1
|
Guo X, Zhou Y, Yan H, An Q, Liang C, Liu L, Qian J. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species Transmission and New Host Adaptation. Viruses 2024; 16:883. [PMID: 38932174 PMCID: PMC11209369 DOI: 10.3390/v16060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
| | - Linna Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
2
|
Qin Y, Zhang P, Deng S, Guo W, Zhang M, Liu H, Qiu R, Yao L. Red-grouper nervous necrosis virus B1 protein inhibits fish IFN response by targeting Ser5-phosphorylated RNA polymerase II to promote viral replication. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108578. [PMID: 36740084 DOI: 10.1016/j.fsi.2023.108578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Nervous necrosis virus (NNV) could infect more than 200 fish species worldwide, with almost 100% mortality in affected larvae and juvenile fish. Among different genotypes of NNV, the red-grouper nervous necrosis virus (RGNNV) genotype is the most widely reported with the highest number of susceptible species. Interferon (IFN) is a crucial antiviral cytokine and RGNNV needs to develop some efficient strategies to resist host IFN-stimulated antiviral immune. Although considerable researches on RGNNV, whether RGNNV B1 protein participates in regulating the host's IFN response remains unknown. Here, we reported that B1 protein acted as a transcript inhibition factor to suppress fish IFN production. We firstly found that ectopic expression of B1 protein significantly decreased IFN and IFN-stimulated genes (ISGs) mRNA levels and IFNφ1 promoter activity induced by polyinosinic:polycytidylic acid [poly (I:C)]. Further studies showed that B1 protein inhibited the IFNφ1 promoter activity stimulated by the key RIG-I-like receptors (RLRs) factors, including MDA5, MAVS, TBK1, IRF3, and IRF7 and decreased their protein levels. Moreover, B1 protein significantly inhibited the activity of constitutively active cytomegalovirus (CMV) promoter, which suggested that B1 protein was a transcription inhibitor. Western blot indicated that B1 protein decreased the Ser5 phosphorylation of RNA polymerase II (RNAP II) C-terminal domain (CTD). Together, our data demonstrated that RGNNV B1 protein was a host transcript antagonist, which intervened RNAP II Ser5-phosphorylation, inhibiting host IFN response and facilitating RGNNV replication.
Collapse
Affiliation(s)
- Yinghui Qin
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Peipei Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Si Deng
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Wenjing Guo
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Mengfan Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Haixiang Liu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Reng Qiu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China
| | - Lunguang Yao
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, 473061, China.
| |
Collapse
|
3
|
Hao X, Chen H, Li Y, Chen B, Liang W, Xiao X, Zhou P, Li S. Molecular characterization and antiviral effects of canine interferon regulatory factor 1 (CaIRF1). BMC Vet Res 2022; 18:440. [PMID: 36522721 PMCID: PMC9756622 DOI: 10.1186/s12917-022-03539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Interferon regulatory factor 1 (IRF1) is an important transcription factor that activates the type I interferon (IFN-I) response and plays a vital role in the antiviral immune response. Although IRF1 has been identified in several mammals, little information related to its function in canines has been described. RESULTS In this study, canine IRF1 (CaIRF1) was cloned. After a series of bioinformatics analyses, we found that the CaIRF1 protein structure was similar to that of other animal IRF1 proteins, including a conserved DNA-binding domain (DBD), an IRF-association domain 2 (IAD2) domain and two nuclear localization signals (NLSs). An indirect immunofluorescence assay (IFA) revealed that CaIRF1 was mainly distributed in the nucleus. Overexpression of CaIRF1 in Madin-Darby canine kidney cells (MDCK) induced high levels of interferon β (IFNβ) and IFN-stimulated response element (ISRE) promoter activation and induced interferon-stimulated gene (ISG) expression. Subsequently, we assayed the antiviral activity of CaIRF1 against vesicular stomatitis virus (VSV) and canine parvovirus type-2 (CPV-2) in MDCK cells. Overexpression of CaIRF1 effectively inhibited the viral yields of VSV and CPV-2, while knocking down of CaIRF1 expression mildly increased viral gene copies. CONCLUSIONS CaIRF1 is involved in the cellular IFN-I signaling pathway and plays an important role in the antiviral response.
Collapse
Affiliation(s)
- Xiangqi Hao
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Hui Chen
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Yanchao Li
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Bo Chen
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Weifeng Liang
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Xiangyu Xiao
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Pei Zhou
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Shoujun Li
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| |
Collapse
|
4
|
Hao X, Li Y, Chen H, Chen B, Liu R, Wu Y, Xiao X, Zhou P, Li S. Canine Circovirus Suppresses the Type I Interferon Response and Protein Expression but Promotes CPV-2 Replication. Int J Mol Sci 2022; 23:ijms23126382. [PMID: 35742826 PMCID: PMC9224199 DOI: 10.3390/ijms23126382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022] Open
Abstract
Canine circovirus (CanineCV) is an emerging virus in canines. Since the first strain of CanineCV was reported in 2012, CanineCV infection has shown a trend toward becoming a global epidemic. CanineCV infection often occurs with coinfection with other pathogens that may aggravate the symptoms of disease in affected dogs. Currently, CanineCV has not been successfully isolated by laboratories, resulting in a lack of clarity regarding its physicochemical properties, replication process, and pathogenic characteristics. To address this knowledge gap, the following results were obtained in this study. First, a CanineCV strain was rescued in F81 cells using infectious clone plasmids. Second, the Rep protein produced by the viral packaging rescue process was found to be associated with cytopathic effects. Additionally, the Rep protein and CanineCV inhibited the activation of the type I interferon (IFN-I) promoter, blocking subsequent expression of interferon-stimulated genes (ISGs). Furthermore, Rep was found to broadly inhibit host protein expression. We speculate that in CanineCV and canine parvovirus type 2 (CPV-2) coinfection cases, CanineCV promotes CPV-2 replication by inducing immunosuppression, which may increase the severity of clinical symptoms.
Collapse
Affiliation(s)
- Xiangqi Hao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.L.); (H.C.); (B.C.); (R.L.); (Y.W.); (X.X.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China
| | - Yanchao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.L.); (H.C.); (B.C.); (R.L.); (Y.W.); (X.X.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China
| | - Hui Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.L.); (H.C.); (B.C.); (R.L.); (Y.W.); (X.X.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China
| | - Bo Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.L.); (H.C.); (B.C.); (R.L.); (Y.W.); (X.X.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China
| | - Ruohan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.L.); (H.C.); (B.C.); (R.L.); (Y.W.); (X.X.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China
| | - Yidan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.L.); (H.C.); (B.C.); (R.L.); (Y.W.); (X.X.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China
| | - Xiangyu Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.L.); (H.C.); (B.C.); (R.L.); (Y.W.); (X.X.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.L.); (H.C.); (B.C.); (R.L.); (Y.W.); (X.X.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China
- Correspondence: (P.Z.); (S.L.)
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.L.); (H.C.); (B.C.); (R.L.); (Y.W.); (X.X.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China
- Correspondence: (P.Z.); (S.L.)
| |
Collapse
|
5
|
Horman WSJ, Nguyen THO, Kedzierska K, Bean AGD, Layton DS. The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen. Front Immunol 2018; 9:1812. [PMID: 30135686 PMCID: PMC6092596 DOI: 10.3389/fimmu.2018.01812] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mortality in people has caused significant global concern, with a looming threat that one of these strains may develop sustained human-to-human transmission and cause a pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 30%. Understanding of their mechanisms of infection and pathobiology is key to our preparation for these and future viral strains of high consequence. AI viruses typically circulate in wild bird populations, commonly infecting waterfowl and also regularly entering commercial poultry flocks. Live poultry markets provide an ideal environment for the spread AI and potentially the selection of mutants with a greater propensity for infecting humans because of the potential for spill over from birds to humans. Pathology from these AI virus infections is associated with a dysregulated immune response, which is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia. It has been well documented that host/pathogen interactions, particularly molecules of the immune system, play a significant role in both disease susceptibility as well as disease outcome. Here, we review the immune/virus interactions in both avian and mammalian species, and provide an overview or our understanding of how immune dysregulation is driven. Understanding these susceptibility factors is critical for the development of new vaccines and therapeutics to combat the next pandemic influenza.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Andrew G D Bean
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Daniel S Layton
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| |
Collapse
|
6
|
Fu C, Luo J, Ye S, Yuan Z, Li S. Integrated Lung and Tracheal mRNA-Seq and miRNA-Seq Analysis of Dogs with an Avian-Like H5N1 Canine Influenza Virus Infection. Front Microbiol 2018; 9:303. [PMID: 29556219 PMCID: PMC5844969 DOI: 10.3389/fmicb.2018.00303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/09/2018] [Indexed: 12/12/2022] Open
Abstract
Avian-like H5N1 canine influenza virus (CIV) causes severe respiratory infections in dogs. However, the mechanism underlying H5N1 CIV infection in dogs is unknown. The present study aimed to identify differentially expressed miRNAs and mRNAs in the lungs and trachea in H5N1 CIV-infected dogs through a next-generation sequencing-based method. Eighteen 40-day-old beagles were inoculated intranasally with CIV, A/canine/01/Guangdong/2013 (H5N1) at a tissue culture infectious dose 50 (TCID50) of 106, and lung and tracheal tissues were harvested at 3 and 7 d post-inoculation. The tissues were processed for miRNA and mRNA analysis. By means of miRNA-gene expression integrative negative analysis, we found miRNA–mRNA pairs. Lung and trachea tissues showed 138 and 135 negative miRNA–mRNA pairs, respectively. One hundred and twenty negative miRNA–mRNA pairs were found between the different tissues. In particular, pathways including the influenza A pathway, chemokine signaling pathways, and the PI3K-Akt signaling pathway were significantly enriched in all groups in responses to virus infection. Furthermore, dysregulation of miRNA and mRNA expression was observed in the respiratory tract of H5N1 CIV-infected dogs and notably, TLR4 (miR-146), NF-κB (miR-34c) and CCL5 (miR-335), CCL10 (miR-8908-5p), and GNGT2 (miR-122) were found to play important roles in regulating pathways that resist virus infection. To our knowledge, the present study is the first to analyze miRNA and mRNA expression in H5N1 CIV-infected dogs; furthermore, the present findings provide insights into the molecular mechanisms underlying influenza virus infection.
Collapse
Affiliation(s)
- Cheng Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Jie Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Ziguo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| |
Collapse
|
7
|
Brown I, Mulatti P, Smietanka K, Staubach C, Willeberg P, Adlhoch C, Candiani D, Fabris C, Zancanaro G, Morgado J, Verdonck F. Avian influenza overview October 2016-August 2017. EFSA J 2017; 15:e05018. [PMID: 32625308 PMCID: PMC7009863 DOI: 10.2903/j.efsa.2017.5018] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The A(H5N8) highly pathogenic avian influenza (HPAI) epidemic occurred in 29 European countries in 2016/2017 and has been the largest ever recorded in the EU in terms of number of poultry outbreaks, geographical extent and number of dead wild birds. Multiple primary incursions temporally related with all major poultry sectors affected but secondary spread was most commonly associated with domestic waterfowl species. A massive effort of all the affected EU Member States (MSs) allowed a descriptive epidemiological overview of the cases in poultry, captive birds and wild birds, providing also information on measures applied at the individual MS level. Data on poultry population structure are required to facilitate data and risk factor analysis, hence to strengthen science-based advice to risk managers. It is suggested to promote common understanding and application of definitions related to control activities and their reporting across MSs. Despite a large number of human exposures to infected poultry occurred during the ongoing outbreaks, no transmission to humans has been identified. Monitoring the avian influenza (AI) situation in other continents indicated a potential risk of long-distance spread of HPAI virus (HPAIV) A(H5N6) from Asia to wintering grounds towards Western Europe, similarly to what happened with HPAIV A(H5N8) and HPAIV A(H5N1) in previous years. Furthermore, the HPAI situation in Africa with A(H5N8) and A(H5N1) is rapidly evolving. Strengthening collaborations at National, EU and Global levels would allow close monitoring of the AI situation, ultimately helping to increase preparedness. No human case was reported in the EU due to AIVs subtypes A(H5N1), A(H5N6), A(H7N9) and A(H9N2). Direct transmission of these viruses to humans has only been reported in areas, mainly in Asia and Egypt, with a substantial involvement of wild bird and/or poultry populations. It is suggested to improve the collection and reporting of exposure events of people to AI.
Collapse
|