1
|
González-Fernández C, García-Álvarez MA, Cuesta A. Identification and functional characterization of fish IL-17 receptors suggest important roles in the response to nodavirus infection. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:252-265. [PMID: 38827125 PMCID: PMC11136934 DOI: 10.1007/s42995-024-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 06/04/2024]
Abstract
Th17 is a lymphocyte T helper (Th) subpopulation relevant in the control and regulation of the immune response characterized by the production of interleukin (IL)-17. This crucial cytokine family acts through their binding to the IL-17 receptors (IL-17R), having up to six members. Although the biology of fish Th17 is well-recognized, the molecular and functional characterization of IL-17 and IL-17R has been limited. Thus, our aim was to identify and characterize the IL-17R repertory and regulation in the two main Mediterranean cultured fish species, the gilthead seabream (Sparus aurata) and the European sea bass (Dicentrarchus labrax). Our in silico results showed the clear identification of six members in each fish species, from IL-17RA to IL-17RE-like, with well-conserved gene structure and protein domains with their human orthologues. All of them showed wide and constitutive transcription in naïve tissues but with highest levels in mucosal tissues, namely skin, gill or intestine. In leucocytes, T mitogens showed the strongest up-regulation in most of the il17 receptors though il17ra resulted in inhibition by most stimulants. Interestingly, in vivo nodavirus infection resulted in alterations on the transcription of il17 receptors. While nodavirus infection led to some increments in the il17ra, il17rb, il17rc and il17rd transcripts in the susceptible European sea bass, many down-regulations were observed in the resistant gilthead seabream. Our data identify the presence and conservation of six coding IL-17R in gilthead seabream and European sea bass as well as their differential regulation in vitro and upon nodavirus infection. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00225-1.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
- Laboratoire d’écotoxicologie, Centre de Lyon-Villeurbanne, INRAE, UR RiverLy, 69625 Villeurbanne, France
| | - Miguel A. García-Álvarez
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
2
|
Sun JQ, Zhao KY, Zhang ZX, Li XP. Two novel teleost calreticulins PoCrt-1/2, with bacterial binding and agglutination activity, are involved in antibacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109203. [PMID: 37940083 DOI: 10.1016/j.fsi.2023.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Calreticulin (Crt), a conserved lectin-like pleiotropic protein, plays crucial roles in mammalian immune response. In fish, the immunological function of Crt is limited investigated. Herein, we studied the antibacterial immunity of two type of Crt homologues (i.e. PoCrt-1 and PoCrt-2) in Japanese flounder (Paralichthys olivaceus). PoCrt-1 and PoCrt-2 are composed of 419 and 427 amino acid residues respectively, with 69.09% overall sequence identities with each other. Both PoCrt-1 and PoCrt-2 contain a signal peptide and three functional domains i.e. N-, P- and C-domains. Both PoCrt-1 and PoCrt-2 were constitutively expressed at various tissues with highest expression level in liver, and obviously regulated by Edwardsiella tarda and Vibrio harveyi. Furthermore, recombinant PoCrt-1 and PoCrt-2 (rPoCrt-1 and rPoCrt-2) could bind to different Gram-negative bacteria with highest binding index with E. tarda. At same time, in vitro rPoCrt-1 and rPoCrt-2 could agglutinate E. tarda, V. harveyi, and Vibrio anguillarum, and inhibit the bacterial growth. Similarly, in vivo rPoCrt-1 and rPoCrt-2 could significantly suppress the dissemination of E. tarda. Overall, these observations add new insights into the antibacterial immunity of Crt in P. olivaceus.
Collapse
Affiliation(s)
- Jia-Qi Sun
- School of Ocean, Yantai University, Yantai, China
| | - Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | | | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
3
|
Akhter S, Tasnim FM, Islam MN, Rauf A, Mitra S, Emran TB, Alhumaydhi FA, Khalil AA, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M. Role of Th17 and IL-17 Cytokines on Inflammatory and Auto-immune Diseases. Curr Pharm Des 2023; 29:2078-2090. [PMID: 37670700 DOI: 10.2174/1381612829666230904150808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND The IL-17 (interleukin 17) family consists of six structurally related pro-inflammatory cytokines, namely IL-17A to IL-17F. These cytokines have garnered significant scientific interest due to their pivotal role in the pathogenesis of various diseases. Notably, a specific subset of T-cells expresses IL-17 family members, highlighting their importance in immune responses against microbial infections. INTRODUCTION IL-17 cytokines play a critical role in host defense mechanisms by inducing cytokines and chemokines, recruiting neutrophils, modifying T-cell differentiation, and stimulating the production of antimicrobial proteins. Maintaining an appropriate balance of IL-17 is vital for overall health. However, dysregulated production of IL-17A and other members can lead to the pathogenesis of numerous inflammatory and autoimmune diseases. METHOD This review provides a comprehensive overview of the IL-17 family and its involvement in several inflammatory and autoimmune diseases. Relevant literature and research studies were analyzed to compile the data presented in this review. RESULTS IL-17 cytokines, particularly IL-17A, have been implicated in the development of various inflammatory and autoimmune disorders, including multiple sclerosis, Hashimoto's thyroiditis, systemic lupus erythematosus, pyoderma gangrenosum, autoimmune hepatic disorders, rheumatoid arthritis, psoriasis, psoriatic arthritis, ankylosing spondylitis, osteoarthritis, and graft-versus-host disease. Understanding the role of IL-17 in these diseases is crucial for developing targeted therapeutic strategies. CONCLUSION The significant involvement of IL-17 cytokines in inflammatory and autoimmune diseases underscores their potential as therapeutic targets. Current treatments utilizing antibodies against IL-17 cytokines and IL-17RA receptors have shown promise in managing these conditions. This review consolidates the understanding of IL-17 family members and their roles, providing valuable insights for the development of novel immunomodulators to effectively treat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Saima Akhter
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Farhin Muntaha Tasnim
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritionals Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Okamura Y, Kono T, Sakai M, Hikima JI. Evolutional perspective and functional characteristics of interleukin-17 in teleosts. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108496. [PMID: 36526158 DOI: 10.1016/j.fsi.2022.108496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Interleukin (IL)-17 is a proinflammatory cytokine and plays essential roles in adaptive and innate immune responses against bacterial and fungal infections. Especially in mammalian mucosal tissues, it is well known that innate immune responses via IL-17A and IL-17F, such as the production of antimicrobial peptides, are very important for microbiota control. In contrast, interesting insights into the functions of IL-17 have recently been reported in several teleost species, although little research has been conducted on teleost IL-17. In the present review, we focused on current insights on teleost IL-17 and speculated on the different or consensus parts of teleost IL-17 signaling compared to that of mammals. This review focuses on the role of teleost IL-17 in intestinal immunity. We expect that this review will encourage a further understanding of the roles and importance of IL-17 signaling in teleosts.
Collapse
Affiliation(s)
- Yo Okamura
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
5
|
Zhang M, Xue M, Xiao Z, Liu W, Jiang N, Meng Y, Fan Y, Liu X, Zhou Y. Staphylococcus sciuri causes disease and pathological changes in hybrid sturgeon acipenser baerii × acipenser schrencki. Front Cell Infect Microbiol 2022; 12:1029692. [PMID: 36275022 PMCID: PMC9582232 DOI: 10.3389/fcimb.2022.1029692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hybrid sturgeon is the main species of sturgeon cultured in China, with the advantages of a fast growth rate, early sexual maturity, fertile offspring, and more stable genetic traits. In May 2021, a large number of deaths characterized by superficial hemorrhage and liver damage occurred in a sturgeon farm in Yichang, Hubei Province, which posed a significant risk to hybrid sturgeon captive breeding. We isolated a pathogenic bacterium named D-59 from the diseased sturgeon with apparent symptoms. The pathogen was identified as Staphylococcus sciuri using 16S rRNA gene phylogenetic analysis combined with biochemical identification. Regression experiments showed that D-59 exhibited clinical signs similar to those of diseased sturgeon in the farm after intraperitoneal injection into hybrid sturgeon. High-throughput sequencing of gut microbes in D-59-infected sturgeon showed that the number of gut microbial species decreased in infected sturgeon, the number of some intestinal commensal bacteria decreased, and the balance of the intestinal microorganisms was disrupted. Histopathological sections indicated many inflammatory cells, congestion, and even necrosis in the tissue of diseased sturgeon. Analysis of blood indexes revealed an increase in the proportion of mononuclear cells and a decrease in the proportion of lymphocytes in the peripheral blood of diseased sturgeon. Significantly elevated serum levels of aspartate aminotransferase and alanine aminotransferase, whereas alkaline phosphatase, total protein, albumin, and globulin were decreased in diseased sturgeon. Antimicrobial susceptibility tests demonstrated that D-59 is susceptible to florfenicol, enrofloxacin, and neomycin sulfate. This study aimed to highlight the dangers of Staphylococcus sciuri infection during hybrid sturgeon culture and to provide recommendations for diagnosis and treatment.
Collapse
Affiliation(s)
- Mengwei Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiaoling Liu, ; Yong Zhou,
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- *Correspondence: Xiaoling Liu, ; Yong Zhou,
| |
Collapse
|
6
|
Xu H, Zeng YH, Yin WL, Lu HB, Gong XX, Zhang N, Zhang X, Long H, Ren W, Cai XN, Huang AY, Xie ZY. Prevalence of Bacterial Coinfections with Vibrio harveyi in the Industrialized Flow-through Aquaculture Systems in Hainan Province: A Neglected High-Risk Lethal Causative Agent to Hybrid Grouper. Int J Mol Sci 2022; 23:ijms231911628. [PMID: 36232925 PMCID: PMC9570405 DOI: 10.3390/ijms231911628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Vibrio harveyi is one of the most serious bacterial pathogens to aquatic animals worldwide. Evidence is mounting that coinfections caused by multiple pathogens are common in nature and can alter the severity of diseases in marine animals. However, bacterial coinfections involving V. harveyi have received little attention in mariculture. In this study, the results of pathogen isolation indicated that bacterial coinfection was a common and overlooked risk for hybrid groupers (♀ Epinephelus polyphekadion × ♂ E. fuscoguttatus) reared in an industrialized flow-through pattern in Hainan Province. The artificial infection in hybrid groupers revealed that coinfections with V. harveyi strain GDH11385 (a serious lethal causative agent to groupers) and other isolated pathogens resulted in higher mortality (46.67%) than infection with strain GDH11385 alone (33.33%), whereas no mortality was observed in single infection with other pathogens. Furthermore, the intestine, liver and spleen of hybrid groupers are target organs for bacterial coinfections involving V. harveyi. Based on the infection patterns found in this study, we propose that V. harveyi may have a specific spatiotemporal expression pattern of virulence genes when infecting the host. Taken together, bacterial coinfection with V. harveyi is a neglected high-risk lethal causative agent to hybrid groupers in the industrialized flow-through aquaculture systems in Hainan Province.
Collapse
Affiliation(s)
- He Xu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Yan-Hua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
| | - Wen-Liang Yin
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Hong-Bin Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Xiao-Xiao Gong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Na Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
| | - Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Xiao-Ni Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Ai-You Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Zhen-Yu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
- Correspondence: ; Tel.: +86-136-4866-9016
| |
Collapse
|
7
|
Harada N, Okamura Y, Kono T, Sakai M, Hikima JI. Identification of two interleukin 17 receptor C (IL-17RC) genes and their binding activities to three IL-17A/F ligands in the Japanese medaka, Oryzias latipes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104179. [PMID: 34171369 DOI: 10.1016/j.dci.2021.104179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
In mammals, interleukin (IL)-17 receptor C (IL-17RC) and IL-17RA mediate IL-17A and IL-17F signaling to produce mucin, antimicrobial peptides, and maintain healthy intestinal flora. However, IL-17RC signaling in fish remains unclear. In this study, three il17rc transcripts (il17rca1, il17rca2, and il17rcb) from the Japanese medaka (Oryzias latipes) were cloned; il17rca1 and il17rca2 mRNAs were alternatively spliced from il17rca pre-mRNA as transcript variants. The il17rca and il17rcb genes were located on chromosomes 7 and 5, respectively. Teleost clades containing medaka il17rca and il17rcb clustered separately from the tetrapod clade. In adult tissues, il17rca1 expression was significantly higher than il17rca2 and il17rcb. Conversely, il17rcb expression was significantly higher in embryos and larvae. These expression patterns changed following infection with Edwardsiella piscicida and Aeromonas hydrophila. Furthermore, an immunoprecipitation assay using recombinant IL-17RCs and rIL-17A/Fs suggested that, in teleosts, three ligands could function in signaling through two IL-17RCs.
Collapse
Affiliation(s)
- Nanaki Harada
- International Course of Agriculture, Graduate School of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
8
|
Liyanage DS, Omeka WKM, Yang H, Lim C, Choi CY, Lee J. Molecular characterization of fish cytokine IL-17C from Amphiprion clarkii and its immunomodulatory effects on the responses to pathogen-associated molecular patterns and bacterial challenges. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110669. [PMID: 34428552 DOI: 10.1016/j.cbpb.2021.110669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 11/15/2022]
Abstract
Interleukin 17C (IL17C) is a cytokine that regulates innate immunity by recruiting antimicrobial peptides and pro-inflammatory cytokines. In this study, we characterized properties of IL-17C from Amphiprion clarkii also known as yellowtail clownfish (AcIL-17C). The AcIL-17C gene is 489 base pairs long and encodes a 163 amino acid long protein. AcIL-17C includes a signal peptide for localization in the extracellular space and comprises the IL-17 domain. The transcription analysis revealed that AcIL-17C mRNA was ubiquitously expressed in 12 tested tissues. Blood cells treated with polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharides (LPS), and Vibrio harveyi, AcIL-17C mRNA expression was upregulated at 6 h (following poly (I:C) and LPS treatments) and at 24 h post-injection (following all treatments). The downstream gene analysis of the epithelial fathead minnow (FHM) cells showed upregulated expression of genes, such as FHM_NK-Lysin, FHM_Hepcidin-1, FHM_Defensin-β, encoding antimicrobial peptides, as well as of FHM_IL-1β, FHM_TNF-A, FHM_IL-11, and FHM_STAT3 genes encoding inflammation-related proteins and IL-17C receptor genes FHM_IL-17RA, and FHM_IL-17RE at 12 and 24 h after treatment with AcIL-17C. The bacterial colony counting assay showed lower colony counts of Escherichia coli grown on FHM cells transfected with AcIL-17C carrying vector compared to those grown on control FHM cells. Further, AcIL-17C had a concentration-dependent positive effect on the survival of FHM cells infected with E. coli compared to the percentage of survived control cells. There has been a lack of studies characterizing the functions of teleost IL-17C. Therefore, these findings provide important information about the teleost host defense mechanisms and insights on the IL-17C-mediated antibacterial immunity.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea.
| |
Collapse
|
9
|
Xue T, Liu Y, Cao M, Zhang X, Fu Q, Yang N, Li C. Genome-wide identification of interleukin-17 (IL-17) / interleukin-17 receptor (IL- 17R) in turbot (Scophthalmus maximus) and expression pattern analysis after Vibrio anguillarum infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104070. [PMID: 33757802 DOI: 10.1016/j.dci.2021.104070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 05/22/2023]
Abstract
Interleukin-17 (IL-17) is a cytokine secreted by a variety of immune cells that plays an important role in host defense against pathogens. IL-17 usually activates downstream immune signaling pathway by binding to heterodimeric or homodimeric complex formed by IL-17 receptors (IL-17R). Describing the characteristics, tissue distribution of IL-17 and IL-17 receptor family members and their expression after pathogen infection will provide a reference for host defense against disease of turbot. In this study, six IL-17 family members and nine IL-17 receptor family members were identified by analyzing the turbot (Scophthalmus maximus) genome. Different from other vertebrates, most members of the IL-17 receptor family own two copies. Protein structure analysis showed that the six IL-17 family members contained typical "IL-17" domains, and the nine IL-17 receptor family members contained typical "SEFIR domain" or "IL17_R_N domain". Syntenic analysis revealed that all IL-17s and IL-17Rs were chromosomally conserved compared with other fish. The phylogenetic analysis further confirmed the evolutionary conservatism of different copies of IL-17C and IL-17Rs. Tissue distribution results showed that IL-17 and IL-17R genes were highly expressed in immune-related tissues. The expression of IL-17C and its receptor in the mucosal immune tissues after infection with V. anguillarum were analyzed subsequently, which were significantly increased in the skin. The results are consistent with previous studies showing that IL-17 and IL-17 receptor play an important role in promoting innate immune response.
Collapse
Affiliation(s)
- Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Okamura Y, Miyanishi H, Kinoshita M, Kono T, Sakai M, Hikima JI. A defective interleukin-17 receptor A1 causes weight loss and intestinal metabolism-related gene downregulation in Japanese medaka, Oryzias latipes. Sci Rep 2021; 11:12099. [PMID: 34103614 PMCID: PMC8187396 DOI: 10.1038/s41598-021-91534-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
In the intestine, the host must be able to control the gut microbiota and efficiently absorb transiently supplied metabolites, at the risk of enormous infection. In mammals, the inflammatory cytokine interleukin (IL)-17A/F is one of the key mediators in the intestinal immune system. However, many functions of IL-17 in vertebrate intestines remain unclarified. In this study, we established a gene-knockout (KO) model of IL-17 receptor A1 (IL-17RA1, an IL-17A/F receptor) in Japanese medaka (Oryzias latipes) using genome editing technique, and the phenotypes were compared to wild type (WT) based on transcriptome analyses. Upon hatching, homozygous IL-17RA1-KO medaka mutants showed no significant morphological abnormality. However, after 4 months, significant weight decreases and reduced survival rates were observed in IL-17RA1-KO medaka. Comparison of gene-expression patterns in WT and IL-17RA1-KO medaka revealed that various metabolism- and immune-related genes were significantly down-regulated in IL-17RA1-KO medaka intestine, particularly genes related to mevalonate metabolism (mvda, acat2, hmgcs1, and hmgcra) and genes related to IL-17 signaling (such as il17c, il17a/f1, and rorc) were found to be decreased. Conversely, expression of genes related to cardiovascular system development, including fli1a, sox7, and notch1b in the anterior intestine, and that of genes related to oxidation-reduction processes including ugp2a, aoc1, and nos1 in posterior intestine was up-regulated in IL-17RA1-KO medaka. These findings show that IL-17RA regulated immune- and various metabolism-related genes in the intestine for maintaining the health of Japanese medaka.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture , Kyoto University, Kyoto, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|