1
|
Gong X, Hu F, Hu J, Bao Z, Wang M. The interactions between CpG oligodeoxynucleotides and Toll-like receptors in Pacific white shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105157. [PMID: 38423492 DOI: 10.1016/j.dci.2024.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
CpG oligodeoxynucleotides (ODNs), as a novel type of adjuvant with immunomodulatory effects, are recognized by Toll-like receptors (TLRs) in Litopenaeus vannamei. In the present study, eleven LvTLRs-pCMV recombinants (rLvTLRs) were constructed to investigate the relationships between various CpG ODNs and different LvTLRs in human embryonic kidney 293T (HEK293T) cells, which was further confirmed by bio-layer interferometry (BLI) technique. The results of dual luciferase reporter assay showed that every LvTLR could activate multiple downstream genes, mainly including NF-κB, CREB, ISRE, IL-6-promoter, TNF-α-promoter and Myc, thereby inducing main signaling pathways in shrimps. Most CpG ODNs possessed affinities to more than one LvTLR, while each LvTLR could recognize multiple CpG ODNs, and the widely recognized ligands within CpG ODNs are A-class and B-class. Moreover, BLI analysis showed that CpG 2216, Cpg 2006, CpG 2143 and CpG 21425 exhibited dose-dependent affinity to the expressed TLR protein, which were consistent with the results in HEK293T cells. It suggested that the interactions of CpG ODNs with LvTLRs were indispensable for the immune regulation triggered by CpG ODNs, and these findings would lay foundations for studying the activations of LvTLRs to immune signaling pathways and shedding lights on the immune functions and mechanisms of CpG ODNs.
Collapse
Affiliation(s)
- Xuerui Gong
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China
| | - Feng Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Hainan Seed Industry Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Hainan Seed Industry Laboratory, Sanya, 572024, China; Hebei Xinhai Aquatic Biotechnology Co., Ltd, Cangzhou, 061101, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Hainan Seed Industry Laboratory, Sanya, 572024, China.
| |
Collapse
|
2
|
Huang S, Ma Y, Wang F, Li J, Yang Z, Jiang Y, Chen X, Hu S, Yi Q. ERK is involved in the regulation of CpG ODN 2395 on the expression levels of anti-lipopolysaccharide factors in Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1206-1213. [PMID: 36403703 DOI: 10.1016/j.fsi.2022.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
CpG oligodeoxynucleotides (ODN), as an effective adjuvant or immunopotentiator, activate the immune system and induce various immune responses. Recently, it has also been reported that high dose of CpG ODN can lead to immunosuppression. However, the underlying mechanism of CpG ODN-mediated immune response remains largely unknown in invertebrates. In the present study, the role of ERK in regulating expression levels of anti-lipopolysaccharide factors (ALFs) induced by different doses of CpG ODN 2395 was analyzed in Chinese mitten crab, Eriocheir sinensis. The mRNA expression levels of EsALFs (EsALF1, EsALF2 and EsALF3) and EsERK in haemocytes were observed to increase from 6 h to 48 h post low doses of CpG ODN 2395 (0.5 μg and 2.5 μg) stimulation, while they were suppressed after high dose of CpG ODN 2395 (12.5 μg) injection. Meanwhile, the phosphorylation levels of ERK in haemocytes were significantly promoted after low doses of CpG ODN 2395 injection, and a reduce level of ERK phosphorylation was observed after high dose of CpG ODN 2395 injection. Further investigation showed that the expression levels of EsALFs induced by CpG ODN 2395 were markedly down-regulated after knocking down the expression of EsERK. Similarly, the EsALFs mRNA expression were also inhibited post different doses of CpG ODN 2395 stimulation in PD98059 (ERK inhibitor) injection crabs. These results collectively suggest that ERK is involved in regulating the expression level of EsALFs induced by different dose of CpG ODN 2395 in Chinese mitten crab, which contribute to the understanding of the regulation of CpG ODN involving in immune response in crustaceans.
Collapse
Affiliation(s)
- Shu Huang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Fengchi Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yusheng Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Xi Chen
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Shengyang Hu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Qilin Yi
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 11026, China.
| |
Collapse
|
3
|
A novel antiviral coumarin derivative as a potential agent against WSSV infection in shrimp seedling culture. Virus Res 2021; 297:198387. [PMID: 33716181 DOI: 10.1016/j.virusres.2021.198387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
White spot syndrome virus (WSSV), a double-stranded DNA virus that infects crustaceans, is the most serious viral pathogen affecting shrimp farming worldwide. To reduce the economic losses caused by WSSV, we screened a novel coumarin derivative from a small molecule drug library, N-(4-((4-(((2-oxo-2H-chromen-7-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)sulfonyl)phenyl)acetamide (N2905), to evaluate its anti-WSSV effects in vivo. We determined that compound N2905, up to a concentration of 20 mg/L, significantly decreased the number of WSSV copies in Litopenaeus vannamei post-larvae, with a maximum inhibitory rate of > 90 %, and increased the survival rate of WSSV-infected post-larvae. Pre-treatment and post-treatment assays indicated that N2905 could treat, but not prevent, WSSV infections. When WSSV was preincubated with N2905 for 1-4 h, the incidence of viral infections was significantly reduced and survival time of post-larvae extended to 120 h. A stability study of N2905 provided a reference for its practical use. Considering the antiviral stability of N2905 in culture water within 2 d, continuous N2905 exchange was performed, showing a significant decrease in viral load at 120 h post-infection (hpi) and a 55 % increase in survival of WSSV-infected post-larvae. Overall, our study demonstrated the potential of N2905 as an antiviral agent.
Collapse
|
4
|
Liu F, Qu YK, Geng C, Wang AM, Zhang JH, Chen KJ, Liu B, Tian HY, Yang WP, Yu YB. Effects of hesperidin on the growth performance, antioxidant capacity, immune responses and disease resistance of red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2020; 99:154-166. [PMID: 32045638 DOI: 10.1016/j.fsi.2020.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
We evaluated the effects of hesperidin on the nonspecific immunity, antioxidant capacity and growth performance of red swamp crayfish (Procambarus clarkii). A total of 900 healthy crayfish were randomly divided into six groups: the control group (fed the basal diet) and the HES25, HES50, HES75, HES100 and HES150 groups, which were fed the basal diet supplemented with 25, 50, 75, 100 and 150 mg kg-1 hesperidin, respectively. The feeding experiment lasted 8 weeks. The results indicated that compared with the control group, the crayfish groups supplemented with 50-150 mg kg-1 hesperidin had a decreased feed conversion ratio (FCR) and increased final body weight (FBW), specific growth rate (SGR) and weight gain (WG) (P < 0.05). The protein carbonyl content (PCC), reactive oxygen species (ROS) level and malondialdehyde (MDA) level in the hepatopancreas and hemocytes were significantly lower, while the total antioxidant capacity (T-AOC), glutathione peroxidase (GPx) activity, and superoxide dismutase (SOD) activity were significantly higher in the crayfish groups supplemented with 50-150 mg kg-1 hesperidin than in the control group. Supplementation with 50-150 mg kg-1 hesperidin significantly increased the activities of acid phosphatase (ACP), alkaline phosphatase (AKP), lysozyme (LZM), and phenoloxidase (PO) compared with the control group (P < 0.05); upregulated the mRNA expression of cyclophilin A (CypA), extracellular copper-zinc superoxide dismutase (ecCuZnSOD), GPxs, crustin, astacidin, Toll3 and heat shock protein 70 (HSP70) (P < 0.05); and decreased crayfish mortality following white spot syndrome virus (WSSV) infection. These findings indicate that dietary hesperidin supplementation at an optimum dose of 50-150 mg kg-1 may effectively improve nonspecific immunity, antioxidant capacity and growth performance in crayfish.
Collapse
Affiliation(s)
- Fei Liu
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China; Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, PR China
| | - Yun-Kun Qu
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Chao Geng
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Ai-Ming Wang
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Jia-Hong Zhang
- Agricultural Science Institute of Lixiahe District, Jiangsu Province, Yangzhou, 225007, PR China.
| | - Kai-Jian Chen
- Center for Engineering and Technology Research on Utilization of Characteristic Aquatic Resources, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Bo Liu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Hong-Yan Tian
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Wen-Ping Yang
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Ye-Bing Yu
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| |
Collapse
|
5
|
Huang AG, Tan XP, Qu SY, Wang GX, Zhu B. Evaluation on the antiviral activity of genipin against white spot syndrome virus in crayfish. FISH & SHELLFISH IMMUNOLOGY 2019; 93:380-386. [PMID: 31374312 DOI: 10.1016/j.fsi.2019.07.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 05/19/2023]
Abstract
White spot syndrome virus (WSSV) is a serious epidemic pathogen of crustaceans and cause severe economic losses to aquaculture. However, no commercial drugs presently available to control WSSV infection. Genipin (GN) is a bioactive compound extracted from the fruit of Gardenia jasminoides and exhibits potential antiviral activity. In the study, the antiviral activity of GN against WSSV was investigated in crayfish Procambarus clarkii and in shrimp Litopenaeus vannamei. In vitro antiviral test showed that GN could inhibit WSSV replication in crayfish and in shrimp, and the highest inhibition on WSSV was over 99% when treatment with 50 mg/kg of GN for 24 h. In vivo antiviral test proved that GN could be used to treat and prevent WSSV infection. GN could also effectively protect crayfish from WSSV infection by reducing the mortality rate of WSSV-infected crayfish. Moreover, GN attenuated the WSSV-induced oxidative stress and inflammatory by upregulation the expression of antioxidant-related genes and downregulation the expression of inflammatory-related genes, respectively. Mechanically, GN inhibited WSSV replication at least via decreasing STAT (signal transducer and activator of transcription) gene expression to block WSSV immediate-early gene ie1 transcription. Additionally, the inhibition of BI-1 (Bax inhibitor-1) gene expression also played an important role in the suppression of WSSV infection. In conclusion, GN represented a potential therapeutic and preventive agent to block WSSV infection.
Collapse
Affiliation(s)
- Ai-Guo Huang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Xiao-Ping Tan
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Shen-Ye Qu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Zhan S, Aweya JJ, Wang F, Yao D, Zhong M, Chen J, Li S, Zhang Y. Litopenaeus vannamei attenuates white spot syndrome virus replication by specific antiviral peptides generated from hemocyanin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:50-61. [PMID: 30339874 DOI: 10.1016/j.dci.2018.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 05/06/2023]
Abstract
Recent studies have shown that hemocyanin plays immune-related functions apart from its canonical respiratory function. While shrimp hemocyanin is found to generate antimicrobial peptides, antiviral related peptides have not been reported. In the present study, the serum of white spot syndrome virus (WSSV) infected Litopenaeus vannamei analyzed by two-dimensional gel electrophoresis, revealed 45 consistently down-regulated protein spots and 10 up-regulated protein spots. Five of the significantly up-regulated spots were identified as hemocyanin derived peptides. One of the five peptides, designated LvHcL48, was further characterized by analyzing its primary sequence via Edman N-terminal sequencing, C-terminal sequencing and amino acid sequence alignment. LvHcL48 was found to be a 79 amino acid fragment (aa584-662) from the C-terminal domain of L. vannamei hemocyanin protein (ADZ15149). Both in vivo and in vitro functional studies revealed that LvHcL48 has immunological activities, as recombinant LvHcL48 protein (rLvHcL48) significantly inhibited the transcription of the WSSV genes wsv069 and wsv421 coupled with a significant reduction in WSSV copy numbers. Further analysis showed that LvHcL48 could interact with the WSSV envelope protein 28 (VP28). Our present data therefore reveals the generation of an antiviral hemocyanin derived peptide LvHcL48 from WSSV infected shrimp, which binds to the envelope protein VP28 of WSSV.
Collapse
Affiliation(s)
- Shixiong Zhan
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Mingqi Zhong
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jiehui Chen
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
7
|
Li C, Weng S, He J. WSSV-host interaction: Host response and immune evasion. FISH & SHELLFISH IMMUNOLOGY 2019; 84:558-571. [PMID: 30352263 DOI: 10.1016/j.fsi.2018.10.043] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
As invertebrates, shrimps rely on multiple innate defense reactions, including humoral immunity and cellular immunity to recognize and eliminate various invaders, such as viruses. White spot syndrome virus (WSSV) causes the most prevalent and devastating viral disease in penaeid shrimps, which are the most widely cultured species in the coastal waters worldwide. In the last couple of decades, studies about WSSV implicate a dual role of the immune system in protecting shrimps against the infection; these studies also explore on the pathogenesis of WSSV infection. Herein, we review our current knowledge of the innate immune responses of shrimps to WSSV, as well as the molecular mechanisms used by this virus to evade host immune responses or actively subvert them for its own benefit. Deciphering the interactions between WSSV and the shrimp host is paramount to understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during viral infection and to the development of a safe and effective WSSV defensive strategy.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
8
|
Zhang H, Yao X, Ding Y, Xu Z, Liang R, Zhang Y, Wu Y, Li B, Guan B. PI3K signaling pathways modulated white spot syndrome virus (WSSV) replication in Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2018; 76:279-286. [PMID: 29496475 DOI: 10.1016/j.fsi.2018.02.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/19/2018] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
The PI3K/AKT signaling pathway is commonly exploited to regulate viral replication and affect the fate of infected cells. In the present study, a PI3K-specific inhibitor (LY294002) was employed to pretreat crayfish to evaluate the effects of PI3K/AKT signaling pathway in WSSV replication. The results showed that the WSSV copy numbers in crayfish pretreated with LY294002 were significantly lower than those in Tris-HCl pretreatment crayfish on the sixth and tenth day after WSSV infection. In semigranular cells, the apoptosis rates were up-regulated on the third day post-WSSV infection, and a significantly lower proportion of apoptosis cells were observed in LY294002-pretreatment group. The expression level of Bax, Bax inhibitor-1 and lectin mRNA in haemocytes of crayfish were increased after WSSV infection. After the secondary stimulation with Tris-HCl, the Bax expression level in LY294002-pretreatment crayfish was significantly higher than that of crayfish pretreated with Tris-HCl on the third or sixth day, but the Toll and lectin mRNA expression decreased significantly on the third, sixth and tenth day. The Bax mRNA expression levels in LY294002-WSSV group were significantly higher than those in Tris-HCl-WSSV group on the third and tenth day. The Bax inhibitor-1 mRNA expression levels in LY294002-WSSV group were significantly lower than those in Tris-HCl-WSSV crayfish on the third day. These results together indicated that the hosts PI3K/AKT signaling pathway play positive roles in WSSV replication through the balance between host cell apoptois and innate immune responses. This information is helpful to further understand the role of PI3K/AKT signaling pathway on WSSV replication in Decapoda crustaceans.
Collapse
Affiliation(s)
- Huijing Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, Hainan, China
| | - Xuemei Yao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, Hainan, China
| | - Yunfei Ding
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Zheng Xu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Rongning Liang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, Shandong, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China.
| | - Yulong Wu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Bo Guan
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, Shandong, China.
| |
Collapse
|
9
|
The leukocyte-associated immunoglobulin (Ig)–like receptor-1 modulating cell apoptosis and inflammatory cytokines secretion in THP-1 cells after Helicobacter pylori infection. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Sun M, Wang L, Jiang S, Liu R, Zhao D, Chen H, Song X, Song L. CpG ODNs induced autophagy via reactive oxygen species (ROS) in Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:1-9. [PMID: 25912358 DOI: 10.1016/j.dci.2015.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
Autophagy is a highly conserved intracellular homeostatic process involved in numerous responses in both vertebrate and invertebrate. In the present study, autophagy in hemocytes of Chinese mitten crab Eriocheir sinensis was observed by Western-blot and immunofluorescence assay, and its induction by CpG oligodeoxynucleotides (ODNs) was investigated. The increase of LC3-conversion (LC3-II/LC3-I) and LC3-puncta formation were observed in hemocytes of crabs after rapamycin injection. And the ratio of LC3-conversion and the percentage of LC3-puncta formation were also significantly increased after CpG ODNs stimulation, and the highest values were 1.89-fold and 3.77-fold compared to that in pUC57 group at 24 h post-injection. Moreover, the mRNA expression levels of autophagy-related genes, EsGabarap and EsAtg7, both dramatically increased after CpG ODNs injection, and reached the peak at 6 h post-injection, which were 2.66- and 2.82-fold (P <0.01) for EsGabarap, and 6.16-fold and 6.10-fold (P <0.01) for EsAtg7 compared to saline and pUC57 groups, respectively. The generation of ROS in hemocytes was induced and reached peak at 6 h post-injection in CpG-pUC57 group, which was 1.30-fold (P <0.01) and 1.66-fold (P <0.01) of that in saline and pUC57 group, respectively. The increased ROS generation and autophagy triggered by CpG ODNs were abolished after the treatment of the ROS scavenger, N-acetyl-L-cysteine (NAC). It was suggested that CpG ODNs could induce autophagy and up-regulate the expression levels of autophagy-related genes in crabs via the activation of ROS generation in the hemocytes. The results provided useful information to understand autophagy in crab, and they were also helpful for the application of CpG ODNs as the novel immune stimulants in aquaculture.
Collapse
Affiliation(s)
- Mingzhe Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Depeng Zhao
- Dalian Polytechnic University, Dalian 116034, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorui Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
11
|
Yang C, Wang L, Liu C, Zhou Z, Zhao X, Song L. The polymorphisms in the promoter of HSP90 gene and their association with heat tolerance of bay scallop. Cell Stress Chaperones 2015; 20:297-308. [PMID: 25261233 PMCID: PMC4326393 DOI: 10.1007/s12192-014-0546-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022] Open
Abstract
The heat shock protein 90 (HSP90) is a highly abundant and ubiquitous molecular chaperone which plays essential roles in many cellular processes. In the present study, the messenger RNA (mRNA) expressions of HSP90 after acute heat stress were investigated in two bay scallop populations (Argopecten irradians irradians and Argopecten irradians concentricus). The heat-resistant scallop A. i. concentricus, which is distributed in Zhanjiang, China, exhibited significantly higher induction of HSP90 compared with that of the heat-sensitive scallop A. i. irradians, which is distributed in Qinhuangdao, China. The promoter sequence of HSP90 gene from bay scallop (AiHSP90) was cloned, and the polymorphisms within this region were investigated by sequencing to analyze their association with heat tolerance. A total of six single nucleotide polymorphisms (SNPs), including -1167 T-C, -1023 A-C, -799 C-T, -774 A-G, -686 C-T, and -682 A-C, were identified in the amplified promoter region, and most of them affected the putative transcription factor binding sites except for locus -1167. All the six SNP sites were found to be associated with heat tolerance after Hardy-Weinberg equilibrium (HWE) and association analysis. Moreover, haplotypes CACACC and TCTATC were also found to be associated with heat tolerance based on the result of linkage disequilibrium and association analysis. The results provided insights into the molecular mechanisms underlying the thermal adaptation of different congener endemic bay scallops, which suggested that the increased heat tolerance of A. i. concentricus (compared with A. i. irradians) was associated with the higher expression of AiHSP90. Meanwhile, the six genotypes (-1167 TT, -1023 CC, -799 TT, -774 GG, -686 CC, and -682 AA) and two haplotypes (CACACC and TCTATC) could be used as potential markers for scallop selection breeding with higher heat tolerance.
Collapse
Affiliation(s)
- Chuanyan Yang
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Lingling Wang
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Conghui Liu
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhi Zhou
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Xin Zhao
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Linsheng Song
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| |
Collapse
|
12
|
Wang PH, Weng SP, He JG. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:291-296. [PMID: 24685509 DOI: 10.1016/j.dci.2014.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts.
Collapse
Affiliation(s)
- Pei-Hui Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, People's Republic of China.
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, People's Republic of China
| | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, People's Republic of China; School of Marine Sciences, Sun Yat-Sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
13
|
Hu W, Huang H, Zhang TY, Mao YY, Wang XJ, Wang SQ. CpG oligodeoxynucleotide inhibits HBV replication in a hydrodynamic injection murine model. Antivir Ther 2014; 20:289-95. [PMID: 25279542 DOI: 10.3851/imp2870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Chronic HBV infection is a significant public health problem and one major cause of liver cirrhosis and hepatocellular carcinoma (HCC). HBV impairs the host immune system and results in immunotolerance, which is a major obstacle to HBV therapy. CpG oligodeoxynucleotide (ODN) is a strong immunostimulant which activates the innate immune response rapidly and has been shown to be an efficient therapy agent in viral infection treatment. Here, we report the anti-HBV activity of CpG-1826 in a hydrodynamic injection murine model. METHODS CpG-1826 was administrated intraperitoneally every other day in HBV carrier mice established by tail vein hydrodynamic injection of HBV plasmids. The serum concentrations of HBV surface antigen (HBsAg), HBV e antigen (HBeAg), HBV surface antibody (HBsAb), HBV core antibody (HBcAb), interferon-α (IFN-α) and interferon-γ (IFN-γ) were measured by enzyme-linked immunosorbent assay (ELISA). The activities of alanine aminotransferase (ALT) were determined by ALT kit using a Spectramax Plus spectrophotometer. Hepatic HBV DNA was quantified by quantitative real-time PCR. The expression of HBV core antigen (HBcAg) in liver was detected by immunohistochemistry. Drug toxicity of CpG-1826 was evaluated by body weighting and liver histopathology confirmation. RESULTS CpG-1826 administration inhibited HBV replication efficiently with significant reduction of serum HBsAg and HBeAg, hepatic HBcAg and HBV DNA levels. The serum levels of IFN-α, IFN-γ and HBsAb increased but the HBcAb level declined in the CpG-1826 group compared to CpG-1982 and PBS control groups. Results of ALT activity indicated no significant difference among CpG-1826 group, CpG-1982 and PBS control groups. Body weighting and histopathology examination showed no obvious toxicity. CONCLUSIONS Given the stimulation activity of a host immune system, CpG ODN is a promising strategy for HBV therapy with more relevant research needed.
Collapse
Affiliation(s)
- Wei Hu
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | |
Collapse
|
14
|
Yang C, Wang L, Wang J, Jiang Q, Qiu L, Zhang H, Song L. The polymorphism in the promoter of HSP70 gene is associated with heat tolerance of two congener endemic bay scallops (Argopecten irradians irradians and A. i. concentricus). PLoS One 2014; 9:e102332. [PMID: 25028964 PMCID: PMC4100766 DOI: 10.1371/journal.pone.0102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
Background The heat shock protein 70 (HSP70) is one kind of molecular chaperones, which plays a key role in protein metabolism under normal and stress conditions. Methodology In the present study, the mRNA expressions of HSP70 under normal physiological condition and after acute heat stress were investigated in gills of two bay scallop populations (Argopecten irradians irradians and A. i. concentricus). The heat resistant scallops A. i. concentricus showed significantly lower basal level and higher induction of HSP70 compared with that of the heat sensitive scallops A. i. irradians. The promoter sequence of HSP70 gene from bay scallop (AiHSP70) was cloned and the polymorphisms within this region were investigated to analyze their association with heat tolerance. Totally 11 single nucleotide polymorphisms (SNPs) were identified, and four of them (−967, −480, −408 and −83) were associated with heat tolerance after HWE analysis and association analysis. Based on the result of linkage disequilibrium analysis, the in vitro transcriptional activities of AiHSP70 promoters with different genotype were further determined, and the results showed that promoter from A. i. concentricus exhibited higher transcriptional activity than that from A. i. irradians (P<0.05). Conclusions The results provided insights into the molecular mechanisms underlying the thermal adaptation of different congener endemic bay scallops, which suggested that the increased heat tolerance of A. i. concentricus (compared with A. i. irradians) was associated with the higher expression of AiHSP70. Meanwhile, the −967 GG, −480 AA, −408 TT and −83 AG genotypes could be potential markers for scallop selection breeding with higher heat tolerance.
Collapse
Affiliation(s)
- Chuanyan Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| | - Jingjing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| |
Collapse
|
15
|
Sun R, Wang M, Wang L, Yue F, Yi Q, Huang M, Liu R, Qiu L, Song L. The immune responses triggered by CpG ODNs in shrimp Litopenaeus vannamei are associated with LvTolls. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:15-22. [PMID: 24176974 DOI: 10.1016/j.dci.2013.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/14/2013] [Accepted: 10/17/2013] [Indexed: 06/02/2023]
Abstract
CpG oligodeoxynucleotides (ODNs) represent a kind of pathogen-associated molecular patterns (PAMPs) as well as a novel adjuvant that activate the innate immune system through interaction with Toll-like receptor 9 (TLR9) in mammals. In the present study, the synthetic oligodeoxynucleotides, CpG ODN 2395, was employed to investigate the interactive mode of CpG ODNs with three known Tolls (LvToll1-3) from shrimp Litopenaeus vannamei. The mature peptides of extracellular domains of LvTolls (LvToll-ECDs) were recombinant expressed and their binding activities to CpG ODN 2395 were further examined by ELISA. rLvToll1-ECD and rLvToll3-ECD exhibited affinity to CpG ODN 2395 in a dose-dependent manner when their concentrations ranged from 0.25 to 2.00 μmol/L, while rLvToll2-ECD did not show any binding activities to CpG ODN 2395 in tested concentrations. Additionally, after the stimulation of CpG ODN 2395, the luciferase activities of HEK293T cells transfected with LvToll1-mosaic or LvToll3-mosaic were significantly increased to 2.38-fold (p<0.01) and 1.56-fold (p<0.01), while that in the HEK293T cells transfected with LvToll2-mosaic declined to 0.41-fold. The TNF-α activities were significantly enhanced (p<0.01), and a significant increase (p<0.05) of the NO production was observed at 12h post CpG ODN 2395 stimulation. Moreover, the induced TNF-α activities and increased NO production triggered by CpG ODN 2395 were abolished after the treatment of chloroquine (CQ). The uptake of CpG ODN 2395 by shrimp haemocytes was investigated using the laser scanning confocal microscope, and CpG ODN 2395 was observed to be internalized by the haemocytes and distributed in the cytoplasm with aggregated signals around the nucleuses. It suggested that the interactions of CpG ODNs with LvToll1 and LvToll3 as well as the mature of endosomes in the haemocytes of shrimp L. vannamei were indispensable for the triggering of immune responses by CpG ODNs, and the results provided a foundation for the application of CpG ODNs as the novel immunostimulants in aquaculture.
Collapse
Affiliation(s)
- Rui Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Yi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
16
|
The polymorphism in the promoter region of metallothionein 1 is associated with heat tolerance of scallop Argopecten irradians. Gene 2013; 526:429-36. [DOI: 10.1016/j.gene.2013.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/01/2013] [Accepted: 05/08/2013] [Indexed: 12/17/2022]
|
17
|
Zhang Y, Zhou Z, Wang L, Liu R, Song L. The suppressor of cytokine signaling 2 (SOCS2) modulating the neurotransmitters release in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2013; 35:101-106. [PMID: 23603236 DOI: 10.1016/j.fsi.2013.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/11/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
The SOCS proteins appear to define an important mechanism for the negative regulation of the cytokine-JAK-STAT pathway. In the present study, the mRNA expression profiles of a SOCS2 from Chinese mitten crab Eriocheir sinensis (EsSOCS2) after pentachlorophenol (PCP) treatment or RNA interference (RNAi) were analyzed to understand its possible regulatory roles in modulating the neurotransmitter release. The EsSOCS2 expression level in the PCP treated group was significantly higher than that of blank at 1.5, 3, 12 and 24 h after exposure, suggesting that EsSOCS2 might be involved in controlling and reducing neuronal cell damage resulted from PCP treatment. After the expression of EsSOCS2 gene was silenced by RNAi, the concentrations of catecholamines and nitric oxide (NO) were examined to evaluate the modulation of EsSOCS2 on the release of neurotransmitters. At 48 h after the treatment with sequence-specific dsRNA targeting EsSOCS2, the expression of EsSOCS2 was reduced to half compared to the original level, and the concentrations of norepinephrine and NO increased, while dopamine decreased significantly in haemolymph. The preliminary results indicated that EsSOCS2 regulated catecholaminergic neuroendocrine system to release catecholamines into haemolymph and might be an important feedback inhibitor of tyrosine kinase signaling pathways in crab, which subsequently regulated NO synthesis and prevented excessive NO release. This information is helpful to further understand the modulation of EsSOCS2 on neurotransmitter release in crab.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | |
Collapse
|
18
|
Sun R, Yue F, Qiu L, Zhang Y, Wang L, Zhou Z, Zhang H, Yi Q, Song L. The CpG ODNs enriched diets enhance the immuno-protection efficiency and growth rate of Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2013; 35:154-160. [PMID: 23623940 DOI: 10.1016/j.fsi.2013.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/29/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
CpG oligodeoxynucleotides (ODNs), the well-known vaccine adjuvant in mammals, have been proved to mount innate immune responses in crustaceans. In the present study, CpG ODNs was employed as supplements in diets to fed crab Eriocheir sinensis, and the changes of immune parameters as well as weight gain were investigated to evaluate its possible application in crab farming. After the crabs were fed with 40 mg/kg and 100 mg/kg CpG ODNs containing diets (designated as C40 and C100 group) for four weeks, the lysozyme activities were significantly enhanced (p < 0.01) in both groups, while the catalase activity was only increased (p < 0.01) in the C40 group. When those crabs were subsequently challenged with Aeromonas hydrophila, the cumulative mortalities in C40 and C100 groups were declined by 10.4% and 10.8% (p < 0.05) compared with that of control group, respectively. Interestingly, the final weights of crabs were increased after four weeks' feeding of CpG ODNs, and the percentage of weight gain in C40 group reached 124.5 ± 14.2%, which was significantly higher (p < 0.05) than that of control group (78.1 ± 19.2%) and C100 group (107.3 ± 28.2%). The uptake of CpG ODNs by haemocytes and the possible mechanism of CpG ODNs to active the immune response were investigated by using the laser scanning confocal microscope. CpG ODNs (labeled with 5'-end-FAM) could be internalized by the haemocytes after incubation of 20 min, with strong signals detected at the cell membrane and in the cytoplasm. In the cytoplasm, most of the CpG ODNs were localized in lysosome, and some of them escaped from the lysosomal compartments and aggregated around the nuclear. The results clearly demonstrated that CpG ODNs could be internalized directly by crab haemocytes and mostly located in the late endosome. The enhancements of immuno-protection efficiency and growth rate from CpG ODNs as supplements in diets might depend on the uptaking and locating processes, and they could be used as a potential immunostimulant for the crab aquaculture.
Collapse
Affiliation(s)
- Rui Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Labreuche Y, Warr GW. Insights into the antiviral functions of the RNAi machinery in penaeid shrimp. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1002-1010. [PMID: 22732509 DOI: 10.1016/j.fsi.2012.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
Over the last decade, RNA interference pathways have emerged in eukaryotes as critical regulators of many diverse biological functions including, among others, transcriptional gene regulation, post-transcriptional gene silencing, heterochromatin remodelling, suppression of transposon activity, and antiviral defences. Although this gene silencing process has been reported to be relatively well conserved in species of different phyla, there are important discrepancies between plants, invertebrates and mammals. In penaeid shrimp, the existence of an intact and functional RNAi machinery is supported by a rapidly growing body of evidence. However, the extent to which this process participates to the host immune responses remains poorly defined in this non-model organism. This review summarizes our current knowledge of RNAi mechanisms in shrimp and focuses on their implication in antiviral activities and shrimp immune defences.
Collapse
Affiliation(s)
- Yannick Labreuche
- IFREMER, Département Lagons, Ecosystèmes et Aquaculture Durable en Nouvelle-Calédonie, BP 2059, 98846 Nouméa Cedex, New Caledonia, France.
| | | |
Collapse
|
20
|
Sun R, Qiu L, Yue F, Wang L, Liu R, Zhou Z, Zhang H, Song L. Hemocytic immune responses triggered by CpG ODNs in shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2013; 34:38-45. [PMID: 23063537 DOI: 10.1016/j.fsi.2012.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/21/2012] [Accepted: 09/12/2012] [Indexed: 06/01/2023]
Abstract
CpG oligodeoxynucleotides (CpG ODNs), also called bacterial DNA or synthetic oligodeoxynucleotides, can induce apparent immunity protection against various pathogens, and they are widely used as functional immunostimulant or vaccine adjuvant in mammals. In the present study, CpG-rich plasmid pUC57-CpG was constructed and employed to stimulate the shrimp Litopenaeus vannamei, and the total hemocyte count, percentage of apoptotic hemocytes, regeneration of circulating hemocytes, the ability of phagocytosis and generation of reactive oxygen species (ROS) were measured to reveal the possible protection mechanism of CpG ODNs. After the injection of pUC57-CpG, the total hemocyte count significantly decreased (p < 0.01) to 2.56 × 10(7) cell/mL at the first day post stimulation, while the apoptosis increased (p < 0.01), which was 1.72-fold of that in control group. At the same time, the regeneration of circulating hemocytes fluctuated in a similar trend, and a significant increase was observed at the first day post stimulation. The phagocytotic activity including the percentage of phagocytosis and phagocytotic index, experienced an upward tend during the whole experimental period and the ROS level increased by 22% (p < 0.05) compared to that in the control group at first day post stimulation. These results together suggested that pUC57-CpG could promote the apoptosis and regeneration of circulating hemocytes, and enhance the phagocytosis and ROS production, which might contribute to the boosted immunity against the infection of pathogens.
Collapse
Affiliation(s)
- Rui Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang Y, Wang L, Wang L, Wu N, Zhou Z, Song L. An integrin from shrimp Litopenaeus vannamei mediated microbial agglutination and cell proliferation. PLoS One 2012; 7:e40615. [PMID: 22792387 PMCID: PMC3392225 DOI: 10.1371/journal.pone.0040615] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 06/11/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Integrins are a family of adhesion receptors which regulate cell proliferation, differentiation, leukocyte migration, and complement receptor-dependent phagocytosis. In invertebrates, as a cell adhesion receptor, β integrins play an important role for the balanced activation of immune defense responses especially during the encounter of infections. The present study attempts to characterize the immune functions of shrimp integrin (LvIntegrin) to have better understanding on the immune system and its regulation mechanisms in shrimps. METHODOLOGY A shrimp integrin was identified from the Pacific white shrimp Litopenaeus vannamei (designated as LvIntegrin). Its full-length cDNA was of 2621 bp with an open reading frame (ORF) of 2439 bp encoding a polypeptide of 812 amino acids. The mRNA expression of LvIntegrin was significantly up-regulated at 3, 6 and 12 h after Listonella anguillarum challenge. The cDNA fragment encoding β integrin domains (βA and hybrid domain) of LvIntegrin was recombined and expressed in Escherichia coli BL21(DE3)-pLysS. The recombinant protein (rLvIntegrin) could significantly agglutinate the tested microbe including E. coli JM109, L. anguillarum, Micrococcus luteus and Candida dattiladattila in the presence of divalent cations. Moreover, when NIH3T3 cells were cultured with rLvIntegrin, the proliferation rate increased significantly in a dose-dependent manner. CONCLUSIONS LvIntegrin, a shrimp β integrin was identified from L. vannamei, shared several highly conserved features. LvIntegrin exhibited broad-spectrum agglutination activity towards both bacteria and fungi and could improve the proliferation of NIH3T3 cells, indicating that LvIntegrin is involved in the immune response against microbe challenge and regulation of cell proliferation as a cell adhesion receptor in shrimp.
Collapse
Affiliation(s)
- Ying Zhang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Research Center of Fishery Resources and Ecology, Shandong Marine Fisheries Research Institute, Yantai, China
| | - Leilei Wang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Lingling Wang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ning Wu
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zhi Zhou
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
22
|
Yang C, Wang L, Siva VS, Shi X, Jiang Q, Wang J, Zhang H, Song L. A novel cold-regulated cold shock domain containing protein from scallop Chlamys farreri with nucleic acid-binding activity. PLoS One 2012; 7:e32012. [PMID: 22359656 PMCID: PMC3281114 DOI: 10.1371/journal.pone.0032012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/20/2012] [Indexed: 11/26/2022] Open
Abstract
Background The cold shock domain (CSD) containing proteins (CSDPs) are one group of the evolutionarily conserved nucleic acid-binding proteins widely distributed in bacteria, plants, animals, and involved in various cellular processes, including adaptation to low temperature, cellular growth, nutrient stress and stationary phase. Methodology The cDNA of a novel CSDP was cloned from Zhikong scallop Chlamys farreri (designated as CfCSP) by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The full length cDNA of CfCSP was of 1735 bp containing a 927 bp open reading frame which encoded an N-terminal CSD with conserved nucleic acids binding motif and a C-terminal domain with four Arg-Gly-Gly (RGG) repeats. The CSD of CfCSP shared high homology with the CSDs from other CSDPs in vertebrate, invertebrate and bacteria. The mRNA transcripts of CfCSP were mainly detected in the tissue of adductor and also marginally detectable in gill, hepatopancreas, hemocytes, kidney, mantle and gonad of healthy scallop. The relative expression level of CfCSP was up-regulated significantly in adductor and hemocytes at 1 h and 24 h respectively after low temperature treatment (P<0.05). The recombinant CfCSP protein (rCfCSP) could bind ssDNA and in vitro transcribed mRNA, but it could not bind dsDNA. BX04, a cold sensitive Escherichia coli CSP quadruple-deletion mutant, was used to examine the cold adaptation ability of CfCSP. After incubation at 17°C for 120 h, the strain of BX04 containing the vector pINIII showed growth defect and failed to form colonies, while strain containing pINIII-CSPA or pINIII-CfCSP grew vigorously, indicating that CfCSP shared a similar function with E. coli CSPs for the cold adaptation. Conclusions These results suggest that CfCSP is a novel eukaryotic cold-regulated nucleic acid-binding protein and may function as an RNA chaperone in vivo during the cold adaptation process.
Collapse
Affiliation(s)
- Chuanyan Yang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Lingling Wang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| | - Vinu S. Siva
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Shi
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Qiufen Jiang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Wang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
| | - Linsheng Song
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| |
Collapse
|
23
|
Kitagishi Y, Okumura N, Yoshida H, Tateishi C, Nishimura Y, Matsuda S. Dicer functions in aquatic species. JOURNAL OF AMINO ACIDS 2011; 2011:782187. [PMID: 22312469 PMCID: PMC3268030 DOI: 10.4061/2011/782187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/02/2011] [Indexed: 12/04/2022]
Abstract
Dicer is an RNase III enzyme with two catalytic subunits, which catalyzes the cleavage of double-stranded RNA to small interfering RNAs and micro-RNAs, which are mainly involved in invasive nucleic acid defense and endogenous genes regulation. Dicer is abundantly expressed in embryos, indicating the importance of the protein in early embryonic development. In addition, Dicer is thought to be involved in defense mechanism against foreign nucleic acids such as viruses. This paper will mainly focus on the recent progress of Dicer-related research and discuss potential RNA interference pathways in aquatic species.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Zhang Y, Wang L, Wang L, Yang J, Gai Y, Qiu L, Song L. The second anti-lipopolysaccharide factor (EsALF-2) with antimicrobial activity from Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:945-952. [PMID: 20416335 DOI: 10.1016/j.dci.2010.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/10/2010] [Accepted: 04/14/2010] [Indexed: 05/29/2023]
Abstract
The anti-lipopolysaccharide factor (ALF) is a small basic protein that can bind and neutralize lipopolysaccharide (LPS), mediating degranulation and activation of an intracellular coagulation cascade. In the present study, cDNA of the second Eriocheir sinensis ALF (designated as EsALF-2) was cloned and the full-length cDNA of EsALF-2 was of 724bp, consisting of an open reading frame (ORF) of 363bp encoding a polypeptide of 120 amino acids. The deduced amino acid of EsALF-2 shared 82% similarity with EsALF-1 from E. sinensis and about 53-65% similarity with ALFs from other crustaceans. The potential tertiary structures of EsALF-1 and EsALF-2 contained two highly conserved-cysteine residues to define the LPS binding site, but the N-terminal of EsALF-1 formed a single additional alpha-helix compared to EsALF-2, implying that EsALF-1 and EsALF-2 might represent different biological functions in E. sinensis. The mRNA transcript of EsALF-2 was detected in all examined tissues of healthy crabs, including haemocytes, hepatopancreas, gill, muscle, heart and gonad, which suggested that EsALF-2 could be a multifunctional molecule for the host immune defense responses and thereby provided systemic protection against pathogens. The mRNA expression of EsALF-2 was up-regulated after Listonella anguillarum and Pichia pastoris challenge and the recombinant protein of EsALF-2 showed antimicrobial activity against L. anguillarum and P. pastoris, indicating that EsALF-2 was involved in the immune defense responses in Chinese mitten crab against L. anguillarum and P. pastoris. These results together indicated that there were abundant and diverse ALFs in E. sinensis with various biological functions and these ALFs would provide candidate promising therapeutic or prophylactic agents in health management and diseases control of crab aquaculture.
Collapse
Affiliation(s)
- Ying Zhang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | | | | | | | | | | | | |
Collapse
|
25
|
|