells co-expressed CD45 and a majority of them also expressed B-cell marker (IgM; 50% of SSEA-4+ PBMCs and 60% of SSEA-4+ BMMCs). Increased (p < 0.05) expression of SSEA-4, CD45 and B-cell markers (IgM, CD79α and MHCII) were also noticed by qPCR in SSEA-4+ cells enriched via MACS (with efficiency over 80%). Both methods did not detect significant expression of monocyte or T-cell markers. In conclusion, SSEA-4+ cells in rabbit blood and bone marrow are of hematopoietic origin and probably belong to B-lineage cells as possessing the phenotype of B lymphocytes. However, the true function of SSEA-4 antigen in these cells should be explored by further studies.
Collapse
|
8
|
Ros F, Offner S, Klostermann S, Thorey I, Niersbach H, Breuer S, Zarnt G, Lorenz S, Puels J, Siewe B, Schueler N, Dragicevic T, Ostler D, Hansen-Wester I, Lifke V, Kaluza B, Kaluza K, van Schooten W, Buelow R, Tissot AC, Platzer J. Rabbits transgenic for human IgG genes recapitulating rabbit B-cell biology to generate human antibodies of high specificity and affinity. MAbs 2020; 12:1846900. [PMID: 33228444 PMCID: PMC7780963 DOI: 10.1080/19420862.2020.1846900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transgenic animals incorporating human antibody genes are extremely attractive for drug development because they obviate subsequent antibody humanization procedures required for therapeutic translation. Transgenic platforms have previously been established using mice, but also more recently rats, chickens, and cows and are now in abundant use for drug development. However, rabbit-based antibody generation, with a strong track record for specificity and affinity, is able to include gene conversion mediated sequence diversification, thereby enhancing binder maturation and improving the variance/selection of output antibodies in a different way than in rodents. Since it additionally frequently permits good binder generation against antigens that are only weakly immunogenic in other organisms, it is a highly interesting species for therapeutic antibody generation. We report here on the generation, utilization, and analysis of the first transgenic rabbit strain for human antibody production. Through the knockout of endogenous IgM genes and the introduction of human immunoglobulin sequences, this rabbit strain has been engineered to generate a highly diverse human IgG antibody repertoire. We further incorporated human CD79a/b and Bcl2 (B-cell lymphoma 2) genes, which enhance B-cell receptor expression and B-cell survival. Following immunization against the angiogenic factor BMP9 (Bone Morphogenetic Proteins 9), we were able to isolate a set of exquisitely affine and specific neutralizing antibodies from these rabbits. Sequence analysis of these binders revealed that both somatic hypermutation and gene conversion are fully operational in this strain, without compromising the very high degree of humanness. This powerful new transgenic strategy will allow further expansion of the use of endogenous immune mechanisms in drug development.
Collapse
Affiliation(s)
- Francesca Ros
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Sonja Offner
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Stefan Klostermann
- Roche Pharmaceutical Research and Early Development, Informatics, Roche Innovation Center Munich , Penzberg, Germany
| | - Irmgard Thorey
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Helmut Niersbach
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich , Penzberg, Germany
| | - Sebastian Breuer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Grit Zarnt
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Stefan Lorenz
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | | | - Basile Siewe
- THE JACKSON LABORATORY JMCRS, Sacramento, CA, USA
| | - Nicole Schueler
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Tajana Dragicevic
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Dominique Ostler
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Imke Hansen-Wester
- Supplier Quality Management, Global External Quality Roche Diagnostics GmbH , Penzberg, Germany
| | - Valeria Lifke
- Personalized Healthcare Solution, Immunoassay Development and System Integration, Roche Diagnostics GmbH , Penzberg, Germany
| | - Brigitte Kaluza
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Klaus Kaluza
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | | | | | - Alain C Tissot
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Josef Platzer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| |
Collapse
|
9
|
Wang C, Huang L, Wang P, Liu Q, Wang J. The Effects of Deoxynivalenol on the Ultrastructure of the Sacculus Rotundus and Vermiform Appendix, as Well as the Intestinal Microbiota of Weaned Rabbits. Toxins (Basel) 2020; 12:toxins12090569. [PMID: 32899719 PMCID: PMC7551620 DOI: 10.3390/toxins12090569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin found in grains that poses a potential threat to human and animal health, and the gastrointestinal tract is the primary target organ. There are few studies focused on the toxicology of DON to rabbits, especially on the relation among DON, microbiota, and the gut-associated lymphoid tissue. A total of 30 weaned rabbits (35 d) were evenly divided into the control group and DON group (1.5 mg/kg bodyweight (BW)) based on their body weight. After a 24-day trial, the ultrastructures of the sacculus rotundus and vermiform appendix were observed using a scanning electron microscope and transmission electron microscopy. The morphology and microflora in the ileum, caecum, and colon were also examined. The results proved that the ultrastructure of the sacculus rotundus and vermiform appendix, as well as the integrity of the intestinal barrier (especially for the ileum), were impaired after DON was administrated to the rabbits. Compared to the control group, the relative abundance and diversity of the microflora decreased in all three intestinal segments in the DON group, particularly in the ileum and caecum. In conclusion, the toxic effect of DON on weaned rabbits may be performed by destroying the structure of the sacculus rotundus and vermiform appendix, as well as affecting the structure and diversity of the intestinal flora.
Collapse
Affiliation(s)
- Chunyang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China; (C.W.); (L.H.); (P.W.); (Q.L.)
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China; (C.W.); (L.H.); (P.W.); (Q.L.)
| | - Pengwei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China; (C.W.); (L.H.); (P.W.); (Q.L.)
| | - Quancheng Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China; (C.W.); (L.H.); (P.W.); (Q.L.)
| | - Jinquan Wang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: ; Tel.: +86-136-0121-7106
| |
Collapse
|
10
|
Paës C, Gidenne T, Bébin K, Duperray J, Gohier C, Guené-Grand E, Rebours G, Bouchez O, Barilly C, Aymard P, Combes S. Early Introduction of Solid Feeds: Ingestion Level Matters More Than Prebiotic Supplementation for Shaping Gut Microbiota. Front Vet Sci 2020; 7:261. [PMID: 32478111 PMCID: PMC7242618 DOI: 10.3389/fvets.2020.00261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Early introduction of a nutritional substrate is a promising biomimetic strategy for controlling the implantation of the microbiota and preserving the health of young animals. In this study, we provided experimental solid substrate in a gel form to stimulate suckling rabbits' intake and to investigate its effects on microbiota implantation and colonization. All the rabbits had access to solid feed outside the nest as of 15 days of age. Except for the control group, rabbits were offered starter feed gels inside the nests from 3 to 18 days of age. These gels were either free of additives (AF_GEL) or contained 4% of fructo-oligosaccharides (FOS_GEL) or 4% of mannan-oligosaccharides and β-glucans mixtures (MOS_GEL). The cecal content of 160 rabbits was sampled at 18, 29, 38, and 57 days of age and analyzed using 16S rRNA gene sequencing. Pups consumed an average of 3.95 ± 1.07 g of starter feed gel with a higher intake when it was supplemented with fructo-oligosaccharides (+1.2 g; P < 0.05). Starter feed gel consumption increased the ensuing intake of pellets (+17 g from 15 to 21 days; P < 0.05). Alpha-diversity indexes were similar between groups and prebiotic supplementation did not induce a clear shift in microbiota pattern. Conversely, when considering rabbits that consumed more starter feed, the highest proportions of bacteria with plant-degrading abilities, such as species from the Lachnospiraceae and Ruminococcaceae families, were observed at 18 days of age. However, fermentative activities were not affected by starter feed intake at 29, 38, and 57 days of age. By providing comprehensive results on the regulation of microbial community structure at the onset of solid feed intake, this research paves the way for further studies on digestive ecosystem maturation.
Collapse
Affiliation(s)
- Charlotte Paës
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France.,CCPA, Janzé, France
| | - Thierry Gidenne
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | | | | | | | | | | | - Céline Barilly
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Patrick Aymard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| |
Collapse
|
11
|
Jackson CM, Mukherjee S, Wilburn AN, Cates C, Lewkowich IP, Deshmukh H, Zacharias WJ, Chougnet CA. Pulmonary Consequences of Prenatal Inflammatory Exposures: Clinical Perspective and Review of Basic Immunological Mechanisms. Front Immunol 2020; 11:1285. [PMID: 32636848 PMCID: PMC7318112 DOI: 10.3389/fimmu.2020.01285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Chorioamnionitis, a potentially serious inflammatory complication of pregnancy, is associated with the development of an inflammatory milieu within the amniotic fluid surrounding the developing fetus. When chorioamnionitis occurs, the fetal lung finds itself in the unique position of being constantly exposed to the consequent inflammatory meditators and/or microbial products found in the amniotic fluid. This exposure results in significant changes to the fetal lung, such as increased leukocyte infiltration, altered cytokine, and surfactant production, and diminished alveolarization. These alterations can have potentially lasting impacts on lung development and function. However, studies to date have only begun to elucidate the association between such inflammatory exposures and lifelong consequences such as lung dysfunction. In this review, we discuss the pathogenesis of and fetal immune response to chorioamnionitis, detail the consequences of chorioamnionitis exposure on the developing fetal lung, highlighting the various animal models that have contributed to our current understanding and discuss the importance of fetal exposures in regard to the development of chronic respiratory disease. Finally, we focus on the clinical, basic, and therapeutic challenges in fetal inflammatory injury to the lung, and propose next steps and future directions to improve our therapeutic understanding of this important perinatal stress.
Collapse
Affiliation(s)
- Courtney M. Jackson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Shibabrata Mukherjee
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
| | - Adrienne N. Wilburn
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Chris Cates
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Ian P. Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neonatology/Pulmonary Biology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - William J. Zacharias
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neonatology/Pulmonary Biology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Claire A. Chougnet
| |
Collapse
|
12
|
Mondot S, Lantz O, Lefranc MP, Boudinot P. The T cell receptor (TRA) locus in the rabbit (Oryctolagus cuniculus): Genomic features and consequences for invariant T cells. Eur J Immunol 2019; 49:2146-2158. [PMID: 31355919 DOI: 10.1002/eji.201948228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/14/2019] [Indexed: 11/07/2022]
Abstract
The rabbit has been widely used in immunology and infectiology. Rabbit immunoglobulins have been extensively studied, leading to the discovery of their idiotypes, allotypic diversity, and of the diversification of the primary repertoire by hyperconversion. Much less is known about rabbit T cell receptors (TR), especially TRA. This isotype is particularly important for innate-like T cells, which typically express invariant TRA (iTRA). The presence of such cells in the rabbit remains an enigma. Rabbit NKT cells seem to be very rare, and lagomorphs lack MAIT cells. TRAV1, the variable gene expressed in the iTRA of these cells across most mammals, and MR1, the MH1-like receptor that present riboflavin derivatives to MAIT cells, are missing in rabbit. An alternative iTRA has been identified, that may be expressed by new innate-like T cells. To facilitate TRA repertoire analyses in rabbit, we report here a full description of TRA and TRD loci and a subgroup definition based on IMGT® classification. Rabbit TRA rearrangements follow the same temporal pattern that is observed in mouse and human. Rare transcripts expressing TRDV/TRDD/TRDJ rearrangements spliced to TRAC were detected. TRA and TRD genes have been made available in IMGT and IMGT/HighV-QUEST, allowing easy analysis of TRA/TRD RepSeq.
Collapse
Affiliation(s)
- Stanislas Mondot
- MICALIS, Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Lantz
- INSERM U932, Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Center of Clinical Investigation in Biotherapy 1428, Gustave-Roussy/Curie, Paris, France.,Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France
| | - Marie-Paule Lefranc
- IMGT®, the International ImMunoGeneTics Information System® (IMGT), Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires (VIM), Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
13
|
Paës C, Fortun-Lamothe L, Bébin K, Duperray J, Gohier C, Guené-Grand E, Rebours G, Aymard P, Bannelier C, Debrusse AM, Gidenne T, Combes S. Onset of feed intake of the suckling rabbit and evidence of dietary preferences according to pellet physical properties. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Skaggs H, Chellman GJ, Collinge M, Enright B, Fuller CL, Krayer J, Sivaraman L, Weinbauer GF. Comparison of immune system development in nonclinical species and humans: Closing information gaps for immunotoxicity testing and human translatability. Reprod Toxicol 2019; 89:178-188. [PMID: 31233776 DOI: 10.1016/j.reprotox.2019.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/13/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
Affiliation(s)
- H Skaggs
- Incyte Corporation, Wilmington, DE, USA.
| | | | - M Collinge
- Pfizer Worldwide Research and Development, Groton, CT, USA
| | | | - C L Fuller
- Merck and Co., Safety Assessment and Laboratory Animal Resources, West Point, PA, USA
| | - J Krayer
- Janssen Research & Development, Nonclinical Safety, Spring House, PA, USA
| | - L Sivaraman
- Bristol-Myers Squibb Company, Research & Development, New Brunswick, New Jersey, USA
| | - G F Weinbauer
- Covance Preclinical Services GmbH, Muenster, Germany
| |
Collapse
|
15
|
Pinheiro A, de Sousa-Pereira P, Almeida T, Ferreira CC, Otis JA, Boudreau MR, Seguin JL, Lanning DK, Esteves PJ. Sequencing of VDJ genes in Lepus americanus confirms a correlation between VHn expression and the leporid species continent of origin. Mol Immunol 2019; 112:182-187. [PMID: 31174011 DOI: 10.1016/j.molimm.2019.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Leporid VH genes used in the generation of their primary antibody repertoire exhibit highly divergent lineages. For the European rabbit (Oryctolagus cuniculus) four VHa lineages have been described, the a1, a2, a3 and a4. Hares (Lepus spp.) and cottontail (Sylvilagus floridanus) express one VHa lineage each, the a2L and the a5, respectively, along with a more ancient lineage, the Lepus spp. sL and S. floridanus sS. Both the European rabbit and the Lepus europaeus use a third lineage, VHn, in a low proportion of their VDJ rearrangements. The VHn genes are a conserved ancestral polymorphism that is being maintained in the leporid genome.Their usage in a low proportion of VDJ rearrangements by both European rabbit and L. europaeus but not S. floridanus has been argued to be a remnant of an ancient European leporid immunologic response to pathogens. To address this hypothesis, in this study we sequenced VDJ rearranged genes for another North American leporid, L. americanus. Our results show that L. americanus expressed these genes less frequently and in a highly modified fashion compared to the European Lepus species. Our results suggest that the American leporid species use a different VH repertoire than the European species which may be related with an immune adaptation to different environmental conditions, such as different pathogenic agents.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | - Patricia de Sousa-Pereira
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal; Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tereza Almeida
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Catarina C Ferreira
- Department of Biology, Trent University, Peterborough, Ontario, Canada; UFZ - Helmholtz Centre for Environmental Research, Department of Conservation Biology, Leipzig, Germany
| | - Josée-Anne Otis
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | | | - Jacob L Seguin
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Dennis K Lanning
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States
| | - Pedro J Esteves
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal; Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, 4585-116, Gandra, Portugal
| |
Collapse
|
16
|
Read T, Fortun-Lamothe L, Pascal G, Le Boulch M, Cauquil L, Gabinaud B, Bannelier C, Balmisse E, Destombes N, Bouchez O, Gidenne T, Combes S. Diversity and Co-occurrence Pattern Analysis of Cecal Microbiota Establishment at the Onset of Solid Feeding in Young Rabbits. Front Microbiol 2019; 10:973. [PMID: 31134019 PMCID: PMC6524096 DOI: 10.3389/fmicb.2019.00973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to evaluate how the feeding strategy of rabbit kits at the onset of solid feed intake could affect ecological diversity and co-occurrence patterns of the cecal bacterial community. From birth to 18 days of age kits were exclusively milk-fed, and between 18 and 35 days the young rabbits also had access to solid feed. After weaning at (35 days), young rabbits were exclusively fed solid feed. Three experimental feeds were used: a high concentrate diet [H: 10.16 MJ digestible energy (DE)/kg and 15.3% crude protein (CP)], a low concentrate diet (L: 9.33 MJ DE/kg and 14.7% CP) and a reproductive female diet (R: 10.57 MJ DE/kg and 17.3% CP). The rabbit kits (n = 357) were divided into three groups, differing by the diet received during two periods: from 18 to 28 and from 28 to 49 days of age. In the groups LL and HH, rabbit kits were fed L or H diets, respectively, during both periods. Kits in the group RL received feeds R and L from 18 to 28 and 28 to 49 days of age, respectively. Cecal bacterial communities of 10 rabbits per group were carried out at 18, 28, 35, 43 and 49 days of age by MiSeq Illumina sequencing 16S rRNA encoding genes. Between 18 and 28 days of age, solid feed intake was higher in the group RL compared to the other two groups (+24%; P < 0.01). Overall, 13.4% of the OTUs detected were present in the cecal ecosystem from 18 to 49 days old, whereas 17.4% were acquired with the onset of solid feeding and kept from 28 days on. Exclusive milk consumption constrains the bacterial community toward a similar structure but high phylogenetic beta-diversity. Introduction of solid feed induced a sharp change of microbial community structure and decreased phylogenetic diversity. A strong relationship in bacterial community network occurred only from 43 days on. Our feeding strategy at the onset of solid feed ingestion exhibited only a moderate effect on the microbial community structure (P = 0.072), although the LL group seemed to reach faster maturity compared to the two other groups.
Collapse
Affiliation(s)
- Tehya Read
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France.,Terrena, Ancenis, France
| | | | - Géraldine Pascal
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Malo Le Boulch
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Beatrice Gabinaud
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Carole Bannelier
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | | | | | | | - Thierry Gidenne
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| |
Collapse
|
17
|
Mage RG, Esteves PJ, Rader C. Rabbit models of human diseases for diagnostics and therapeutics development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:99-104. [PMID: 30339876 PMCID: PMC6364550 DOI: 10.1016/j.dci.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 05/03/2023]
Abstract
This review presents some examples of studies using the European rabbit (Oryctolagus cuniculus) that have led to, and continue to, contribute to advancement of understanding of human diseases as well as therapeutics development. In addition, we tabulate FDA-approved rabbit polyclonal and rabbit monoclonal antibodies (mAbs) that are used for diagnostic applications, as well as an overview of some "humanized" or otherwise altered rabbit mAbs that are in initial phase I, II, or advanced to phase III clinical trials. Information about endogenous retriviruses learned from studies of rabbits and other members of the order Lagomorpha are summarized as this knowledge now applies to new therapeutics being developed for several human diseases including Multiple Sclerosis, Type 1 Diabetes and Cancer.
Collapse
Affiliation(s)
- Rose G Mage
- Laboratory of Immune System Biology, NIAID, NIH, Bldg 10 11N311, 10 Center Drive, Bethesda, MD, 20892-1892, USA.
| | - Pedro J Esteves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal; Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| |
Collapse
|
18
|
Pinheiro A, de Sousa-Pereira P, Strive T, Knight KL, Woof JM, Esteves PJ, Abrantes J. Identification of a new European rabbit IgA with a serine-rich hinge region. PLoS One 2018; 13:e0201567. [PMID: 30089177 PMCID: PMC6082545 DOI: 10.1371/journal.pone.0201567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
In mammals, the most striking IgA system belongs to Lagomorpha. Indeed, 14 IgA subclasses have been identified in European rabbits, 11 of which are expressed. In contrast, most other mammals have only one IgA, or in the case of hominoids, two IgA subclasses. Characteristic features of the mammalian IgA subclasses are the length and amino acid sequence of their hinge regions, which are often rich in Pro, Ser and Thr residues and may also carry Cys residues. Here, we describe a new IgA that was expressed in New Zealand White domestic rabbits of IGHVa1 allotype. This IgA has an extended hinge region containing an intriguing stretch of nine consecutive Ser residues and no Pro or Thr residues, a motif exclusive to this new rabbit IgA. Considering the amino acid properties, this hinge motif may present some advantage over the common IgA hinge by affording novel functional capabilities. We also sequenced for the first time the IgA14 CH2 and CH3 domains and showed that IgA14 and IgA3 are expressed.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- * E-mail:
| | - Patricia de Sousa-Pereira
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Jenny M. Woof
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pedro J. Esteves
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, Gandra, Portugal
| | - Joana Abrantes
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| |
Collapse
|
19
|
Kawade R, Akiba H, Entzminger K, Maruyama T, Okumura CJ, Tsumoto K. Roles of the disulfide bond between the variable and the constant domains of rabbit immunoglobulin kappa chains in thermal stability and affinity. Protein Eng Des Sel 2018; 31:243-247. [DOI: 10.1093/protein/gzy008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/13/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Raiji Kawade
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Akiba
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Pharmacokinetic Optimization, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka, Japan
| | - Kevin Entzminger
- Abwiz Bio Inc., 9823 Pacific Heights Blvd Suite J, San Diego, CA, USA
| | - Toshiaki Maruyama
- Abwiz Bio Inc., 9823 Pacific Heights Blvd Suite J, San Diego, CA, USA
| | - C J Okumura
- Abwiz Bio Inc., 9823 Pacific Heights Blvd Suite J, San Diego, CA, USA
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Pharmacokinetic Optimization, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka, Japan
- Medical Proteomics Laboratory, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
20
|
Li L, Rong X, Li G, Wang Y, Chen B, Ren W, Yang G, Xu S. Genomic organization and adaptive evolution of IGHC genes in marine mammals. Mol Immunol 2018; 99:75-81. [PMID: 29723770 PMCID: PMC7112648 DOI: 10.1016/j.molimm.2018.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 01/08/2023]
Abstract
The genomic organization of IGHC genes in marine mammal is similar to that of terrestrial relatives. The number of the immunoglobulin heavy chain constant region genes vary among different mammals. Different levels of selective pressures were detected between marine and terrestrial mammalian lineages.
Immunoglobulins are important elements of the adaptive immune system that bind to an immense variety of microbial antigens to neutralize infectivity and specify effector functions. In the present study, the immunoglobulin heavy chain constant region (IGHC) genes from marine mammals were identified and compared with those of their terrestrial relatives to explore their genomic organization and evolutionary characteristics. The genomic organization of marine mammal IGHC genes was shown to be conservative with other eutherian mammals. Stronger signals of positive selection on IGHC were revealed in terrestrial mammals than that in marine mammals with the branch-site model, displaying different selective pressure, which might suggest their divergent adaptations to contrasted environments.
Collapse
Affiliation(s)
- Lili Li
- Jiangsu Key Lab for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Xinghua Rong
- Jiangsu Key Lab for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Guiting Li
- Jiangsu Key Lab for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Yingying Wang
- Jiangsu Key Lab for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Bingyao Chen
- Jiangsu Key Lab for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Wenhua Ren
- Jiangsu Key Lab for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Guang Yang
- Jiangsu Key Lab for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Shixia Xu
- Jiangsu Key Lab for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
21
|
Esteves PJ, Abrantes J, Baldauf HM, BenMohamed L, Chen Y, Christensen N, González-Gallego J, Giacani L, Hu J, Kaplan G, Keppler OT, Knight KL, Kong XP, Lanning DK, Le Pendu J, de Matos AL, Liu J, Liu S, Lopes AM, Lu S, Lukehart S, Manabe YC, Neves F, McFadden G, Pan R, Peng X, de Sousa-Pereira P, Pinheiro A, Rahman M, Ruvoën-Clouet N, Subbian S, Tuñón MJ, van der Loo W, Vaine M, Via LE, Wang S, Mage R. The wide utility of rabbits as models of human diseases. Exp Mol Med 2018; 50:1-10. [PMID: 29789565 PMCID: PMC5964082 DOI: 10.1038/s12276-018-0094-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Studies using the European rabbit Oryctolagus cuniculus contributed to elucidating numerous fundamental aspects of antibody structure and diversification mechanisms and continue to be valuable for the development and testing of therapeutic humanized polyclonal and monoclonal antibodies. Additionally, during the last two decades, the use of the European rabbit as an animal model has been increasingly extended to many human diseases. This review documents the continuing wide utility of the rabbit as a reliable disease model for development of therapeutics and vaccines and studies of the cellular and molecular mechanisms underlying many human diseases. Examples include syphilis, tuberculosis, HIV-AIDS, acute hepatic failure and diseases caused by noroviruses, ocular herpes, and papillomaviruses. The use of rabbits for vaccine development studies, which began with Louis Pasteur’s rabies vaccine in 1881, continues today with targets that include the potentially blinding HSV-1 virus infection and HIV-AIDS. Additionally, two highly fatal viral diseases, rabbit hemorrhagic disease and myxomatosis, affect the European rabbit and provide unique models to understand co-evolution between a vertebrate host and viral pathogens. Rabbits offer a powerful complement to rodents as a model for studying human immunology, disease pathology, and responses to infectious disease. A review from Pedro Esteves at the University of Porto, Portugal, Rose Mage of the National Institute of Allergy and Infectious Disease, Bethesda, USA and colleagues highlights some of the areas of research where rabbits offer an edge over rats and mice. Rabbits have a particularly sophisticated adaptive immune system, which could provide useful insights into human biology and produce valuable research and clinical reagents. They are also excellent models for studying - infectious diseases such as syphilis and tuberculosis, which produce pathology that closely resembles that of human patients. Rabbit-specific infections such as myxomatosis are giving researchers insights into how pathogens and hosts can shape each other’s evolution.
Collapse
Affiliation(s)
- Pedro J Esteves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal. .,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal.
| | - Joana Abrantes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA.,Institute for Immunology, University of California, Irvine School of Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Yuxing Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Neil Christensen
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, 24071, León, Spain
| | - Lorenzo Giacani
- Departments of Medicine and Global Health, University of Washington, Seattle, USA
| | - Jiafen Hu
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Gilla Kaplan
- Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Katherine L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016, USA
| | - Dennis K Lanning
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Jacques Le Pendu
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
| | - Ana Lemos de Matos
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, 72205, USA
| | - Shuying Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ana M Lopes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sheila Lukehart
- Departments of Medicine and Global Health, University of Washington, Seattle, USA
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabiana Neves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Grant McFadden
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016, USA
| | - Xuwen Peng
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Patricia de Sousa-Pereira
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Ana Pinheiro
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Masmudur Rahman
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | | | - Selvakumar Subbian
- The Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Rutgers University, Newark, NJ, USA
| | - Maria Jesús Tuñón
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, 24071, León, Spain
| | - Wessel van der Loo
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Michael Vaine
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Laura E Via
- Tubercolosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Institute of Infectious Disease and Molecular Medicine, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Rose Mage
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Girard-Madoux MJ, Gomez de Agüero M, Ganal-Vonarburg SC, Mooser C, Belz GT, Macpherson AJ, Vivier E. The immunological functions of the Appendix: An example of redundancy? Semin Immunol 2018; 36:31-44. [DOI: 10.1016/j.smim.2018.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
|
23
|
Verma V, Kaur C, Grover P, Gupta A, Chaudhary VK. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection. PLoS One 2018; 13:e0191315. [PMID: 29360877 PMCID: PMC5779676 DOI: 10.1371/journal.pone.0191315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface.
Collapse
Affiliation(s)
- Vaishali Verma
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Charanpreet Kaur
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Payal Grover
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Amita Gupta
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail: (VKC); (AG)
| | - Vijay K. Chaudhary
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail: (VKC); (AG)
| |
Collapse
|
24
|
Decoding Selection Bias Imparted by Unpaired Cysteines: a Tug of War Between Expression and Affinity. Appl Biochem Biotechnol 2018; 185:778-785. [PMID: 29330770 DOI: 10.1007/s12010-017-2691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/29/2017] [Indexed: 11/27/2022]
Abstract
In a recombinant antibody scFv format, the presence of an unpaired cysteine (Cys) is implicated in reduced soluble expression and inefficient presentation in phage display. Compared to other species, antibodies derived from rabbits are more likely to contain this unpaired Cys residue at position 80 (Cys80), when generated in a scFv format. In a screening campaign to isolate rabbit scFv against cardiac troponin I (cTnI), it was found that, a large proportion of isolated cTnI-specific clones contained unpaired Cys80. To analyze the factors that led to the selection of anti-cTnI Cys80 scFv, after five rounds of biopanning, the biopanning experiments were repeated with a Cys80 scFv (MG4Cys), its alanine variant (MG4Ala), and an irrelevant high expressing scFv control. It was found that the selection and subsequent enrichment of MG4Cys scFv was ousted by the superior expressing variant MG4Ala, indicating that the Cys80 scFv was selected primarily due to its affinity. It is evident that phage-based selection is influenced by specific sequence characteristics affecting the expression as well as the binding specificity and this needs to be taken into account for selection of optimal antibody derivatives.
Collapse
|
25
|
Almagro JC, Daniels-Wells TR, Perez-Tapia SM, Penichet ML. Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy. Front Immunol 2018; 8:1751. [PMID: 29379493 PMCID: PMC5770808 DOI: 10.3389/fimmu.2017.01751] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/24/2017] [Indexed: 11/14/2022] Open
Abstract
The remarkable progress in engineering and clinical development of therapeutic antibodies in the last 40 years, after the seminal work by Köhler and Milstein, has led to the approval by the United States Food and Drug Administration (FDA) of 21 antibodies for cancer immunotherapy. We review here these approved antibodies, with emphasis on the methods used for their discovery, engineering, and optimization for therapeutic settings. These methods include antibody engineering via chimerization and humanization of non-human antibodies, as well as selection and further optimization of fully human antibodies isolated from human antibody phage-displayed libraries and immunization of transgenic mice capable of generating human antibodies. These technology platforms have progressively led to the development of therapeutic antibodies with higher human content and, thus, less immunogenicity. We also discuss the genetic engineering approaches that have allowed isotype switching and Fc modifications to modulate effector functions and bioavailability (half-life), which together with the technologies for engineering the Fv fragment, have been pivotal in generating more efficacious and better tolerated therapeutic antibodies to treat cancer.
Collapse
Affiliation(s)
| | - Tracy R Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, United States.,The Molecular Biology Institute, University of California, Los Angeles, CA, United States.,UCLA AIDS Institute, Los Angeles, CA, United States
| |
Collapse
|
26
|
Schumann B, Hahm HS, Parameswarappa SG, Reppe K, Wahlbrink A, Govindan S, Kaplonek P, Pirofski LA, Witzenrath M, Anish C, Pereira CL, Seeberger PH. A semisynthetic Streptococcus pneumoniae serotype 8 glycoconjugate vaccine. Sci Transl Med 2017; 9:9/380/eaaf5347. [PMID: 28275152 DOI: 10.1126/scitranslmed.aaf5347] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/19/2016] [Accepted: 02/06/2017] [Indexed: 01/09/2023]
Abstract
Glycoconjugate vaccines based on capsular polysaccharides (CPSs) of pathogenic bacteria such as Streptococcus pneumoniae successfully protect from disease but suffer from incomplete coverage, are troublesome to manufacture from isolated CPSs, and lack efficacy against certain serotypes. Defined, synthetic oligosaccharides are an attractive alternative to isolated CPSs but require the identification of immunogenic and protective oligosaccharide antigens. We describe a medicinal chemistry strategy based on a combination of automated glycan assembly (AGA), glycan microarray-based monoclonal antibody (mAb) reverse engineering, and immunological evaluation in vivo to uncover a protective glycan epitope (glycotope) for S. pneumoniae serotype 8 (ST8). All four tetrasaccharide frameshifts of ST8 CPS were prepared by AGA and used in glycan microarray experiments to identify the glycotopes recognized by antibodies against ST8. One tetrasaccharide frameshift that was preferentially recognized by a protective, CPS-directed mAb was conjugated to the carrier protein CRM197. Immunization of mice with this semisynthetic glycoconjugate followed by generation and characterization of a protective mAb identified protective and nonprotective glycotopes. Immunization of rabbits with semisynthetic ST8 glycoconjugates containing protective glycotopes induced an antibacterial immune response. Coformulation of ST8 glycoconjugates with the marketed 13-valent glycoconjugate vaccine Prevnar 13 yielded a potent 14-valent S. pneumoniae vaccine. Our strategy presents a facile approach to develop efficient semisynthetic glycoconjugate vaccines.
Collapse
Affiliation(s)
- Benjamin Schumann
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.,Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Heung Sik Hahm
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.,Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | | | - Katrin Reppe
- Division of Pulmonary Inflammation, Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Annette Wahlbrink
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Subramanian Govindan
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Paulina Kaplonek
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.,Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center and Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Martin Witzenrath
- Division of Pulmonary Inflammation, Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Chakkumkal Anish
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Claney L Pereira
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | - Peter H Seeberger
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany. .,Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
27
|
Zhuang X, Watts NR, Palmer IW, Kaufman JD, Dearborn AD, Trenbeath JL, Eren E, Steven AC, Rader C, Wingfield PT. Chimeric rabbit/human Fab antibodies against the hepatitis Be-antigen and their potential applications in assays, characterization, and therapy. J Biol Chem 2017; 292:16760-16772. [PMID: 28842495 DOI: 10.1074/jbc.m117.802272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection afflicts millions worldwide, causing cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a soluble variant of the viral capsid protein. HBeAg is not required for viral replication but is implicated in establishing immune tolerance and chronic infection. The structure of recombinant e-antigen (rHBeAg) was recently determined, yet to date, the exact nature and quantitation of HBeAg still remain uncertain. Here, to further characterize HBeAg, we used phage display to produce a panel of chimeric rabbit/human monoclonal antibody fragments (both Fab and scFv) against rHBeAg. Several of the Fab/scFv, expressed in Escherichia coli, had unprecedentedly high binding affinities (Kd ∼10-12 m) and high specificity. We used Fab/scFv in the context of an enzyme-linked immunosorbent assay (ELISA) for HBeAg quantification, which we compared with commercially available kits and verified with seroconversion panels, the WHO HBeAg standard, rHBeAg, and patient plasma samples. We found that the specificity and sensitivity are superior to those of existing commercial assays. To identify potential fine differences between rHBeAg and HBeAg, we used these Fabs in microscale immunoaffinity chromatography to purify HBeAg from individual patient plasmas. Western blotting and MS results indicated that rHBeAg and HBeAg are essentially structurally identical, although HBeAg from different patients exhibits minor carboxyl-terminal heterogeneity. We discuss several potential applications for the humanized Fab/scFv.
Collapse
Affiliation(s)
| | | | | | | | | | - Joni L Trenbeath
- Department of Transfusion Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Elif Eren
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Christoph Rader
- the Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | | |
Collapse
|
28
|
Peng H, Nerreter T, Chang J, Qi J, Li X, Karunadharma P, Martinez GJ, Fallahi M, Soden J, Freeth J, Beerli RR, Grawunder U, Hudecek M, Rader C. Mining Naïve Rabbit Antibody Repertoires by Phage Display for Monoclonal Antibodies of Therapeutic Utility. J Mol Biol 2017; 429:2954-2973. [PMID: 28818634 DOI: 10.1016/j.jmb.2017.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 01/25/2023]
Abstract
Owing to their high affinities and specificities, rabbit monoclonal antibodies (mAbs) have demonstrated value and potential primarily as basic research and diagnostic reagents, but, in some cases, also as therapeutics. To accelerate access to rabbit mAbs bypassing immunization, we generated a large naïve rabbit antibody repertoire represented by a phage display library encompassing >10 billion independent antibodies in chimeric rabbit/human Fab format and validated it by next-generation sequencing. Panels of rabbit mAbs selected from this library against two emerging cancer targets, ROR1 and ROR2, revealed high diversity, affinity, and specificity. Moreover, ROR1- and ROR2-targeting rabbit mAbs demonstrated therapeutic utility as components of chimeric antigen receptor-engineered T cells, further corroborating the value of the naïve rabbit antibody library as a rich and virtually unlimited source of rabbit mAbs.
Collapse
Affiliation(s)
- Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Jing Chang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiuling Li
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | - Mohammad Fallahi
- Informatics Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jo Soden
- Retrogenix Ltd, Whaley Bridge, High Peak, SK23 7LY, United Kingdom
| | - Jim Freeth
- Retrogenix Ltd, Whaley Bridge, High Peak, SK23 7LY, United Kingdom
| | | | | | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
29
|
Intestinal macrophages in Peyer's patches, sacculus rotundus and appendix of Angora rabbit. Cell Tissue Res 2017; 370:285-295. [PMID: 28766043 DOI: 10.1007/s00441-017-2659-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 05/30/2017] [Indexed: 12/14/2022]
Abstract
The largest pool of macrophages in the body is harboured by the intestinal mucosa. As the principal phagocytic component of the immune system, macrophages are essential for maintaining mucosal homeostasis as they prevent commensal bacteria from adhering to mucosal epithelial cells. This study provides a RAM11 immunohistochemical and electron microscopic investigation of the existence, localization and distribution of intestinal macrophages in organized gut-associated lymphoid tissue (GALT), including Peyer's patches (PPs), the sacculus rotundus (SR) and the appendix, in the Angora rabbit. Although rabbit intestinal macrophages did not express the tissue macrophage marker macrosialin (CD68), they expressed RAM11. RAM11-positive intestinal macrophages were mostly localized to the subepithelial dome region, interfollicular area and germinal centres (GCs) of the GALT and the lamina propria or submucosa of the ileum and jejunum devoid of PPs and were also observed in the follicle-associated epithelium of PPs, but not in that of the SR and appendix. RAM11-positive macrophages containing engulfed apoptotic bodies were present in the GCs of the lymphoid follicles in the GALT. Electron microscopy further revealed multiple macrophages containing apoptotic bodies within the GCs of the follicles in the GALT. Some macrophage aggregations were observed in the GC and between the GC and the corona region of the follicles in the SR and appendix. Rabbit intestinal macrophages thus undertake both potent phagocytic activity and the efficient scavenging of apoptotic cells. Immunohistochemical data suggest that RAM11 can be reliably used for the determination of intestinal macrophages in the GALT of rabbits.
Collapse
|
30
|
Zhang Z, Liu H, Guan Q, Wang L, Yuan H. Advances in the Isolation of Specific Monoclonal Rabbit Antibodies. Front Immunol 2017; 8:494. [PMID: 28529510 PMCID: PMC5418221 DOI: 10.3389/fimmu.2017.00494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/10/2017] [Indexed: 01/04/2023] Open
Abstract
The rabbit monoclonal antibodies (mAbs) have advantages in pharmaceuticals and diagnostics with high affinity and specificity. During the past decade, many techniques have been developed for isolating rabbit mAbs, including single B cell antibody technologies. This review describes the basic characterization of rabbit antibody repertoire and summarizes methods of hybridoma technologies, phage display platform, and single B cell antibody technologies. With advances in antibody function and repertoire analysis, rabbit mAbs will be widely used in therapeutic applications in the coming years.
Collapse
Affiliation(s)
- Zaibao Zhang
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,College of Life Science, Xinyang Normal University, Xinyang, China
| | - Huijuan Liu
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,College of Life Science, Xinyang Normal University, Xinyang, China
| | - Qian Guan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,College of Life Science, Xinyang Normal University, Xinyang, China
| | - Hongyu Yuan
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,College of Life Science, Xinyang Normal University, Xinyang, China
| |
Collapse
|
31
|
Weber J, Peng H, Rader C. From rabbit antibody repertoires to rabbit monoclonal antibodies. Exp Mol Med 2017; 49:e305. [PMID: 28336958 PMCID: PMC5382564 DOI: 10.1038/emm.2017.23] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
In this review, we explain why and how rabbit monoclonal antibodies have become outstanding reagents for laboratory research and increasingly for diagnostic and therapeutic applications. Starting with the unique ontogeny of rabbit B cells that affords highly distinctive antibody repertoires rich in in vivo pruned binders of high diversity, affinity and specificity, we describe the generation of rabbit monoclonal antibodies by hybridoma technology, phage display and alternative methods, along with an account of successful humanization strategies.
Collapse
Affiliation(s)
- Justus Weber
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
32
|
Impact of feed restriction and housing hygiene conditions on specific and inflammatory immune response, the cecal bacterial community and the survival of young rabbits. Animal 2017; 11:854-863. [DOI: 10.1017/s1751731116002007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Collins AM. IgG subclass co-expression brings harmony to the quartet model of murine IgG function. Immunol Cell Biol 2016; 94:949-954. [PMID: 27502143 DOI: 10.1038/icb.2016.65] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
Abstract
A model of murine IgG function is presented in which the co-expression of the IgG subclasses is a central feature, class switching occurs before the commencement of somatic hypermutation, and there is little switching between subclasses. It is named the quartet model to emphasize the harmony that comes from the simultaneous presence of the four subclasses. In this model, IgG3 and IgG2b antibodies are particularly important early in the response, when T-cell help may be limiting. IgG3 initiates inflammation through complement fixation, whereas IgG2b provides early FcγR-mediated effector functions. As T-cell help strengthens, IgG2a antibodies increase the power of the response, whereas IgG1 production helps limit the inflammatory drive and limits immunopathology. The model highlights the fact that murine IgG subclasses function quite differently to human IgG subclasses. This allows them to serve the special immunological needs of a species that is vulnerable because of its small size.
Collapse
Affiliation(s)
- Andrew M Collins
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
34
|
Celia C, Cullere M, Gerencsér Z, Matics Z, Giaccone V, Kovács M, Bónai A, Szendrő Z, Dalle Zotte A. Dietary supplementation of Digestarom® herbal formulation: effect on apparent digestibility, faecal and caecal microbial counts and live performance of growing rabbits. WORLD RABBIT SCIENCE 2016. [DOI: 10.4995/wrs.2016.4069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<p>The experiment aimed to study the effect of Digestarom® dietary inclusion (herbal formulation containing a mixture of essential oils, herbs, spices and extracts) on apparent digestibility and digestive ecosystem of growing rabbits, as well as the effects of its supplementation before and after weaning on growth performance. At kindling, rabbit does and litters were divided into 2 dietary groups (51 does/group) and fed either a control diet (C) or a diet supplemented with 300 mg Digestarom®/kg diet (D) until weaning, which occurred at 35 d (before weaning supplementation). Each group was further divided into 3 dietary groups: CC received the control diet and DD received the D diet from 5 to 12 wk of age, and DC were fed with D (from 5 to 8 wk of age) and C diets (from 8 to 12 wk of age) (after weaning supplementation; 54 kits/group). An in vivo digestibility trial and a faecal microbial count were carried out on growing rabbits that received only the C or D diets during the trial. The C group showed higher DM intake than D group (215 vs. 196 g/d; P<0.05). The faecal digestibility of ether extract (75.9 vs. 59.8%; P<0.001), cellulose (25.9 vs. 20.6%; P<0.05) and gross energy (51.8 vs. 49.1%; P<0.05) was higher for C than for D group, whereas that of starch (98.9 vs. 98.8%; P<0.001) and the digestible protein to digestible energy ratio (13.9 vs. 13.2 g digestible protein/MJ digestible energy; P<0.01) was the highest for rabbits fed D diet. Stomach and caecal pH, caecal and faecal microbial counts were independent of the dietary treatment. The only exception was the stomach pH in 8 wk-old rabbits, which had the lowest value in C rabbits (P<0.05). The D supplementation before weaning improved feed conversion ratio throughout the growing phase (4.3 vs. 4.4 for D and C, respectively; P<0.05), whereas significant differences in daily weight gain, feed conversion ratio and mortality were observed only in the first period after weaning. Based on the results obtained, dietary supplementation with Digestarom® does not seem to confirm the positive results previously reported for growing rabbits.</p>
Collapse
|
35
|
AGIA Tag System Based on a High Affinity Rabbit Monoclonal Antibody against Human Dopamine Receptor D1 for Protein Analysis. PLoS One 2016; 11:e0156716. [PMID: 27271343 PMCID: PMC4894603 DOI: 10.1371/journal.pone.0156716] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/18/2016] [Indexed: 01/11/2023] Open
Abstract
Polypeptide tag technology is widely used for protein detection and affinity purification. It consists of two fundamental elements: a peptide sequence and a binder which specifically binds to the peptide tag. In many tag systems, antibodies have been used as binder due to their high affinity and specificity. Recently, we obtained clone Ra48, a high-affinity rabbit monoclonal antibody (mAb) against dopamine receptor D1 (DRD1). Here, we report a novel tag system composed of Ra48 antibody and its epitope sequence. Using a deletion assay, we identified EEAAGIARP in the C-terminal region of DRD1 as the minimal epitope of Ra48 mAb, and we named this sequence the "AGIA" tag, based on its central sequence. The tag sequence does not include the four amino acids, Ser, Thr, Tyr, or Lys, which are susceptible to post-translational modification. We demonstrated performance of this new tag system in biochemical and cell biology applications. SPR analysis demonstrated that the affinity of the Ra48 mAb to the AGIA tag was 4.90 × 10-9 M. AGIA tag showed remarkably high sensitivity and specificity in immunoblotting. A number of AGIA-fused proteins overexpressed in animal and plant cells were detected by anti-AGIA antibody in immunoblotting and immunostaining with low background, and were immunoprecipitated efficiently. Furthermore, a single amino acid substitution of the second Glu to Asp (AGIA/E2D) enabled competitive dissociation of AGIA/E2D-tagged protein by adding wild-type AGIA peptide. It enabled one-step purification of AGIA/E2D-tagged recombinant proteins by peptide competition under physiological conditions. The sensitivity and specificity of the AGIA system makes it suitable for use in multiple methods for protein analysis.
Collapse
|
36
|
Sinkora M, Butler JE. Progress in the use of swine in developmental immunology of B and T lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:1-17. [PMID: 26708608 DOI: 10.1016/j.dci.2015.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
The adaptive immune system of higher vertebrates is believed to have evolved to counter the ability of pathogens to avoid expulsion because their high rate of germline mutations. Vertebrates developed this adaptive immune response through the evolution of lymphocytes capable of somatic generation of a diverse repertoire of their antigenic receptors without the need to increase the frequency of germline mutation. The focus of our research and this article is on the ontogenetic development of the lymphocytes, and the repertoires they generate in swine. Several features are discussed including (a) the "closed" porcine placenta means that de novo fetal development can be studied for 114 days without passive influence from the mother, (b) newborn piglets are precocial permitting them to be reared without their mothers in germ-free isolators, (c) swine are members of the γδ-high group of mammals and thus provides a greater opportunity to characterize the role of γδ T cells and (d) because swine have a simplified variable heavy and light chain genome they offer a convenient system to study antibody repertoire development.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic.
| | - John E Butler
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
37
|
Kennedy DE, Witte PL, Knight KL. Bone marrow fat and the decline of B lymphopoiesis in rabbits. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:30-9. [PMID: 26577994 PMCID: PMC4775299 DOI: 10.1016/j.dci.2015.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/05/2015] [Indexed: 05/03/2023]
Abstract
B lymphopoiesis is necessary to generate a diverse pool of naïve B cells that are able to respond to a broad spectrum of antigens during immune responses to pathogens and to vaccination. Rabbits have been utilized for many years to generate high affinity monoclonal and polyclonal antibodies. Specific antibodies generated in rabbits have greatly advanced scientific discoveries, but the unique qualities of rabbit B cell development have been underappreciated. Unlike in humans and mice, where B lymphopoiesis declines in mid to late life, B lymphopoiesis in rabbits arrests early in life, between 2 and 4 months of age. This review focuses on the early loss of B cell development in rabbits and the contribution of the bone marrow microenvironment to this process. We also propose directions for future research in this area, and discuss how the rabbit can be used as a model to understand the decline of B lymphopoiesis that occurs in humans late in life. Such studies will be important for developing therapeutics targeted to prevent and/or reverse declining B lymphopoiesis in the elderly, as well as boosting immunity and antibody responses after infection or vaccination.
Collapse
Affiliation(s)
- Domenick E Kennedy
- Loyola University Chicago, Department of Microbiology and Immunology, USA
| | - Pamela L Witte
- Loyola University Chicago, Department of Microbiology and Immunology, USA
| | - Katherine L Knight
- Loyola University Chicago, Department of Microbiology and Immunology, USA.
| |
Collapse
|
38
|
Kennedy DE, Witte PL, Knight KL. Withdrawn: Bone marrow fat and the decline of B lymphopoiesis in rabbits. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015:S0145-305X(15)30071-9. [PMID: 26550685 DOI: 10.1016/j.dci.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Domenick E Kennedy
- Loyola University Chicago, Department of Microbiology and Immunology, USA
| | - Pamela L Witte
- Loyola University Chicago, Department of Microbiology and Immunology, USA
| | - Katherine L Knight
- Loyola University Chicago, Department of Microbiology and Immunology, USA.
| |
Collapse
|
39
|
Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 2015; 68:83-107. [PMID: 26399242 DOI: 10.1007/s00251-015-0868-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution.
Collapse
Affiliation(s)
- Ana Pinheiro
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- SaBio-IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Fabiana Neves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joana Abrantes
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Wessel van der Loo
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Rose Mage
- NIAID, NIH, Bethesda, MD, 20892, USA
| | - Pedro José Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
40
|
Ekino S, Sonoda K, Inui S. Origin of IgM+IgG+ lymphocytes in the bursa of Fabricius. Cell Tissue Res 2015; 362:153-62. [DOI: 10.1007/s00441-015-2196-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/08/2015] [Indexed: 11/28/2022]
|
41
|
Nowland MH, Brammer DW, Garcia A, Rush HG. Biology and Diseases of Rabbits. LABORATORY ANIMAL MEDICINE 2015. [PMCID: PMC7150064 DOI: 10.1016/b978-0-12-409527-4.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Beginning in 1931, an inbred rabbit colony was developed at the Phipps Institute for the Study, Treatment and Prevention of Tuberculosis at the University of Pennsylvania. This colony was used to study natural resistance to infection with tuberculosis (Robertson et al., 1966). Other inbred colonies or well-defined breeding colonies were also developed at the University of Illinois College of Medicine Center for Genetics, the Laboratories of the International Health Division of The Rockefeller Foundation, the University of Utrecht in the Netherlands, and Jackson Laboratories. These colonies were moved or closed in the years to follow. Since 1973, the U.S. Department of Agriculture has reported the total number of certain species of animals used by registered research facilities (1997). In 1973, 447,570 rabbits were used in research. There has been an overall decrease in numbers of rabbits used. This decreasing trend started in the mid-1990s. In 2010, 210,172 rabbits were used in research. Despite the overall drop in the number used in research, the rabbit is still a valuable model and tool for many disciplines.
Collapse
|
42
|
Ayyar BV, Hearty S, O’Kennedy R. Facile domain rearrangement abrogates expression recalcitrance in a rabbit scFv. Appl Microbiol Biotechnol 2014; 99:2693-703. [DOI: 10.1007/s00253-014-6268-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
|
43
|
Kelsoe G. Curiouser and curiouser: the role(s) of AID expression in self-tolerance. Eur J Immunol 2014; 44:2876-9. [PMID: 25308427 DOI: 10.1002/eji.201445102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 11/09/2022]
Abstract
Aicda is crucial for antibody diversification by mediating Ig class-switch recombination, V(D)J hypermutation (SHM) and, in some species, gene conversion. Recently, evidence has accumulated to show that Aicda is expressed during B-cell development and that this expression in some unknown way, mediates tolerance in immature and transitional B cells. In this issue of the European Journal of Immunology, Umiker et al. [Eur. J. Immunol. 2014. 44: 3093-3108] show that enforced expression of Aicda during early B-cell development is associated with self-tolerance. Curiously, constitutive Aicda expression that begins early in B cells suppresses the generation of autoreactive IgM but promotes the expression of self-reactive IgG. In contrast, when Aicda is activated later in B-cell development, self-reactive IgM is abundant but IgG is not. These observations suggest pathways for self-tolerance that have been little explored.
Collapse
Affiliation(s)
- Garnett Kelsoe
- Department of Immunology and Human Vaccine Institute, Duke University, Durham, NC, USA
| |
Collapse
|
44
|
Clargo AM, Hudson AR, Ndlovu W, Wootton RJ, Cremin LA, O'Dowd VL, Nowosad CR, Starkie DO, Shaw SP, Compson JE, White DP, MacKenzie B, Snowden JR, Newnham LE, Wright M, Stephens PE, Griffiths MR, Lawson ADG, Lightwood DJ. The rapid generation of recombinant functional monoclonal antibodies from individual, antigen-specific bone marrow-derived plasma cells isolated using a novel fluorescence-based method. MAbs 2014; 6:143-59. [PMID: 24423622 DOI: 10.4161/mabs.27044] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Single B cell technologies, which avoid traditional hybridoma fusion and combinatorial display, provide a means to interrogate the naturally-selected antibody repertoire of immunized animals. Many methods enable the sampling of memory B cell subsets, but few allow for the direct interrogation of the plasma cell repertoire, i.e., the subset of B cells responsible for producing immunoglobulin in serum. Here, we describe the use of a robust and simple fluorescence-based technique, called the fluorescent foci method, for the identification and isolation of antigen-specific IgG-secreting cells, such as plasma cells, from heterogeneous bone marrow preparations. Following micromanipulation of single cells, cognate pairs of heavy and light chain variable region genes were recovered by reverse transcription (RT)-polymerase chain reaction (PCR). During the PCR, variable regions were combined with a promoter fragment and a relevant constant region fragment to produce two separate transcriptionally-active PCR (TAP) fragments that were directly co-transfected into a HEK-293F cell line for recombinant antibody expression. The technique was successfully applied to the generation of a diverse panel of high-affinity, functional recombinant antibodies to human tumor necrosis factor (TNF) receptor 2 and TNF derived from the bone marrow of immunized rabbits and rats, respectively. Progression from a bone marrow sample to a panel of functional recombinant antibodies was possible within a 2-week timeframe.
Collapse
|
45
|
Sequencing of Sylvilagus VDJ genes reveals a new VHa allelic lineage and shows that ancient VH lineages were retained differently in leporids. Immunogenetics 2014; 66:719-26. [PMID: 25267061 DOI: 10.1007/s00251-014-0807-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
Antigen recognition by immunoglobulins depends upon initial rearrangements of heavy chain V, D, and J genes. In leporids, a unique system exists for the VH genes usage that exhibit highly divergent lineages: the VHa allotypes, the Lepus sL lineage and the VHn genes. For the European rabbit (Oryctolagus cuniculus), four VHa lineages have been described, the a1, a2, a3 and a4. For hares (Lepus sp.), one VHa lineage was described, the a2L, as well as a more ancient sL lineage. Both genera use the VHn genes in a low frequency of their VDJ rearrangements. To address the hypothesis that the VH specificities could be associated with different environments, we sequenced VDJ genes from a third leporid genus, Sylvilagus. We found a fifth and equally divergent VHa lineage, the a5, and an ancient lineage, the sS, related to the hares' sL, but failed to obtain VHn genes. These results show that the studied leporids employ different VH lineages in the generation of the antibody repertoire, suggesting that the leporid VH genes are subject to strong selective pressure likely imposed by specific pathogens.
Collapse
|
46
|
Lavinder JJ, Hoi KH, Reddy ST, Wine Y, Georgiou G. Systematic characterization and comparative analysis of the rabbit immunoglobulin repertoire. PLoS One 2014; 9:e101322. [PMID: 24978027 PMCID: PMC4076286 DOI: 10.1371/journal.pone.0101322] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
Rabbits have been used extensively as a model system for the elucidation of the mechanism of immunoglobulin diversification and for the production of antibodies. We employed Next Generation Sequencing to analyze Ig germline V and J gene usage, CDR3 length and amino acid composition, and gene conversion frequencies within the functional (transcribed) IgG repertoire of the New Zealand white rabbit (Oryctolagus cuniculus). Several previously unannotated rabbit heavy chain variable (VH) and light chain variable (VL) germline elements were deduced bioinformatically using multidimensional scaling and k-means clustering methods. We estimated the gene conversion frequency in the rabbit at 23% of IgG sequences with a mean gene conversion tract length of 59±36 bp. Sequencing and gene conversion analysis of the chicken, human, and mouse repertoires revealed that gene conversion occurs much more extensively in the chicken (frequency 70%, tract length 79±57 bp), was observed to a small, yet statistically significant extent in humans, but was virtually absent in mice.
Collapse
Affiliation(s)
- Jason J. Lavinder
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Kam Hon Hoi
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Sai T. Reddy
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Yariv Wine
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
47
|
Kodangattil S, Huard C, Ross C, Li J, Gao H, Mascioni A, Hodawadekar S, Naik S, Min-debartolo J, Visintin A, Almagro JC. The functional repertoire of rabbit antibodies and antibody discovery via next-generation sequencing. MAbs 2014; 6:628-36. [PMID: 24481222 DOI: 10.4161/mabs.28059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To gain insight into the functional antibody repertoire of rabbits, the VH and VL repertoires of bone marrow (BM) and spleen (SP) of a naïve New Zealand White rabbit (NZW; Oryctolagus cuniculus) and that of lymphocytes collected from a NZW rabbit immunized (IM) with a 16-mer peptide were deep-sequenced. Two closely related genes, IGHV1S40 (VH1a3) and IGHV1S45 (VH4), were found to dominate (~90%) the VH repertoire of BM and SP, whereas, IGHV1S69 (VH1a1) contributed significantly (~40%) to IM. BM and SP antibodies recombined predominantly with IGHJ4. A significant proportion (~30%) of IM sequences recombined with IGHJ2. The VK repertoire was encoded by nine IGKV genes recombined with one IGKJ gene, IGKJ1. No significant bias in the VK repertoire of the BM, SP and IM samples was observed. The complementarity-determining region (CDR)-H3 and -L3 length distributions were similar in the three samples following a Gaussian curve with average length of 12.2 ± 2.4 and 11.1 ± 1.1 amino acids, respectively. The amino acid composition of the predominant CDR-H3 and -L3 loop lengths was similar to that of humans and mice, rich in Tyr, Gly, Ser and, in some specific positions, Asp. The average number of mutations along the IGHV/KV genes was similar in BM, SP and IM; close to 12 and 15 mutations for VH and VL, respectively. A monoclonal antibody specific for the peptide used as immunogen was obtained from the IM rabbit. The CDR-H3 sequence was found in 1,559 of 61,728 (2.5%) sequences, at position 10, in the rank order of the CDR-H3 frequencies. The CDR-L3 was found in 24 of 11,215 (0.2%) sequences, ranking 102. No match was found in the BM and SP samples, indicating positive selection for the hybridoma sequence. Altogether, these findings lay foundations for engineering of rabbit V regions to enhance their potential as therapeutics, i.e., design of strategies for selection of specific rabbit V regions from NGS data mining, humanization and design of libraries for affinity maturation campaigns.
Collapse
Affiliation(s)
| | | | | | - Jian Li
- CTI-Boston; Pfizer Inc.; Boston, MA USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rabbit anti-HIV-1 monoclonal antibodies raised by immunization can mimic the antigen-binding modes of antibodies derived from HIV-1-infected humans. J Virol 2013; 87:10221-31. [PMID: 23864637 PMCID: PMC3754018 DOI: 10.1128/jvi.00843-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The rabbit is a commonly used animal model in studying antibody responses in HIV/AIDS vaccine development. However, no rabbit monoclonal antibodies (MAbs) have been developed previously to study the epitope-specific antibody responses against HIV-1 envelope (Env) glycoproteins, and little is known about how the rabbit immune system can mimic the human immune system in eliciting such antibodies. Here we present structural analyses of two rabbit MAbs, R56 and R20, against the third variable region (V3) of HIV-1 gp120. R56 recognizes the well-studied immunogenic region in the V3 crown, while R20 targets a less-studied region at the C terminus of V3. By comparison of the Fab/epitope complex structures of these two antibodies raised by immunization with that of the corresponding human antibodies derived from patients chronically infected with HIV-1, we found that rabbit antibodies can recognize immunogenic regions of gp120 and mimic the binding modes of human antibodies. This result can provide new insight into the use of the rabbit as an animal model in AIDS vaccine development.
Collapse
|
49
|
Chen Y, Vaine M, Wallace A, Han D, Wan S, Seaman MS, Montefiori D, Wang S, Lu S. A novel rabbit monoclonal antibody platform to dissect the diverse repertoire of antibody epitopes for HIV-1 Env immunogen design. J Virol 2013; 87:10232-43. [PMID: 23864612 PMCID: PMC3754024 DOI: 10.1128/jvi.00837-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/07/2013] [Indexed: 01/13/2023] Open
Abstract
The majority of available monoclonal antibodies (MAbs) in the current HIV vaccine field are generated from HIV-1-infected people. In contrast, preclinical immunogenicity studies have mainly focused on polyclonal antibody responses in experimental animals. Although rabbits have been widely used for antibody studies, there has been no report of using rabbit MAbs to dissect the specificity of antibody responses for AIDS vaccine development. Here we report on the production of a panel of 12 MAbs from a New Zealand White (NZW) rabbit that was immunized with an HIV-1 JR-FL gp120 DNA prime and protein boost vaccination regimen. These rabbit MAbs recognized a diverse repertoire of envelope (Env) epitopes ranging from the highly immunogenic V3 region to several previously underappreciated epitopes in the C1, C4, and C5 regions. Nine MAbs showed cross-reactivity to gp120s of clades other than clade B. Increased somatic mutation and extended CDR3 were observed with Ig genes of several molecularly cloned rabbit MAbs. Phylogenic tree analysis showed that the heavy chains of MAbs recognizing the same region on gp120 tend to segregate into an independent subtree. At least three rabbit MAbs showed neutralizing activities with various degrees of breadth and potency. The establishment of this rabbit MAb platform will significantly enhance our ability to test optimal designs of Env immunogens to gain a better understanding of the structural specificity and evolution process of Env-specific antibody responses elicited by candidate AIDS vaccines.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michael Vaine
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Aaron Wallace
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dong Han
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shengqin Wan
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michael S. Seaman
- Department of Medicine, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
50
|
Pinheiro A, de Mera IGF, Alves PC, Gortázar C, de la Fuente J, Esteves PJ. Sequencing of modern Lepus VDJ genes shows that the usage of VHn genes has been retained in both Oryctolagus and Lepus that diverged 12 million years ago. Immunogenetics 2013; 65:777-84. [PMID: 23974323 DOI: 10.1007/s00251-013-0728-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
Abstract
Among mammals, the European rabbit (Oryctolagus cuniculus) has a unique mechanism of generating the primary antibody repertoire. Despite having over 200 VH genes, the VH1 gene, the most D-proximal VH gene, is used in 80-90 % of VDJ rearrangements, while the remaining 10-20 % is encoded by the VHn genes that map at least 100 Kb upstream of VH1. The maintenance of the VHn genes usage in low frequency in VDJ rearrangements has been suggested to represent a relic of an ancestral immunologic response to pathogens. To address this question, we sequenced VDJ genes for another leporid, genus Lepus, which separated from European rabbit 12 million years ago. Approximately 25 VDJ gene sequences were obtained for each one of three Lepus europaeus individuals. We found that Lepus also uses the VHn genes in 5-10 % of its VDJ rearrangements. Our results show that the VHn genes are a conserved ancestral polymorphism that has been maintained in the leporids genome and is being used for the generation of VDJ rearrangements by both modern Lepus and Oryctolagus.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | | | | | | | | | | |
Collapse
|