1
|
Chen K, Lu S, Song J, Dou X, Wei X, Wang X, Liu X, Feng C. The selective regulation of immune responses by matrix metalloproteinase MMP14 in Ostrinia furnacalis. INSECT SCIENCE 2023; 30:1622-1636. [PMID: 37209089 DOI: 10.1111/1744-7917.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 05/22/2023]
Abstract
Matrix metalloproteinases (MMPs) are crucial for tissue remodeling and immune responses in insects, yet it remains unclear how MMPs affect the various immune processes against pathogenic infections and whether the responses vary among insects. In this study, we used the lepidopteran pest Ostrinia furnacalis larvae to address these questions by examining the changes of immune-related gene expression and antimicrobial activity after the knockdown of MMP14 and bacterial infections. We identified MMP14 in O. furnacalis using the rapid amplification of complementary DNA ends (RACE), and found that it was conserved and belonged to the MMP1 subfamily. Our functional investigations revealed that MMP14 is an infection-responsive gene, and its knockdown reduces phenoloxidase (PO) activity and Cecropin expression, while the expressions of Lysozyme, Attacin, Gloverin, and Moricin are enhanced after MMP14 knockdown. Further PO and lysozyme activity determinations showed consistent results with gene expression of these immune-related genes. Finally, the knockdown of MMP14 decreased larvae survival to bacterial infections. Taken together, our data indicate that MMP14 selectively regulates the immune responses, and is required to defend against bacterial infections in O. furnacalis larvae. Conserved MMPs may serve as a potential target for pest control using a combination of double-stranded RNA and bacterial infection.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shiqi Lu
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiahui Song
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Xiangyi Wei
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyan Wang
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xu Liu
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congjing Feng
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Sheng W, Qin H, Wang T, Zhao J, Fang C, Zhang P, Liu P, Udduttula A, Zeng H, Chen Y. Advanced phosphocreatine-grafted chitosan hydrogel promote wound healing by macrophage modulation. Front Bioeng Biotechnol 2023; 11:1199939. [PMID: 37251563 PMCID: PMC10213409 DOI: 10.3389/fbioe.2023.1199939] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Background: The repair of wounds usually caused by trauma or other chronic diseases remained challenging in clinics due to the potential risk of inflammation and inadequate tissue regenerative properties. Among them, the behaviour of immune cells, such as macrophages, is critical in tissue repair. Materials and methods: In this study, a water-soluble phosphocreatine-grafted methacryloyl chitosan (CSMP) was synthesized with a one-step lyophilization method, followed by the fabrication of CSMP hydrogel with a photocrosslinked method. The microstructure, water absorption and mechanical properties for the hydrogels were investigated. Then, the macrophages were co-cultured with hydrogels and the pro-inflammatory factors and polarization markers for these macrophages were detected through real-time quantitative polymerase chain reaction (RT-qPCR), Western blot (WB), and flow cytometry methods. Finally, the CSMP hydrogel was implanted in a wound defect area in mice to test its ability to promote wound healing. Results: The lyophilized CSMP hydrogel had a porous structure with pores ranging in size from 200 to 400 μm, which was larger than the CSM hydrogel's. The lyophilized CSMP hydrogel possessed a higher water absorption rate compared with the CSM hydrogel. The compressive stress and modulus of these hydrogels were increased in the initial 7 days immersion and then gradually decreased during the in vitro immersion in PBS solution up to 21 days; the CSMP hydrogel showed a higher value in these parameters versus the CSM hydrogel. The CSMP hydrogel inhibited the expression of inflammatory factors such as interleukin-1β (IL-1β), IL-6, IL-12, and tumor necrosis factor-α (TNF-α) in an in vitro study cocultured with pro-inflammatory factors in pre-treated bone marrow-derived macrophages (BMM). The mRNA sequencing results showed that the CSMP hydrogel might inhibit the macrophages' M1 type polarization through the NF-κB signaling pathway. Furthermore, when compared to the control group, the CSMP hydrogel promoted more skin area repair in the mouse wound defect area, and inflammatory factors such as IL-1β, IL-6, and TNF-α were lower in the repaired tissue for the CSMP group. Conclusion: This phosphate-grafted chitosan hydrogel showed great promise for wound healing through regulating the macrophage's phenotype via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tiehua Wang
- Department of Emergency, Shenzhen People’s Hospital, Shenzhen, China
| | - Jin Zhao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chongzhou Fang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peng Zhang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Anjaneyulu Udduttula
- Centre of Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, India
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Premadasa LS, Lee E, McDew-White M, Alvarez X, Jayakumar S, Ling B, Okeoma CM, Byrareddy SN, Kulkarni S, Mohan M. Cannabinoid enhancement of lncRNA MMP25-AS1/MMP25 interaction reduces neutrophil infiltration and intestinal epithelial injury in HIV/SIV infection. JCI Insight 2023; 8:e167903. [PMID: 37036007 PMCID: PMC10132162 DOI: 10.1172/jci.insight.167903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/16/2023] [Indexed: 04/11/2023] Open
Abstract
Intestinal epithelial barrier dysfunction, a hallmark of HIV/SIV infection, persists despite viral suppression by combination antiretroviral therapy (cART). Emerging evidence suggests a critical role for long noncoding RNAs (lncRNAs) in maintaining epithelial homeostasis. We simultaneously profiled lncRNA/mRNA expression exclusively in colonic epithelium (CE) of SIV-infected rhesus macaques (RMs) administered vehicle (VEH) or Δ-9-tetrahydrocannabinol (THC). Relative to controls, fewer lncRNAs were up- or downregulated in CE of THC/SIV compared with VEH/SIV RMs. Importantly, reciprocal expression of the natural antisense lncRNA MMP25-AS1 (up 2.3-fold) and its associated protein-coding gene MMP25 (attracts neutrophils by inactivating alpha-1 anti-trypsin/SERPINA1) (down 2.2-fold) was detected in CE of THC/SIV RMs. Computational analysis verified 2 perfectly matched complementary regions and an energetically stable (normalized binding free energy = -0.2626) MMP25-AS1/MMP25 duplex structure. MMP25-AS1 overexpression blocked IFN-γ-induced MMP25 mRNA and protein expression in vitro. Elevated MMP25 protein expression in CE of VEH/SIV but not THC/SIV RMs was associated with increased infiltration by myeloperoxidase/CD11b++ neutrophils (transendothelial migration) and epithelial CD47 (transepithelial migration) expression. Interestingly, THC administered in combination with cART increased MMP25-AS1 and reduced MMP25 mRNA/protein expression in jejunal epithelium of SIV-infected RMs. Our findings demonstrate that MMP25-AS1 is a potentially unique epigenetic regulator of MMP25 and that low-dose THC can reduce neutrophil infiltration and intestinal epithelial injury potentially by downregulating MMP25 expression through modulation of MMP25-AS1.
Collapse
Affiliation(s)
- Lakmini S. Premadasa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Eunhee Lee
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Marina McDew-White
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Xavier Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Sahana Jayakumar
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Binhua Ling
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Smita Kulkarni
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
4
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
5
|
Discrimination and characterization of volatile organic compound fingerprints during sea bass (Lateolabrax japonicas) fermentation by combining GC-IMS and GC-MS. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Nie S, Li L, Wu Y, Xiang H, Li C, Chen S, Zhao Y, Cen J, Yang S, Wang Y. Exploring the roles of microorganisms and metabolites in the fermentation of sea bass (Lateolabrax japonicas) based on high-throughput sequencing and untargeted metabolomics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|