1
|
Ou J, Wang X, Luan X, Yu S, Chen H, Dong H, Zhang B, Xu Z, Liu Y, Zhao W. Comprehensive analysis of the mRNA and miRNA transcriptome implicated in the immune response of Procambarus clarkii to Spiroplasma eriocheiris. Microb Pathog 2024; 196:106928. [PMID: 39270754 DOI: 10.1016/j.micpath.2024.106928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
In recent years, the red swamp crayfish (Procambarus clarkii, P. clarkii) farming industry has suffered huge economic losses due to the pathogenic bacterium Spiroplasma eriocheiris (S. eriocheiris). To elucidate the immune response mechanism and identify hub immune genes as well as their associated microRNAs that regulate the host response of P. clarkii against S. eriocheiris infection, we conducted a comprehensive analysis on P. clarkii hemocyte mRNA and microRNA (miRNA) transcriptomes at different infection stages using third- and second-generation sequencing technologies. In full-length transcriptome functional annotation, 8155 unigenes were annotated, and 1168 potential new transcripts were predicted. In the mRNA transcriptome, a total of 3168 differentially expressed genes were identified at different infection stages, including 1492 upregulated and 1676 downregulated genes (duplicate genes excluded). Transcriptome analysis revealed 880 differentially expressed genes involved in multiple pathways and processes such as endocytosis, autophagy, lysosome, mTOR signaling, phagosome, and the Fanconi anemia pathway. Mfuzz analysis was employed to integrate and cluster the differential expression trends of genes across the three infection stages. In the miRNA transcriptome, 234 miRNAs and 966 predicted target genes were identified, with 86 differentially expressed miRNAs identified across the three time periods. A significant difference (P < 0.05) was observed for miRNAs including pcl-miR-146-3p, pcl-miR-74-3p, pcl-miR-225-5p, and pcl-miR-68-5p. These miRNAs are involved in multiple immune and autophagy-related pathways and have regulatory effects on immune genes including Vps26, lqf, and ERK-A. Based on the differentially expressed immune-related genes, we constructed a protein-protein interaction (PPI) network, which revealed the interactions among hub genes including Rac1, Akt1, Rho1, and Egfr. We also constructed a miRNA-gene interaction network in immune and autophagy-related processes, highlighting the potential regulatory effects of miRNAs including pcl-miR-183-5p, pcl-miR-146-3p, pcl-miR-176-5p, and pcl-miR-225-5p on proteins including LST8, SNAP29, Rab-7A, and ERK-A. To conclude, this study has identified hub immune genes and corresponding regulatory miRNAs in P. clarkii hemocytes in response to S. eriocheiris infection and explored the roles of these genes in selected pathways and processes. These findings are expected to provide further insights into the molecular mechanisms that confer resistance to S. eriocheiris infection in P. clarkii.
Collapse
Affiliation(s)
- Jiangtao Ou
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China.
| | - Xiang Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Xiaoqi Luan
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China; Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shuai Yu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Hao Chen
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Huizi Dong
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Benhou Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Zheqi Xu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Yang Liu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Weihong Zhao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| |
Collapse
|
2
|
Massu A, Mahanil K, Limkul S, Phiwthong T, Boonanuntanasarn S, Teaumroong N, Somboonwiwat K, Boonchuen P. Identification of immune-responsive circular RNAs in shrimp (Litopenaeus vannamei) upon yellow head virus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109246. [PMID: 38013134 DOI: 10.1016/j.fsi.2023.109246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Circular RNAs (circRNAs) are a subclass of non-coding RNAs (ncRNAs) formed through a process known as back-splicing. They play a crucial role in the genetic regulation of various biological processes. Currently, circRNAs have been identified as participants in the antiviral response within mammalian cells. However, circRNAs in shrimp infected with the yellow head virus (YHV) remain largely unexplored. Therefore, this study aims to identify circRNAs in the hemocytes of Litopenaeus vannamei during YHV infection. We discovered 358 differentially expressed circRNAs (DECs), with 177 of them being up-regulated and 181 down-regulated. Subsequently, eight DECs, including circ_alpha-1-inhibitor 3, circ_CDC42 small effector protein 2, circ_hemicentin 2, circ_integrin alpha V, circ_kazal-type proteinase inhibitor, circ_phenoloxidase 3, circ_related protein rab-8B, and circ_protein toll-like, were randomly selected for analysis of their expression patterns during YHV infection using qRT-PCR. Furthermore, the circRNAs' characteristics were confirmed through PCR, RNase R treatment, and Sanger sequencing, all of which were consistent with the features of circRNAs. These findings contribute to a better understanding of circRNAs' involvement in the antiviral response in shrimp.
Collapse
Affiliation(s)
- Amarin Massu
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kanjana Mahanil
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Tannatorn Phiwthong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
3
|
Tran NT, Liang H, Li J, Deng T, Bakky MAH, Zhang M, Li S. Cellular responses in crustaceans under white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108984. [PMID: 37549875 DOI: 10.1016/j.fsi.2023.108984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Innate immunity plays the most important system responsible for protecting crustaceans against invading pathogens. White spot syndrome virus (WSSV) is considered a serious pathogen in crustaceans with high cumulative mortality and morbidity in infected animals. Understanding the mechanism of the response of hosts to WSSV infection is necessary, which is useful for effective prevention in controlling infection. In this review, we summarize the participation of signaling pathways (toll, immune deficiency, JAK/STAT, endocytosis, mitogen-activated protein kinase, PI3K/Akt/mTOR, cGAS-STING, Wingless/Integrated signal transduction, and prophenoloxidase (proPO) cascade) and the activity of cells (apoptosis, autophagy, as well as, reactive oxygen species and antioxidant enzymes) in the cellular-mediated immune response of crustaceans during WSSV infection. The information presented in this current review is important for a better understanding of the mechanism of the response of hosts to pathogens. Additionally, this provides a piece of basic knowledge for discovering approaches to strengthen the immune system and resistance of cultured animals against viral infections.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jinkun Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Md Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
4
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
5
|
Lee D, Yu YB, Choi JH, Jo AH, Hong SM, Kang JC, Kim JH. Viral Shrimp Diseases Listed by the OIE: A Review. Viruses 2022; 14:v14030585. [PMID: 35336992 PMCID: PMC8953307 DOI: 10.3390/v14030585] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Shrimp is one of the most valuable aquaculture species globally, and the most internationally traded seafood product. Consequently, shrimp aquaculture practices have received increasing attention due to their high value and levels of demand, and this has contributed to economic growth in many developing countries. The global production of shrimp reached approximately 6.5 million t in 2019 and the shrimp aquaculture industry has consequently become a large-scale operation. However, the expansion of shrimp aquaculture has also been accompanied by various disease outbreaks, leading to large losses in shrimp production. Among the diseases, there are various viral diseases which can cause serious damage when compared to bacterial and fungi-based illness. In addition, new viral diseases occur rapidly, and existing diseases can evolve into new types. To address this, the review presented here will provide information on the DNA and RNA of shrimp viral diseases that have been designated by the World Organization for Animal Health and identify the latest shrimp disease trends.
Collapse
Affiliation(s)
- Dain Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea;
| | - Young-Bin Yu
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - A-Hyun Jo
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
| | - Su-Min Hong
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| |
Collapse
|
6
|
Jatuyosporn T, Laohawutthichai P, Supungul P, Sotelo-Mundo RR, Ochoa-Leyva A, Tassanakajon A, Krusong K. PmAP2-β depletion enhanced activation of the Toll signaling pathway during yellow head virus infection in the black tiger shrimp Penaeus monodon. Sci Rep 2021; 11:10534. [PMID: 34006863 PMCID: PMC8131699 DOI: 10.1038/s41598-021-89922-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Yellow head virus (YHV) is a pathogen which causes high mortality in penaeid shrimp. Previous studies suggested that YHV enters shrimp cells via clathrin-mediated endocytosis. This research investigated the roles of clathrin adaptor protein 2 subunit β (AP-2β) from Penaeus monodon during YHV infection. PmAP2-β was continuously up-regulated more than twofold during 6-36 hpi. Suppression of PmAP2-β significantly reduced YHV copy numbers and delayed shrimp mortality. Quantitative RT-PCR revealed that knockdown of PmAP2-β significantly enhanced the expression level of PmSpätzle, a signaling ligand in the Toll pathway, by 30-fold at 6 and 12 hpi. Moreover, the expression levels of gene components in the Imd and JAK/STAT signaling pathways under the suppression of PmAP2-β during YHV infection were also investigated. Interestingly, anti-lipopolysaccharide factor isoform 3 (ALFPm3) was up-regulated by 40-fold in PmAP2-β knockdown shrimp upon YHV infection. In addition, silencing of PmAP2-β dramatically enhanced crustinPm1 expression in YHV-infected shrimp. Knockdown of ALFPm3 and crustinPm1 significantly reduced shrimp survival rate. Taken together, this work suggested that PmAP2-β-deficiency promoted the Toll pathway signalings, resulting in elevated levels of ALFPm3 and crustinPm1, the crucial antimicrobial peptides in defence against YHV.
Collapse
Affiliation(s)
- Thapanan Jatuyosporn
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasunee Laohawutthichai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación Y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazaran Rosas No. 46, 83304, Hermosillo, Sonora, Mexico
| | - Adrian Ochoa-Leyva
- Departamentos de Microbiología Molecular, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Mexico
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kuakarun Krusong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Kuang C, Wang F, Zhou Y, Cao J, Zhang H, Gong H, Zhou R, Zhou J. Molecular characterization of clathrin heavy chain (Chc) in Rhipicephalus haemaphysaloides and its effect on vitellogenin (Vg) expression via the clathrin-mediated endocytic pathway. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:71-89. [PMID: 31828557 DOI: 10.1007/s10493-019-00438-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Clathrin plays an important role in arthropods, but its function in ticks has not been explored. Here, we describe the molecular characteristics of the clathrin heavy chain of the tick Rhipicephalus haemaphysaloides and its effects on yolk development. The open reading frame of the clathrin heavy chain (Chc) (Rh-Chc) gene consists of 5103 nucleotides encoding 670 amino acids, which is most closely related to that of Ixodes scapularis and relatively close to Homo sapiens and Drosophila melanogaster. Real-time qPCR revealed that Rh-Chc was expressed at all developmental stages and organs. After Rh-Chc is silenced, ticks did not feed and mortality rate was 100%. Moreover, Rh-Chc co-localized with Vitellogenin receptor (VgR) on oocyte membrane. Immunofluorescence showed that the expression of Vitellogenin (Vg) (Rh-Vg) was also closely related to Rh-Chc. Immunofluorescence showed that the expression of Vg was also closely related to Rh-Chc, Rh-Chc silencing slowed the development of oocytes in tick, and culture of ovary in vitro silenced Rh-Chc, the development of oocytes in ticks also slowed down. Overall, the results of this study indicated that Rh-Chc is a vital gene in the tick R. haemaphysaloides that plays an important role in its growth, development, and reproduction.
Collapse
Affiliation(s)
- Ceyan Kuang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Fangfang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Rongqiong Zhou
- College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
8
|
Posiri P, Thongsuksangcharoen S, Chaysri N, Panyim S, Ongvarrasopone C. PmEEA1, the early endosomal protein is employed by YHV for successful infection in Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2019; 95:449-455. [PMID: 31678535 DOI: 10.1016/j.fsi.2019.10.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Yellow head disease (YHD) is an infectious disease of Penaeus monodon which is caused by the yellow head virus (YHV). YHV infection invariably leads to 100% shrimp mortality within 3-5 days. Currently, an effective method to prevent or cure shrimp from YHV infection has not been elucidated. Therefore, the molecular mechanism underlying YHV infection should be examined. In this study, early endosome antigen 1 (EEA1) protein that was involved in the tethering step of the vesicle and early endosome fusion was investigated during YHV infection. The open reading frame of P. monodon EEA1 (PmEEA1) was cloned and sequenced (3000 bp). It encoded a putative protein of 999 amino acids and contained the zinc finger C2H2 domain signature at the N-terminus and the FYVE domain at the C-terminus. Suppression of PmEEA1 by specific dsRNA in shrimp showed inhibition of YHV replication after 48 h post YHV injection (hpi). On the other hand, shrimp received only NaCl without any dsRNA showed high YHV levels at approximately one hundred thousand times at 24 hpi and 48 hpi. Moreover, silencing of PmEEA1 by specific dsRNA followed by YHV challenge demonstrated a delay in shrimp mortality from 60 hpi to 168 hpi when compared to the control. These results indicated that YHV required PmEEA1 for trafficking within the infected cells, strongly suggesting that PmEEA1 may be a potential target to control and prevent YHV infection in P. monodon.
Collapse
Affiliation(s)
- Pratsaneeyaporn Posiri
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom, 73170, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | | | - Nattawadee Chaysri
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom, 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom, 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
9
|
Jatuyosporn T, Laohawutthichai P, Supungul P, Sotelo-Mundo RR, Ochoa-Leyva A, Tassanakajon A, Krusong K. Role of Clathrin Assembly Protein-2 Beta Subunit during White Spot Syndrome Virus Infection in Black Tiger Shrimp Penaeus monodon. Sci Rep 2019; 9:13489. [PMID: 31530841 PMCID: PMC6748913 DOI: 10.1038/s41598-019-49852-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
White spot syndrome virus (WSSV) is one of the most lethal viruses severely affecting shrimp industry. This disease can cause 100% mortality of farmed shrimp within a week. This work aims to characterize clathrin assembly proteins in Penaeus monodon and investigate their roles in WSSV entry. In general, clathrin assembly proteins form complexes with specific receptors and clathrins, leading to clathrin-mediated endocytosis. Adaptor protein 2 (AP-2), which is responsible for endocytosis at plasma membrane, consists of four subunits including α, β2, μ2 and σ2. Knockdown of clathrin coat AP17, or σ subunit of AP-2 dramatically reduced WSSV infectivity. Similar results were observed, when shrimp were pre-treated with chlorpromazine (CPZ), an inhibitor of clathrin-dependent endocytosis. The complete open reading frames of AP-2β and μ subunits of P. monodon are reported. PmAP-2 β was up-regulated about 4-fold at 6 and 36 h post-WSSV infection. Knockdown of PmAP-2β delayed shrimp mortality during WSSV infection, of which WSSV intermediate early 1 gene expression was also down-regulated. Immunogold-labelling and transmission electron microscopy revealed that PmAP-2β co-localized with WSSV particles at plasma membrane. In addition, PmAP-2β-silencing significantly affected the expression levels of PmSTAT, PmDOME, PmDorsal and ALFPm3 during WSSV infection. It is possible that PmAP-2β is associated with the JAK/STAT and the Toll pathway.
Collapse
Affiliation(s)
- Thapanan Jatuyosporn
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasunee Laohawutthichai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazaran Rosas No. 46, Hermosillo, Sonora, 83304, Mexico
| | - Adrian Ochoa-Leyva
- Departamentos de Microbiología Molecular, Medicina Molecular y Bioprocesos, Unidad Universitaria de Secuenciacián Masiva y Bioinformática, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210, Mexico
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kuakarun Krusong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Leprêtre M, Almunia C, Armengaud J, Salvador A, Geffard A, Palos-Ladeiro M. The immune system of the freshwater zebra mussel, Dreissena polymorpha, decrypted by proteogenomics of hemocytes and plasma compartments. J Proteomics 2019; 202:103366. [PMID: 31015035 DOI: 10.1016/j.jprot.2019.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
The immune system of bivalves is of great interest since it reflects the health status of these organisms during stressful conditions. While immune molecular responses are well documented for marine bivalves, few information is available for continental bivalves such as the zebra mussel, Dreissena polymorpha. A proteogenomic approach was conducted on both hemocytes and plasma to identified immune proteins of this non-model species. Combining transcriptomic sequences with mass spectrometry data acquired on proteins is a relevant strategy since 3020 proteins were identified, representing the largest protein inventory for this sentinel organism. Functional annotation and gene ontology (GO) analysis performed on the identified proteins described the main molecular players of hemocytes and plasma in immunity. GO analysis highlights the complementary immune functions of these two compartments in the management of micro-organisms. Functional annotation revealed new mechanisms in the immune defence of the zebra mussel. Proteins rarely observed in the hemolymph of bivalves were pinpointed such as natterin-like and thaumatin-like proteins. Furthermore, the high abundance of complement-related proteins observed in plasma suggested a strong implication of the complement system in the immune defence of D. polymorpha. This work brings a better understanding of the molecular mechanisms involved in zebra mussel immunity. SIGNIFICANCE: Although the molecular mechanisms of marine bivalves are widely investigated, little information is known for continental bivalves. Moreover, few proteomic studies described the complementarity of both hemolymphatic compartments (cellular and plasmatic) in the immune defence of invertebrates. The recent proteogenomics concept made it possible to discover proteins in non-model organisms. Here, we propose a proteogenomic strategy with the zebra mussel, a key sentinel species for biomonitoring of freshwater, to identify and describe the molecular actors involved in the immune system in both hemocytes and plasma compartments. More widely, this study provided new insight into bivalve immunity.
Collapse
Affiliation(s)
- Maxime Leprêtre
- Université de Reims Champagne-Ardenne UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France; Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100 Villeurbanne, France
| | - Christine Almunia
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100 Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France.
| |
Collapse
|
11
|
Matjank W, Ponprateep S, Rimphanitchayakit V, Tassanakajon A, Somboonwiwat K, Vatanavicharn T. Plasmolipin, PmPLP1, from Penaeus monodon is a potential receptor for yellow head virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:137-143. [PMID: 30031867 DOI: 10.1016/j.dci.2018.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Plasmolipin has been characterized as a cell entry receptor for mouse endogenous retrovirus. In black tiger shrimp, two isoforms of plasmolipin genes, PmPLP1 and PmPLP2, have been identified from the Penaeus monodon EST database. The PmPLP1 is highly up-regulated in yellow head virus (YHV)-infected shrimp. Herein, the function of PmPLP1 is shown to be involved in YHV infection. The immunoblotting and immunolocalization showed that the PmPLP1 protein was highly expressed and located at the plasma membrane of gills from YHV-infected shrimp. Moreover, the PmPLP1 expressed in the Sf9 insect cells resided at the cell membrane rendering the cells more susceptible to YHV infection. Using the ELISA binding and mortality assays, the synthetic external loop of PmPLP1 was shown to bind the purified YHV and neutralize the virus resulting in the decrease in YHV infection. Our results suggested that the PmPLP1 was likely a receptor of YHV in shrimp.
Collapse
Affiliation(s)
- Watchalaya Matjank
- Applied Analytical Chemistry Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok, 10520, Thailand
| | - Sirikwan Ponprateep
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tipachai Vatanavicharn
- Applied Analytical Chemistry Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok, 10520, Thailand; Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
12
|
Myosin Va from Eriocheir sinensis: cDNA cloning, expression and involvement in growth and development. Comp Biochem Physiol B Biochem Mol Biol 2018; 226:45-52. [PMID: 30138681 DOI: 10.1016/j.cbpb.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 07/16/2018] [Accepted: 08/13/2018] [Indexed: 11/23/2022]
Abstract
Myosin Va, a member of the myosin superfamily, has been widely identified associated with processes of cellular motility, which include neurotransmitter release and synaptic plasticity during neurodevelopment. However, the function of myosin Va in the growth and development of crustaceans has not yet been reported. In this study, a full-length cDNA of myosin Va (named as EsMyoVa) was cloned from the Chinese mitten crab, Eriocheir sinensis, and the expression patterns were detected in different tissues and larval developmental stages. The full-length cDNA of EsMyoVa was 6037 bp in length. Real time quantitative reverse transcription PCR (qRT-PCR) analysis showed that EsMyoVa transcript has a wide tissue distribution pattern and is expressed in zoeae, megalopa, juvenile crab stages and adults. In order to further study the function of this gene, we used RNAi technology in the muscle, hepatopancreas, gill, and gonad. After double-stranded RNA (dsRNA) injection, the expression level of EsMyoVa was significantly decreased in all tissues in both sexes and the gene knockdown effects of dsRNA persisted for at least 6 days. Subsequently, the role of EsMyoVa was revealed by silencing the transcript through one month injections of Myosin Va dsRNA. Crabs with reduced levels of EsMyoVa transcripts displayed a dramatic slowing in growth rate and considerably higher mortality compared to control groups, which indicated that this gene had important role of regulating growth and development.
Collapse
|
13
|
Kongprajug A, Panyim S, Ongvarrasopone C. Suppression of PmRab11 inhibits YHV infection in Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2017; 66:433-444. [PMID: 28527895 PMCID: PMC7173183 DOI: 10.1016/j.fsi.2017.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/16/2017] [Accepted: 05/15/2017] [Indexed: 05/28/2023]
Abstract
Yellow head virus (YHV) is one of the most serious pathogens that causes worldwide shrimp production loss. It enters the cells via clathrin-mediated endocytosis and utilizes small GTPase Rab proteins such as PmRab5 and PmRab7 for intracellular trafficking. In this study, molecular cloning and functional analysis of Rab11 during YHV infection were investigated. PmRab11 cDNA was cloned by Rapid amplification of cDNA ends (RACEs). It contained two forms of sizes 1200 and 1050 bp distinct at the 5' UTR. The coding region of PmRab11 was 645 bp, encoding 214 amino acids. It also demonstrated the characteristics of Rab11 proteins containing five GTP-binding domains, five Rab family domains, four Rab subfamily domains and a prenylation site at the C-terminus. Suppression of PmRab11 using dsRNA-PmRab11 either before or after YHV-challenge resulted in significant inhibition of YHV levels in the hemocytes and viral release in the supernatant in both mRNA and protein levels. In addition, the silencing effect of PmRab11 in YHV-infected shrimps resulted in a delay in shrimp mortality for at least 2 days. Immunofluorescence study showed co-localization between PmRab11 and YHV at 24-72 h post YHV-challenge. In contrast, the co-localization signals were absence in the PmRab11 knockdown hemocytes and the YHV signals accumulated at the perinuclear region at 24 h post YHV-challenge. Then, accumulation of YHV was hardly observed after 48-72 h. These results suggested that PmRab11 is required for YHV infection in shrimp.
Collapse
Affiliation(s)
- Akechai Kongprajug
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom, 73170 Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom, 73170 Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | | |
Collapse
|
14
|
Comparative proteome analysis of the hepatopancreas from the Pacific white shrimp Litopenaeus vannamei under long-term low salinity stress. J Proteomics 2017; 162:1-10. [DOI: 10.1016/j.jprot.2017.04.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/09/2016] [Accepted: 04/04/2017] [Indexed: 01/12/2023]
|
15
|
Wang XF, Liu QH, Wu Y, Huang J. Litopenaeus vannamei clathrin coat AP17 involved in white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2016; 52:309-316. [PMID: 26988289 DOI: 10.1016/j.fsi.2016.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
White spot syndrome virus (WSSV) is the main pathogen of shrimp culture, and has brought great losses of the shrimp aquaculture industry every year since it has been found. However, the specific mechanism of the virus into the cell is not very clear. Recent research suggests that clathrin-mediated endocytosis is involved in WSSV infection. By sequence analysis, clathrin coat AP17 is an σ subunit of AP-2 complex which is involved in clathrin-mediated endocytosis. To obtain the full-length sequence of Clathrin coat AP17 of Litopenaeus vannamei (LvCCAP17), the rapid amplification of cDNA ends (RACE) was performed to get the sequence of 3'and 5' end and splicing by DNAMAN. The full-length sequence of LvCCAP17 is 842 bp and expected to encoding 142 amino acids, and the amino acid sequence was analyzed by online software. The mRNA expression of LvCCAP17 in different tissues was carried out with quantitative real-time PCR and the LvCCAP17 was detected in all tested tissues of Litopenaeus vannamei. The transcriptional expression level of LvCCAP17 in epithelium and hepatopancreas was significantly up-regulated after WSSV infection. Far-Western blotting and ELISA assay showed that LvCCAP17 interacted with rVP26 and rVP37. Silencing of LvCCAP17 gene by double-strand RNA (dsRNA) interference significantly delay of cumulative mortality rate in WSSV infected shrimp and reduced the expression level of immediate early gene 1(ie1) and vp28. These results indicated that clathrin-meated endocytosis is responsible for WSSV infection.
Collapse
Affiliation(s)
- Xiu-Fang Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Dalian Ocean University, Dalian, China
| | - Qing-Hui Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yin Wu
- Dalian Ocean University, Dalian, China
| | - Jie Huang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Sanitt P, Apiratikul N, Niyomtham N, Yingyongnarongkul BE, Assavalapsakul W, Panyim S, Udomkit A. Cholesterol-based cationic liposome increases dsRNA protection of yellow head virus infection in Penaeus vannamei. J Biotechnol 2016; 228:95-102. [PMID: 27140871 DOI: 10.1016/j.jbiotec.2016.04.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/13/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Protection of shrimp from yellow head virus (YHV) infection has been demonstrated by injection and oral delivery of dsRNA-YHV protease gene (dsYHV) or shrimp endogenous gene (dsRab7). However, to achieve complete viral suppression and to prolong dsRNA activity, the development of an effective dsRNA delivery system is required. In this study, four cationic liposomes were synthesized and tested for their ability to increase dsRNA efficiency. The results demonstrated that entrapping dsYHV in a cholesterol-based cationic liposome gave the best protection against YHV infection when compared with other cationic lipids. The cholesterol-based cationic liposome-dsYHV (Chol-dsYHV) complex conferred YHV protection in a dose-dependent manner. Injection with Chol-dsYHV at 0.05μg dsYHV/g shrimp could give comparable level of YHV protection to the injection with 1.25μg naked dsYHV/g shrimp. The shrimp injected with Chol- dsYHV at 1.25μg dsRNA/g shrimp showed only 50% mortality at 60days post injection whereas the naked dsYHV at the same concentration gave 90% mortality. Thus, the liposome-entrapped dsYHV could lower an effective dsRNA concentration in viral protection and prolong dsRNA activity. In addition, encapsulating dsRab7 in the cholesterol-based cationic liposome could protect the dsRab7 from enzymatic digestion, and continuous feeding the shrimp with the diet formulated with the liposome-entrapped dsRab7 for 4days in the total of 960μg dsRab7/g shrimp could enhance YHV protection efficiency compared with the naked dsRab7. Our studies reveal that cholesterol-based cationic liposome is a promising dsRNA carrier to enhance dsRNA efficiency in both injection and oral delivery systems.
Collapse
Affiliation(s)
- Poohrawind Sanitt
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Nuttapon Apiratikul
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Nattisa Niyomtham
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
17
|
On endocytosis of foreign ferritin and occurrence of phagolysosomes in fish heart endothelial cells. Acta Histochem 2016; 118:252-5. [PMID: 26852295 DOI: 10.1016/j.acthis.2016.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Abstract
In the present study the ultrastructure and function of the endothelial cells enveloping the muscle trabeculae in heart in two teleosts, platyfish and firemouth cichlid, are described and discussed. These cells displayed a structure making them able to take up large amounts of foreign ferritin particles from the blood stream. The ferritin particles were assembled into huge phagolysosomes. Large amounts of Prussian blue were precipitated throughout these lysosomes when treated with acid ferrohexacyanide solution. The occurrence of Prussian blue precipitations in the control heart endothelial cells after Schmorl's solution, suggests that these cells normally contain undigestible material, a finding which strengthens the view that this tissue is involved in blood clearance in the present species. In conclusion, these heart endothelial cells seem able to perform a very efficient blood clearance of scavenger and foreign macromolecules and particles in the present species.
Collapse
|
18
|
Havanapan PO, Taengchaiyaphum S, Ketterman AJ, Krittanai C. Yellow head virus infection in black tiger shrimp reveals specific interaction with granule-containing hemocytes and crustinPm1 as a responsive protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:126-136. [PMID: 26384157 DOI: 10.1016/j.dci.2015.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Yellow head virus (YHV) causes acute infections and mass mortality in black tiger shrimp culture. Our study aims to investigate molecular interaction between YHV and circulating hemocytes of Penaeus monodon at early infection. Total shrimp hemocytes were isolated by Percoll gradient centrifugation and identified by flow cytometric analysis. At least three types of hemocyte cells were identified as hyaline, semi-granular, and granular hemocytes. Experimental infection of YHV in shrimp culture demonstrated drastic changes in total and each hemocyte cell counts. Immunohistochemistry analysis demonstrated interaction and replication of YHV mainly with the granule-containing hemocytes and little to none in hyaline cell. These granule-containing hemocytes are proposed to be YHV targets providing the first line of defense to viral infection. Protein expression profiling of granule-containing hemocytes revealed several immune-responsive proteins including antimicrobial protein crustins (crustinPm1 and crustinPm4), alpha-2-macroglobulin, and kazal-type serine proteinase inhibitor. During an early phase of YHV infection at 6 hpi crustinPm1 illustrated a significant increase of mRNA and protein expression level in plasma. The results suggest that an antimicrobial crustinPm1 may participate in shrimp defense mechanism against YHV, especially on the granule-containing hemocytes.
Collapse
Affiliation(s)
- Phattara-Orn Havanapan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Salaya, Nakhonpathom 73170, Thailand
| | - Suparat Taengchaiyaphum
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Salaya, Nakhonpathom 73170, Thailand; Shrimp-Virus Interaction Laboratory (ASVI), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Rama VI Rd., Bangkok, Thailand
| | - Albert J Ketterman
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Salaya, Nakhonpathom 73170, Thailand
| | - Chartchai Krittanai
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Salaya, Nakhonpathom 73170, Thailand.
| |
Collapse
|
19
|
Visetnan S, Supungul P, Hirono I, Tassanakajon A, Rimphanitchayakit V. Activation of PmRelish from Penaeus monodon by yellow head virus. FISH & SHELLFISH IMMUNOLOGY 2015; 42:335-344. [PMID: 25463289 DOI: 10.1016/j.fsi.2014.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Humoral innate immune response against pathogenic infection is partly responsible by the Imd pathway in which a transcription factor Relish relays the infection signals to the nuclei for the expression of antimicrobial proteins. A PmRelish gene which encoded a protein of 1195 amino acids was cloned. The PmRelish was constitutively expressed in all tissues tested and mostly up-regulated upon YHV infection. In hemocytes, the PmRelish expression was up-regulated upon Vibrio harveyi, yellow head virus (YHV) and white spot syndrome virus (WSSV) challenges. Using dsRNA silencing of PmRelish gene, it was shown that the expression of penaeidin5 but not anti-lipopolysaccharide factor ALFPm3, crustinPm1 and penaeidin3 was under the regulation of Imd pathway. Under PmRelish silencing, the shrimp were more susceptible to infection by YHV with the 50% survival rate reduced from about 72 h to 42 h. The PmRelish was detected in the cytoplasm of all the hemocytes from both uninfected and YHV-infected shrimp. The accumulation of activated PmRelish in the nuclei was not clearly observed but the activated PmRelish was detected in the YHV-infected hemocytes by Western blot analysis. Thus, the PmRelish and, hence, the Imd pathway respond to the YHV infection.
Collapse
Affiliation(s)
- Suwattana Visetnan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Premruethai Supungul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 10120, Thailand
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| |
Collapse
|
20
|
Posiri P, Kondo H, Hirono I, Panyim S, Ongvarrasopone C. Successful yellow head virus infection of Penaeus monodon requires clathrin heavy chain. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2015; 435:480-487. [PMID: 32287457 PMCID: PMC7112056 DOI: 10.1016/j.aquaculture.2014.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/10/2014] [Accepted: 10/12/2014] [Indexed: 06/01/2023]
Abstract
Viral disease caused by the Yellow head virus (YHV) had great impact on economic loss in the aquaculture industry. Prevention or curing YHV disease is still not possible due to the lack of understanding of the basic mechanisms of YHV infection. In this report, the endocytosis inhibitors (chlorpromazine (CPZ), amiloride and methyl-β-cyclodextrin (MβCD)) were used to identify the cellular entry pathway of YHV. Pretreating shrimp with CPZ but not amiloride or MβCD followed by YHV challenge resulted in a significant reduction of YHV levels, suggesting that YHV entered the shrimp cells via clathrin-mediated endocytosis. Next, the major component of the clathrin-coated vesicle, Penaeus monodon clathrin heavy chain (PmCHC) was cloned and characterized. The complete coding sequence of PmCHC is 5055 bp encoding a putative protein of 1684 amino acids. Specific silencing of PmCHC mRNA by dsRNA-PmCHC showed an inhibition of YHV replication for 48 h post YHV injection as well as exhibiting a delay in shrimp mortality. These results indicated that PmCHC was an essential component for YHV infection of shrimp cells.
Collapse
Affiliation(s)
- Pratsaneeyaporn Posiri
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom 73170 Thailand
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom 73170 Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|