1
|
Wu Z, Li M, Wu J, Jin S, Xu Y, Jin J, Wu Y. Characterization of the molecular role that ST3GAL1 plays in porcine susceptibility to E. coli F18 infection. Int J Biol Macromol 2024; 276:133959. [PMID: 39029847 DOI: 10.1016/j.ijbiomac.2024.133959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Escherichia coli F18 (E. coli F18) is the main cause of bacterial diarrhea in piglets. Previous transcriptome reported that ST3GAL1 was associated to E. coli F18 infection. However, its role in mediating the resistance to E. coli F18 remains elusive. Here, we revealed that the downregulation of ST3GAL1 expression contributed to the enhancement of E. coli F18 resistance in IPEC-J2 cells. Bisulfite sequencing identified 26 methylated CpG sites in the ST3GAL1 core promoter. Among these, the ST3GAL1 mRNA levels significantly correlated with methylation levels of the mC-8 site in the specificity protein 1 (SP1) transcription factor (P < 0.01). Interestingly, ST3GAL1 expression may enhances the immune response by activating TLRs signaling, meanwhile decreases the production of the E. coli F18 receptor by inhibiting glycosphingolipid biosynthesis signaling, thereby leading to enhance the resistance to E. coli F18 infection. Besides, low ST3GAL1 expression may increase E. coli resistance by reducing sialylation. Together, these results support the status of ST3GAL1 as a viable target for efforts to modulate E. coli F18 susceptibility, offering a theoretical foundation for the use of this gene as a key biomarker for molecular breeding to improve porcine disease resistance.
Collapse
Affiliation(s)
- Zhengchang Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Meiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiayun Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Shuting Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifan Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Yanqing Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
2
|
Zhao H, Xu Y, Li X, Yin J, Li G, Zhao H, Li S, Li J, Wang L. Protective efficacy of a recombinant enterotoxin antigen in a maternal immunization model and the inhibition of specific maternal antibodies to neonatal oral vaccination. J Reprod Immunol 2023; 157:103946. [PMID: 37031607 DOI: 10.1016/j.jri.2023.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
ETEC (enterotoxigenic Escherichia coli) infection is the leading cause of profuse watery diarrhea in mammals, especially among pre-weaning and post-weaning piglets in swine industry. Maternal immunization is a current rational strategy for providing protection to susceptive piglets and reducing the incidence of ETEC-associated diarrhea. Here we evaluated the protective efficiency of a recombinant antigen (MBP-SLS) fused by major enterotoxin subunits (STa-LTB-STb) via a maternal immunization model, and the impacts of maternal antibodies to neonatal oral vaccination were also investigated in the neonates. The high titers of specific IgG and sIgA in pups shown that the maternal antibodies could be transferred passively. Furthermore, the increases of IL-6 and IL-10 cytokines in breast milk and pup serum indicated that immunization on mother could effectively boost the immune system of neonates. Newborn rats from immunized mothers showed a 70% survival rate after ETEC infection. However, the mucosal immune responses of neonates were inhibited by the high level of maternal specific antibodies. Among the oral-vaccinated neonates, born from mock-immunized rats reached the highest survival after ETEC challenge. Collectively, the fusion MBP-SLS antigen could effectively induce strong immune responses in rats during pregnancy and the pups could receive passive protection through specific antibodies transferred via milk and placenta. However, the specific maternal antibodies exhibited an inhibition effect on the mucosal immune responses in offspring.
Collapse
Affiliation(s)
- Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jiajun Yin
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Haofei Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shuying Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - Jibin Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Zhu C, Yao J, Zhu M, Zhu C, Yuan L, Li Z, Cai D, Chen S, Hu P, Liu HY. A meta-analysis of Lactobacillus-based probiotics for growth performance and intestinal morphology in piglets. Front Vet Sci 2022; 9:1045965. [PMID: 36425121 PMCID: PMC9679148 DOI: 10.3389/fvets.2022.1045965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2023] Open
Abstract
Antibiotics are widely used as growth promoters (AGPs) in livestock production to improve animal performance and health. However, pig producers today face the prohibition of in-feed antimicrobials and have to find safe and effective alternatives. Lactobacillus species are active microorganisms that convey multiple beneficial effects to the host and are one of the most promising AGPs replacements. Here, we aim to comprehensively assess the effects of Lactobacillus spp. supplementation on growth performance and intestinal morphology (villus height [VH], crypt depth [CD], and the V/C ratio) of piglets. Among the 196 identified studies, 20 met the criteria and were included in the meta-analysis. The effects of Lactobacillus-based probiotics supplementation on growth performance and intestinal morphology were analyzed using a random-effects model. And the publication bias was evaluated by funnel plots. Our results revealed that Lactobacillus spp. supplementation significantly improved the growth performance, including average daily feed intake (ADFI), average daily gain (ADG), and the gain-to-feed ratio (G/F) in piglets (P < 0.05). Meanwhile, Lactobacillus spp. remarkably increased VH and the V/C ratio (P < 0.05) in the small intestine, including the duodenum, jejunum, and ileum, which might contribute to an improved digestive capacity of these animals. In conclusion, our findings provide concrete evidence of the growth-promoting effects of Lactobacillus spp. supplementation in piglets and a better understanding of the potential of Lactobacillus-based probiotics as AGPs alternatives in pig production.
Collapse
Affiliation(s)
- Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiacheng Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Long Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Luteolin and Chrysin Could Prevent E. coli Lipopolysaccharide-Ochratoxin A Combination-Caused Inflammation and Oxidative Stress in In Vitro Porcine Intestinal Model. Animals (Basel) 2022; 12:ani12202747. [PMID: 36290134 PMCID: PMC9597822 DOI: 10.3390/ani12202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) and lipopolysaccharide (LPS) intake can cause gastrointestinal disorders. Polyphenolic chrysin (CHR) and luteolin (LUT) display anti-inflammatory and antioxidant properties. Porcine intestinal epithelial (jejunal) IPEC-J2 cells were treated with OTA (1 µM, 5 µM and 20 µM), E. coli LPS (10 µg/mL), CHR (1 µM) and LUT (8.7 µM) alone and in their combinations. Cell viabilities (MTS assay) and extracellular (EC) hydrogen-peroxide (H2O2) production (Amplex red method) were evaluated. Intracellular (IC) reactive oxygen species (ROS) were assessed using a 2′-7′dichlorodihydrofluorescein diacetate (DCFH-DA) procedure. ELISA assay was used to evaluate IL-6 and IL-8 secretion. OTA decreased cell viabilities (p < 0.001) which could not be alleviated by LUT or CHR (p > 0.05); however, EC H2O2 production was successfully suppressed by LUT in IPEC-J2 cells (p < 0.001). OTA with LPS elevated the IC ROS which was counteracted by CHR and LUT (p < 0.001). IL-6 and IL-8 secretion was elevated by LPS + OTA (p < 0.001) which could be inhibited by LUT (p < 0.01 for IL-6; p < 0.001 for IL-8). Based on our results, CHR and LUT exerted beneficial effects on IC ROS levels and on cytokine secretion (LUT) in vitro; thus, they might be used as dietary and feed supplements to avoid OTA- and LPS-related health risks.
Collapse
|
5
|
Effect of Feeding Saccharomyces cerevisiae boulardii CNCM I-1079 to Sows and Piglets on Piglets' Immune Response after Vaccination against Actinobacillus pleuropneumoniae. Animals (Basel) 2022; 12:ani12192513. [PMID: 36230255 PMCID: PMC9558961 DOI: 10.3390/ani12192513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to assess the effect that feeding Saccharomyces cerevisiae boulardii CNCM I-1079 (LSB) to lactating sows and their progeny has on inflammatory response and mucosal immunity after vaccination against Actinobacillus pleuropneumoniae. Sixty-seven Danbred sows were allotted into two treatments when they entered the farrowing room seven days before the expected farrowing date: control (CON: lactation diet) and LSB (CON + 12 × 109 colony forming units (CFU)/d until weaning). At weaning, piglets were equally allotted into two experimental diets according to sow diet: control (CON: 2-phase post-weaning diets) and LSB (CON + 2 × 109 CFU/kg and 1 × 109 CFU/kg in phases 1 and 2, respectively). The piglets were vaccinated at days 26 and 49 post-weaning. Growth performance and number of IgA producing cells and cytokine’s gene expression in lung, lymph node, and intestine samples at day 70 post-weaning were assessed and analyzed in SPSS Statistics 26: performance with a general linear model with sex, room, sow diet, piglet diet, and their interactions as main effects, and immunity with a Kruskal−Wallis test for k unrelated samples. Piglets from LSB-fed sows displayed a higher average daily gain (ADG; p < 0.01) and a heavier body weight (BW; p < 0.05) during lactation, tended (p < 0.1) to be heavier at day 49, and to have a higher ADG between days 26 and 49; had fewer number of IgA producing cells in the lymph node (p < 0.05); and all the cytokines studied were significantly under-regulated (p < 0.05) in the lung. It is concluded that feeding Saccharomyces cerevisiae boulardii CNCM I-1079 to sows improved piglet performance during lactation and showed a clear reduction in the inflammatory status of the lungs after vaccination against A. pleuropneumoniae, suggesting that there was a maternal imprinting effect on mucosal protection and a cross-talk between the gut microbiota and the lung.
Collapse
|
6
|
Liu G, Gu K, Wang F, Jia G, Zhao H, Chen X, Wu C, Zhang R, Tian G, Cai J, Tang J, Wang J. Tryptophan Ameliorates Barrier Integrity and Alleviates the Inflammatory Response to Enterotoxigenic Escherichia coli K88 Through the CaSR/Rac1/PLC-γ1 Signaling Pathway in Porcine Intestinal Epithelial Cells. Front Immunol 2021; 12:748497. [PMID: 34745120 PMCID: PMC8566706 DOI: 10.3389/fimmu.2021.748497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Impaired intestinal barrier integrity plays a crucial role in the development of many diseases such as obesity, inflammatory bowel disease, and type 2 diabetes. Thus, protecting the intestinal barrier from pathological disruption is of great significance. Tryptophan can increase gut barrier integrity, enhance intestinal absorption, and decrease intestinal inflammation. However, the mechanism of tryptophan in decreasing intestinal barrier damage and inflammatory response remains largely unknown. The objective of this study was to test the hypothesis that tryptophan can enhance intestinal epithelial barrier integrity and decrease inflammatory response mediated by the calcium-sensing receptor (CaSR)/Ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase Cγ1 (PLC-γ1) signaling pathway. Methods IPEC-J2 cells were treated with or without enterotoxigenic Escherichia coli (ETEC) K88 in the absence or presence of tryptophan, CaSR inhibitor (NPS-2143), wild-type CaSR overexpression (pcDNA3.1-CaSR-WT), Rac1-siRNA, and PLC-γ1-siRNA. Results The results showed that ETEC K88 decreased the protein concentration of occludin, zonula occludens-1 (ZO-1), claudin-1, CaSR, total Rac1, Rho family member 1 of porcine GTP-binding protein (GTP-rac1), phosphorylated phospholipase Cγ1 (p-PLC-γ1), and inositol triphosphate (IP3); suppressed the transepithelial electrical resistance (TEER); and enhanced the permeability of FITC-dextran compared with the control group. Compared with the control group, 0.7 mM tryptophan increased the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-γ1, ZO-1, claudin-1, occludin, and IP3; elevated the TEER; and decreased the permeability of FITC-dextran and contents of interleukin-8 (IL-8) and TNF-α. However, 0.7 mM tryptophan+ETEC K88 reversed the effects induced by 0.7 mM tryptophan alone. Rac1-siRNA+tryptophan+ETEC K88 or PLC-γ1-siRNA+tryptophan+ETEC K88 reduced the TEER, increased the permeability of FITC-dextran, and improved the contents of IL-8 and TNF-α compared with tryptophan+ETEC K88. NPS2143+tryptophan+ETEC K88 decreased the TEER and the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-γ1, ZO-1, claudin-1, occludin, and IP3; increased the permeability of FITC-dextran; and improved the contents of IL-8 and TNF-α compared with tryptophan+ETEC K88. pcDNA3.1-CaSR-WT+Rac1-siRNA+ETEC K88 and pcDNA3.1-CaSR-WT+PLC-γ1-siRNA+ETEC K88 decreased the TEER and enhanced the permeability in porcine intestine epithelial cells compared with pcDNA3.1-CaSR-WT+ETEC K88. Conclusion Tryptophan can improve intestinal epithelial barrier integrity and decrease inflammatory response through the CaSR/Rac1/PLC-γ1 signaling pathway.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Fang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Ruinan Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jiayong Tang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Porcine pancreatic ductal epithelial cells transformed with KRAS G12D and SV40T are tumorigenic. Sci Rep 2021; 11:13436. [PMID: 34183736 PMCID: PMC8238942 DOI: 10.1038/s41598-021-92852-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
We describe our initial studies in the development of an orthotopic, genetically defined, large animal model of pancreatic cancer. Primary pancreatic epithelial cells were isolated from pancreatic duct of domestic pigs. A transformed cell line was generated from these primary cells with oncogenic KRAS and SV40T. The transformed cell lines outperformed the primary and SV40T immortalized cells in terms of proliferation, population doubling time, soft agar growth, transwell migration and invasion. The transformed cell line grew tumors when injected subcutaneously in nude mice, forming glandular structures and staining for epithelial markers. Future work will include implantation studies of these tumorigenic porcine pancreatic cell lines into the pancreas of allogeneic and autologous pigs. The resultant large animal model of pancreatic cancer could be utilized for preclinical research on diagnostic, interventional, and therapeutic technologies.
Collapse
|
8
|
Wu KC, Hua KF, Yu YH, Cheng YH, Cheng TT, Huang YK, Chang HW, Chen WJ. Antibacterial and Antibiofilm Activities of Novel Antimicrobial Peptides against Multidrug-Resistant Enterotoxigenic Escherichia Coli. Int J Mol Sci 2021; 22:ijms22083926. [PMID: 33920239 PMCID: PMC8070514 DOI: 10.3390/ijms22083926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/24/2022] Open
Abstract
Post-weaning diarrhea due to enterotoxigenic Escherichia coli (ETEC) is a common disease of piglets and causes great economic loss for the swine industry. Over the past few decades, decreasing effectiveness of conventional antibiotics has caused serious problems because of the growing emergence of multidrug-resistant (MDR) pathogens. Various studies have indicated that antimicrobial peptides (AMPs) have potential to serve as an alternative to antibiotics owing to rapid killing action and highly selective toxicity. Our previous studies have shown that AMP GW-Q4 and its derivatives possess effective antibacterial activities against the Gram-negative bacteria. Hence, in the current study, we evaluated the antibacterial efficacy of GW-Q4 and its derivatives against MDR ETEC and their minimal inhibition concentration (MIC) values were determined to be around 2~32 μg/mL. Among them, AMP Q4-15a-1 with the second lowest MIC (4 μg/mL) and the highest minimal hemolysis concentration (MHC, 256 μg/mL), thus showing the greatest selectivity (MHC/MIC = 64) was selected for further investigations. Moreover, Q4-15a-1 showed dose-dependent bactericidal activity against MDR ETEC in time–kill curve assays. According to the cellular localization and membrane integrity analyses using confocal microscopy, Q4-15a-1 can rapidly interact with the bacterial surface, disrupt the membrane and enter cytosol in less than 30 min. Minimum biofilm eradication concentration (MBEC) of Q4-15a-1 is 4× MIC (16 μg/mL), indicating that Q4-15a-1 is effective against MDR ETEC biofilm. Besides, we established an MDR ETEC infection model with intestinal porcine epithelial cell-1 (IPEC-1). In this infection model, 32 μg/mL Q4-15a-1 can completely inhibit ETEC adhesion onto IPEC-1. Overall, these results suggested that Q4-15a-1 may be a promising antibacterial candidate for treatment of weaned piglets infected by MDR ETEC.
Collapse
Affiliation(s)
- Kang-Chi Wu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (K.-C.W.); (K.-F.H.); (Y.-H.Y.); (Y.-H.C.); (T.-T.C.); (Y.-K.H.)
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (K.-C.W.); (K.-F.H.); (Y.-H.Y.); (Y.-H.C.); (T.-T.C.); (Y.-K.H.)
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (K.-C.W.); (K.-F.H.); (Y.-H.Y.); (Y.-H.C.); (T.-T.C.); (Y.-K.H.)
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (K.-C.W.); (K.-F.H.); (Y.-H.Y.); (Y.-H.C.); (T.-T.C.); (Y.-K.H.)
| | - Ting-Ting Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (K.-C.W.); (K.-F.H.); (Y.-H.Y.); (Y.-H.C.); (T.-T.C.); (Y.-K.H.)
| | - Yao-Kuan Huang
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (K.-C.W.); (K.-F.H.); (Y.-H.Y.); (Y.-H.C.); (T.-T.C.); (Y.-K.H.)
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Wen Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (K.-C.W.); (K.-F.H.); (Y.-H.Y.); (Y.-H.C.); (T.-T.C.); (Y.-K.H.)
- Correspondence:
| |
Collapse
|
9
|
Abstract
Camels are domesticated animals that are highly adapted to the extreme desert ecosystem with relatively higher resistance to a wide range of pathogens compared to many other species from the same geographical region. Recently, there has been increased interest in the field of camel immunology. As the progress in the analysis of camel immunoglobulins has previously been covered in many recent reviews, this review intends to summarize published findings related to camel cellular immunology with a focus on the phenotype and functionality of camel leukocyte subpopulations. The review also describes the impact of different physiological (age and pregnancy) and pathological (e.g. infection) conditions on camel immune cells. Despite the progress achieved in the field of camel immunology, there are gaps in our complete understanding of the camel immune system. Questions remain regarding innate recognition mechanisms, the functional characterization of antigen-presenting cells, and the characterization of camel NK and cytotoxic T cells.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hans-Joachim Schuberth
- Institute of Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
10
|
Gaashan MM, Al-Mubarak AIA, Hussen J. Leukocyte populations and their cell adhesion molecules expression in newborn dromedary camel calves. Vet World 2020; 13:1863-1869. [PMID: 33132598 PMCID: PMC7566236 DOI: 10.14202/vetworld.2020.1863-1869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/31/2020] [Indexed: 12/25/2022] Open
Abstract
Background and Aim Different properties of the newborn immune system have been characterized in many species. For the newborn camel calf, however, the phenotype and composition of blood leukocytes have so far not been evaluated. The current study aimed to analyze the distribution of leukocyte subpopulations and their expression pattern of cell adhesion molecules in newborn and adult dromedary camels. Materials and Methods Blood samples were collected from 17 newborn camel calves and 32 adult camels. For each sample, total leukocytes were separated and analyzed for their composition and cell adhesion molecules expression by flow cytometry. Results In comparison to adult camels, newborn camel calves had higher leukocyte numbers and higher numbers of neutrophils, monocytes, and lymphocytes but lower numbers of eosinophils in their blood. Among the lymphocyte populations in calves, the fractions of B cells and γδ T cells were elevated when compared to adults, whereas CD4-positive T cells were reduced. The comparison between camel calves and adult camels revealed significantly lower expression of the cell adhesion molecules CD11a, CD11b, and CD18 on granulocytes, monocytes, and lymphocytes in calves. Conclusion Newborn camel calves show a distinct composition and phenotype pattern of blood leukocytes when compared to adult camels. The observed rise in many leukocyte populations in calf blood may be due to reduced migratory activity in calf leukocyte populations.
Collapse
Affiliation(s)
- Muaadh M Gaashan
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdullah I A Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
11
|
Maternal Supplementation of Food Ingredient (Prebiotic) or Food Contaminant (Mycotoxin) Influences Mucosal Immune System in Piglets. Nutrients 2020; 12:nu12072115. [PMID: 32708852 PMCID: PMC7400953 DOI: 10.3390/nu12072115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
The early life period is crucial for the maturation of the intestinal barrier, its immune system, and a life-long beneficial host-microbiota interaction. The study aims to assess the impact of a beneficial dietary (short-chain fructooligosaccharides, scFOS) supplementation vs. a detrimental dietary environment (such as mycotoxin deoxynivalenol, DON) on offspring intestinal immune system developmental profiles. Sows were given scFOS-supplemented or DON-contaminated diets during the last 4 weeks of gestation, whereas force-feeding piglets with DON was performed during the first week of offspring life. Intestinal antigen-presenting cell (APC) subset frequency was analyzed by flow cytometry in the Peyer's patches and in lamina propria and the responsiveness of intestinal explants to toll-like receptor (TLR) ligands was performed using ELISA and qRT-PCR from post-natal day (PND) 10 until PND90. Perinatal exposure with scFOS did not affect the ontogenesis of APC. While it early induced inflammatory responses in piglets, scFOS further promoted the T regulatory response after TLR activation. Sow and piglet DON contamination decreased CD16+ MHCII+ APC at PND10 in lamina propria associated with IFNγ inflammation and impairment of Treg response. Our study demonstrated that maternal prebiotic supplementation and mycotoxin contamination can modulate the mucosal immune system responsiveness of offspring through different pathways.
Collapse
|
12
|
Xiong W, Huang J, Li X, Zhang Z, Jin M, Wang J, Xu Y, Wang Z. Icariin and its phosphorylated derivatives alleviate intestinal epithelial barrier disruption caused by enterotoxigenic
Escherichia coli
through modulate p38 MAPK in vivo and in vitro. FASEB J 2019; 34:1783-1801. [DOI: 10.1096/fj.201902265r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/13/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Wen Xiong
- College of Animal Science and Technology Southwest University Chongqing China
| | - Jing Huang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Xueying Li
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zhu Zhang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Meilan Jin
- College of Animal Science and Technology Southwest University Chongqing China
| | - Jian Wang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Yuwei Xu
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zili Wang
- College of Animal Science and Technology Southwest University Chongqing China
| |
Collapse
|
13
|
Dai C, Yang L, Jin J, Wang H, Wu S, Bao W. Regulation and Molecular Mechanism of TLR5 on Resistance to Escherichia coli F18 in Weaned Piglets. Animals (Basel) 2019; 9:ani9100735. [PMID: 31569693 PMCID: PMC6827021 DOI: 10.3390/ani9100735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptor 5 (TLR5) plays an important role in immune system. In this study, we performed transcriptome analysis of the duodenum in E. coli F18-resistant and -sensitive Sutai weaned piglets and analyzed the differential expression of TLR5. The cellular localization of TLR5 was investigated, and the effect of TLR5 expression on E. coli invasion was evaluated after pig small intestinal epithelial cell lines (IPEC-J2) were stimulated by E. coli. The results showed that TLR5 expression level in duodenum and jejunum were significantly higher in E. coli F18-sensitive than in E. coli F18-resistant piglets. TLR5 protein was mainly expressed in the cytoplasm and cell membrane. The expression of genes associated with the TLR5 signaling pathway were significantly higher in TLR5-overexpressed cells than in control cells. Bacterial adhesion was higher in TLR5-overexpressed cells than in blank cells and lower in TLR5 interference than in blank cells. The core promoter region of TLR5 included two CpG islands and 16 acting elements. The methylation of the mC-6 site in the second CpG island of the promoter region had a regulatory effect on TLR5 expression. Therefore, TLR5 plays an important regulatory role on E. coli invasion. Low expression of TLR5 inhibited the immune response and decreased cell damage, which was conducive to the resistance to E. coli stimulation. In conclusion, this study preliminarily revealed the molecular mechanism of TLR5 gene regulating the resistance of piglets to Escherichia coli, and provided a new candidate gene for screening Escherichia coli resistance markers in pigs.
Collapse
Affiliation(s)
- Chaohui Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Li Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Jian Jin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
14
|
Lessard M, Blais M, Beaudoin F, Deschene K, Verso LL, Bissonnette N, Lauzon K, Guay F. Piglet weight gain during the first two weeks of lactation influences the immune system development. Vet Immunol Immunopathol 2018; 206:25-34. [PMID: 30502909 DOI: 10.1016/j.vetimm.2018.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the effect of the piglet growth during the first week of life on ileal expression of genes and on development of the immune system. Eight litters adjusted to 12 piglets were used. Within each litter, the piglet that showed the lowest weight gain (LWG; n = 8) and the one that showed the highest weight gain (HWG; n = 8) in their first week of life were enrolled. Peripheral blood mononuclear cells (PBMC) were isolated on days 8 and 16 to characterize cellular population profiles and to assess ex-vivo secretion of interleukin-10 (IL-10), IL-6 and tumor necrosis factor-α (TNF-α). On day 16, piglets were euthanized and ileum samples were collected to extract RNA for microarray analysis and gene expression by qPCR. As expected, growth performance of LWG piglet was impaired compared to HWG piglets (P < 0.05). From day 8 to 16, the percentage of CD21+ B cells significantly increased in blood of heavier HWG piglets while the percentage remained constant in smaller LWG piglets (P weight x day = 0.01). For the CD4+CD8α- Th cells, a marked increase was observed in LWG piglets from 8 to 16 days of age (P = 0.002) whereas no significant change occurred in HWG piglets. Percentages of CD14+ monocytes and other MHC-II+ cells were respectively higher and lower on day 8 compared to day 16 for both groups of piglets (P < 0.01). On day 8, LPS-activated PBMC from LWG piglets produced less IL-6 compared to HWG piglets (P < 0.05). Microarray analysis of gene expression in piglets' ileum tissue indicated that several genes involed in defense response and response to oxidative stress were modulated differently in LWG compared to HWG. Gene analysis by Q-PCR confirmed microarray results and revealed that IL-10, SOD1, NOS2, NOD2, TLR4, TLR9, CD40 and CD74 expressions were significantly decreased (P < 0.05) in LWG in comparison to HWG piglets, while MYD88 and NFkBiA showed a tendency to decrease (0.05 ≤ P < 0.07). These results suggest that birth weight and milk intake affect the growth performances and the development of immunity by modulating the expression of genes associated with immunity and oxidative stress in piglets' intestinal tissue, and by affecting the leukocyte populations involved in innate and cell-mediated immunity in nursing piglets. Therefore, impaired development of immune system in LWG piglets might have an impact on their resistance to infections later in life.
Collapse
Affiliation(s)
- Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada.
| | - Mylène Blais
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Frédéric Beaudoin
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Karine Deschene
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Karoline Lauzon
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Frédéric Guay
- Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
15
|
Wang J, Zeng Y, Wang S, Liu H, Zhang D, Zhang W, Wang Y, Ji H. Swine-Derived Probiotic Lactobacillus plantarum Inhibits Growth and Adhesion of Enterotoxigenic Escherichia coli and Mediates Host Defense. Front Microbiol 2018; 9:1364. [PMID: 29997590 PMCID: PMC6028558 DOI: 10.3389/fmicb.2018.01364] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/05/2018] [Indexed: 01/28/2023] Open
Abstract
Weaning stress renders piglets susceptible to pathogen infection, which leads to post-weaning diarrhea, a severe condition characterized by heavy diarrhea and mortality in piglets. Enterotoxigenic Escherichia coli (ETEC) is one of typical strains associated with post-weaning diarrhea. Thus, prevention and inhibition of ETEC infection are of great concern. Probiotics possess anti-pathogenic activity and can counteract ETEC infection; however, their underlying mechanisms and modes of action have not yet been clarified. In the present study, the direct and indirect protective effects of Lactobacillus plantarum ZLP001 against ETEC infection were investigated by different methods. We found that bacterial culture and culture supernatant of L. plantarum ZLP001 prevented ETEC growth by the Oxford cup method, and ETEC growth inhibition was observed in a co-culture assay as well. This effect was suggested to be caused mainly by antimicrobial metabolites produced by L. plantarum ZLP001. In addition, adhesion capacity of L. plantarum ZLP001 to IPEC-J2 cells were observed using microscopy and counting. L. plantarum ZLP001 also exhibited a concentration-dependent ability to inhibit ETEC adhesion to IPEC-J2 cells, which mainly occurred via exclusion and competition mode. Furthermore, quantitative real time polymerase chain reaction (qPCR) analysis showed that L. plantarum ZLP001 upregulated the expression of host defense peptides (HDPs) but did not trigger an inflammatory response. In addition, L. plantarum ZLP001 induced HDP secretion, which enhanced the potential antimicrobial activity of IPEC-J2 cell-culture supernatant after incubation with L. plantarum ZLP001. Our findings demonstrate that L. plantarum ZLP001, an intestinal Lactobacillus species associated with piglet health, possesses anti-ETEC activity. L. plantarum ZLP001 might prevent ETEC growth, inhibit ETEC adhesion to the intestinal mucosa, and activate the innate immune response to secret antimicrobial peptides. L. plantarum ZLP001 is worth investigation as a potential probiotics.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanxia Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yamin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
16
|
Dubreuil JD. Enterotoxigenic Escherichia coli and probiotics in swine: what the bleep do we know? BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2017; 36:75-90. [PMID: 28785529 PMCID: PMC5510153 DOI: 10.12938/bmfh.16-030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/18/2017] [Indexed: 12/28/2022]
Abstract
The concept of certain microorganisms conferring direct benefits to the host relates to the term "probiotic". Probiotics are microorganisms, bacteria, or yeast that when administered orally in sufficient quantity can counteract the effect of pathogenic microorganisms. The gastrointestinal (GI) tract is the site where probiotics are believed to play the most important role. The proposed effects of probiotics include antagonism of pathogens, interference with adherence, competition for nutrients, enterotoxin inactivation, modulation of the immune response, and strengthening of the intestinal barrier. From birth to postweaning, piglets are very sensitive to gut colonisation by pathogens. Enterotoxigenic Escherichia coli represents one of the most common agents of swine diarrhoea. The enterotoxins produced by this E. coli virotype are responsible for the loss of electrolytes and water observed following infection. This review addresses more specifically the studies done during the last 10 years deciphering the molecular mechanisms at play between host cell and probiotic interactions in the swine GI tract.
Collapse
Affiliation(s)
- Jean Daniel Dubreuil
- Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 7C6, Canada
| |
Collapse
|
17
|
Yun J, Olkkola S, Hänninen ML, Oliviero C, Heinonen M. The effects of amoxicillin treatment of newborn piglets on the prevalence of hernias and abscesses, growth and ampicillin resistance of intestinal coliform bacteria in weaned pigs. PLoS One 2017; 12:e0172150. [PMID: 28199379 PMCID: PMC5310895 DOI: 10.1371/journal.pone.0172150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/31/2017] [Indexed: 11/18/2022] Open
Abstract
This study investigated the effects of a single amoxicillin treatment of newborn piglets on the prevalence of hernias and abscesses until the age of nine weeks. We also studied whether the treatment was associated with growth and mortality, the need for treatment of other diseases, the proportions of ampicillin resistant coliforms and antimicrobial resistance patterns of intestinal Escherichia coli (E. coli). A total of 7156 piglets, from approximately 480 litters, were divided into two treatment groups: ANT (N = 3661) and CON (N = 3495), where piglets were treated with or without a single intramuscular injection of 75 mg amoxicillin one day after birth, respectively. The umbilical and inguinal areas of weaned pigs were palpated at four and nine weeks of age. At the same time, altogether 124 pigs with hernias or abscesses and 820 non-defective pigs from three pens per batch were weighed individually. Mortality and the need to treat piglets for other diseases were recorded. Piglet faecal samples were collected from three areas of the floors of each pen at four weeks of age. The prevalence of umbilical hernias or abscesses did not differ between the groups at four weeks of age, but it was higher in the CON group than in the ANT group at nine weeks of age (2.3% vs. 0.7%, P < 0.05). Numbers of inguinal hernias and abscesses did not differ between the groups at four or nine weeks of age. The ANT group, when it compared with the CON group, increased the weight gain between four and nine weeks of age (LS means ± SE; 497.5 g/d ± 5.0 vs. 475.3 g/d ± 4.9, P < 0.01), and decreased piglet mortality (19.5% ± 1.0 vs. 6.9% ± 1.0, P < 0.05) and the need to treat the piglets for leg problems (3.4% ± 0.3 vs. 1.9% ± 0.3%, P < 0.01) but not for other diseases by the age of four weeks. The proportion of ampicillin resistant intestinal coliform bacteria and the resistance patterns of the E. coli isolates were not different between the ANT and CON groups. In conclusion, our results showed that the amoxicillin treatment of new-born piglets produced statistically significant effect in some of the parameters studied. However, as these effects were only minor, we did not find grounds to recommend preventive antibiotic treatment. Further, continuous antimicrobial treatment of newborn piglets could negatively influence the development of the normal microbiota of the piglet and promote selection of antimicrobial resistance genes in herds. Therefore we suggest rejection of the use of routine administration of antimicrobial agents at birth.
Collapse
Affiliation(s)
- Jinhyeon Yun
- Research Centre for Animal Welfare, Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Satu Olkkola
- Antibiotics Section, Food and Feed Microbiology Research unit, Research and Laboratory Department, Finnish Food Safety Authority Evira, Mustialankatu 3, Helsinki, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Claudio Oliviero
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Paroninkuja 20, Saarentaus, Finland
| | - Mari Heinonen
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Paroninkuja 20, Saarentaus, Finland
| |
Collapse
|
18
|
Wang R, Wu H, Chen J, Li SP, Dai L, Zhang ZR, Wang WY. Antiinflammation Effects and Mechanisms Study of Geniposide on Rats with Collagen-Induced Arthritis. Phytother Res 2017; 31:631-637. [DOI: 10.1002/ptr.5775] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Rong Wang
- College of Pharmacy; Anhui University of Chinese Medicine, Key Laboratory of Modernized Chinese Medicine in Anhui Province; Hefei Anhui China
| | - Hong Wu
- College of Pharmacy; Anhui University of Chinese Medicine, Key Laboratory of Modernized Chinese Medicine in Anhui Province; Hefei Anhui China
| | - Jian Chen
- Anhui Institute of Optics and Fine Mechanics; University of Science and Technology of China; Hefei 230031 China
| | - Shu-Ping Li
- College of Pharmacy; Anhui University of Chinese Medicine, Key Laboratory of Modernized Chinese Medicine in Anhui Province; Hefei Anhui China
| | - Li Dai
- College of Pharmacy; Anhui University of Chinese Medicine, Key Laboratory of Modernized Chinese Medicine in Anhui Province; Hefei Anhui China
| | - Zheng-Rong Zhang
- College of Pharmacy; Anhui University of Chinese Medicine, Key Laboratory of Modernized Chinese Medicine in Anhui Province; Hefei Anhui China
| | - Wen-Yu Wang
- College of Pharmacy; Anhui University of Chinese Medicine, Key Laboratory of Modernized Chinese Medicine in Anhui Province; Hefei Anhui China
| |
Collapse
|
19
|
Maternal short-chain fructo-oligosaccharide supplementation increases intestinal cytokine secretion, goblet cell number, butyrate concentration and Lawsonia intracellularis humoral vaccine response in weaned pigs. Br J Nutr 2017; 117:83-92. [PMID: 28115029 DOI: 10.1017/s0007114516004268] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prebiotic supplementation modulates immune system development and function. However, less is known about the effects of maternal prebiotic consumption on offspring intestinal defences and immune system responsiveness. We investigated the effects of maternal short-chain fructo-oligosaccharide (scFOS) supplementation on mucin-secreting cells, ileal secretory IgA and cytokine secretion of weaned offspring and their humoral response to an oral vaccine against obligate intracellular Lawsonia intracellularis. Sows were fed a control diet (CTRL) or scFOS-supplemented diet during the last third of gestation and throughout lactation. At weaning, each litter was divided into two groups receiving a post-weaning CTRL or scFOS diet for a month. Pigs from the four groups were either non-vaccinated (n 16) or vaccinated (n 117) at day 33. Biomarkers related to intestinal defences and immune parameters were analysed 3 weeks later. SCFA production was assessed over time in suckling and weaned pigs. Maternal scFOS supplementation improved ileal cytokine secretions (interferon (IFN)-γ, P<0·05; IL-4, P=0·07) and tended to increase caecal goblet cell number (P=0·06). It increased IgA vaccine response in the serum (P<0·01) and ileal mucosa (P=0·08). Higher bacterial fermentative activity was observed during lactation (total faecal SCFA, P<0·001) and after weaning (colonic butyrate, P=0·10) in pigs from scFOS-supplemented mothers. No synergistic effect between maternal and post-weaning scFOS supplementation was observed. Therefore, maternal scFOS supplementation has long-lasting consequences by strengthening gut defences and immune response to a vaccine against an intestinal obligate intracellular pathogen. Prebiotic consumption by gestating and lactating mothers is decisive in modulating offspring intestinal immunity.
Collapse
|
20
|
Wu Z, Qin W, Wu S, Zhu G, Bao W, Wu S. Identification of microRNAs regulating Escherichia coli F18 infection in Meishan weaned piglets. Biol Direct 2016; 11:59. [PMID: 27809935 PMCID: PMC5093996 DOI: 10.1186/s13062-016-0160-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022] Open
Abstract
Background Escherichia coli F18 is mainly responsible for post-weaning diarrhea (PWD) in piglets. The molecular regulation of E. coli F18 resistance in Chinese domestic weaned piglets is still obscure. We used Meishan piglets as model animals to test their susceptibility to E. coli F18. Small RNA duodenal libraries were constructed for E. coli F18-sensitive and -resistant weaned piglets challenged with E. coli F18 and sequenced using Illumina Solexa high-throughput sequencing technology. Results Sequencing results showed that 3,475,231 and 37,198,259 clean reads were obtained, with 311 known miRNAs differently expressed in resistant and sensitive groups, respectively. Twenty-four miRNAs, including 15 up-regulated and 9 down-regulated, demonstrated more than a 2-fold differential expression between the F18-resistant and -sensitive piglets. Stem-loop RT-qPCR showed that miR-136, miR-196b, miR-499-5p and miR-218-3p significantly expressed in intestinal tissue (p < 0.05). KEGG pathway analysis for target genes revealed that differently expressed miRNAs were involved in infectious diseases, signal transduction and immune system pathways. Interestingly, the expression of miR-218-3p in intestinal tissue had a very significant negative correlation with target DLG5 (P < 0.01). Conclusions Based on the expression correlation between miRNA and target genes analysis, we speculate that miR-218-3p targeting to DLG5, appears to be very promising candidate for miRNAs involved in response to E. coli F18 infection. The present study provides improved database information on pig miRNAs, better understanding of the genetic basis of E. coli F18 resistance in local Chinese pig breeds and lays a new foundation for identifying novel markers of E. coli F18 resistance. Reviewers This article was reviewed by Neil R Smalheiser and Weixiong Zhang. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0160-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Weiyun Qin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Seng Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
21
|
CD14 in the TLRs signaling pathway is associated with the resistance to E. coli F18 in Chinese domestic weaned piglets. Sci Rep 2016; 6:24611. [PMID: 27098998 PMCID: PMC4838916 DOI: 10.1038/srep24611] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/03/2016] [Indexed: 11/09/2022] Open
Abstract
Escherichia coli F18 (E. coli F18) is mainly responsible for post-weaning diarrhea (PWD) in piglets. The genetic basis and regulatory mechanism of E. coli F18 resistance in Chinese domestic weaned piglets remain unclear. Meishan piglets were used as model animals to test their susceptibility to E. coli F18. By performing a comparative transcriptome study on duodenum tissues of sensitive and resistant pigs, we identified 198 differentially expressed genes (DEGs; 125 upregulated and 73 downregulated) in the resistant pigs. DEGs were predominately involved in immune system pathways, including the Toll-like receptor (TLR) signaling pathway. qPCR and western blot showed CD14, IFN-α, TLR4 and IL-1β, etc. in the TLR signaling pathway had significantly higher expression levels in lipopolysaccharide (LPS)-induced small intestinal epithelial cell lines (IPEC-J2) than those in normal IPEC-J2 cells. Immunohistochemical analysis showed the increased expression of CD14 gene in the E. coli F18-resistant individuals. After CD14 knockdown, the levels of cytokines IL-6 and IL-12 were significantly reduced in IPEC-J2 cell supernatants. The adhesion ability of F18ab strain with IPEC-J2 cells was significantly increased (p < 0.01). This study revealed the TLR signaling pathway, and especially CD14, probably plays an important role in resistance to E. coli F18 infection in Chinese domestic piglets.
Collapse
|
22
|
Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells. Vet Immunol Immunopathol 2016; 172:55-63. [PMID: 27032504 DOI: 10.1016/j.vetimm.2016.03.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023]
Abstract
Tight junctions (TJs) play an important role in maintaining the mucosal barrier function and gastrointestinal health of animals. Lactobacillus plantarum (L. plantarum) was reported to protect the intestinal barrier function of early-weaned piglets against enterotoxigenic Escherichia coli (ETEC) K88 challenge; however, the underlying cellular mechanism of this protection was unclear. Here, an established intestinal porcine epithelia cell (IPEC-J2) model was used to investigate the protective effects and related mechanisms of L. plantarum on epithelial barrier damages induced by ETEC K88. Epithelial permeability, expression of inflammatory cytokines, and abundance of TJ proteins, were determined. Pre-treatment with L. plantarum for 6h prevented the reduction in transepithelial electrical resistance (TEER) (P<0.05), inhibited the increased transcript abundances of interleukin-8 (IL-8) and tumor necrosis factor (TNF-α) (P<0.05), decreased expression of claudin-1, occludin and zonula occludens (ZO-1) (P<0.05) and protein expression of occludin (P<0.05) of IPEC-J2 cells caused by ETEC K88. Moreover, the mRNA expression of negative regulators of toll-like receptors (TLRs) [single Ig Il-1-related receptor (SIGIRR), B-cell CLL/lymphoma 3 (Bcl3), and mitogen-activated protein kinase phosphatase-1 (MKP-1)] in IPEC-J2 cells pre-treated with L. plantarum were higher (P<0.05) compared with those in cells just exposed to K88. Furthermore, L. plantarum was shown to regulate proteins of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These results indicated that L. plantarum may improve epithelial barrier function by maintenance of TEER, inhibiting the reduction of TJ proteins, and reducing the expression of proinflammatory cytokines induced by ETEC K88, possibly through modulation of TLRs, NF-κB and MAPK pathways.
Collapse
|
23
|
Inoue R, Tsukahara T, Nakatani M, Okutani M, Nishibayashi R, Ogawa S, Harayama T, Nagino T, Hatanaka H, Fukuta K, Romero-Pérez GA, Ushida K, Kelly D. Weaning Markedly Affects Transcriptome Profiles and Peyer's Patch Development in Piglet Ileum. Front Immunol 2015; 6:630. [PMID: 26697021 PMCID: PMC4678207 DOI: 10.3389/fimmu.2015.00630] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Transcriptome analyses were conducted on the ileal mucosa of 14- to 35-day-old piglets to investigate postnatal gut development during suckling and postweaning. The transcriptome profiles of 14-day-old suckling piglets showed a considerably higher number of differentially expressed genes than did those of 21-, 28-, and 35-day olds, indicating an intensive gut development during the first 14–21 postnatal days. In addition, the analysis of biological pathways indicated that Chemotaxis Leucocyte chemotaxis was the most significantly affected pathway in suckling piglets between 14 and 21 days of age. Weaning negatively affected pathways associated with acquired immunity, but positively affected those associated with innate immunity. Interestingly, pathway Chemotaxis Leucocyte chemotaxis was found positively affected when comparing 14- and 21-day-old suckling piglets, but negatively affected in 28-day-old piglets weaned at 21 days of age, when compared with 28-day-old suckling piglets. Genes CXCL13, SLA-DOA (MHC class II), ICAM1, VAV1, and VCAM1 were involved in the pathway Chemotaxis Leukocyte chemotaxis and they were found to significantly change between 14- and 21-day-old suckling piglets and between groups of suckling and weaned piglets. The expression of these genes significantly declined after weaning at 14, 21, and 28 days of age. This decline indicated that CXCL13, SLA-DOA, ICAM1, VAV1, and VCAM1 may be involved in the development of Peyer’s patches (PP) because lower gene expression clearly corresponded with smaller areas of PP in the ileal mucosa of piglets. Moreover, weaning piglets prior to a period of intensive gut development, i.e., 14 days of age, caused significant adverse effects on the size of PP, which were not reverted even 14 days postweaning.
Collapse
Affiliation(s)
- Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan ; Gut Immunology Group, Rowett Institute of Nutrition and Health, University of Aberdeen , Aberdeen , UK
| | - Takamitsu Tsukahara
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan ; Kyoto Institute of Nutrition and Pathology , Kyoto , Japan
| | - Masako Nakatani
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | - Mie Okutani
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | | | - Shohei Ogawa
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | - Tomoko Harayama
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | - Takayuki Nagino
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | - Hironori Hatanaka
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | - Kikuto Fukuta
- Technical Center, Toyohashi Feed Mills , Shinshiro , Japan
| | | | - Kazunari Ushida
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto , Japan
| | - Denise Kelly
- Gut Immunology Group, Rowett Institute of Nutrition and Health, University of Aberdeen , Aberdeen , UK
| |
Collapse
|
24
|
Callegari M, Dalto D, Silva CD. A Review of Prevention and Control Methods of Salmonella species in Swine Production and the Role of Dietary Non-Nutritional Additives. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajava.2015.803.829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Sato T, Okamura T, Kojima-Shibata C, Kadowaki H, Suzuki E, Uenishi H, Suzuki K. Correlated response of peripheral blood cytokines with selection for reduced mycoplasma pneumonia of swine lesions in Landrace pigs. Anim Sci J 2015; 87:477-83. [PMID: 26429759 DOI: 10.1111/asj.12462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/30/2015] [Accepted: 04/15/2015] [Indexed: 11/30/2022]
Abstract
Mycoplasma pneumonia of swine (MPS) is responsible for significant economic losses in the swine industry. We selected Landrace pigs for reduced MPS pulmonary lesions over five generations, and measured concentrations of the following cytokines: interleukin (IL)-10, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-γ to estimate their correlation with MPS lesions. Sheep red blood cells (SRBC) were injected twice intramuscularly at 70 and 95 kg body weight. Blood serum samples were collected after 1 week of secondary SRBC inoculation and cytokine concentrations were analyzed by ELISA. Genetic parameters and breeding values were estimated. The heritability estimates of IL-10, IL-13, IL-17, TNF-α and IFN-γ were 0.20 ± 0.06, 0.12 ± 0.06, 0.27 ± 0.07, 0.20 ± 0.10 and 0.05 ± 0.03, respectively. Genetic correlations of IL-17 and TNF-α with pulmonary MPS lesions were high (-0.86 ± 0.13 and 0.69 ± 0.29, respectively) and those of IFN-γ and IL-13 with MPS lesions were moderately negative (-0.45). Through selection, the breeding values of IL-17 and IFN-γ increased substantially and those of TNF-α decreased. These results suggest that innate and cellular immunity are more important for the suppression of pulmonary lesions in MPS than humoral-mediated immunity, such as antibody response.
Collapse
Affiliation(s)
- Takumi Sato
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Toshihiro Okamura
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | - Hiroshi Kadowaki
- Miyagi Prefecture Animal Industry Experiment Station, Miyagi, Japan
| | - Eisaku Suzuki
- Miyagi Prefecture Animal Industry Experiment Station, Miyagi, Japan
| | - Hirohide Uenishi
- Genome Research Department, National Institute of Agrobiological Science, Tsukuba, Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
26
|
Liu HY, Roos S, Jonsson H, Ahl D, Dicksved J, Lindberg JE, Lundh T. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells. Physiol Rep 2015; 3:3/4/e12355. [PMID: 25847917 PMCID: PMC4425961 DOI: 10.14814/phy2.12355] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell–cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens.
Collapse
Affiliation(s)
- Hao-Yu Liu
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stefan Roos
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hans Jonsson
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - David Ahl
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Erik Lindberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Torbjörn Lundh
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
27
|
Ebner F, Rausch S, Scharek-Tedin L, Pieper R, Burwinkel M, Zentek J, Hartmann S. A novel lineage transcription factor based analysis reveals differences in T helper cell subpopulation development in infected and intrauterine growth restricted (IUGR) piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:333-340. [PMID: 24858028 DOI: 10.1016/j.dci.2014.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Research in mouse and human clearly identified subsets of T helper (Th) cells based on nuclear expression of specific lineage transcription factors. In swine, however, transcription factor based detection of functional subpopulations of porcine Th cells by flow cytometry is so far limited to regulatory T cells via Foxp3. T-bet and GATA-3 are the transcription factors that regulate commitment to Th1 or Th2 cells, respectively. In this study we prove GATA-3 and T-bet expression in porcine CD4(+) cells polarized in vitro. Importantly, GATA-3 and T-bet expressing cells were detectable in pigs infected with pathogens associated with Th2 and Th1 immune responses. Increased frequencies of GATA-3 positive CD4(+) cells are found in vivo in pigs experimentally infected with the nematode Trichuris suis, whereas porcine reproductive and respiratory syndrome virus (PRRSV) infection elicited T-bet positive CD4(+) T cells. Analysing the immune status of pre-weaning piglets with intrauterine growth restriction (IUGR) we found an increased expression of Foxp3, T-bet and GATA-3 in CD4(+) and CD4(+)CD8(+) double-positive T cells in systemic and intestinal compartments of IUGR piglets. Hence, we established the detection of porcine Th1 and Th2 cells via T-bet and GATA-3 and show that the porcine lineage transcription factors are differentially regulated very early in life depending on the developmental status.
Collapse
Affiliation(s)
- F Ebner
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - S Rausch
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - L Scharek-Tedin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - R Pieper
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - M Burwinkel
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - S Hartmann
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany.
| |
Collapse
|
28
|
Hynönen U, Kant R, Lähteinen T, Pietilä TE, Beganović J, Smidt H, Uroić K, Avall-Jääskeläinen S, Palva A. Functional characterization of probiotic surface layer protein-carrying Lactobacillus amylovorus strains. BMC Microbiol 2014; 14:199. [PMID: 25070625 PMCID: PMC4236617 DOI: 10.1186/1471-2180-14-199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/12/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Adhesiveness to intestinal epithelium, beneficial immunomodulating effects and the production of pathogen-inhibitory compounds are generally considered as beneficial characteristics of probiotic organisms. We showed the potential health-promoting properties and the mechanisms of probiotic action of seven swine intestinal Lactobacillus amylovorus isolates plus the type strain (DSM 20531T) by investigating their adherence to porcine intestinal epithelial cells (IPEC-1) and mucus as well as the capacities of the strains to i) inhibit the adherence of Escherichia coli to IPEC-1 cells, ii) to produce soluble inhibitors against intestinal pathogens and iii) to induce immune signaling in dendritic cells (DCs). Moreover, the role of the L. amylovorus surface (S) -layers - symmetric, porous arrays of identical protein subunits present as the outermost layer of the cell envelope - in adherence to IPEC-1 cells was assessed using a novel approach which utilized purified cell wall fragments of the strains as carriers for the recombinantly produced S-layer proteins. RESULTS Three of the L. amylovorus strains studied adhered to IPEC-1 cells, while four strains inhibited the adherence of E. coli, indicating additional mechanisms other than competition for binding sites being involved in the inhibition. None of the strains bound to porcine mucus. The culture supernatants of all of the strains exerted inhibitory effects on the growth of E. coli, Salmonella, Listeria and Yersinia, and a variable, strain-dependent induction was observed of both pro- and anti-inflammatory cytokines in human DCs. L. amylovorus DSM 16698 was shown to carry two S-layer-like proteins on its surface in addition to the major S-layer protein SlpA. In contrast to expectations, none of the major S-layer proteins of the IPEC-1 -adhering strains mediated bacterial adherence. CONCLUSIONS We demonstrated adhesive and significant pathogen inhibitory efficacies among the swine intestinal L. amylovorus strains studied, pointing to their potential use as probiotic feed supplements, but no independent role could be demonstrated for the major S-layer proteins in adherence to epithelial cells. The results indicate that many intestinal bacteria may coexist with and confer benefits to the host by mechanisms not attributable to adhesion to epithelial cells or mucus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P,O, Box 66, Helsinki 00014, Finland.
| |
Collapse
|
29
|
Liu HY, Dicksved J, Lundh T, Lindberg JE. Expression of heat shock proteins 27 and 72 correlates with specific commensal microbes in different regions of porcine gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2014; 306:G1033-41. [PMID: 24763551 DOI: 10.1152/ajpgi.00299.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal (GI) tract of mammals is inhabited by trillions of microorganisms, resulting in exceedingly complex networking. The interaction between distinct bacterial species and the host immune system is essential in maintaining homeostasis in the gut ecosystem. For instance, the gut commensal microbiota dictates intestinal mucosa maturation and its abundant immune components, such as cytoprotective heat shock proteins (HSP). Here we examined physiological expression of HSP in the normal porcine GI tract and found it to be gut region- and cell type-specific in response to dietary components, microbes, and microbial metabolites to which the mucosa surface is exposed. Correlations between HSP72 expression and ileal Lactobacillus spp. and colonic clostridia species, and between HSP27 expression and uronic acid ingestion, were important interplays identified here. Thus this study provides novel insights into host-microbe interactions shaping the immune system that are modifiable by dietary regime.
Collapse
Affiliation(s)
- Hao-Yu Liu
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Torbjörn Lundh
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Erik Lindberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
30
|
Valpotić H, Šperanda M, Kovšca-Janjatović A, Ðidara M, Lacković G, Božić F, Habrun B, Srečec S, Mataušić-Pišl M, Valpotić I. Levamisole stimulates proliferation of circulating and intestinal immune cell subsets, gut health and performance in weaned pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4141/cjas2013-097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Valpotić, H., Šperanda, M., Kovšca-Janjatović, A., Ðidara, M., Lacković, G., Božić, F., Habrun, B., Srečec, S., Mataušić-Pišl, M. and Valpotić, I. 2014. Levamisole stimulates proliferation of circulating and intestinal immune cell subsets, gut health and performance in weaned pigs. Can. J. Anim. Sci. 94: 43–53. With the growing knowledge of the porcine immune system and its endogenous modulation, it has been clearly stated that exogenous modulation through the use of substances able to modulate immune functions represents an important prophylactic/therapeutic approach in prevention/treatment of both stress- and F4+ and F18+ enterotoxigenic E. coli (ETEC)-induced infections accompanied weaning. The aim of this study was to evaluate the effectiveness of levamisole (LEVA; 2.5 mg kg−1 BW in 10 mL) applied per os to weaned pigs in proliferation of circulating and intestinal immune cell subsets throughout a period of 5 wk. Changes in proportion or number of peripheral blood and ileal mucosal leukocytes tested were studied either weekly by flow cytometry or at the end of the experiment (day 35) by immunohistology/histomorphometry, respectively. Pigs treated with LEVA had increased proportions of peripheral blood CD45+ lymphoid cells, CD4+ and CD8+ T cells, and CD21+ B cells (P<0.01) between days 14 and 35 following the treatment. Also, LEVA stimulated the proliferation of CD45RA+ naïve lymphoid cells in interfollicular (P<0.001) and follicular areas (P<0.05) of ileal Peyer’s patches at day 35 of the experiment. These pigs had a significantly higher (P<0.05) average body weight (19.7 vs. 17.1 kg) and weight gain at the end of experiment compared with the control pigs (for 15%). We conclude that LEVA stimulated the proliferation of circulating and intestinal lymphoid cell subsets tested and improved performance in weaned pigs, and thus, the drug may nonspecifically enhance their immunity/resistance to F4+ and F18+ ETEC strains.
Collapse
Affiliation(s)
| | | | | | - Mislav Ðidara
- Faculty of Agriculture, University of Osijek, Croatia
| | - Gordana Lacković
- Division of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Frane Božić
- Veterinary Faculty, University of Zagreb, Croatia
| | | | | | | | | |
Collapse
|
31
|
Heat Shock Proteins: Intestinal Gatekeepers that Are Influenced by Dietary Components and the Gut Microbiota. Pathogens 2014; 3:187-210. [PMID: 25437614 PMCID: PMC4235725 DOI: 10.3390/pathogens3010187] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 02/07/2023] Open
Abstract
Trillions of microorganisms that inhabit the intestinal tract form a diverse and intricate ecosystem with a deeply embedded symbiotic relationship with their hosts. As more detailed information on gut microbiota complexity and functional diversity accumulates, we are learning more about how diet-microbiota interactions can influence the immune system within and outside the gut and host health in general. Heat shock proteins are a set of highly conserved proteins that are present in all types of cells, from microbes to mammals. These proteins carry out crucial intracellular housekeeping functions and unexpected extracellular immuno-regulatory features in order to maintain the mucosal barrier integrity and gut homeostasis. It is becoming evident that the enteric microbiota is one of the major determinants of heat shock protein production in intestinal epithelial cells. This review will focus on the interactions between diet, gut microbiota and their role for regulating heat shock protein production and, furthermore, how these interactions influence the immune system and the integrity of the mucosal barrier.
Collapse
|
32
|
Mach N, Berri M, Esquerré D, Chevaleyre C, Lemonnier G, Billon Y, Lepage P, Oswald IP, Doré J, Rogel-Gaillard C, Estellé J. Extensive expression differences along porcine small intestine evidenced by transcriptome sequencing. PLoS One 2014; 9:e88515. [PMID: 24533095 PMCID: PMC3922923 DOI: 10.1371/journal.pone.0088515] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to analyse gene expression along the small intestine (duodenum, jejunum, ileum) and in the ileal Peyer's patches in four young pigs with no clinical signs of disease by transcriptome sequencing. Multidimensional scaling evidenced that samples clustered by tissue type rather than by individual, thus prefiguring a relevant scenario to draw tissue-specific gene expression profiles. Accordingly, 1,349 genes were found differentially expressed between duodenum and jejunum, and up to 3,455 genes between duodenum and ileum. Additionally, a considerable number of differentially expressed genes were found by comparing duodenum (7,027 genes), jejunum (6,122 genes), and ileum (6,991 genes) with ileal Peyer's patches tissue. Functional analyses revealed that most of the significant differentially expressed genes along small intestinal tissues were involved in the regulation of general biological processes such as cell development, signalling, growth and proliferation, death and survival or cell function and maintenance. These results suggest that the intrinsic large turnover of intestinal tissues would have local specificities at duodenum, ileum and jejunum. In addition, in concordance with their biological function, enteric innate immune pathways were overrepresented in ileal Peyer's patches. The reported data provide an expression map of the cell pathway variation in the different small intestinal tissues. Furthermore, expression levels measured in healthy individuals could help to understand changes in gene expression that occur in dysbiosis or pathological states.
Collapse
Affiliation(s)
- Núria Mach
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
- UMR1319 MICALIS, INRA, Jouy-en-Josas, France
- UMR1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
- * E-mail:
| | - Mustapha Berri
- UMR1282 ISP, INRA, Nouzilly, France
- UMR1282 ISP, Université de Tours, Tours, France
| | - Diane Esquerré
- UMR444 LGC-Plateforme GET, INRA, Castanet-Tolosan, France
| | - Claire Chevaleyre
- UMR1282 ISP, INRA, Nouzilly, France
- UMR1282 ISP, Université de Tours, Tours, France
| | - Gaëtan Lemonnier
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
| | | | - Patricia Lepage
- UMR1319 MICALIS, INRA, Jouy-en-Josas, France
- UMR1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Isabelle P. Oswald
- UMR1331 TOXALIM, INRA, Toulouse, France
- UMR1331 TOXALIM-INP, Université de Toulouse III, Toulouse, France
| | - Joël Doré
- UMR1319 MICALIS, INRA, Jouy-en-Josas, France
- UMR1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Claire Rogel-Gaillard
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
| | - Jordi Estellé
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
| |
Collapse
|
33
|
Nogueira MG, Collins AM, Donahoo M, Emery D. Immunological responses to vaccination following experimental Lawsonia intracellularis virulent challenge in pigs. Vet Microbiol 2013; 164:131-8. [PMID: 23478250 DOI: 10.1016/j.vetmic.2013.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 10/27/2022]
Abstract
Although a live attenuated vaccine has been used extensively to provide immunity against porcine proliferative enteropathy (PE) caused by Lawsonia intracellularis, the nature of the protective response is an area of considerable interest for the control of PE. Two trials investigated immune responses in pigs after oral and intramuscular (IM) vaccination followed by virulent L. intracellularis challenge. After an oral vaccination with 10(5.9) TCID50 organisms, significantly increased serum and mucosal secretions of IgM, IgG and higher mucosal TNF-α and TGF-β1 were detected by day 17, together with a trend towards higher levels of IFN-γ and IL-6. Pigs vaccinated IM produced elevated serum antibody titres but mucosal immune responses were not detected. After challenge with virulent L. intracellularis, non-vaccinated control pigs had higher PE lesion scores and excreted significantly higher numbers of L. intracellularis in faeces than the vaccinated pigs. Reduced intestinal pathology and faecal L. intracellularis shedding were evident in the vaccinated groups. The results indicated that protection was associated with mucosal cytokine and specific IgG and IgA responses after vaccination and that systemic antibody responses were boosted following challenge. However in the search for an immune correlate with protection, a causal association was not evident from a kinetic analysis of immune parameters in serum, ileal pathology and faecal shedding.
Collapse
Affiliation(s)
- M G Nogueira
- Farm Animal and Veterinary Public Health, University of Sydney, 425 Werombi Road, Camden, New South Wales 2570, Australia.
| | | | | | | |
Collapse
|
34
|
Lan D, Tang C, Yue H, Sun H, Cui L, Hua X, Li J. Microarray analysis of differentially expressed transcripts in porcine intestinal epithelial cells (IPEC-J2) infected with porcine sapelovirus as a model to study innate immune responses to enteric viruses. Arch Virol 2013; 158:1467-75. [PMID: 23417395 DOI: 10.1007/s00705-013-1638-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/09/2013] [Indexed: 12/25/2022]
Abstract
The local intestinal mucosa, the largest mucosal immune system in animals, plays an important role in resistance against intestinal pathogen infection. However, the molecular antiviral mechanisms of the intestinal mucosa remain poorly understood. In this study, we screened and identified differentially expressed transcripts in (PSV) porcine intestinal epithelial cells (IPEC-J2) infected with porcine sapelovirus using microarray analysis. A total of 2298 differentially expressed genes were screened at four time points during PSV infection. These genes were involved in numerous physical systems and molecular pathways, and particularly, some innate immune-associated pathways were significant. The results showed that large amounts of type I interferon were induced, and the related interferon effect pathway was activated when IPEC-J2 cells were infected with PSV. Three pathways of innate immune receptors, including Toll-like, NOD-like, and RIG-I-like receptors, were also activated. The antigen was then processed and presented through the MHCI and MHCII pathways. Interestingly, we found that the secretion network of IgA was activated in the early stage of PSV infection. Two exogenous and endogenous apoptosis pathways were also activated during PSV infection. The results revealed changes in gene transcription, particularly those of innate immune pathway genes that were associated with PSV infection in IPEC-J2 cells.
Collapse
Affiliation(s)
- Daoliang Lan
- Hi-tech Research and Development Base for Qinghai-Tibet Plateau Ecological Conservation and Stock Farming, Southwest University for Nationality, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang Z, Gao J, Yu Q, Yang Q. Oral immunization with recombinant Lactococcus lactis expressing the hemagglutinin of the avian influenza virus induces mucosal and systemic immune responses. Future Microbiol 2013; 7:1003-10. [PMID: 22913358 DOI: 10.2217/fmb.12.69] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIMS The aim of the study in this article is to explore a safe, convenient and effective oral mucosal vaccine candidate against highly pathogenic avian influenza. MATERIALS & METHODS We have constructed an oral mucosal vaccine, LL36EH, by use of the genetically stable θ-replicating vector pMG36E, which expressed the fusion protein hemagglutinin 1 (HA(1)) in a live carrier, Lactococcus lactis MG1363. LL36EH was administered orally to mice three times at 2-week intervals. The specific serum IgG and mucosal IgA antibodies were detected and evaluated at different time points after immunization. RESULTS The results showed that LL36EH could significantly induce specific anti-HA(1) IgA antibody in the intestine and specific anti-HA(1) IgG antibody in the serum (p < 0.05). Additionally, when the splenic lymphocytes isolated from immunized mice were stimulated by HA(1) antigen in vitro, splenic lymphocyte proliferative reaction and secretions of the cytokines IFN-γ and IL-4 were also significantly increased. Most importantly, the mice that were immunized with LL36EH were protected to some extent against lethal challenge of the H5N1 virus. CONCLUSION LL36EH triggered the anti-HA(1)-specific humoral and cellular immune responses and protective immunity. Therefore, oral immunization with LL36EH could be a valuable strategy against highly pathogenic avian influenza for humans and animals.
Collapse
Affiliation(s)
- Zhisheng Wang
- Key Lab of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, China
| | | | | | | |
Collapse
|
36
|
Effects of feeding Bt maize to sows during gestation and lactation on maternal and offspring immunity and fate of transgenic material. PLoS One 2012; 7:e47851. [PMID: 23091650 PMCID: PMC3473024 DOI: 10.1371/journal.pone.0047851] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/21/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND We aimed to determine the effect of feeding transgenic maize to sows during gestation and lactation on maternal and offspring immunity and to assess the fate of transgenic material. METHODOLOGY/PRINCIPAL FINDINGS On the day of insemination, sows were assigned to one of two treatments (n = 12/treatment); 1) non-Bt control maize diet or 2) Bt-MON810 maize diet, which were fed for ~143 days throughout gestation and lactation. Immune function was assessed by leukocyte phenotyping, haematology and Cry1Ab-specific antibody presence in blood on days 0, 28 and 110 of gestation and at the end of lactation. Peripheral-blood mononuclear cell cytokine production was investigated on days 28 and 110 of gestation. Haematological analysis was performed on offspring at birth (n = 12/treatment). Presence of the cry1Ab transgene was assessed in sows' blood and faeces on day 110 of gestation and in blood and tissues of offspring at birth. Cry1Ab protein presence was assessed in sows' blood during gestation and lactation and in tissues of offspring at birth. Blood monocyte count and percentage were higher (P<0.05), while granulocyte percentage was lower (P<0.05) in Bt maize-fed sows on day 110 of gestation. Leukocyte count and granulocyte count and percentage were lower (P<0.05), while lymphocyte percentage was higher (P<0.05) in offspring of Bt maize-fed sows. Bt maize-fed sows had a lower percentage of monocytes on day 28 of lactation and of CD4(+)CD8(+) lymphocytes on day 110 of gestation, day 28 of lactation and overall (P<0.05). Cytokine production was similar between treatments. Transgenic material or Cry1Ab-specific antibodies were not detected in sows or offspring. CONCLUSIONS/SIGNIFICANCE Treatment differences observed following feeding of Bt maize to sows did not indicate inflammation or allergy and are unlikely to be of major importance. These results provide additional data for Bt maize safety assessment.
Collapse
|
37
|
Abstract
The delivery of certain living microorganisms in food has long been suggested as having positive health effects in humans. This practice has extended into food animal production, with a variety of microorganisms being used; lactic acid bacteria, various Bacillus species and the yeast Saccharomyces cerevisiae have been particularly used in the pig industry. The increased interest in probiotics is essentially due to the problem of microbial resistance to antibiotics and following the ban of the use of antibiotics in animal production, probiotics being considered an alternative means to reduce pathogen infection and improve animal health especially around the time of weaning. However, there is still a need to clarify the probiotic effectiveness in pigs, and the underlying mechanisms. When assessing the efficacy of probiotics one must consider the particular strain of organism being used and the production stage of the pigs being treated. The reproducible delivery of probiotics in industrial pig production is problematic as maintenance of viability is key to their beneficial activity, but difficult to achieve with commonly used feed processing technologies. One specific context where probiotics organisms may be reliably delivered is in systems utilising fermented liquid feeds. Liquid feed may be fermented by the activity of wild lactic acid bacteria or may be stimulated using specific isolates as 'starters'; the latter system has advantages in terms of reproducibility and speed of fermentation. The farm context in which the organism is used is likely to be critical; the use of probiotics is more likely to result in measurable economic gains in animals living in sub-optimal conditions rather than in those reared in the highest welfare and husbandry conditions. The establishment of a beneficial lactic acid bacteria population at birth may lead to healthier animals, this may be most effectively achieved by treating sows, which provide an amplification step and flood the neonatal pigs' environment with desirable bacterial strains. In contrast, it may be sufficient to provide a supportive, protective microbiota around the time of weaning as this is a time of major crisis with instability and loss of certain bacterial populations.
Collapse
|
38
|
Yandza T, Tauc M, Saint-Paul MC, Ouaissi M, Gugenheim J, Hébuterne X. The pig as a preclinical model for intestinal ischemia-reperfusion and transplantation studies. J Surg Res 2012; 178:807-19. [PMID: 22884450 DOI: 10.1016/j.jss.2012.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 01/10/2023]
Abstract
Small bowel transplantation has become an established procedure for treatment of irreversible intestinal failure. In this procedure, primary ischemia and reperfusion is inevitable and will lead to some level of tissue injury. Both clinical and experimental data demonstrate that events occurring at the time of transplantation, called ischemia reperfusion injury (IRI), may have deleterious short- and long-term effects, manifesting as increased episodes of acute rejection and chronic allograft dysfunction. Recently, the acute phase of IRI has been increasingly viewed as part of the innate immune response to the lack of vascular perfusion and oxygen. Research on intestinal IRI that aims to understand its mechanisms and the means to reduce its impact on morbidity and mortality related to intestinal transplantations is considered important because a link has been suggested between innate immunity, adaptive immune responses and organ regeneration, and thus long-term graft function. This article provides an overview of porcine models commonly used to study intestinal reperfusion injury and to evaluate intestinal transplant protocols. It also updates the current knowledge obtained from this model, establishing the pig as a reference standard in intestinal transplantation research.
Collapse
Affiliation(s)
- Thierry Yandza
- Pôle Digestif, Service de Chirurgie Digestive et Centre de Transplantation Hépatique, Hôpital de l'Archet 2, Centre Hospitalo-Universitaire de Nice, Nice, France.
| | | | | | | | | | | |
Collapse
|
39
|
Crossing the barrier: Targeting epithelial receptors for enhanced oral vaccine delivery. J Control Release 2012; 160:431-9. [DOI: 10.1016/j.jconrel.2012.02.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/02/2012] [Indexed: 01/09/2023]
|
40
|
Immunobiotic Lactobacillus jensenii modulates the Toll-like receptor 4-induced inflammatory response via negative regulation in porcine antigen-presenting cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1038-53. [PMID: 22573738 DOI: 10.1128/cvi.00199-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previously, we demonstrated that Lactobacillus jensenii TL2937 attenuates the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial cells. In view of the critical importance of antigen-presenting cell (APC) polarization in immunoregulation, the objective of the present study was to examine the effect of strain TL2937 on the activation patterns of APCs from swine Peyer's patches (PPs). We demonstrated that direct exposure of porcine APCs to L. jensenii in the absence of inflammatory signals increased expression of interleukin-10 (IL-10) and transforming growth factor β in CD172a(+) APCs and caused them to display tolerogenic properties. In addition, pretreatment of CD172a(+) APCs with L. jensenii resulted in differential modulation of the production of pro- and anti-inflammatory cytokines in response to TLR4 activation. The immunomodulatory effect of strain TL2937 was not related to a downregulation of TLR4 but was related to an upregulation of the expression of three negative regulators of TLRs: single immunoglobulin IL-1-related receptor (SIGIRR), A20, and interleukin-1 receptor-associated kinase M (IRAK-M). Our results also indicated that TLR2 has an important role in the anti-inflammatory activity of L. jensenii TL2937, since anti-TLR2 antibodies blocked the upregulation of SIGIRR and IRAK-M in CD172a(+) APCs and the production of IL-10 in response to TLR4 activation. We performed, for the first time, a precise functional characterization of porcine APCs from PPs, and we demonstrated that CD172a(+) cells were tolerogenic. Our findings demonstrate that adherent cells and isolated CD172a(+) cells harvested from swine PPs were useful for in vitro study of the inflammatory responses in the porcine gut and the immunomodulatory effects of immunobiotic microorganisms.
Collapse
|
41
|
Seeboth J, Solinhac R, Oswald IP, Guzylack-Piriou L. The fungal T-2 toxin alters the activation of primary macrophages induced by TLR-agonists resulting in a decrease of the inflammatory response in the pig. Vet Res 2012; 43:35. [PMID: 22530722 PMCID: PMC3416672 DOI: 10.1186/1297-9716-43-35] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/24/2012] [Indexed: 12/22/2022] Open
Abstract
T-2 toxin is known to be one of the most toxic trichothecene mycotoxins. Exposure to T-2 toxin induces many hematologic and immunotoxic disorders and is involved in immuno-modulation of the innate immune response. The objective of this work was to evaluate the effects of T-2 toxin on the activation of macrophages by different agonists of Toll-like receptors (TLR) using an in vitro model of primary porcine alveolar macrophages (PAM). Cytotoxic effects of T-2 toxin on PAM were first evaluated. An IC50 of 19.47 ± 0.9753 nM was determined for the cytotoxicity of T-2 toxin. A working concentration of 3 nM of T-2 toxin was chosen to test the effect of T-2 toxin on TLR activation; this dose was not cytotoxic and did not induce apoptosis as demonstrated by Annexin/PI staining. A pre-exposure of macrophages to 3 nM of T-2 toxin decreased the production of inflammatory mediators (IL-1 beta, TNF-alpha, nitric oxide) in response to LPS and FSL1, TLR4 and TLR2/6 agonists respectively. The decrease of the pro-inflammatory response is associated with a decrease of TLR mRNA expression. By contrast, the activation of TLR7 by ssRNA was not modulated by T-2 toxin pre-treatment. In conclusion, our results suggest that ingestion of low concentrations of T-2 toxin affects the TLR activation by decreasing pattern recognition of pathogens and thus interferes with initiation of inflammatory immune response against bacteria and viruses. Consequently, mycotoxins could increase the susceptibility of humans and animals to infectious diseases.
Collapse
Affiliation(s)
- Julie Seeboth
- Institut National de Recherche Agronomique, Toxalim - UMR 1331, 180, chemin de Tournefeuille, Toulouse Cedex 9, 31027, France.
| | | | | | | |
Collapse
|
42
|
Stepanova H, Mensikova M, Chlebova K, Faldyna M. CD4+ and γδTCR+ T lymphocytes are sources of interleukin-17 in swine. Cytokine 2012; 58:152-7. [PMID: 22321808 DOI: 10.1016/j.cyto.2012.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 01/07/2012] [Accepted: 01/13/2012] [Indexed: 01/01/2023]
Abstract
In the veterinary field, only limited information is available about interleukin-17A (IL-17), despite the fact that this cytokine plays an important role during pro-inflammatory immune responses and induces the production of chemotactic factors for neutrophils. The aim of this study was to characterize porcine IL-17-producing cells. We tested the cross-reactivity of five anti-human IL-17 monoclonal antibodies because such antibodies against porcine IL-17 are currently unavailable. Whole blood cells (WBCs) were stimulated with phorbol-myristate-acetate (PMA) and ionomycin and subsequently analyzed by flow cytometry. The antibody clone SCPL1362 was found to cross-react with porcine IL-17, whereas the other four antibodies tested did not recognize this cytokine. Using this antibody, we characterized porcine WBC-secreting IL-17 after PMA and ionomycin stimulation. All IL-17-producing WBCs were positive for the T lymphocyte marker CD3. Myeloid cells (CD172α(+)) and B lymphocytes (CD79α(+)) were IL-17 negative. The major subset of IL-17 positive T lymphocytes was the CD4(+) lymphocytes (about 60% of all IL-17 positive WBCs). The remaining IL-17 positive WBCs were γδTCR(+) lymphocytes. CD8 positive and CD8 negative cells were found within both CD4(+) and γδTCR(+) cells producing the cytokine. Moreover, IL-17 positive cells were mostly CD45RA negative, therefore activated cells or memory cells. Flow cytometry data were confirmed using sorted cells. Both sorted CD4(+) and γδTCR(+) cells produced IL-17 at mRNA level after PMA and ionomycin stimulation while double negative CD4(-)γδTCR(-) cells were negative for IL-17. We can conclude that only two subpopulations of porcine WBCs are sources of IL-17 after non-specific stimulation: CD3(+)CD4(+) and CD3(+)γδTCR(+).
Collapse
Affiliation(s)
- Hana Stepanova
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | | | | | | |
Collapse
|
43
|
β-Galactomannan and Saccharomyces cerevisiae var. boulardii modulate the immune response against Salmonella enterica serovar Typhimurium in porcine intestinal epithelial and dendritic cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:368-76. [PMID: 22301691 DOI: 10.1128/cvi.05532-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated.
Collapse
|
44
|
Fujie H, Villena J, Tohno M, Morie K, Shimazu T, Aso H, Suda Y, Shimosato T, Iwabuchi N, Xiao JZ, Yaeshima T, Iwatsuki K, Saito T, Numasaki M, Kitazawa H. Toll-like receptor-2-activating bifidobacteria strains differentially regulate inflammatory cytokines in the porcine intestinal epithelial cell culture system: finding new anti-inflammatory immunobiotics. ACTA ACUST UNITED AC 2011; 63:129-39. [PMID: 21711398 DOI: 10.1111/j.1574-695x.2011.00837.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A total of 23 strains of bifidobacteria taxonomically belonging to five species were tested for their potent immunomodulatory effect using a combination of two methods: the NF-κB-reporter assay using a toll-like receptor 2-expressing transfectant (HEK(pTLR2) system) and the mitogenic assay using porcine Peyer's patches immunocompetent cells. Among the four preselected strains from different immunomodulatory groups, Bifidobacterium breve MCC-117 was able to efficiently modulate the inflammatory response triggered by enterotoxigenic Escherichia coli (ETEC) in a porcine intestinal epithelial (PIE) cell line. Moreover, using PIE cells and swine Peyer's patches immunocompetent cell co-culture system, we demonstrated that the immunoregulatory effect of B. breve MCC-117 was related to the capacity of the strain to influence PIE and immune cell interactions, leading to the stimulation of regulatory T cells. The results suggested that bifidobacteria that express high activity in both the HEK(pTLR2) and the mitogenic assays may behave like potential anti-inflammatory strains. The combination of the HEK(pTLR2) system, the evaluation of mitogenic activity and PIE cells will be of value for the development of new immunologically functional foods and feeds that could prevent inflammatory intestinal disorders. Although our findings should be proven in appropriate experiments in vivo, the results of the present work provide a scientific rationale for the use of B. breve MCC-117 to prevent ETEC-induced intestinal inflammation.
Collapse
Affiliation(s)
- Hitomi Fujie
- Food Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Garden O, Pinheiro D, Cunningham F. All creatures great and small: regulatory T cells in mice, humans, dogs and other domestic animal species. Int Immunopharmacol 2011; 11:576-88. [DOI: 10.1016/j.intimp.2010.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/01/2010] [Indexed: 12/12/2022]
|
46
|
Fairbairn L, Kapetanovic R, Sester DP, Hume DA. The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J Leukoc Biol 2011; 89:855-71. [PMID: 21233410 DOI: 10.1189/jlb.1110607] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The biology of cells of the mononuclear phagocyte system has been studied extensively in the mouse. Studies of the pig as an experimental model have commonly been consigned to specialist animal science journals. In this review, we consider some of the many ways in which the innate immune systems of humans differ from those of mice, the ways that pigs may address the shortcomings of mice as models for the study of macrophage differentiation and activation in vitro, and the biology of sepsis and other pathologies in the living animal. With the completion of the genome sequence and the characterization of many key regulators and markers, the pig has emerged as a tractable model of human innate immunity and disease that should address the limited, predictive value of rodents in preclinical studies.
Collapse
Affiliation(s)
- Lynsey Fairbairn
- The Roslin Institute and Royal (Dick) School of Veterinary Medicine, University of Edinburgh, Roslin BioCentre, Scotland, United Kingdom
| | | | | | | |
Collapse
|
47
|
Toll-like receptors in domestic animals. Cell Tissue Res 2010; 343:107-20. [DOI: 10.1007/s00441-010-1047-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/01/2010] [Indexed: 12/13/2022]
|
48
|
Rothkötter HJ. Anatomical particularities of the porcine immune system--a physician's view. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:267-272. [PMID: 18775744 DOI: 10.1016/j.dci.2008.06.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 05/26/2023]
Abstract
In this article the anatomical structure of the porcine immune organs is described. The focus is on their particularities that are related to the use of pigs as an animal model. Key issues of the intrauterine development of the lymphoid organs are presented, such as the specific epithelio-chorial placenta, the appearance of the thymic tissue and the initial development of B cells. The role of the thymus for the development of alpha/beta and gamma/delta T cells and the location of tonsillar tissue in the naso-pharynx, in the oral cavity and at the basis of the tongue are described. The porcine spleen is of interest for surgical techniques to treat splenic trauma adequately. The observation of the inverted lymph node structure of pigs is puzzling and it remains unclear why only few species have this distinct morphological organisation. Based on the functional differences in lymphocyte recirculation observed in pigs, specific lymph cannulation experiments are possible in the porcine immune system. The porcine intestinal lymphoid tissue and the lymphocytes in the mucosal epithelium and lamina propria are of interest for studying the gut immune responses. For use as a model the fact that the pig is a monogastric omnivorous animal represents an advantage, although the porcine ileal Peyer's patch has no obvious anatomical equivalent in man. Based on the detailed knowledge of porcine immune morphology the pig is suitable as model animal for immunology--in addition to the various experimental approaches in physiology, pharmacology, surgery, etc. that are applicable to human medicine.
Collapse
Affiliation(s)
- Hermann-Josef Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| |
Collapse
|