1
|
McCuaig B, Goto Y. Immunostimulating Commensal Bacteria and Their Potential Use as Therapeutics. Int J Mol Sci 2023; 24:15644. [PMID: 37958628 PMCID: PMC10647581 DOI: 10.3390/ijms242115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The gut microbiome is intimately intertwined with the host immune system, having effects on the systemic immune system. Dysbiosis of the gut microbiome has been linked not only to gastrointestinal disorders but also conditions of the skin, lungs, and brain. Commensal bacteria can affect the immune status of the host through a stimulation of the innate immune system, training of the adaptive immune system, and competitive exclusion of pathogens. Commensal bacteria improve immune response through the production of immunomodulating compounds such as microbe-associated molecular patterns (MAMPs), short-chain fatty acids (SCFAs), and secondary bile acids. The microbiome, especially when in dysbiosis, is plastic and can be manipulated through the introduction of beneficial bacteria or the adjustment of nutrients to stimulate the expansion of beneficial taxa. The complex nature of the gastrointestinal tract (GIT) ecosystem complicates the use of these methods, as similar treatments have various results in individuals with different residential microbiomes and differential health statuses. A more complete understanding of the interaction between commensal species, host genetics, and the host immune system is needed for effective microbiome interventions to be developed and implemented in a clinical setting.
Collapse
Affiliation(s)
- Bonita McCuaig
- Project for Host-Microbial Interactions in Symbiosis and Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Yoshiyuki Goto
- Project for Host-Microbial Interactions in Symbiosis and Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- Division of Pandemic and Post-Disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8673, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8673, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
2
|
Stepanova K, Sinkorova J, Srutkova D, Sinkora M, Sinkora S, Splichal I, Splichalova A, Butler JE, Sinkora M. The order of immunoglobulin light chain κ and λ usage in primary and secondary lymphoid tissues of germ-free and conventional piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104392. [PMID: 35271860 DOI: 10.1016/j.dci.2022.104392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In pigs (Sus scrofa), the initial immunoglobulin rearrangement of the κ light chain is replaced by λ before the heavy chains rearrange, and the light chains may rearrange even later. This study investigates whether these developmental differences are reflected in the usage of IGK and IGL genes. We found large differences between peripheral B cells and those developing in the bone marrow, and between B cells in germ-free piglets and conventional pigs. During early B cell development in the bone marrow, more 3' V and 5' J gene segments for both light chains are used. However, in the peripheral naive repertoire, more 5' IGLV and 3' IGLJ genes are used. A similar shift toward the use of more 5' IGKV and 3' IGKJ genes is observed later after antigen exposure in conventional pigs. The expression profile showed that most λ+ B cells are generated earlier, while κ+ B cells develop from late precursors that already contain the λ rearrangement. The initial λ rearrangement is retained in both λ+ and κ+ B lymphocytes, and multiple λ transcripts can be found in individual cells. The overall pool of the IGLV repertoire is therefore much larger and more diversified than for IGKV. The κ repertoire is further restricted to the preferential use of only two major IGKV genes, reflecting the limitation for only two consecutive rearrangements. Tracing of silenced λ transcripts in κ+ B cells further confirmed the unconventional mechanism of differential rearrangements in pigs. Our results underline the diversity of the immune system among mammals.
Collapse
Affiliation(s)
- Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - John E Butler
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| |
Collapse
|
3
|
Lee AH, Lin CY, Do S, Oba PM, Belchik SE, Steelman AJ, Schauwecker A, Swanson KS. Dietary supplementation with fiber, "biotics," and spray-dried plasma affects apparent total tract macronutrient digestibility and the fecal characteristics, fecal microbiota, and immune function of adult dogs. J Anim Sci 2022; 100:skac048. [PMID: 35180312 PMCID: PMC8956131 DOI: 10.1093/jas/skac048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
A variety of functional ingredients, including fibers, prebiotics, probiotics, and postbiotics may be added to pet foods to support gastrointestinal and immune health. While many of these ingredients have been tested individually, commercial foods often include blends that also require testing. This study was conducted to evaluate the effects of diets containing blends of fibers, "biotics," and/or spray-dried plasma on apparent total tract digestibility (ATTD), stool quality, fecal microbiota and metabolites, and immune health outcomes of adult dogs. A total of 12 healthy adult intact English pointer dogs (6 M, 6 F; age = 6.4 ± 2.0 yr; BW = 25.8 ± 2.6 kg) were used in a replicated 3 × 3 Latin square design to test diets formulated to: 1) contain a low concentration of fermentative substances (control diet, CT); 2) be enriched with a fiber-prebiotic-probiotic blend (FPPB); and 3) be enriched with a fiber-prebiotic-probiotic blend + immune-modulating ingredients (iFFPB). In each 28-d period, 22 d of diet adaptation was followed by a 5-d fecal collection phase and 1 d for blood sample collection. All data were analyzed using SAS 9.4, with significance being P < 0.05 and trends being P < 0.10. FPPB and iFPPB diets led to shifts in numerous outcome measures. Dry matter (DM), organic matter, fat, fiber, and energy ATTD were lower (P < 0.01), fecal scores were lower (P < 0.01; firmer stools), and fecal DM% was higher (P < 0.0001) in dogs fed FPPB or iFPPB than those fed CT. Serum triglycerides and cholesterol were lower (P < 0.01) in dogs fed FPPB or iFPPB than those fed CT. Fecal protein catabolites (isobutyrate, isovalerate, indole, and ammonia) and butyrate were lower (P < 0.05), while fecal immunoglobulin A (IgA) was higher (P < 0.01) in dogs fed FPPB and iFPPB than those fed CT. Fecal microbiota populations were affected by diet, with alpha-diversity being lower (P < 0.05) in dogs fed iFPPB and the relative abundance of 20 bacterial genera being altered in dogs fed FPPB or iFPPB compared with CT. The circulating helper T cell:cytotoxic T cell ratio was higher (P < 0.05) in dogs fed iFPPB than those fed CT. Circulating B cells were lower (P < 0.05) in dogs fed FPPB than those fed iFPPB, and lower (P < 0.05) in dogs fed iFPPB than those fed CT. Our results demonstrate that feeding a fiber-prebiotic-probiotic blend may provide many benefits to canine health, including improved stool quality, beneficial shifts to fecal microbiota and metabolite profiles, reduced blood lipids, and increased fecal IgA.
Collapse
Affiliation(s)
- Anne H Lee
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ching-Yen Lin
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sungho Do
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sara E Belchik
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amy Schauwecker
- PetSmart Proprietary Brand Product Development, Phoenix, AZ 85080, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Correa F, Luise D, Bosi P, Trevisi P. Weaning differentially affects the maturation of piglet peripheral blood and jejunal Peyer's patches. Sci Rep 2022; 12:1604. [PMID: 35102264 PMCID: PMC8803882 DOI: 10.1038/s41598-022-05707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
The study aimed to assess how the post-weaning condition changes piglet peripheral blood (PB) and jejunal Peyer's patches (JPPs) as compared to the suckling period, and how these changes are associated with intestinal microbiota evolution. Sixteen pigs were slaughtered and sampled for PB, JPPs and jejunal content (JC) at weaning (26 days) or at 12 days fed on a pre-starter diet. The PB and JPP transcriptomes were analysed using mRNA-seq. The Gene Set Enrichment Analysis was used to demonstrate enriched gene clusters, depending on sampling time. Jejunal microbiota was profiled using 16S rRNA gene sequencing. Post-weaning JPPs were enriched for processes related to the activation of IFN-γ and major histocompatibility complex (MHC) class I antigen processing which clustered with the reduced abundance of the Weisella genus and Faecalibacterium prausnitzii in JC. The post-weaning microbiome differed from that seen in just-weaned pigs. For just-weaned PB, the enrichment of genes related to hemoglobin and the iron metabolism indicated the greater presence of reticulocytes and immature erythrocytes. The JPP genes involved in the I MHC and IFN-γ activations were markers of the post-weaning phase. Several genes attributable to reticulocyte and erythrocyte maturation could be interesting for testing the iron nutrition of piglets.
Collapse
Affiliation(s)
- Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| |
Collapse
|
5
|
Investigation of Early Supplementation of Nucleotides on the Intestinal Maturation of Weaned Piglets. Animals (Basel) 2021; 11:ani11061489. [PMID: 34064055 PMCID: PMC8223990 DOI: 10.3390/ani11061489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Nucleotides represent a group of bioactive compounds essential for the development of the gastrointestinal tract and immune function. This study aimed to evaluate the short-term effect of oral administration of nucleotides before and after weaning on growth performance, health, development of the intestinal immunity and microbiome of piglet. A nucleotide-based product (NU) was orally given four times before weaning and once after to one group of piglets, while a second group was used as a control (CO). The NU pigs did not grow more than the control until 12 days post-weaning but had increased hemoglobin and hematocrit values. At weaning, feces of NU piglets had a microbial profile more typical of growing pigs, while those of CO were more representative of suckling pigs. The upregulation of genes in the blood of control pigs at weaning was indicative of more activation towards an inflammatory response, while genes of erythropoiesis were more active in NU pigs post-weaning. NU supplementation stimulated genes for proliferative activity in the intestinal immune system, a sign of possible anticipated maturation. NU supplementation did not influence the growth performance of piglets but may have expressed a positive effect on pig microbiota anticipating its maturation at weaning, with possible immunostimulant activity on the intestinal immune system. Abstract Nucleotides are essential for the development of the gastrointestinal tract and immune function, but their intake with milk by piglets could be insufficient. The effect of nucleotides on growth and health was tested on 98 piglets divided into two groups: NU, orally administrated with 4 mL of a nucleotide-based product (SwineMOD®) at 10, 15, 18, 21, 27 days, or not (CO). Blood and feces were sampled at weaning (26 d, T1), and at 38 d (T2). Per each group and time-point, eight piglets were slaughtered and jejunal Peyer’s patches (JPPs) were collected. NU increased hemoglobin content and hematocrit, but not growth. At weaning, the NU fecal microbiota was characterized by the abundance of Campylobacteraceae, more typical of the growing phase, compared to CO, with a greater abundance of Streptococcaceae. For the blood transcriptome, an initial greater inflammatory activation was seen in CO, while at T2, NU enriched gene sets related to erythropoiesis. The activation of gene groups ranging from epigenetic response to transcriptional regulation evidenced an intense proliferative activity in NU JPPs. NU supplementation did not influence the growth performance of piglets but could have expressed a positive effect on pig microbiota anticipating its maturation at weaning. This immunostimulant activity in the JPPs could moderate the inflammation in the immediate pre-weaning.
Collapse
|
6
|
Furukawa M, Ito S, Suzuki S, Fuchimoto D, Onishi A, Niimi K, Usami K, Wu G, Bazer FW, Ogasawara K, Watanabe K, Aso H, Nochi T. Organogenesis of Ileal Peyer's Patches Is Initiated Prenatally and Accelerated Postnatally With Comprehensive Proliferation of B Cells in Pigs. Front Immunol 2020; 11:604674. [PMID: 33424851 PMCID: PMC7793923 DOI: 10.3389/fimmu.2020.604674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 11/21/2022] Open
Abstract
Morphogenesis and differentiation of organs is required for subsequent functional maturation. The morphological features of Peyer's patches vary among species. In pigs, they develop extensively in the ileum as ileal Peyer's patches (IPPs). However, the role of IPPs in the porcine immune system remains to be elucidated because of a lack of complete understanding of IPP organogenesis. Results of the present study revealed that development of porcine IPPs is initiated prenatally between embryonic days 76 and 91. The process of IPP organogenesis is concomitant with increased transcriptional patterns of CXCL13 and CCL19. IPPs undergo further development postnatally by forming central, marginal, and subepithelial zones. Importantly, a large number of proliferating B cells and apoptotic cells are found in porcine IPPs postnatally, but not prenatally. The expression level of IgM in proliferating B cells depends on the zone in which distinct B cells are separately localized after birth. Specifically, IgM+ cells are predominantly found in the central zone, whereas IgM-/low cells are abundant in the marginal zone. Importantly, the cellular feature of IPPs differs from that of mesenteric lymph nodes (MLNs) where such distinct zones are not formed both prenatally and postnatally. Our findings suggest that IPPs (not MLNs) in postnatal pigs are involved in complementing functions of the primary lymphoid tissue that promotes the differentiation and maturation of B cells.
Collapse
Affiliation(s)
- Mutsumi Furukawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shun Ito
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shunichi Suzuki
- Division of Animal Science, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Daiichiro Fuchimoto
- Division of Animal Science, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Akira Onishi
- Department of Animal Science and Resources, Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Kanae Niimi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Katsuki Usami
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Kouetsu Ogasawara
- Department of Immunobiology, Tohoku University Institute of Development, Aging and Cancer, Sendai, Japan
| | - Kouichi Watanabe
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Liu G, Wang B, Chen Q, Li Y, Li B, Yang N, Yang S, Geng S, Liu G. Interleukin (IL)-21 Promotes the Differentiation of IgA-Producing Plasma Cells in Porcine Peyer's Patches via the JAK-STAT Signaling Pathway. Front Immunol 2020; 11:1303. [PMID: 32655571 PMCID: PMC7324671 DOI: 10.3389/fimmu.2020.01303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/22/2020] [Indexed: 12/28/2022] Open
Abstract
Secretory IgA is critical to prevent the invasion of pathogens via mucosa. However, the key factors and the mechanisms of IgA generation in the porcine gut are not well-understood. In this study, a panel of factors, including BAFF, APRIL, CD40L, TGF-β1, IL-6, IL-10, IL-17A, and IL-21, were employed to stimulate IgM+ B lymphocytes from porcine ileum Peyer's patches. The results showed that IL-21 significantly upregulated IgA production of B cells and facilitated cell proliferation and differentiation of antibody-secreting cells. In addition, three transcripts in porcine IgA class switch recombination (CSR), germ-line transcript α, post-switch transcript α, and circle transcript α, were first amplified by (nest-)PCR and sequenced. All these key indicators of IgA CSR were upregulated by IL-21 treatment. Furthermore, we found that IL-21 predominantly activated JAK1, STAT1, and STAT3 proteins and confirmed that the JAK-STAT signaling pathway was involved in porcine IgA CSR. Thus, IL-21 plays an important role in the proliferation and differentiation of IgA-secreting cells in porcine Peyer's patches through the JAK-STAT signaling pathway. These findings provide insights into the mucosal vaccine design by regulation of IL-21 for the prevention and control of enteric pathogens in the pig industry.
Collapse
Affiliation(s)
- Guo Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bin Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qingbo Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Baoyu Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ning Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shanshan Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuxian Geng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
8
|
Abstract
The pig is an omnivorous, monogastric species with many advantages to serve as an animal model for human diseases. There are very high similarities to humans in anatomy and functions of the immune system, e g., the presence of tonsils, which are absent in rodents. The porcine immune system resembles man for more than 80% of analyzed parameters in contrast to the mouse with only about 10%. The pig can easily be bred, and there are less emotional problems to use them as experimental animals than dogs or monkeys. Indwelling cannulas in a vein or lymphatic vessel enable repetitive stress-free sampling. Meanwhile, there are many markers available to characterize immune cells. Lymphoid organs, their function, and their role in lymphocyte kinetics (proliferation and migration) are reviewed. For long-term experiments, minipigs (e.g., Göttingen minipig) are available. Pigs can be kept under gnotobiotic (germfree) conditions for some time after birth to study the effects of microbiota. The effects of probiotics can be tested on the gut immune system. The lung has been used for extracorporeal preservation and immune engineering. After genetic modifications are established, the pig is the best animal model for future xenotransplantation to reduce the problem of organ shortage for organ transplantation. Autotransplantation of particles of lymphnodes regenerates in the subcutaneous tissue. This is a model to treat secondary lymphedema patients. There are pigs with cystic fibrosis and severe combined immune deficiency available.
Collapse
Affiliation(s)
- Reinhard Pabst
- Institute of Immunomorphology, Centre of Anatomy, Medical School Hannover, Hanover, Germany.
| |
Collapse
|
9
|
Van Belkum M, Mendoza Alvarez L, Neu J. Preterm neonatal immunology at the intestinal interface. Cell Mol Life Sci 2020; 77:1209-1227. [PMID: 31576423 PMCID: PMC11105006 DOI: 10.1007/s00018-019-03316-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/21/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
Fetal and neonatal development represents a critical window for setting a path toward health throughout life. In this review, we focus on intestinal immunity, how it develops, and its implications for subsequent neonatal diseases. We discuss maternal nutritional and environmental exposures that dictate outcomes for the developing fetus. Although still controversial, there is evidence in support of an in utero microbiome. Specific well-intentioned and routine applications of antibiotics, steroids, and surgical interventions implemented before, during, and after birth skew the neonate towards pro-inflammatory dysbiosis. Shortly after birth, a consortium of maternal and environmentally derived bacteria, through cross-talk with the developing host immune system, takes center stage in developing or disrupting immune homeostasis at the intestinal interface. We also examine subsequent immunological cross-talks, which involve neonatal myeloid and lymphoid responses, and their potential impacts on health and disease such as necrotizing enterocolitis and sepsis, especially critical disease entities for the infant born preterm.
Collapse
Affiliation(s)
- Max Van Belkum
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lybil Mendoza Alvarez
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Josef Neu
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
10
|
Neonatal Microbiome and Its Relationship to Necrotizing Enterocolitis: A Review of the Science. J Perinat Neonatal Nurs 2020; 34:276-282. [PMID: 32697548 DOI: 10.1097/jpn.0000000000000507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Necrotizing enterocolitis (NEC) occurs in many premature infants hospitalized in the neonatal intensive care unit. About 3% to 15% of very low-weight premature infants develop NEC, with an estimated 30% mortality rate for the cases requiring surgery. Currently, there is no known pathogenesis for NEC in the patient's populations. However, one of the most widely accepted hypotheses is having an abnormal fetal gut microbiome. The purpose of this review is to discuss some current methods of dysbiosis in the neonatal microbiome, such as maternal health, breastfeeding, and delivery method, and then to connect these to the occurrence of NEC in the infant and finally discuss some possibilities for limiting the occurrence of NEC in the future.
Collapse
|
11
|
Sinkorova J, Stepanova K, Butler JE, Sinkora M. T cells in swine completely rearrange immunoglobulin heavy chain genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103396. [PMID: 31125574 DOI: 10.1016/j.dci.2019.103396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Porcine thymus contains three independent populations of cells that have rearranged immunoglobulin heavy chain VDJH genes. The first population can be found exclusively in medulla and it consists of existing mature B cells and plasma cells. The second consists of developing B cells characterized by the presence of selected VDJH rearrangement, similar to B cell lymphogenesis in the bone marrow. The third population is entirely unaffected by selection mechanism for productive VDJH rearrangement and represents T lineage cells that rearrange immunoglobulin genes. Transcription of unselected VDJH repertoire is not allowed in T cells. Sequence analysis of unselected VDJH repertoire from T cells also revealed important consequences for B cell lymphogenesis and selection of B cell repertoire. As far as we know, this is the first evidence that some species completely rearrange VDJH genes in T cells. Our results also support the finding that B cells actively develop in the thymus.
Collapse
Affiliation(s)
- Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - John E Butler
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic.
| |
Collapse
|
12
|
Abstract
We describe the domestication of the species, explore its value to agriculture and bioscience, and compare its immunoglobulin (Ig) genes to those of other vertebrates. For encyclopedic information, we cite earlier reviews and chapters. We provide current gene maps for the heavy and light chain loci and describe their polygeny and polymorphy. B-cell and antibody repertoire development is a major focus, and we present findings that challenge several mouse-centric paradigms. We focus special attention on the role of ileal Peyer's patches, the largest secondary lymphoid tissues in newborn piglets and a feature of all artiodactyls. We believe swine fetal development and early class switch evolved to provide natural secretory IgA antibodies able to prevent translocation of bacteria from the gut while the bacterial PAMPs drive development of adaptive immunity. We discuss the value of using the isolator piglet model to address these issues.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Marek Sinkora
- Laboratory of Gnotobiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
13
|
The Microbiota Regulates Immunity and Immunologic Diseases in Dogs and Cats. Vet Clin North Am Small Anim Pract 2017; 48:307-322. [PMID: 29198905 DOI: 10.1016/j.cvsm.2017.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complex commensal microbiota found on body surfaces controls immune responses and the development of allergic and inflammatory diseases. New genetic technologies permit investigators to determine the composition of the complex microbial populations found on these surfaces. Changes in the microbiota (dysbiosis) as a result of antibiotic use, diet, or other factors thus influence the development of many diseases in the dog and cat. The most important of these include chronic gastrointestinal disease; respiratory allergies, such as asthma; skin diseases, especially atopic dermatitis; and some autoimmune diseases.
Collapse
|
14
|
A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|