1
|
Xiang Y, Shi Y, Sun L, Liang W, Chen K, Li C. Novel ApeC-containing protein mediates the recognition and internalization of Vibrio splendidus in Apostichopus japonicus. Int J Biol Macromol 2024; 275:133737. [PMID: 38986992 DOI: 10.1016/j.ijbiomac.2024.133737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Pattern recognition receptors (PRRs) mediate the innate immune responses and play a crucial role in host defense against pathogen infections. Apextrin C-terminal (ApeC)-containing proteins (ACPs), a newly discovered class of PRRs specific to invertebrates, recognize pathogens through their ApeC domain as intracellular or extracellular effectors. However, the other immunological functions of ACPs remain unclear. In this study, a membrane-localized ACP receptor was identified in the sea cucumber Apostichopus japonicus (denoted as AjACP1). The ApeC domain of AjACP1, which was located outside of its cell membrane, exhibited the capability to recognize and aggregate Vibrio splendidus. AjACP1 was upregulated upon V. splendidus infection, internalizing into the cytoplasm of coelomocytes. AjACP1 overexpression enhanced the phagocytic activity of coelomocytes against V. splendidus, while knockdown of AjACP1 by RNA interfere inhibited coelomocyte endocytosis. Inhibitor experiments indicated that AjACP1 regulated coelomocyte phagocytosis through the actin-dependent endocytic signaling pathway. Further investigation revealed that AjACP1 interacted with the subunit of the actin-related protein 2/3 complex ARPC2, promoting F-actin polymerization and cytoskeletal rearrangement and thereby affecting the coelomocyte phagocytosis of V. splendidus via the actin-dependent endocytic signaling pathway. As a novel membrane PRR, AjACP1 mediates the recognition and phagocytic activity of coelomocytes against V. splendidus through the AjACP1-ARPC2-F-actin polymerization and cytoskeletal rearrangement pathway.
Collapse
Affiliation(s)
- Yangxi Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yue Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lianlian Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kaiyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
2
|
Huang B, Ma J, Xu W, Cui J, Chen J, Qu Y, Zhao Y, Han Y, Liu Y, Wang W, Wang X. A newly identified scallop MyD88 interacts with TLR and functions in innate immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109697. [PMID: 38871139 DOI: 10.1016/j.fsi.2024.109697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Myeloid differentiation factor-88 (MyD88) is a key adaptor of the toll-like receptor (TLR) signaling pathway and plays a crucial role in innate immune signal transduction in animals. However, the MyD88-mediated signal transduction mechanism in shellfish has not been well studied. In this study, a new MyD88 gene, CfMyD88-2, was identified in the Zhikong scallop, Chlamys farreri. The 1779 bp long open reading frame encodes 592 amino acids. The N-terminus of CfMyD88-2 contains a conserved death domain (DD), followed by a TIR (TLR/Interleukin-1 Receptor) domain. The results of the multi-sequence comparison showed that the TIR domain sequences were highly conserved. Phylogenetic analysis revealed that CfMyD88-2 was first associated with Mizuhopecten yessoensis MyD88-4 and Argopecten irradians MyD88-4. CfMyD88-2 mRNA was expressed in all scallop tissues, as detected by qRT-PCR, and the expression level was the highest in the mantle and hepatopancreas. In addition, CfMyD88-2 mRNA expression significantly increased after pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharide, peptidoglycan, or polyinosinic-polycytidylic acid) stimulation. The results of the co-immunoprecipitation experiments in HEK293T cells showed that both CfMyD88-1 and CfMyD88-2 interacted with the TLR protein of scallops, suggesting the existence of more than one functional TLR-MyD88 signaling axis in scallops. Dual luciferase reporter gene assays indicated that the overexpressed CfMyD88-2 in HEK293T cells activated interferon (IFN) α, IFN-β, IFN-γ, and NF-κB reporter genes, indicating that the protein has multiple functions. The results of the subcellular localization experiment uncovered that CfMyD88-2 was mainly localized in the cytoplasm of human cells. In summary, the novel identified CfMyD88-2 can respond to the challenge of PAMPs, participate in TLR immune signaling, and may activate downstream effector genes such as NF-κB gene. These research results will be useful in advancing the theory of innate immunity in invertebrates and provide a reference for the selection of disease-resistant scallops in the future.
Collapse
Affiliation(s)
- Baoyu Huang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Wenwen Xu
- School of Agriculture, Ludong University, Yantai, 264025, China; Rushan Marine Economy and Development Center, Rushan, 264599, China
| | - Jie Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yifan Qu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yue Zhao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd., Yantai, 261413, China.
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
3
|
Yu Y, Wang M, Ren Y, Wang X, Ge X, Li K. Effects of Scallop Visceral Mass and Mantle as Dietary Supplements on the Growth, Immune Response and Intestinal Microflora of Juvenile Sea Cucumber Apostichopus japonicus. BIOLOGY 2023; 12:1239. [PMID: 37759638 PMCID: PMC10525178 DOI: 10.3390/biology12091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Scallop visceral mass and mantle are aquatic byproducts and waste, but they have high contents of protein. In this study, scallop visceral mass and mantle were used as supplements in the diet of juvenile sea cucumber (A. japonicus) and their effects on the growth, fatty acid and amino acid compositions, the non-specific immune responses and the intestinal microflora of A. japonicus were investigated through a 40 d feeding experiment. The results showed that dietary supplementation of scallop visceral mass significantly accelerated the specific growth rate (SGR) of juvenile A. japonicus by 3 times within 20 days, and also raised the contents of ω-3 fatty acids including EPA and DHA and the ω-3/ω-6 ratio of the sea cucumber tissue, which is favorable to the health and commercial value of the sea cucumber. Furthermore, it was found that the supplementation of scallop visceral mass and mantle stimulated the expression of immune-related genes and enhanced the immune defense in A. japonicus. Scallop visceral mass and mantle supplementation also increased the microbial diversity and the abundance of beneficial microbes including Bifidobacteriaceae, Streptomycetaceae, Clostridiaceae and Rhizobiales in the gut of A. japonicus. This study reveals the beneficial effects of dietary supplementation of scallop visceral mass and mantle on the growth of juvenile A. japonicus, which might be a promising way to reutilize this scallop waste and raise its economic value.
Collapse
Affiliation(s)
- Yu Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (M.W.); (X.W.); (X.G.)
| | - Mengshu Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (M.W.); (X.W.); (X.G.)
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (M.W.); (X.W.); (X.G.)
| | - Xin Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (M.W.); (X.W.); (X.G.)
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiangyun Ge
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (M.W.); (X.W.); (X.G.)
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Zhang J, Liu X, Wang YK, Yu ZH, Wang WJ, Jia WZ. Transcriptome and metabolome analyses reveal gender-specific expression genes in sea cucumber (Holothuria leucospilota). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101117. [PMID: 37591053 DOI: 10.1016/j.cbd.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
The sea cucumber Holothuria leucospilota, a nutritive and commercial marine species, has a high protein and low lipid content. To date, the mechanisms underlying gender determination and differentiation in sea cucumbers remain unclear. Identifying gender-specific molecular markers is an effective method of revealing the genetic basis of gender determination and differentiation. The inability to distinguish between male and female individuals causes reproductive efficiency to decline in aquaculture. In this study, we used the gonads of the sea cucumber H. leucospilota as samples to conduct the experiment. The differentially abundant metabolites (DAMs) detected by liquid chromatography-mass spectrometry were enriched in pathways associated with prolactin metabolism, insulin metabolism, hypoxia-inducible factor-1 signaling, and calcium signaling. At the transcriptome level, Illumina sequencing was performed on H. leucospilota, demonstrating that gender-specific expression genes were enriched in the retinoic acid-inducible gene I-like receptor signaling pathway, C-type lectin receptor signaling pathway, alpha-linolenic acid metabolism, and ether lipid metabolism by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. By analyzing the common pathways between DAMs and differentially expressed genes, we found that gender-related genes of H. leucospilota were mostly enriched in the necroptosis pathway and the cysteine and methionine metabolism pathways. According to the common pathways, uch-sc1 and uch-sc2 are male-specific expression genes, and uch-sc3 and bhmt are female-specific expression genes at the mRNA level. These results provide information on gender differences in H. leucospilota.
Collapse
Affiliation(s)
- Jing Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Xi Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya-Kun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zong-He Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Jie Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei-Zhang Jia
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Wang R, Han P, Liu X, Wang X. Genome-wide identification of TNF receptor-associated factors in Japanese flounder (Paralichthys olivaceus) and functional analysis of resistance to temperature and Edwardsiella tarda stress. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108862. [PMID: 37263548 DOI: 10.1016/j.fsi.2023.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Tumor necrosis factor receptor-associated factors (TRAFs), as the signaling mediators of the tumor necrosis factor (TNFR) superfamily, toll-like receptors (TLR) and interleukin-1 receptor (IL-1R) superfamily, can activate downstream signal transduction pathways and play an important role in the body's immune process. In this study, six TRAF genes, namely PoTRAF2a, PoTRAF2b, PoTRAF3, PoTRAF4, PoTRAF6 and PoTRAF7, were identified and annotated in Japanese flounder by using bioinformatics methods. Phylogenetic analysis confirmed that TRAF genes can be divided into seven groups. Analysis of motif composition and gene structure demonstrated that all PoTRAF members were evolutionarily conserved. The expression patterns of PoTRAF genes were then further investigated in six different developmental stages and eleven tissues of healthy fish, and it was found that there were spatial and tissue specificities among the members. To investigate the immune response of Japanese flounder to abiotic and biotic stresses, we further analyzed the expression profile of PoTRAFs after temperature stress and pathogen challenge. The result showed that PoTRAF3 and PoTRAF4 were observably differentially expressed under temperature stress, indicating that they were involved in the immune response after temperature stress. The expression of PoTRAF2a, PoTRAF2b and PoTRAF4 was significantly different after E. tarda infection, suggesting that they might have antibacterial effects. These results would help to clarify the molecular roles of PoTRAF genes in the regulation of immune and inflammatory responses in Japanese flounder.
Collapse
Affiliation(s)
- Ruoxin Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
6
|
Orús-Alcalde A, Børve A, Hejnol A. The localization of Toll and Imd pathway and complement system components and their response to Vibrio infection in the nemertean Lineus ruber. BMC Biol 2023; 21:7. [PMID: 36635688 PMCID: PMC9835746 DOI: 10.1186/s12915-022-01482-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Innate immunity is the first line of defense against pathogens. In animals, the Toll pathway, the Imd pathway, the complement system, and lectins are well-known mechanisms involved in innate immunity. Although these pathways and systems are well understood in vertebrates and arthropods, they are understudied in other invertebrates. RESULTS To shed light on immunity in the nemertean Lineus ruber, we performed a transcriptomic survey and identified the main components of the Toll pathway (e.g., myD88, dorsal/dif/NFκB-p65), the Imd pathway (e.g., imd, relish/NFκB-p105/100), the complement system (e.g., C3, cfb), and some lectins (FreD-Cs and C-lectins). In situ hybridization showed that TLRβ1, TLRβ2, and imd are expressed in the nervous system; the complement gene C3-1 is expressed in the gut; and the lectins are expressed in the nervous system, the blood, and the gut. To reveal their potential role in defense mechanisms, we performed immune challenge experiments, in which Lineus ruber specimens were exposed to the gram-negative bacteria Vibrio diazotrophicus. Our results show the upregulation of specific components of the Toll pathway (TLRα3, TLRβ1, and TLRβ2), the complement system (C3-1), and lectins (c-lectin2 and fred-c5). CONCLUSIONS Therefore, similarly to what occurs in other invertebrates, our study shows that components of the Toll pathway, the complement system, and lectins are involved in the immune response in the nemertean Lineus ruber. The presence of these pathways and systems in Lineus ruber, but also in other spiralians; in ecdysozoans; and in deuterostomes suggests that these pathways and systems were involved in the immune response in the stem species of Bilateria.
Collapse
Affiliation(s)
- Andrea Orús-Alcalde
- grid.7914.b0000 0004 1936 7443Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006 Bergen, Norway
| | - Aina Børve
- grid.7914.b0000 0004 1936 7443Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006 Bergen, Norway
| | - Andreas Hejnol
- grid.7914.b0000 0004 1936 7443Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006 Bergen, Norway ,grid.9613.d0000 0001 1939 2794Faculty of Biological Sciences, Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
7
|
Yu K, Zhao X, Xiang Y, Li C. Phenotypic and functional characterization of two coelomocyte subsets in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108453. [PMID: 36471560 DOI: 10.1016/j.fsi.2022.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The hemocytes of invertebrates are composed of different cell subsets with different morphologies and structures. Different cell subsets have different immune functions, which play an important role in innate immune response against pathogens. However, the understanding of the classification of Apostichopus japonicus coelomocytes and the molecular basis of immune function of different cell subsets is very limited. In this study, two coelomocyte subpopulations of A. japonicus were isolated by Percoll density gradient centrifugation. They were identified from their morphological and structural characteristics, namely, spherical cells with a size of 10-12 μm spherical in shape and a large number of small granules inside; lymphocyte-like cells with a size of 4-5 μm spherical or oval in shape, and 1-3 filopodia. Functionally, the phagocytic capacity and lysosomal activity in spherical cells were significantly greater than those in lymphocyte-like cells. The results suggest that spherical cells may play a more critical role in the immune responses. Meanwhile, transcriptome sequencing analysis was performed to further clarify the functional differences between the two cell subsets. The data indicated significantly different gene expression patterns in them. Spherical cells tend to participate in immune defense, whereas lymphocyte-like cells tend to participate in energy metabolism. In addition, lymphocyte-like cells may convert oxidative phosphorylation to glycolysis by changing the manner of energy metabolism to quickly adapt to the energy demand of external stimuli. Spherical cells may respond to LPS stimulation through phagocytosis, and their response time is slower than that of lymphocyte-like cells. The expression of genes involved in endocytosis, phagocytosis, and lysosomal and humoral immunity in spherical cells was significantly higher than that in lymphocyte-like cells. These data provide valuable information for understanding the molecular basis of cellular and humoral immunity in A. japonicus.
Collapse
Affiliation(s)
- Kangrong Yu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Yangxi Xiang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
8
|
Zhao T, Zou Y, Yan H, Chang Y, Zhan Y. Non-coding RNAs targeting NF-κB pathways in aquatic animals: A review. Front Immunol 2023; 14:1091607. [PMID: 36825023 PMCID: PMC9941745 DOI: 10.3389/fimmu.2023.1091607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Nuclear factor-kappa B (NF-κB) pathways have a close relationship with many diseases, especially in terms of the regulation of inflammation and the immune response. Non-coding RNAs (ncRNAs) are a heterogeneous subset of endogenous RNAs that directly affect cellular function in the absence of proteins or peptide products; these include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), etc. Studies on the roles of ncRNAs in targeting the NF-κB pathways in aquatic animals are scarce. A few research studies have confirmed detailed regulatory mechanisms among ncRNAs and the NF-κB pathways in aquatic animals. This comprehensive review is presented concerning ncRNAs targeting the NF-κB pathway in aquatic animals and provides new insights into NF-κB pathways regulatory mechanisms of aquatic animals. The review discusses new possibilities for developing non-coding-RNA-based antiviral applications in fisheries.
Collapse
Affiliation(s)
- Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yang Zou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hanyu Yan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
9
|
Alradi MF, Lu S, Wang L, Han Z, Elradi SA, Khogali MK, Liu X, Wei X, Chen K, Li S, Feng C. Characterization and functional analysis of a myeloid differentiation factor 88 in Ostrinia furnacalis Guenée larvae infected by Bacillus thuringiensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104489. [PMID: 35781013 DOI: 10.1016/j.dci.2022.104489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a pivotal adapter protein involved in activating nuclear factor NF-κB of the Toll pathway in insect innate immunity. MyD88 has been extensively studied in vertebrates and Drosophila. However, the information ascribed to MyD88 in Lepidoptera is scarce. In the present study, an Ostrinia furnacalis MyD88 (OfMyD88) cDNA was cloned and functionally characterized (GenBank accession no. MN906311). The complete cDNA sequence of OfMyD88 is 804 bp, and contains a 630 bp open reading frame encoding 209 amino acid residues. OfMyD88 has the death domain (DD), an intermediate domain, and the Toll/interleukin 1 receptor (TIR) domain. OfMyD88 was widely expressed in immune-related tissues such as hemocytes, fat body, midgut, and integument, with the highest expression level in hemocytes, and the lowest expression level in integument. To clarify the immune function of MyD88, O. furnacalis larvae were challenged with Bacillus thuringiensis (Bt) through feeding. Bt oral infection had significantly up-regulated the expression of OfMyD88 and immune genes, including PPO2 (prophenoloxidase 2), Attacin, Gloverin, Cecropin, Moricin, GRP3 (β-1, 3-Glucan recognition protein 3), and Lysozyme, and increased the activities of PO and lysozyme in hemolymph of O. furnacalis larvae. Knockdown of OfMyD88 by RNA interference suppressed the expression levels of immune related genes, but not PPO2 in the larvae orally infected with Bt, suggesting that OfMyD88 is involved in defending against Bt invasion through the Toll signaling pathway, but does not affect the PPO expression in O. furnacalis larvae.
Collapse
Affiliation(s)
- Mohamed F Alradi
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Medical Entomology, College of Public and Environmental Health, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Shiqi Lu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhaoyang Han
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Sana A Elradi
- Department of Physiology, College of Medicine, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Mawahib K Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Poultry Production, Faculty of Animal Production, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiangyi Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shuzhong Li
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
10
|
Qi H, Liu Y, Jian F, Xing X, Wang J, Li C. Effects of dietary arachidonic acid (ARA) on immunity, growth and fatty acids of Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 127:901-909. [PMID: 35863534 DOI: 10.1016/j.fsi.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
As an important aquaculture species, improving the immunity of cultured Apostichopus japonicus (A. japonicus) is vital for its health in aquaculture farming. It has been shown that ARA is an important metabolite for A. japonicus infected by Vibrio splendidus. In this study, we aimed to determine the effects of dietary exogenous ARA on healthy sea cucumber cultures, including assessments of immunity, growth, and fatty acid content. Five experimental diets containing 0.01%, 0.29%, 0.46%, 0.70%, and 1.09% ARA were tested. The specific growth rate (SGR) of sea cucumbers did not be significantly affected by exogenous ARA diet groups. The results showed that dietary ARA between 0.49 and 1.09% notably improved the survival rate of sea cucumbers infected by Vibrio splendidus compared with the control group without exogenous ARA. The results also showed the effects of dietary ARA on immune-related genes, enzymes, and oxidation indices; most of the exogenous ARA significantly upregulated the mRNA expression of the genes NFκB, TLR, TLR3, TRAF6, Toll, and MyD88. The activities of ACP, AKP, and lysozyme increased in the 0.49-1.09% ARA groups, especially the dietary 0.49% ARA group. The SOD1 and NOS activities were enhanced by dietary ARA between 0.29 and 0.70%. Compared with the control, the MDA content increased, but the 0.49% ARA-diet group had a lower MDA content. Based on these data, 0.49-0.70% ARA significantly enhanced immunity in cultured A. japonicus. Exogenous 0.49% and 0.70% ARA also elevated the ARA, total PUFA and n-6 PUFA in the body walls. In conclusion, the appropriate exogenous ARA (0.49%-0.70%) in diets could improve immunity and fatty acid content considerably. The results provide basic evidence that ARA can serve a useful immune enhancer for A. japonicus aquaculture.
Collapse
Affiliation(s)
- Hongqing Qi
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Ying Liu
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Fanjie Jian
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Xuan Xing
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Jihui Wang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Cheng Li
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China.
| |
Collapse
|
11
|
Zhao T, Ren L, Li C, Liu L, Zou Y, Yan H, Zhan Y, Chang Y. MiR-7 Regulates Pathogen-Induced Immune Response via PAK1 in the Sea Cucumber Apostichopus japonicus. Front Immunol 2022; 13:927796. [PMID: 35911684 PMCID: PMC9329918 DOI: 10.3389/fimmu.2022.927796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA-7 (miR-7) is a highly conserved short non-coding RNA involved in various bioprocesses via the regulation of multiple target genes. To enrich our knowledge of the functions of miR-7 in innate immune regulation in echinoderms, we first investigated the targeting relationship between miR-7 and PAK1 in the sea cucumber Apostichopus japonicus and then explored the functions of miR-7, the PAK1 gene, and the miR-7/PAK1 axis in the pathogen-induced immune response of A. japonicus. Our results showed that miR-7 can bind to the 3ʹUTR of PAK1 and negatively regulate the expression of PAK1 in A. japonicus. Overexpression and inhibition of miR-7 and inhibition of the expression of PAK1 can alter phagocytosis, cellular agglutination, and lysozyme contents in A. japonicus. Both miR-7 and the PAK1 gene are involved in immune defense against Vibrio splendidus infection; the miR-7/AjPAK1 axis showed immune regulatory function at 48 to 72 h post-infection (hpi) after V. splendidus infection in A. japonicus. In summary, the results of this study established that miR-7 regulates the pathogen-induced immune response by targeting PAK1 in A. japonicus.
Collapse
Affiliation(s)
- Tanjun Zhao
- College of Life Science, Liaoning Normal University, Dalian, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Liyuan Ren
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Chengda Li
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Li Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yang Zou
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hanyu Yan
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
- *Correspondence: Yaoyao Zhan, ; Yaqing Chang,
| | - Yaqing Chang
- College of Life Science, Liaoning Normal University, Dalian, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
- *Correspondence: Yaoyao Zhan, ; Yaqing Chang,
| |
Collapse
|
12
|
Qu F, She Q, Li J, Zeng X, Li Y, Liu X, Ren L, Liu Z, Gao C, Lu X, Long M, Li X. Molecular Characterization of MyD88 in Anodonta woodiana and Its Involvement in the Innate Immune Response to Bacterial Infection. Front Immunol 2022; 13:925168. [PMID: 35757761 PMCID: PMC9226314 DOI: 10.3389/fimmu.2022.925168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
Myeloid differentiation factor 88 (MyD88) is a key adapter molecule in Toll-like receptor signal transduction that triggers downstream immune cascades involved in the host defense response to exogenous pathogens. However, the function of MyD88s in mollusks, especially in freshwater shellfish, remains poorly understood. In this study, a novel freshwater shellfish MyD88 (denoted AwMyD88) was characterized from Anodonta woodiana. The present AwMyD88 protein consists of 474 amino acids and contains a conserved a typical death domain (DD) and a conservative Toll/IL-1R (TIR) domain with three typical boxes. Quantitative real-time PCR (qRT-PCR) analysis showed that AwMyD88 was broadly expressed in all the examined tissues, and the highest expression level was observed in hemocytes of A. woodiana. When challenged with Aeromonas hydrophila and lipopolysaccharide (LPS), the mRNA expression levels of AwMyD88 were significantly induced in hemocytes of A. woodiana in vivo and in vitro. In addition, in vivo injection experiments revealed that MyD88 signaling pathway genes showed strong responsiveness to A. hydrophila challenge, and their expression levels were significantly upregulated in hemocytes. Knockdown of AwMyD88 reduced the transcript levels of immune related transcription factors (AwNF-κB and AwAP-1) and effectors (AwTNF, AwLYZ, AwDefense and AwAIF) during A. hydrophila infection. Moreover, subcellular localization analysis indicated that AwMyD88 was mainly localized to the cytoplasm in HEK293T cells. Finally, luciferase reporter assays revealed that AwMyD88 associates with AwTLR to activate the NF-κB and AP-1 signaling pathways in HEK293T cells. These results suggested that AwMyD88 might be involved in the host defense response to bacterial challenge, providing new insight into the immune function of the MyD88 signaling pathway in freshwater shellfish.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Qing She
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jialing Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xuan Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yumiao Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xinyu Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Lingxin Ren
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhenzhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Chaoran Gao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xinyu Lu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Mengyao Long
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xinya Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| |
Collapse
|
13
|
Jiang J, Gao S, Chen Z, Guan X, Zhang F, Li L, Zhao Z, Zhao L, Xiao Y, Dong Y, Zhou Z. Apostichopus japonicus matrix metalloproteinase-16 might act as a pattern recognition receptor. FISH & SHELLFISH IMMUNOLOGY 2022; 121:135-141. [PMID: 34998985 DOI: 10.1016/j.fsi.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Matrix metalloproteinases (MMPs) are an important family of proteinases involved in various physiological processes and associated with the immune response. However, the role of MMPs in the immune response remains unclear. To explore the possible role of MMPs in innate immunity, this study selected the MMP-16 gene encoding peptidoglycan (PGN) binding domain identified in the sea cucumber Apostichopus japonicus (named AjMMP-16, GenBank accession No. AQT26486) for microbial polysaccharide-induced transcriptional expression analysis by quantitative real-time PCR, correlation analysis with nine representative genes from A. japonicus immune pathways in microbial polysaccharide-induced transcriptional expression by using Pearson's correlation test, and prokaryotic recombinant expression. Next, its recombinant protein was employed for microbial polysaccharide-binding analysis with ELISA and bacterial binding analysis with the indirect immunofluorescence method. The results showed that AjMMP-16 was significantly induced by diaminopimelic acid (DAP)-type PGN, lipopolysaccharide, mannan, and β-1,3-glucan and was closely correlated with myeloid differentiation factor 88 (MyD88) in microbial polysaccharide-induced transcriptional expression. In addition, recombinant AjMMP-16 bound to lysine-type PGN, DAP-type PGN, lipopolysaccharide, mannan, β-1,3-glucan, Vibrio splendidus, Pseudoalteromonas nigrifaciens, Shewanella baltica, Bacillus cereus, Escherichia coli, and Staphylococcus aureus. These results suggest that AjMMP-16 might act as a pattern recognition receptor in innate immunity and play an important role in initiating the MyD88-dependent Toll-like receptor signaling pathway.
Collapse
Affiliation(s)
- Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Feifei Zhang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Li Li
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Liang Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Yao Xiao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
14
|
Ge Q, Wang J, Li J, Li J. Identification, characterization, and functional analysis of Toll and ECSIT in Exopalaemon carinicauda. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103926. [PMID: 33238179 DOI: 10.1016/j.dci.2020.103926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Toll and evolutionary conserved signaling intermediate in Toll pathways (ECSIT) are two essential molecules in Toll/Toll-like receptor (TLR)-mediated signaling pathway. In this study, Toll and ECSIT (named as EcToll and EcECSIT) were identified for the first time from Exopalaemon carinicauda. EcToll mRNA transcripts were high expressed in hemocytes and gill, and EcECSIT was mainly expressed in gill. The expression levels of EcToll and EcECSIT in gills both responded rapidly to Vibrio parahaemolyticus and WSSV stimulations and three types of antimicrobial peptide (AMP) genes were significantly up-regulated by challenge with V. parahaemolyticus. Knockdown of EcToll or EcECSIT increased the sensitivity of E. carinicauda to V. parahaemolyticus challenge and double knockdown of both EcToll and EcECSIT significantly suppressed the bacterial clearance ability of E. carinicauda in vivo. Furthermore, suppressing EcToll restrained the upregulation of EcECSIT and AMPs and suppressing EcECSIT impaired expression of AMPs by V. parahaemolyticus injection, which indicated that EcToll restricted V. parahaemolyticus infection through activating EcECSIT to induce AMPs. This study provides valuable information about the function of Toll-ECSIT pathway in the innate immunity in crustacean.
Collapse
Affiliation(s)
- Qianqian Ge
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jiajia Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jitao Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
15
|
Molecular Characterization and Evolution Analysis of Two Forms of TLR5 and TLR13 Genes Base on Larimichthys crocea Genome Data. Int J Genomics 2020; 2020:4895037. [PMID: 33376714 PMCID: PMC7744196 DOI: 10.1155/2020/4895037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/29/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022] Open
Abstract
TLRs (Toll-like receptors) are essential in host defense against pathogens. There are two types of TLR5, namely, membrane form of TLR5 (TLR5M) and soluble form of TLR5 (TLR5S), both of which perform a crucial role in flagellin response. TLR13 is a TLR that localizes to endosomes and recognizes nucleic acids released by internal microorganisms, including viruses, bacteria, and fungi. Here, the full-length coding sequence (CDS), protein structure, and immune response and subcellular localization of TLR5 (TLR5S) and TLR13 were characterized in large yellow croaker (Larimichthys crocea). These TLRs share high sequence homology with other ichthyic TLRs, while also having their own characters; qtPCR was determined and the results found that the three genes were constitutively expressed in all examined tissues: TLR5M was highly expressed in the spleen and liver; TLR13 expression was high in the kidney, liver, and spleen. And TLRs were upregulated following stimulation with Vibrio parahaemolyticus in the liver, spleen, and kidney. Immunofluorescence staining revealed that TLR5M were localized in the cytoplasm, while TLR5S and TLR13 were in the endosome. The evolutionary analysis has shown that TLR13 was clustered with TLR11, 19, 20, 21, and 22, while TLR5 and TLR3 were classified into a group; these results suggest that TLRs are vital in the defense of L. crocea against bacterial infection and further increase our understanding of TLR function in innate immunity in teleosts.
Collapse
|
16
|
Guo Y, Xu Y, Kang X, Meng C, Gu D, Zhou Y, Xiong D, Geng S, Jiao X, Pan Z. Molecular cloning and functional analysis of TRAF6 from Yangzhou great white goose Anser anser. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103435. [PMID: 31288047 DOI: 10.1016/j.dci.2019.103435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 06/09/2023]
Abstract
TNF receptor-associated factor 6 (TRAF6) is an adaptor protein and an E3 ubiquitin ligase mediating multiple cell signaling pathway activation in a context-dependent manner. TRAF6 plays critical roles in innate immune response and regulates function of antigen-presenting cells. Here, we cloned the goose TRAF6 (goTRAF6) gene from a healthy Yangzhou great white goose (Anser anser), which had a typical TRAF structure and shared a high-sequence identity with TRAF6 of other birds. Quantitative real-time PCR revealed that goTRAF6 mRNA was broadly expressed in all the studied tissues, with highest expression in the heart and pectoral muscle. Overexpression of goTRAF6 caused NF-κB activation in a dose-dependent manner and substantially upregulated IFN-β expression in HEK293T cells. Following Toll-like receptor (TLR) ligand stimulation of goose peripheral blood mononuclear cells, goTRAF6 and downstream inflammatory cytokine mRNA levels considerably up-regulated, especially at early stages. Salmonella Enteritidis challenge caused overexpression of goTRAF6 and cytokine mRNA in all the examined organs. These findings demonstrated that goTRAF6 played a substantial role in TLR-TRAF6 signaling cascade, and further contributed to the antibacterial-responses in host.
Collapse
Affiliation(s)
- Yaxin Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Ying Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xilong Kang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Chuang Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Dan Gu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Yingying Zhou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Dan Xiong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Shizhong Geng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China.
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China.
| |
Collapse
|
17
|
Zhan Y, Liu L, Zhao T, Sun J, Cui D, Li Y, Chang Y. MicroRNAs involved in innate immunity regulation in the sea cucumber: A review. FISH & SHELLFISH IMMUNOLOGY 2019; 95:297-304. [PMID: 31669896 DOI: 10.1016/j.fsi.2019.10.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The sea cucumber is one of the most economically significant echinoderms. The immunity against exogenous stimulation of sea cucumber is of great academic and economic importance. MicroRNAs (miRNAs) are a class of short endogenous non-coding RNAs (ncRNAs) that are considered as vital regulators of both innate and adaptive immune responses in most eukaryotes. In sea cucumbers, some miRNAs (such as miR-133, miR-137, and miR-2008, among others) that participate in the regulation of innate immunity have been recently identified and characterized. This review focuses on those known miRNAs and their corresponding target genes that participate in the regulation of the complement system, Toll-like receptor (TLR) pathway, reactive oxygen species (ROS) production and apoptosis pathways in sea cucumbers. Moreover, we cover immune-related miRNA investigations in sea cucumbers that provide insights into developing more miRNA-based biomarkers and therapeutic strategies for sea cucumber diseases.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Li Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yingying Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
18
|
Association of TRAF1/C5 Locus Polymorphisms with Epilepsy and Clinical Traits in Mexican Patients with Neurocysticercosis. Infect Immun 2019; 87:IAI.00347-19. [PMID: 31570557 DOI: 10.1128/iai.00347-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023] Open
Abstract
Neurocysticercosis is caused by the establishment of Taenia solium cysts in the central nervous system. Murine cysticercosis by Taenia crassiceps is a useful model of cysticercosis in which the complement component 5 (C5) has been linked to infection resistance/permissiveness. This work aimed to study the possible relevance for human neurocysticercosis of single nucleotide polymorphisms (SNPs) in the C5-TRAF1 region (rs17611 C/T, rs992670 G/A, rs25681 G/A, rs10818488 A/G, and rs3761847 G/A) in a Mexican population and associated with clinical and radiological traits related to neurocysticercosis severity (cell count in the cerebrospinal fluid [CSF cellularity], parasite location and parasite load in the brain, parasite degenerating stage, and epilepsy). The AG genotype of the rs3761847 SNP showed a tendency to associate with multiple brain parasites, while the CT and GG genotypes of the rs17611 and rs3761847 SNPs, respectively, showed a tendency to associate with low CSF cellularity. The rs3761847 SNP was associated with epilepsy under a dominant model, whereas rs10818488 was associated with CSF cellularity and parasite load under dominant and recessive models, respectively. For haplotypes, C5- and the TRAF1-associated SNPs were, respectively, in strong linkage disequilibrium with each other; thus, these haplotypes were studied independently. For C5 SNPs, carrying the CAA haplotype increases the risk of showing high CSF cellularity 3-fold and the risk of having extraparenchymal parasites 4-fold, two conditions that are related to severe disease. For TRAF1 SNPs, the GA and AG haplotypes were associated with CSF cellularity, and the AG haplotype was associated with epilepsy. Overall, these findings support the clear participation of C5 and TRAF1 in the risk of developing severe neurocysticercosis in the Mexican population.
Collapse
|
19
|
Lv Z, Li C, Guo M, Shao Y, Zhang W, Zhao X. Major yolk protein and HSC70 are essential for the activation of the TLR pathway via interacting with MyD88 in Apostichopus japonicus. Arch Biochem Biophys 2019; 665:57-68. [DOI: 10.1016/j.abb.2019.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
|
20
|
Zhao L, Jiang X, Chen T, Sun H, Ren C. Molecular characterization and functional analysis of MyD88 from the tropical sea cucumber, Holothuria leucospilota. FISH & SHELLFISH IMMUNOLOGY 2018; 83:1-7. [PMID: 30194053 DOI: 10.1016/j.fsi.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
In this study, a myeloid differentiation factor 88 (MyD88) named as HLMyD88 was identified from the sea cucumber Holothuria leucospilota. The full-length cDNA of HLMyD88 is 4797 bp in size, containing a 227 bp 5'-untranslated region (UTR), a 3721 bp 3'-UTR and an 849 bp open reading frame (ORF) encoding a protein of 282 amino acids with a deduced molecular weight of 32.25 kDa HLMyD88 contains an N-terminal death domain and a C-terminal Toll/interluekin-1 receptor (TIR) domain with three highly conserved sequence motifs named as Box 1, Box 2 and Box 3. The results of luciferase reporter assay showed that over-expressed HLMyD88 in HEK293T cells could activate the transcription factors nuclear factor-κB (NF-κB) and activator protein 1 (AP-1). Additionally, the secretion of proinflammatory cytokines IL-1β and TNF-α in the HEK293T cells was increased by over-expressed HLMyD88, indicating the potential role of HLMyD88 in the innate immunity of sea cucumber. Moreover, we further confirmed that over-expressed HLMyD88 could also induce apoptosis.
Collapse
Affiliation(s)
- Lin Zhao
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.
| | - Hongyan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.
| |
Collapse
|
21
|
Cui Y, Jiang L, Xing R, Wang Z, Wang Z, Shao Y, Zhang W, Zhao X, Li C. Cloning, expression analysis and functional characterization of an interleukin-1 receptor-associated kinase 4 from Apostichopus japonicus. Mol Immunol 2018; 101:479-487. [DOI: 10.1016/j.molimm.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/04/2018] [Accepted: 08/04/2018] [Indexed: 12/19/2022]
|
22
|
Qi P, He Y, Liao Z, Dong W, Xia H. Molecular cloning and functional analysis of tumor necrosis factor receptor-associated factor 6 (TRAF6) in thick shell mussel, Mytilus coruscus. FISH & SHELLFISH IMMUNOLOGY 2018; 80:631-640. [PMID: 29859313 DOI: 10.1016/j.fsi.2018.05.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is one of the key adapter molecules in Toll-like receptor signal transduction that triggers downstream cascades involved in innate immunity. Despite of the well study in vertebrates, there is few data ascribe to this TRAF member in invertebrates, especially in bivalves. In the present study, a novel TRAF6 homologue termed McTRAF6 was firstly characterized in Mytilus coruscus. Like its counterparts in mammals, McTRAF6 shared the domain topology containing one RING domain, two zinc finger domains, one coiled-coil region and a MATH domain. McTRAF6 transcripts predominantly expressed in gills, digestive glands and hemocytes in M. coruscus, and were significantly up-regulated in hemocytes after challenge with lipopolysaccharide (LPS) and polyinosine-polycytidylic acid (poly I:C). Further, the subcellular localization in cytoplasm and the activation of Nk-κB or ISRE luciferase reporter by overexpressed McTRAF6 were identified in HEK293T cells. These results collectively indicate that McTRAF6 is a member of TRAF6 subfamily and plays a potential role in immune defense system against pathogenic agents invasions in thick shell mussel. To our knowledge, this is the first report on component of TLR signaling pathway in thick shell mussel, providing further evidence for the existence of TLR pathway in M. coruscus and contribute to clarify the innate immune system of thick shell mussel.
Collapse
Affiliation(s)
- Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China.
| | - Yuehua He
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Wenqiang Dong
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Hu Xia
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan University of Arts and Science, Hunan Changde, 415000, China
| |
Collapse
|
23
|
Nie L, Cai SY, Shao JZ, Chen J. Toll-Like Receptors, Associated Biological Roles, and Signaling Networks in Non-Mammals. Front Immunol 2018; 9:1523. [PMID: 30034391 PMCID: PMC6043800 DOI: 10.3389/fimmu.2018.01523] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/19/2018] [Indexed: 01/18/2023] Open
Abstract
The innate immune system is the first line of defense against pathogens, which is initiated by the recognition of pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs). Among all the PRRs identified, the toll-like receptors (TLRs) are the most ancient class, with the most extensive spectrum of pathogen recognition. Since the first discovery of Toll in Drosophila melanogaster, numerous TLRs have been identified across a wide range of invertebrate and vertebrate species. It seems that TLRs, the signaling pathways that they initiate, or related adaptor proteins are essentially conserved in a wide variety of organisms, from Porifera to mammals. Molecular structure analysis indicates that most TLR homologs share similar domain patterns and that some vital participants of TLR signaling co-evolved with TLRs themselves. However, functional specification and emergence of new signaling pathways, as well as adaptors, did occur during evolution. In addition, ambiguities and gaps in knowledge still exist regarding the TLR network, especially in lower organisms. Hence, a systematic review from the comparative angle regarding this tremendous signaling system and the scenario of evolutionary pattern across Animalia is needed. In the current review, we present overview and possible evolutionary patterns of TLRs in non-mammals, hoping that this will provide clues for further investigations in this field.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
24
|
Qu F, Xiang Z, Zhou Y, Qin Y, Yu Z. Tumor necrosis factor receptor-associated factor 3 from Anodonta woodiana is an important factor in bivalve immune response to pathogen infection. FISH & SHELLFISH IMMUNOLOGY 2017; 71:151-159. [PMID: 29017949 DOI: 10.1016/j.fsi.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/10/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a multifunctional adaptor protein in innate and acquired immune system that plays a key role in the regulation of the RIG-I-like receptor (RLR) and Toll-like receptor (TLR) signaling pathway in mammals. However, the immune function of TRAF3 homologs in freshwater mollusks is not well understood. In this study, we identified a bivalve TRAF3 gene (AwTRAF3) from Anodonta woodiana and investigated its potential roles during immune challenges. The present AwTRAF3 encoded a polypeptide of 562 amino acids with predicted molecular mass of 64.5 kDa and PI of 7.9. Similar to other reported TRAF3s, AwTRAF3 contained a RING finger domain, two TRAF domains with zinc finger domains, a coiled coli region and a conserved C-terminal meprin and TRAF homology (MATH) domain. Quantitative real-time PCR (qRT-PCR) analysis revealed that AwTRAF3 mRNA was broadly expressed in all of the examined tissues, with high expression in hepatopancreas, gill and heart. In addition, immune challenge experiments directly showed that transcript levels of AwTRAF3 in hepatopancreas were significantly regulated upon bacterial (Vibrio alginolyticus and Staphylococcus aureus) and viral (poly (I:C)) challenges, respectively. Moreover, GFP-tagged AwTRAF3 fusion protein was found to be located primarily in the cytoplasm in HEK293T cells. Altogether, these data provided the first experimental demonstration that freshwater mollusks possess a functional TRAF3 that was involved in the innate defense against bacterial and viral infection.
Collapse
Affiliation(s)
- Fufa Qu
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanping Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
25
|
Lv Z, Zhang Z, Wei Z, Li C, Shao Y, Zhang W, Zhao X, Xiong J. HMGB3 modulates ROS production via activating TLR cascade in Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:128-137. [PMID: 28774490 DOI: 10.1016/j.dci.2017.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/30/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
High mobility group box protein 3 (HMGB3) regulates proliferation and inflammatory response in vertebrates. However, its functional roles in invertebrates are largely unknown. In this study, a HMGB3 homologue molecule was identified from Apostichopus japonicus (designated as AjHMGB3) by RACE approach. The full-length cDNA of AjHMGB3 was of 2298 bp with an open reading frame of 1320 bp encoding a 439-amino-acid (aa) residue protein. Structural analysis then conducted and the results revealed that AjHMGB3 processed two conserved HMGBs (133-204 and 210-279 aa) and an acidic tail. The results of subsequent multiple sequence alignment and phylogenetic analysis both indicated that AjHMGB3 belongs to a new member of HMGB3 protein subfamily. Furthermore, AjHMGB3 was expressed in all examined tissues except in tentacles and particularly highly expressed in the intestine, as indicated by spatial expression analysis results. The Vibrio splendidus challenge in vivo and lipolysaccharide (LPS) stimulation in vitro can significantly upregulate the mRNA expression of AjHMGB3 in coelomocytes. This finding is consistent with the expression profiles of TLR cascade members. We further investigated the expression profiles of AjMyD88 and Ajp105 after the gain- or loss-of-function of AjHMGB3 in coelomocytes. The results showed that AjMyD88 and Ajp105 were upregulated 2.19- and 2.83-fold in AjHMGB3 overexpressed treatment and downregulated 0.38- and 0.43-fold in the AjHMGB3 silencing group. The p50 subunit displayed expression profiles that are identical to those of AjMyD88 and Ajp105 according to the Western blot results. In the same condition, the respiratory burst was increased by 37.5% in the AjHMGB3 overexpressed group and depressed by 28.2% in the AjHMGB3 knock-down group. Our present findings collectively suggested that AjHMGB3 acted as an NF-κB activator and produced ROS production in sea cucumbers.
Collapse
Affiliation(s)
- Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zhen Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zhixin Wei
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
26
|
Wang Y, Cheng S, Chang Y, Li K, Chen Y, Wang Y. Identification and expression analysis of a TLR11 family gene in the sea urchin Strongylocentrotus intermedius. Immunogenetics 2017; 70:337-346. [DOI: 10.1007/s00251-017-1035-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
|
27
|
Wcisel DJ, Ota T, Litman GW, Yoder JA. Spotted Gar and the Evolution of Innate Immune Receptors. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:666-684. [PMID: 28544607 DOI: 10.1002/jez.b.22738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/02/2023]
Abstract
The resolution of the gar genome affords an opportunity to examine the diversification and functional specialization of immune effector molecules at a distant and potentially informative point in phylogenetic development. Although innate immunity is effected by a particularly large number of different families of molecules, the focus here is to provide detailed characterization of several families of innate receptors that are encoded in large multigene families, for which orthologous forms can be identified in other species of bony fish but not in other vertebrate groups as well as those for which orthologs are present in other vertebrate species. The results indicate that although teleost fish and the gar, as a holostean reference species, share gene families thought previously to be restricted to the teleost fish, the manner in which the members of the multigene families of innate immune receptors have undergone diversification is different in these two major phylogenetic radiations. It appears that both the total genome duplication and different patterns of genetic selection have influenced the derivation and stabilization of innate immune genes in a substantial manner during the course of vertebrate evolution.
Collapse
Affiliation(s)
- Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, Florida, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
28
|
Cai S, Huang Y, Wang B, Jian J, Xu Y. Tumor necrosis factor receptor-associated factor 6 (TRAF6) participates in peroxinectin gene expression in Fenneropenaeus penicillatus. FISH & SHELLFISH IMMUNOLOGY 2017; 64:193-201. [PMID: 28315393 DOI: 10.1016/j.fsi.2017.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an important cytoplasm signal adaptor that mediates signals activated by tumor necrosis factor receptor (TNFR) superfamily and the Interleukin-1 receptor/Toll-like receptor (IL-1/TLR) superfamily. In the study, the full-length cDNA of a TRAF6 homolog (FpTRAF6) was identified from Fenneropenaeus penicillatus. The full-length cDNA of FpTRAF6 is 2033 bp long, with an open reading frame (ORF) encoding a putative protein of 594 amino acids, including a RING type Zinc finger, two TRAF-type Zinc fingers, and a conserved C-terminal meprin and TRAF homology (MATH) domain. The overall amino acid sequence identity between FpTRAF6 and other TRAF6s ranged from 62.7 to 94.1% for crustaceans and from 45.6 to 59.3% for mollusca. Real-time qRT-PCR indicated that FpTRAF6 was constitutively expressed in various tissues of F. penicillatus. The temporal expression patterns of FpTRAF6 mRNA were different in the different tissues after microbial challenge. FpTRAF6 was downregulated in the heart, no obvious changes in the gill, intestine and hemocytes, and upregulated in other tested tissues after WSSV challenge. After V. alginolyticus injection, FpTRAF6 was downregulated in the heart and intestine, upregulated in the gill, lymphoid organ and hematopoietic organ, and no obvious changes in other tested tissues. RNAi assay was carried out to investigate the function of FpTRAF6. The results showed that silencing FpTRAF6 gene could inhibit peroxinectin expression in vivo, and enhance the sensitivity of shrimps to WSSV and V. alginolyticus challenge, suggesting FpTRAF6 could play a positive role against bacterial and viral pathogens. In conclusion, the results of the study provide some insights into the function of FpTRAF6 in activating TLRs signaling pathway and the host defense against invading pathogens.
Collapse
Affiliation(s)
- Shuanghu Cai
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China.
| | - Yucong Huang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Youhou Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou University, Qinzhou, China.
| |
Collapse
|
29
|
Transcriptome analysis of tube foot and large scale marker discovery in sea cucumber, Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:41-49. [DOI: 10.1016/j.cbd.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/13/2022]
|
30
|
Li C, Zhao M, Zhang C, Zhang W, Zhao X, Duan X, Xu W. miR210 modulates respiratory burst in Apostichopus japonicus coelomocytes via targeting Toll-like receptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:377-381. [PMID: 27545641 DOI: 10.1016/j.dci.2016.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Immune responses of species in Echinodermata remains mysterious due to the lack of efforts made in the study of host defense mechanism in these species. More researches start focusing on this ancient immune system with the recognition the economic values of several species in this phylum, especially sea cucumbers. Here, we reported a study in the innate immunity of a sea cucumber species (Apostichopus japonicus) in response to infection of Vibrio splendidus. A novel differential expressed miRNA (miR-210) from the diseased sea cucumber coelomocytes was identified in our study. This miRNA molecule modulates Toll-like receptor gene (AjToll) expression via binding 3'UTR region from 906 nt to 930 nt. Upon the challenge of V. splendidus, coelomocytes in A. japonicas demonstrated a upregulation of AjToll but a downregulation of miR-210. Transfection of miR-210 agomirs in coelomocytes significantly depressed the expression of AjToll in cells. As a result of AjToll expression inhibition by miR-210, the AjToll downstream molecules involved in reactive oxygen species (ROS) were also altered in vivo. This ROS pathway alternation was consistent with that caused by knockdown of AjToll through small inference RNA (siRNA). Taken together, the results of this study demonstrated a novel immune regulatory pathway via miRN-210 in A. japonica, which provides basic knowledge in exploring innate immunity of Echinodermata, and also can be reference in disease control in sea cucumber culture industry.
Collapse
Affiliation(s)
- Chenghua Li
- School of Marine Sciences, Ningbo University, PR China; Louisiana State University, Agricultural Center, United States.
| | - Mengru Zhao
- School of Marine Sciences, Ningbo University, PR China
| | - Chi Zhang
- School of Marine Sciences, Ningbo University, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, PR China
| | - Xuemei Duan
- School of Marine Sciences, Ningbo University, PR China
| | - Wei Xu
- Louisiana State University, Agricultural Center, United States.
| |
Collapse
|
31
|
Yang A, Zhou Z, Pan Y, Jiang J, Dong Y, Guan X, Sun H, Gao S, Chen Z. RNA sequencing analysis to capture the transcriptome landscape during skin ulceration syndrome progression in sea cucumber Apostichopus japonicus. BMC Genomics 2016; 17:459. [PMID: 27296384 PMCID: PMC4906609 DOI: 10.1186/s12864-016-2810-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/02/2016] [Indexed: 12/14/2022] Open
Abstract
Background Sea cucumber Apostichopus japonicus is an important economic species in China, which is affected by various diseases; skin ulceration syndrome (SUS) is the most serious. In this study, we characterized the transcriptomes in A. japonicus challenged with Vibrio splendidus to elucidate the changes in gene expression throughout the three stages of SUS progression. Results RNA sequencing of 21 cDNA libraries from various tissues and developmental stages of SUS-affected A. japonicus yielded 553 million raw reads, of which 542 million high-quality reads were generated by deep-sequencing using the Illumina HiSeq™ 2000 platform. The reference transcriptome comprised a combination of the Illumina reads, 454 sequencing data and Sanger sequences obtained from the public database to generate 93,163 unigenes (average length, 1,052 bp; N50 = 1,575 bp); 33,860 were annotated. Transcriptome comparisons between healthy and SUS-affected A. japonicus revealed greater differences in gene expression profiles in the body walls (BW) than in the intestines (Int), respiratory trees (RT) and coelomocytes (C). Clustering of expression models revealed stable up-regulation as the main pattern occurring in the BW throughout the three stages of SUS progression. Significantly affected pathways were associated with signal transduction, immune system, cellular processes, development and metabolism. Ninety-two differentially expressed genes (DEGs) were divided into four functional categories: attachment/pathogen recognition (17), inflammatory reactions (38), oxidative stress response (7) and apoptosis (30). Using quantitative real-time PCR, twenty representative DEGs were selected to validate the sequencing results. The Pearson’s correlation coefficient (R) of the 20 DEGs ranged from 0.811 to 0.999, which confirmed the consistency and accuracy between these two approaches. Conclusions Dynamic changes in global gene expression occur during SUS progression in A. japonicus. Elucidation of these changes is important in clarifying the molecular mechanisms associated with the development of SUS in sea cucumber. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2810-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aifu Yang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China.
| | - Yongjia Pan
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Xiaoyan Guan
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Hongjuan Sun
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Zhong Chen
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| |
Collapse
|
32
|
Yang L, Chang Y, Wang Y, Wei J, Ge C, Song J. Identification and functional characterization of TNF receptor associated factor 3 in the sea cucumber Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:128-135. [PMID: 26828393 DOI: 10.1016/j.dci.2016.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
TNF receptor associated factors (TRAFs) are a family of proteins primarily involved in both adaptive and innate immunity. In this study, we identified a novel TRAF3 gene in Apostichopus japonicus by transcriptome sequencing and RACE approaches (designated as AjTRAF3). The full-length of AjTRAF3 was of 2796 bp including a 5' untranslated region (UTR) of 83 bp, a 3' UTR of 1066 bp and a putative open reading frame of 1647 bp encoding a polypeptide of 548 amino acid residues. The representative domains such as a RING finger domain (residues 54-96), two TRAF domains with zinc finger structure (residues 141-228), a coiled coil and a meprin and TRAF homology (MATH) domain (residues 396-522) were all detected in the deduced amino acids of AjTRAF3. AjTRAF3 was ubiquitously expressed in all examined tissues with predominant expression in the body wall and slightly weaker in intestine, respiratory tree, tube feet, coelomocytes and longitudinal muscle. Time-course expression analysis in coelomocytes revealed that AjTRAF3 was significantly depressed towards Vibrio splendidus infection with a 0.20-fold decrease at 12 h, compared to control levels. AjTRAF3 silencing could elevate intracellular ROS levels by 2.08-fold and 2.09-fold compared to each control group in vitro and in vivo, respectively. Taken together, all these results suggested that AjTRAF3 may play a crucial role in the processes of anti-bacteria response in sea cucumber through regulating ROS production.
Collapse
Affiliation(s)
- Limeng Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Yi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Jing Wei
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Chen Ge
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| |
Collapse
|
33
|
Xueping S, Zhimeng L, Chenghua L, Meng L, Pengjuan Z, Weiwei Z. Identification and characterization of miR-31 potential targets by RNA-seq. FISH & SHELLFISH IMMUNOLOGY 2016; 51:26-32. [PMID: 26892793 DOI: 10.1016/j.fsi.2016.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
In our previous work, miR-31 displayed differential significant expression in Apostichopus japonicus sea cucumber with skin ulcer syndrome and modulated coelomocytes ROS production by targeting p105. To identify other promising targets ofmiR-31, 4 transcriptome libraries of coelomocytes, as well as 2 control libraries, were constructed frommiR-31 mimics (31 M) or AMO-miR-31 (31I) and injected into a sea cucumber at 12 and 24 h. A total of207,977 unigenes with an average length of 363 bp were assembled, in which17,204 distinct sequences (8.27% of the unigenes) were successfully matched with annotated protein sequences. Fragments per kilobase of transcript per million fragments mapped analysis indicated that 1325 unigenes displayed up-regulated expression profiles in the 31I-12 group and were depressed in the 31M - 12 group compared with the control group. A total of 1470 unigenes showed down-regulated expressions in 31I-12 and were induced in 31 M-12. Similarly, 2079 and 2098 unigenes were detected at 24 h post-injection. Among these unigenes, 36 unigenes (depressed expression in the 31 M group and induced in the 31I group) showed consistent expression patterns at 2 examined time points and were considered promising targets of miR-31. qPCR analysis confirmed that all 4 unigenes showed opposite expression profiles to miR-31 in cultured coelomocytes. Our present work provided a fast and feasible method of identifying miR-31 targets by transcriptome analysis. The results of this study would enhance our present understanding ofmiR-31 function insea cucumber immune regulation.
Collapse
Affiliation(s)
- Sun Xueping
- School of Marine Sciences, Ningbo University, PR China
| | - Lv Zhimeng
- School of Marine Sciences, Ningbo University, PR China
| | - Li Chenghua
- School of Marine Sciences, Ningbo University, PR China.
| | - Lu Meng
- School of Marine Sciences, Ningbo University, PR China
| | | | - Zhang Weiwei
- School of Marine Sciences, Ningbo University, PR China.
| |
Collapse
|
34
|
Lv Z, Li C, Zhang W, Jin C, Shao Y, Xuemei D, Qingxi H. Nemo like kinase negatively regulates NF-κB activation and coelomocytes apoptosis in Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:109-115. [PMID: 26363086 DOI: 10.1016/j.dci.2015.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
Nuclear factor kappa B (NF-κB) transcription factors are related to several physiological processes, including innate and acquired immunity. In this study, a novel negative regulator of the Nemo-like kinase (NLK) gene was identified from Apostichopus japonicus through PCR (denoted as AjNLK). The complete AjNLK cDNA was of 2335 bp, with a 5'-UTR of 315 bp, a 3'-UTR of 718 bp, and a putative ORF of 1302 bp, and encoded a polypeptide of 433 amino acid residues with a typical serine/threonine protein kinase domain. Blast analysis revealed that AjNLK shared a high degree of structural conservation with its counterparts from other invertebrates and vertebrates. Spatial expression analysis indicated that the expression of AjNLK mRNA transcripts was higher in the tentacles than that in coelomocytes. The expression of AjNLK mRNA in coelomocytes was suppressed after Vibrio splendidus challenge by 0.51-fold and 0.41-fold at 72 and 96 h, respectively, compared with that in the control group. Similarly, AjNLK expression was down-regulated in primary coelomocytes exposed to 1 μg mL(-1) lipopolysaccharide (LPS). Functional investigation further revealed that the NF-κB factor p105 was induced at both mRNA and protein levels after AjNLK silencing in vitro. Meanwhile, the apoptosis of LPS-induced coelomocytes was significantly inhibited in AjNLK siRNA-transfected coelomocytes. These results supported that AjNLK negatively regulated NF-κB activation and cell apoptosis in sea cucumber.
Collapse
Affiliation(s)
- Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China.
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Chunua Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Duan Xuemei
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Han Qingxi
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| |
Collapse
|
35
|
Wang J, Wang R, Wang S, Zhang M, Ma X, Liu P, Zhang M, Hu X, Zhang L, Wang S, Bao Z. Genome-wide identification and characterization of TRAF genes in the Yesso scallop (Patinopecten yessoensis) and their distinct expression patterns in response to bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2015; 47:545-555. [PMID: 26434715 DOI: 10.1016/j.fsi.2015.09.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
The tumor necrosis factor (TNF) receptor associated factors (TRAFs) are the major signal transducers for the TNF receptor superfamily and the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily, which regulate a variety of cellular activities and innate immune responses. TRAF genes have been extensively studied in various species, including vertebrates and invertebrates. However, as one of the key component of NF-κB pathway, TRAF genes have not been systematically characterized in marine invertebrates. In this study, we identified and characterized five TRAF genes, PyTRAF2, PyTRAF3, PyTRAF4, PyTRAF6 and PyTRAF7, in the Yesso scallop (Patinopecten yessoensis). Phylogenetic and protein structural analyses were conducted to determine their identities and evolutionary relationships. In comparison with the TRAF genes from vertebrate species, the structural features were all relatively conserved in the PyTRAF genes. To gain insights into the roles of TRAF genes during scallop innate immune responses, quantitative real-time PCR was used to investigate the expression profiles in the different stages of scallop development, in the healthy adult tissues, and in the hemocytes after bacterial infection with Micrococcus luteus and Vibrio anguillarum. Based on the qRT-PCR analysis, the expression of most of the PyTRAFs was significantly induced in the acute phases (3-6 h) after infection with Gram-positive (M. luteus) and Gram-negative (V. anguillarum) bacteria, and many more dramatic changes in PyTRAFs expression were observed after V. anguillarum challenge. Notably, the strong response in the up-regulation of PyTRAF6 post-bacterial challenge was distinct from that previously reported in scallops and crabs but was similar to that of other shellfish, Echinodermata and even teleost fish. The high level expressions of PyTRAFs in the hemocytes and the gill, and their specific expression patterns after challenges provide insights into the versatile roles and responses of TRAFs in the innate immune system against Gram-negative bacterial pathogens in bivalves.
Collapse
Affiliation(s)
- Jing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ruijia Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Shuyue Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Mengran Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoli Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Pingping Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Meiwei Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoli Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingling Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
36
|
Lv Z, Li C, Zhang P, Wang Z, Zhang W, Jin CH. MiR-200 modulates coelomocytes antibacterial activities and LPS priming via targeting Tollip in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2015; 45:431-436. [PMID: 25910848 DOI: 10.1016/j.fsi.2015.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/12/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
In order to explore the potential roles of microRNAs (miRNAs) in regulating Toll-like receptor (TLR) pathways, we identified Toll interacting protein as a putative target of miR-200 in Apostichopus japonicus coelomocytes by RNA-seq screening (denoted as AjTollip). The positive expression profiles of miR-200 and AjTollip were detected in both LPS exposure primary coelomocytes and Vibrio splendidus challenge sea cucumber. Co-infection miR-200 mimics significantly elevated the expression of AjTollip and its down-stream molecules. In contrast, miR-200 inhibitor significantly repressed the expression of these TLR-pathway members. More importantly, miR-200 displayed not only to enhance coelomocytes antibacterial activities, but to suppress LPS priming in vitro. Overall, all these results will enhance our understanding on miR-200 regulatory roles in anti-bacterial process in sea cucumber.
Collapse
Affiliation(s)
- Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| | - Pengjuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Zhenhui Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chun-Hua Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| |
Collapse
|
37
|
Wei X, Liu X, Yang J, Wang S, Sun G, Yang J. Critical roles of sea cucumber C-type lectin in non-self recognition and bacterial clearance. FISH & SHELLFISH IMMUNOLOGY 2015; 45:791-799. [PMID: 26052017 DOI: 10.1016/j.fsi.2015.05.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/13/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
C-type lectin is one important pattern recognition receptor (PRR) that plays crucial roles in multiple immune responses. A C-type lectin from sea cucumber Apostichopus japonicus (AjCTL-1) was characterized in the present study. The amino acid sequence of AjCTL-1 shared high similarities with other C-type lectins from invertebrates and vertebrates. The C-type lectin domain (CTLD) of AjCTL-1 contained a Ca(2+)-binding site 2 and four conserved cysteine residues. AjCTL-1 mRNA expression patterns in tissues and after bacterial challenge were then analysed. Quantitative PCR revealed that AjCTL-1 mRNA was widely expressed in the tested tissues of healthy sea cucumber. The highest expression level occurred in gonad followed by body wall, coelomocytes, tentacle, intestinum and longitudinal muscle, and the lowest expression level was in respiratory tree. AjCTL-1 mRNA expression in coelomocytes was significantly induced by gram-negative Listonella anguillarum and gram-positive Micrococcus luteus, with different up-regulation patterns post-challenge. Recombinant AjCTL-1 exhibited the ability to bind peptidoglycan directly, agglutinate M. luteus, Staphylococcus aureus and Escherichia coli, in a Ca(2+)-dependant manner, and enhance the phagocytosis of coelomocytes against E. coli in vitro. The results indicated that AjCTL-1 could act as a PRR in Apostichopus japonicus and had critical roles in non-self recognition and bacterial clearance against invading microbes.
Collapse
Affiliation(s)
- Xiumei Wei
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Xiangquan Liu
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Jianmin Yang
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Sheng Wang
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Guohua Sun
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Jialong Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
38
|
Zhou SM, Li M, Yang N, Liu S, Yuan XM, Tao Z, Wang GL. First description and expression analysis of tumor necrosis factor receptor-associated factor 6 (TRAF6) from the swimming crab, Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2015; 45:205-10. [PMID: 25882635 DOI: 10.1016/j.fsi.2015.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 05/11/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a cytoplasmic adapter protein that mediates signals induced by the tumor necrosis factor receptor (TNFR) superfamily and the interleukin-1 receptor (IL-1R). In the present study, the full-length cDNA of TRAF6 (Pt-TRAF6) was identified in a marine crab, Portunus trituberculatus. Pt-TRAF6 ORF is predicted to encode a 599-amino acid protein, including a RING type zinc finger, two TRAF-type zinc fingers, and a meprin and TRAF homology (MATH) domain. The overall amino acid sequence identity between Pt-TRAF6 and other TRAF6s ranged from 50.9 to 51.3% for shrimp and from 16.1 to 19.4% for insects. The Pt-TRAF6 gene contains six exons and five introns, which is different from the organization of the insect TRAF6 gene. Pt-TRAF6 transcripts were broadly expressed in all tissues tested, and their expression was higher in hemocytes, gills, the intestine, and heart than in muscle. Interestingly, the level of Pt-TRAF6 transcript differed between male and female crabs. After Vibrio alginolyticus or lipopolysaccharide (LPS) challenge, the Pt-TRAF6 transcript was down-regulated in hemocytes and up-regulated in gills. Moreover, Pt-TRAF6 expression was altered sooner in the LPS challenge group than in the V. alginolyticus challenge group. These results indicate that Pt-TRAF6 may respond to Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Su-Ming Zhou
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Meng Li
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Ning Yang
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Shun Liu
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Xue-Mei Yuan
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Zhen Tao
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Guo-Liang Wang
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
39
|
Lu M, Zhang P, Li C, Zhang W, Jin C, Han Q. MiR-31 modulates coelomocytes ROS production via targeting p105 in Vibrio splendidus challenged sea cucumber Apostichopus japonicus in vitro and in vivo. FISH & SHELLFISH IMMUNOLOGY 2015; 45:293-299. [PMID: 25917973 DOI: 10.1016/j.fsi.2015.04.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
MiR-31 is a critical regulator of gene expression in many pathogenic processes in vertebrates. In this study, we identified p105 as a novel target of miR-31 in Apostichopus japonicus and investigated their regulatory roles in vitro and in vivo. The negative expression profiles between miR-31 and Ajp105 were detected in both LPS-exposed primary coelomocytes and Vibrio splendidus-challenged sea cucumber. Co-infection miR-31 mimics significantly depressed the expression of Ajp105 and increased ROS production in vitro. In contrast, miR-31 inhibitor significantly elevated the expression of Ajp105 and decreased ROS level. Consistently, miR-31 over-expression or Ajp105 silencing in vivo both greatly promoted ROS accumulation. Taken together, our findings confirmed that miR-31 could modulate respiratory burst via targeting Ajp105 during sea cucumber pathological development.
Collapse
Affiliation(s)
- Meng Lu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Pengjuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chunhua Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Qingxi Han
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| |
Collapse
|
40
|
Lu M, Zhang PJ, Li CH, Lv ZM, Zhang WW, Jin CH. miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo. Sci Rep 2015. [PMID: 26223836 PMCID: PMC4519775 DOI: 10.1038/srep12608] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this study, we explored the potential roles of miRNA-133 in regulating TLR pathways in the sea cucumber Apostichopus japonicus. Target screening of RNA-Seq data successfully identified interleukin-1 receptor-associated kinase (AjIRAK−1) as a putative target of miR-133. This result was further validated by negative expression profiles in Vibrio splendidus-challenged coelomocytes and lipopolysaccharide (LPS)-exposed cell cultures. HEK-293T cells transfected with a dual-luciferase reporter fused to the 3′UTR of wild-type or mutant AjIRAK-1 exhibited a 52.9% reduction in luciferase activity (p < 0.01) compared to controls. Co-infection with a miR-133 mimics or a specific siRNA targeting AjIRAK-1 significantly repressed the mRNA and protein expression levels of AjIRAK-1 and its downstream molecules, such as AjTRAF6 and Ajp105, in primary coelomocytes. In contrast, a miR-133 inhibitor significantly increased the expression of these TLR pathway members. The injection of miR-133 agomir or AjIRAK-1 siRNA into sea cucumbers not only decreased the expression of AjIRAK-1 and its downstream molecules but also significantly increased V. splendidus coelomocyte phagocytosis. All of the present data provide direct evidence that miR-133 is involved in TLR cascade modulation through AjIRAK-1 targeting to promote V. splendidus coelomocyte phagocytosis in these non-model invertebrates.
Collapse
Affiliation(s)
- Meng Lu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, P.R China
| | - Peng-Juan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, P.R China
| | - Cheng-Hua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, P.R China
| | - Zhi-Meng Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, P.R China
| | - Wei-Wei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, P.R China
| | - Chun-Hua Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, P.R China
| |
Collapse
|
41
|
Wang H, Shao Y, Zhang W, Li C, Lv Z, Jin C. Molecular characterization of two novel molecular chaperones in bacterial-challenged Apostichopus japonicus. Gene 2015; 570:141-9. [PMID: 26072161 DOI: 10.1016/j.gene.2015.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 01/07/2023]
Abstract
Molecular chaperones of 78 kDa glucose-regulated protein (GRP78) and protein disulfide isomerase (PDI) are involved in protein folding and assembly in the endoplasmic reticulum (ER). Increasing evidences also suggest that these two molecules play an important role in immune response. In the present study, we cloned and characterized GRP78 and PDI genes from Apostichopus japonicus by RNA-seq and RACE approaches (designated as AjGRP78 and AjPDI, respectively). The AjGRP78 cDNA was of 2355bp including an open reading frame (ORF) of 2013 bp encoding a protein of 670 amino acids with three heat shock protein 70 (HSP70) family signatures. AjGRP78 contained a 23-amino acid signal peptide at the N-terminus and a HDEL motif at the C-terminus, which supported the location of the protein in the ER. The full length cDNA of AjPDI was of 1893 bp with a 5' untranslated region (UTR) of 153 bp, a 3' UTR of 228 bp and an ORF of 1512 bp encoding a protein of 503 amino acids. A 17-amino acid signal peptide, two thioredoxin domains with two active sites of CGHC, and KDEL retention signal were totally conserved in the deduced amino acid of AjPDI. Phylogenic analysis and multiple alignments have shown that both genes shared remarkably higher degree of structural conservation and sequence identities with other counterparts from invertebrates and vertebrates, further supporting that the two proteins were novel members of molecular chaperone family. Spatial expression analysis revealed that AjGRP78 mRNA transcripts were dominantly expressed in the tentacle, while AjPDI mRNA levels were abundant in the muscle, intestine and respiratory trees. For Vibrio splendidus challenged sea cucumber, the peak expression of AjGRP78 and AjPDI mRNAs in coelomocytes were detected at 24h with 1.73-fold increase and at 6h with 1.83-fold increase compared with the control group, respectively. Similarly, a significant increase in the relative mRNA levels of AjGRP78 and AjPDI was also identified in 1 μg mL(-1) LPS exposed primary cultured coelomocytes. These results collectively suggested that AjGRP78 and AjPDI were ER chaperones of A. japonicus, of which expression is induced upon bacterial infection.
Collapse
Affiliation(s)
- Haihong Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| | - Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Chunhua Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
42
|
Wang H, Zhang W, Li C, Lv Z, Jin C. Identification and characterization of a novel Foxo transcription factors in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2015; 44:164-171. [PMID: 25689491 DOI: 10.1016/j.fsi.2015.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 01/27/2015] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
The forkhead box O (Foxo) transcription factors are involved in multiple signaling pathways and play key roles in immunoregulation in vertebrates. In the present study, we firstly identified a novel Foxo gene in Apostichopus japonicus coelomocytes using transcriptome sequencing and RACE approaches (denoted as AjFoxo). The full-length cDNA of AjFoxo was of 2248 bp with a 5' untranslated region (UTR) of 177 bp, a 3' UTR of 367 bp and an ORF of 1704 bp encoding a polypeptide of 567 amino acid residues. The highly conserved forkhead domain was also identified in AjFoxo with remarkably higher degree of structural conservation. AjFoxo transcripts could be detected in all examined tissues with predominant expression in the coelomocytes and muscle, and slightly weak in the tissues of tentacle, intestine and respiratory trees. Concerning the time-course expression of AjFoxo in coelomocytes, the relative expression of AjFoxo was dramatically decreased to 0.44-fold at 48 h compared with that in the control group after Vibrio splendidus challenge, which was consistent with that of AjIκB. RNA interference of AjFoxo in primary coelomocytes also significantly depressed the relative expression of AjIκB with a 0.37-fold decrease compared with control group. Taken together, these results indicated that AjFoxo was a novel immune regulator and might be involved in the processes of anti-bacteria response in sea cucumber through activating the transcription of AjIκB.
Collapse
Affiliation(s)
- Haihong Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| | - Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chunhua Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| |
Collapse
|
43
|
Xue Z, Li H, Wang X, Li X, Liu Y, Sun J, Liu C. A review of the immune molecules in the sea cucumber. FISH & SHELLFISH IMMUNOLOGY 2015; 44:1-11. [PMID: 25655326 DOI: 10.1016/j.fsi.2015.01.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
It is very important to identify and characterize the immune-related genes that respond to pathogens. Until recently, only some of the immune-related genes in sea cucumbers had been characterized. Their expression patterns after pathogen challenges have been analyzed via expressed sequence tag libraries, microarray studies and proteomic approaches. These genes include lectins, antimicrobial peptides, lysozyme, enzymes, clotting protein, pattern recognition proteins, Toll receptors, complement C3 and other humoral factors that might participate in the innate immune system of sea cucumbers. Although the participation of some of these immune molecules in the sea cucumber's innate immune defense against invading pathogens has been demonstrated, the functions of many of the molecules remain unclear. This review focuses on the discovery and functional characterization of the immune-related molecules from the sea cucumber for the first time and provides new insights into the immune mechanisms of the sea cucumber, which opens new possibilities for developing drugs for novel anti-bacterial and antiviral applications in fisheries.
Collapse
Affiliation(s)
- Zhuang Xue
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Hui Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xia Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jing Sun
- Liaoning Province Academy of Analytic Science, Shenyang 110015, China
| | - Cenjie Liu
- Dalian Institute of Product Quality Supervision & Inspection, Dalian 116023, China
| |
Collapse
|
44
|
Umasuthan N, Bathige SDNK, Revathy KS, Nam BH, Choi CY, Lee J. Molecular genomic- and transcriptional-aspects of a teleost TRAF6 homolog: Possible involvement in immune responses of Oplegnathus fasciatus against pathogens. FISH & SHELLFISH IMMUNOLOGY 2015; 42:66-78. [PMID: 25449707 DOI: 10.1016/j.fsi.2014.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is a crucial docking molecule for TNFR superfamily and Interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily. As an adaptor protein in pathogen-induced signaling cascades, TRAF6 modulates both adaptive- and innate-immunity. In order to understand the immune responses of teleost TRAF6, Oplegnathus fasciatus TRAF6-like gene (OfTRAF6) was identified and characterized. Genomic length of OfTRAF6 (4 kb), obtained by means of a genomic BAC library, spanned seven exons which represented a putative coding sequence of 1716 bp and encoded 571 amino acids (aa) with an estimated molecular weight of 64 kDa. This putative protein demonstrated the classical tetra-domain architecture composed of a zinc finger RING-type profile, two zinc finger TRAF-type profiles, a coiled-coil region and a MATH domain. While the sequence similarity with human TRAF6 was 66.5%, OfTRAF6 shared a higher overall similarity with teleost homologs (∼75-92%). Phylogeny of TRAF-family was examined and TRAF6-subfamily appeared to be the precursor of other subfamilies. In addition, the clustering pattern confirmed that OfTRAF6 is a novel member of TRAF6subfamily. Based on comparative genomic analysis, we found that vertebrate TRAF6 exhibits two distinct structures in teleost and tetrapod lineages. An intron-loss event has probably occurred in TRAF6 gene during the evolution of tetrapods from teleosts. Inspection of putative OfTRAF6 promoter revealed the presence of several immune responsive transcription factor binding sites. Real-time qPCR assay detected OfTRAF6 transcripts in eleven juvenile fish tissues with higher levels in peripheral blood cells followed by liver. Putative role of OfTRAF6 in response to flagellin, LPS, poly I:C, pathogenic bacteria (Edwardsiella tarda and Streptococcus iniae) and rock bream iridovirus (RBIV) was profiled in different tissues and OfTRAF6 revealed up-regulated transcript levels. Altogether, these findings implicate that OfTRAF6 is not only involved in flagellin-induced signaling cascade, but also contributes to the antibacterial- and antiviral-responses.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Kasthuri Saranya Revathy
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, Fisheries Research and Development Institute, 408-1, Sirang-ri, Gijang-up, Gigang-gun, Busan 619-705, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Environment and Bioscience, Korea Maritime University, Busan 606-791, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
45
|
Deepika A, Sreedharan K, Paria A, Makesh M, Rajendran KV. Toll-pathway in tiger shrimp (Penaeus monodon) responds to white spot syndrome virus infection: evidence through molecular characterisation and expression profiles of MyD88, TRAF6 and TLR genes. FISH & SHELLFISH IMMUNOLOGY 2014; 41:441-454. [PMID: 25266891 DOI: 10.1016/j.fsi.2014.09.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/10/2014] [Accepted: 09/20/2014] [Indexed: 06/03/2023]
Abstract
The Toll-pathway plays key roles in regulating the innate immune response in invertebrates. Myeloid differentiation factor 88 (MyD88) and Tumour necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) are key molecules in this signalling pathway. To investigate the role of Toll-pathway in innate immune response of shrimp, Penaeus monodon, MyD88 (PmMyD88) and TRAF6 (PmTRAF6) were identified and characterised. PmMyD88 cDNA is 1716 bp long with an open reading frame (ORF) of 1449 bp encoding a putative protein of 482 amino acids, with a death domain, a TIR domain and C-terminal extension domain. PmTRAF6 cDNA is 2563 bp long with an ORF of 1785 bp (594 amino acids) with an N-terminal RING-type zinc finger domain, two TRAF-type zinc finger domains, a coiled region and a MATH domain. In healthy shrimp, PmMyD88, PmTRAF6 and PmToll were detected in 15 tissues with the highest expression in midgut, eyestalk and lymphoid organ, respectively. Responses of these genes to WSSV in experimentally-infected P. monodon as well as in cultured haemocytes and also effect of poly I:C on the gene expression in vitro was investigated at six time-points in seven tissues. PmToll showed significant up-regulation at all time-points of infection in six tissues and until 24 h post-infection in vitro. However, poly I:C-induced haemocytes showed up-regulation of the gene until 48 h post-exposure. WSSV caused significant up-regulation of PmMyD88 in most of the tissues tested. The virus challenge as well as poly I:C induction in vitro also resulted in significant up-regulation of the gene. Up-regulated expression of PmTRAF6 was detected in haemocytes and lymphoid organ at late stage of infection. In vitro virus challenge showed significant up-regulation of PmTRAF6 at almost all time-points whereas no significant change in the expression was observed on poly I:C induction. The responses of these key genes, observed in the present study, suggest that Toll-pathway as a whole may play a crucial role in the immune response against viruses in shrimp.
Collapse
Affiliation(s)
- A Deepika
- Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Andheri (W), Mumbai 400 061, India
| | - K Sreedharan
- Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Andheri (W), Mumbai 400 061, India
| | - Anutosh Paria
- Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Andheri (W), Mumbai 400 061, India
| | - M Makesh
- Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Andheri (W), Mumbai 400 061, India
| | - K V Rajendran
- Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Andheri (W), Mumbai 400 061, India.
| |
Collapse
|
46
|
Dong Y, Sun H, Zhou Z, Yang A, Chen Z, Guan X, Gao S, Wang B, Jiang B, Jiang J. Expression analysis of immune related genes identified from the coelomocytes of sea cucumber (Apostichopus japonicus) in response to LPS challenge. Int J Mol Sci 2014; 15:19472-86. [PMID: 25421239 PMCID: PMC4264123 DOI: 10.3390/ijms151119472] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022] Open
Abstract
The sea cucumber (Apostichopus japonicus) occupies a basal position during the evolution of deuterostomes and is also an important aquaculture species. In order to identify more immune effectors, transcriptome sequencing of A. japonicus coelomocytes in response to lipopolysaccharide (LPS) challenge was performed using the Illumina HiSeq™ 2000 platform. One hundred and seven differentially expressed genes were selected and divided into four functional categories including pathogen recognition (25 genes), reorganization of cytoskeleton (27 genes), inflammation (41 genes) and apoptosis (14 genes). They were analyzed to elucidate the mechanisms of host-pathogen interactions and downstream signaling transduction. Quantitative real-time polymerase chain reactions (qRT-PCRs) of 10 representative genes validated the accuracy and reliability of RNA sequencing results with the correlation coefficients from 0.88 to 0.98 and p-value <0.05. Expression analysis of immune-related genes after LPS challenge will be useful in understanding the immune response mechanisms of A. japonicus against pathogen invasion and developing strategies for resistant markers selection.
Collapse
Affiliation(s)
- Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Hongjuan Sun
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Aifu Yang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Zhong Chen
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Xiaoyan Guan
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Bai Wang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Bei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| |
Collapse
|
47
|
Patnaik BB, Patnaik HH, Seo GW, Jo YH, Lee YS, Lee BL, Han YS. Gene structure, cDNA characterization and RNAi-based functional analysis of a myeloid differentiation factor 88 homolog in Tenebrio molitor larvae exposed to Staphylococcus aureus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:208-221. [PMID: 24755285 DOI: 10.1016/j.dci.2014.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/13/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Myeloid differentiation factor 88 (MyD88), an intracellular adaptor protein involved in Toll/Toll-like receptor (TLR) signal processing, triggers activation of nuclear factor-kappaB (NF-κB) transcription factors. In the present study, we analyzed the gene structure and biological function of MyD88 in a coleopteran insect, Tenebrio molitor (TmMyD88). The TmMyD88 gene was 1380 bp in length and consisted of five exons and four introns. The 5'-flanking sequence revealed several putative transcription factor binding sites, such as STAT-4, AP-1, cJun, cfos, NF-1 and many heat shock factor binding elements. The cDNA contained a typical death domain, a conservative Toll-like interleukin-1 receptor (TIR) domain, and a C-terminal extension (CTE). The TmMyD88 TIR domain showed three significantly conserved motifs for interacting with the TIR domain of TLRs. TmMyD88 was grouped within the invertebrate cluster of the phylogenetic tree and shared 75% sequence identity with the TIR domain of Tribolium castaneum MyD88. Homology modeling of the TmMyD88 TIR domain revealed five parallel β-strands surrounded by five α-helices that adopted loop conformations to function as an adaptor. TmMyD88 expression was upregulated 7.3- and 4.79-fold after 12 and 6h, respectively, of challenge with Staphylococcus aureus and fungal β-1,3 glucan. Silencing of the TmMyD88 transcript by RNA interference led to reduced resistance of the host to infection by S. aureus. These results indicate that TmMyD88 is required for survival against Staphylococcus infection.
Collapse
Affiliation(s)
- Bharat Bhusan Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hongray Howrelia Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Gi Won Seo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yong Hun Jo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan City 336-745, Republic of Korea
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan 609-735, Republic of Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
48
|
Wei J, Guo M, Gao P, Ji H, Li P, Yan Y, Qin Q. Isolation and characterization of tumor necrosis factor receptor-associated factor 6 (TRAF6) from grouper, Epinephelus tauvina. FISH & SHELLFISH IMMUNOLOGY 2014; 39:61-68. [PMID: 24811008 DOI: 10.1016/j.fsi.2014.04.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/02/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is one of the key adapter molecules in Toll-like receptor signal transduction that triggers downstream cascades involved in innate immunity. In the present study, a TRAF6 (named as Et-TRAF6) was identified from the marine fish grouper, Epinephelus tauvina by RACE PCR. The full-length cDNA of Et-TRAF6 comprised 1949 bp with a 1713 bp open reading frame (ORF) that encodes a putative protein of 570 amino acids. Similar to most TRAF6s, Et-TRAF6 includes one N-terminal RING domain (78aa-116aa), two zinc fingers of TRAF-type (159aa-210aa and 212aa-269aa), one coiled-coil region (370aa-394aa), and one conserved C-terminal meprin and TRAF homology (MATH) domain (401aa-526aa). Quantitative real-time PCR analysis revealed that Et-TRAF6 mRNA is expressed in all tested tissues, with the predominant expression in the stomach and intestine. The expression of Et-TRAF6 was up-regulated in the liver after challenge with Lipoteichoic acid (LTA), Peptidoglycan (PGN), Zymosan, polyinosine-polycytidylic acid [Poly(I:C)] and Polydeoxyadenylic acid · Polythymidylic acid sodium salt [Poly(dA:dT)]. The expression of Et-TRAF6 was also up-regulated in the liver after infection with Vibrio alginolyticus, Singapore grouper iridovirus (SGIV) and grouper nervous necrosis virus (GNNV). Recombinant Et-TRAF6 (rEt-TRAF6) was expressed in Escherichia BL21 (DE3) and purified for mouse anti-Et-TRAF6 serum preparation. Intracellular localization revealed that Et-TRAF6 is distributed in both cytoplasm and nucleus, and predominantly in the cytoplasm. These results together indicated that Et-TRAF6 might be involved in immune responses toward bacterial and virus challenges.
Collapse
Affiliation(s)
- Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Minglan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Pin Gao
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, PR China
| | - Huasong Ji
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, PR China
| | - Pengfei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Yang Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.
| |
Collapse
|
49
|
Zhang P, Li C, Li Y, Zhang P, Shao Y, Jin C, Li T. Proteomic identification of differentially expressed proteins in sea cucumber Apostichopus japonicus coelomocytes after Vibrio splendidus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:370-377. [PMID: 24468075 DOI: 10.1016/j.dci.2014.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
Skin ulceration syndrome (SUS) was the main limitation in the development of Apostichopus japonicus culture industries. To better understand how Vibrio splendidus modulates SUS outbreak, the immune response of A. japonicus coelomocytes after the pathogen challenge were investigated through comparative proteomics approach, and differentially expressed proteins were screened and characterized in the present study. A total of 40 protein spots representing 30 entries were identified at 24, 72 and 96 h post-infection. Of these proteins, 32 were up-regulated and 8 were down-regulated in the V. splendidus challenged samples compared to those of control. These differentially expressed proteins were mainly classified into four categories by GO analysis, in which approximate 33% of proteins showed to be related to immunity response. The mRNA expression levels of 6 differentially expressed proteins were further validated by qRT-PCR. Similar protein-mRNA-level expression patterns were detected in genes of phospholipase (spot 4), G protein (spot 20), annexin (spot 30) and filamin (spot 31). Whilst the levels of ficolin (spot 12) and calumenin (spot 14) transcripts were not corresponded with those of their translation products. These data provide a new insight to understand the molecular immune mechanism of sea cucumber responsive towards pathogen infection.
Collapse
Affiliation(s)
- Peng Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Ye Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Pengjuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chunhua Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Taiwu Li
- Ningbo City College of Vocational Technology, Ningbo 315100, PR China
| |
Collapse
|
50
|
Rauta PR, Samanta M, Dash HR, Nayak B, Das S. Toll-like receptors (TLRs) in aquatic animals: Signaling pathways, expressions and immune responses. Immunol Lett 2014; 158:14-24. [DOI: 10.1016/j.imlet.2013.11.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 02/06/2023]
|