1
|
Kochunov P, Hong LE, Summerfelt A, Gao S, Brown PL, Terzi M, Acheson A, Woldorff MG, Fieremans E, Abdollahzadeh A, Sathyasaikumar KV, Clark SM, Schwarcz R, Shepard PD, Elmer GI. White matter and latency of visual evoked potentials during maturation: A miniature pig model of adolescent development. J Neurosci Methods 2024; 411:110252. [PMID: 39159872 DOI: 10.1016/j.jneumeth.2024.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Continuous myelination of cerebral white matter (WM) during adolescence overlaps with the formation of higher cognitive skills and the onset of many neuropsychiatric disorders. We developed a miniature-pig model of adolescent brain development for neuroimaging and neurophysiological assessment during this critical period. Minipigs have gyroencephalic brains with a large cerebral WM compartment and a well-defined adolescence period. METHODS Eight Sinclair™ minipigs (Sus scrofa domestica) were evaluated four times during weeks 14-28 (40, 28 and 28 days apart) of adolescence using monocular visual stimulation (1 Hz)-evoked potentials and diffusion MRI (dMRI) of WM. The latency for the pre-positive 30 ms (PP30), positive 30 ms (P30) and negative 50 ms (N50) components of the flash visual evoked potentials (fVEPs) and their interhemispheric latency (IL) were recorded in the frontal, central and occipital areas during ten 60-second stimulations for each eye. The dMRI imaging protocol consisted of fifteen b-shells (b = 0-3500 s/mm2) with 32 directions/shell, providing measurements that included fractional anisotropy (FA), radial kurtosis, kurtosis anisotropy (KA), axonal water fraction (AWF), and the permeability-diffusivity index (PDI). RESULTS Significant reductions (p < 0.05) in the latency and IL of fVEP measurements paralleled significant rises in FA, KA, AWF and PDI over the same period. The longitudinal latency changes in fVEPs were primarily associated with whole-brain changes in diffusion parameters, while fVEP IL changes were related to maturation of the corpus callosum. CONCLUSIONS Good agreement between reduction in the latency of fVEPs and maturation of cerebral WM was interpreted as evidence for ongoing myelination and confirmation of the minipig as a viable research platform. Adolescent development in minipigs can be studied using human neuroimaging and neurophysiological protocols and followed up with more invasive assays to investigate key neurodevelopmental hypotheses in psychiatry.
Collapse
Affiliation(s)
- Peter Kochunov
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - L Elliot Hong
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - P Leon Brown
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Terzi
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, NC. USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Korrapati V Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah M Clark
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul D Shepard
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Greg I Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Puertollano M, Ribas-Prats T, Gorina-Careta N, Ijjou-Kadiri S, Arenillas-Alcón S, Mondéjar-Segovia A, Dolores Gómez-Roig M, Escera C. Longitudinal trajectories of the neural encoding mechanisms of speech-sound features during the first year of life. BRAIN AND LANGUAGE 2024; 258:105474. [PMID: 39326253 DOI: 10.1016/j.bandl.2024.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Infants quickly recognize the sounds of their mother language, perceiving the spectrotemporal acoustic features of speech. However, the underlying neural machinery remains unclear. We used an auditory evoked potential termed frequency-following response (FFR) to unravel the neural encoding maturation for two speech sound characteristics: voice pitch and temporal fine structure. 37 healthy-term neonates were tested at birth and retested at the ages of six and twelve months. Results revealed a reduction in neural phase-locking onset to the stimulus envelope from birth to six months, stabilizing by twelve months. While neural encoding of voice pitch remained consistent across ages, temporal fine structure encoding matured rapidly from birth to six months, without further improvement from six to twelve months. Results highlight the critical importance of the first six months of life in the maturation of neural encoding mechanisms that are crucial for phoneme discrimination during early language acquisition.
Collapse
Affiliation(s)
- Marta Puertollano
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Teresa Ribas-Prats
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Natàlia Gorina-Careta
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Siham Ijjou-Kadiri
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Sonia Arenillas-Alcón
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alejandro Mondéjar-Segovia
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; BCNatal - Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Catalonia, Spain
| | - Carles Escera
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
3
|
Lynch KM, Bodison SC, Cabeen RP, Toga AW, Voelker CC. The spatial organization of ascending auditory pathway microstructural maturation from infancy through adolescence using a novel fiber tracking approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.597798. [PMID: 38915661 PMCID: PMC11195149 DOI: 10.1101/2024.06.10.597798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Auditory perception is established through experience-dependent stimuli exposure during sensitive developmental periods; however, little is known regarding the structural development of the central auditory pathway in humans. The present study characterized the regional developmental trajectories of the ascending auditory pathway from the brainstem to the auditory cortex from infancy through adolescence using a novel diffusion MRI-based tractography approach and along-tract analyses. We used diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) to quantify the magnitude and timing of auditory pathway microstructural maturation. We found spatially varying patterns of white matter maturation along the length of the tract, with inferior brainstem regions developing earlier than thalamocortical projections and left hemisphere tracts developing earlier than the right. These results help to characterize the processes that give rise to functional auditory processing and may provide a baseline for detecting abnormal development.
Collapse
Affiliation(s)
- Kirsten M. Lynch
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Stefanie C. Bodison
- Department of Occupational Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ryan P. Cabeen
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
4
|
Chen Y, Green HL, Berman JI, Putt ME, Otten K, Mol K, McNamee M, Allison O, Kuschner ES, Kim M, Bloy L, Liu S, Yount T, Roberts TPL, Christopher Edgar J. Functional and structural maturation of auditory cortex from 2 months to 2 years old. Clin Neurophysiol 2024; 166:232-243. [PMID: 39213880 PMCID: PMC11494624 DOI: 10.1016/j.clinph.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND In school-age children, the myelination of the auditory radiation thalamocortical pathway is associated with the latency of auditory evoked responses, with the myelination of thalamocortical axons facilitating the rapid propagation of acoustic information. Little is known regarding this auditory system function-structure association in infants and toddlers. METHODS AND PARTICIPANTS The present study tested the hypothesis that maturation of auditory radiation white-matter microstructure (e.g., fractional anisotropy (FA); measured using diffusion-weighted MRI) is associated with the latency of the infant auditory response (the P2m response, measured using magnetoencephalography, MEG) in a cross-sectional (N = 47, 2 to 24 months, 19 females) as well as longitudinal cohort (N = 18, 2 to 29 months, 8 females) of typically developing infants and toddlers. Of 18 longitudinal infants, 2 infants had data from 3 timepoints and 16 infants had data from 2 timepoints. RESULTS In the cross-sectional sample, non-linear maturation of P2m latency and auditory radiation diffusion measures were observed. Auditory radiation diffusion accounted for significant variance in P2m latency, even after removing the variance associated with age in both P2m latency and auditory radiation diffusion measures. In the longitudinal sample, latency and FA associations could be observed at the level of a single child. CONCLUSIONS Findings provide strong support for the hypothesis that an increase in thalamocortical neural conduction velocity, due to increased axon diameter and/or myelin maturation, contributes to a decrease in the infant P2m auditory evoked response latency. SIGNIFICANCE Infant multimodal brain imaging identifies brain mechanisms contributing to the rapid changes in neural circuit activity during the first two years of life.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katharina Otten
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, 52074, Germany
| | - Kylie Mol
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Marybeth McNamee
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Olivia Allison
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tess Yount
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Verschuur AS, King R, Tax CMW, Boomsma MF, van Wezel-Meijler G, Leemans A, Leijser LM. Methodological considerations on diffusion MRI tractography in infants aged 0-2 years: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03463-2. [PMID: 39143201 DOI: 10.1038/s41390-024-03463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Diffusion MRI (dMRI) enables studying the complex architectural organization of the brain's white matter (WM) through virtual reconstruction of WM fiber tracts (tractography). Despite the anticipated clinical importance of applying tractography to study structural connectivity and tract development during the critical period of rapid infant brain maturation, detailed descriptions on how to approach tractography in young infants are limited. Over the past two decades, tractography from infant dMRI has mainly been applied in research settings and focused on diffusion tensor imaging (DTI). Only few studies used techniques superior to DTI in terms of disentangling information on the brain's organizational complexity, including crossing fibers. While more advanced techniques may enhance our understanding of the intricate processes of normal and abnormal brain development and extensive knowledge has been gained from application on adult scans, their applicability in infants has remained underexplored. This may partially be due to the higher technical requirements versus the need to limit scan time in young infants. We review various previously described methodological practices for tractography in the infant brain (0-2 years-of-age) and provide recommendations to optimize advanced tractography approaches to enable more accurate reconstructions of the brain WM's complexity. IMPACT: Diffusion tensor imaging is the technique most frequently used for fiber tracking in the developing infant brain but is limited in capability to disentangle the complex white matter organization. Advanced tractography techniques allow for reconstruction of crossing fiber bundles to better reflect the brain's complex organization. Yet, they pose practical and technical challenges in the fast developing young infant's brain. Methods on how to approach advanced tractography in the young infant's brain have hardly been described. Based on a literature review, recommendations are provided to optimize tractography for the developing infant brain, aiming to advance early diagnosis and neuroprotective strategies.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands.
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada.
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerda van Wezel-Meijler
- Department of Neonatology, Isala Women and Children's Hospital Zwolle, Zwolle, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Chen Y, Green HL, Berman JI, Putt ME, Otten K, Mol KL, McNamee M, Allison O, Kuschner ES, Kim M, Bloy L, Liu S, Yount T, Roberts TPL, Edgar JC. Functional and structural maturation of auditory cortex from 2 months to 2 years old. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597426. [PMID: 38895425 PMCID: PMC11185738 DOI: 10.1101/2024.06.05.597426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In school-age children, the myelination of the auditory radiation thalamocortical pathway is associated with the latency of auditory evoked responses, with the myelination of thalamocortical axons facilitating the rapid propagation of acoustic information. Little is known regarding this auditory system function-structure association in infants and toddlers. The present study tested the hypothesis that maturation of auditory radiation white-matter microstructure (e.g., fractional anisotropy (FA); measured using diffusion-weighted MRI) is associated with the latency of the infant auditory response (P2m measured using magnetoencephalography, MEG) in a cross-sectional (2 to 24 months) as well as longitudinal cohort (2 to 29 months) of typically developing infants and toddlers. In the cross-sectional sample, non-linear maturation of P2m latency and auditory radiation diffusion measures were observed. After removing the variance associated with age in both P2m latency and auditory radiation diffusion measures, auditory radiation still accounted for significant variance in P2m latency. In the longitudinal sample, latency and FA associations could be observed at the level of a single child. Findings provide strong support for a contribution of auditory radiation white matter to rapid cortical auditory encoding processes in infants.
Collapse
|
7
|
Calce RP, Rekow D, Barbero FM, Kiseleva A, Talwar S, Leleu A, Collignon O. Voice categorization in the four-month-old human brain. Curr Biol 2024; 34:46-55.e4. [PMID: 38096819 DOI: 10.1016/j.cub.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Voices are the most relevant social sounds for humans and therefore have crucial adaptive value in development. Neuroimaging studies in adults have demonstrated the existence of regions in the superior temporal sulcus that respond preferentially to voices. Yet, whether voices represent a functionally specific category in the young infant's mind is largely unknown. We developed a highly sensitive paradigm relying on fast periodic auditory stimulation (FPAS) combined with scalp electroencephalography (EEG) to demonstrate that the infant brain implements a reliable preferential response to voices early in life. Twenty-three 4-month-old infants listened to sequences containing non-vocal sounds from different categories presented at 3.33 Hz, with highly heterogeneous vocal sounds appearing every third stimulus (1.11 Hz). We were able to isolate a voice-selective response over temporal regions, and individual voice-selective responses were found in most infants within only a few minutes of stimulation. This selective response was significantly reduced for the same frequency-scrambled sounds, indicating that voice selectivity is not simply driven by the envelope and the spectral content of the sounds. Such a robust selective response to voices as early as 4 months of age suggests that the infant brain is endowed with the ability to rapidly develop a functional selectivity to this socially relevant category of sounds.
Collapse
Affiliation(s)
- Roberta P Calce
- Crossmodal Perception and Plasticity Laboratory, Institute of Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | - Diane Rekow
- Development of Olfactory Communication and Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, Université Bourgogne Franche-Comté, Université de Bourgogne, CNRS, Inrae, Institut Agro Dijon, 21000 Dijon, France; Biological Psychology and Neuropsychology, University of Hamburg, 20146 Hamburg, Germany
| | - Francesca M Barbero
- Crossmodal Perception and Plasticity Laboratory, Institute of Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Anna Kiseleva
- Development of Olfactory Communication and Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, Université Bourgogne Franche-Comté, Université de Bourgogne, CNRS, Inrae, Institut Agro Dijon, 21000 Dijon, France
| | - Siddharth Talwar
- Crossmodal Perception and Plasticity Laboratory, Institute of Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Arnaud Leleu
- Development of Olfactory Communication and Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, Université Bourgogne Franche-Comté, Université de Bourgogne, CNRS, Inrae, Institut Agro Dijon, 21000 Dijon, France
| | - Olivier Collignon
- Crossmodal Perception and Plasticity Laboratory, Institute of Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, 1007 Lausanne & Sion, Switzerland.
| |
Collapse
|
8
|
Chen Y, Green HL, Putt ME, Allison O, Kuschner ES, Kim M, Blaskey L, Mol K, McNamee M, Bloy L, Liu S, Huang H, Roberts TPL, Edgar JC. Maturation of auditory cortex neural responses during infancy and toddlerhood. Neuroimage 2023; 275:120163. [PMID: 37178820 PMCID: PMC11463054 DOI: 10.1016/j.neuroimage.2023.120163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
The infant auditory system rapidly matures across the first years of life, with a primary goal of obtaining ever-more-accurate real-time representations of the external world. Our understanding of how left and right auditory cortex neural processes develop during infancy, however, is meager, with few studies having the statistical power to detect potential hemisphere and sex differences in primary/secondary auditory cortex maturation. Using infant magnetoencephalography (MEG) and a cross-sectional study design, left and right auditory cortex P2m responses to pure tones were examined in 114 typically developing infants and toddlers (66 males, 2 to 24 months). Non-linear maturation of P2m latency was observed, with P2m latencies decreasing rapidly as a function of age during the first year of life, followed by slower changes between 12 and 24 months. Whereas in younger infants auditory tones were encoded more slowly in the left than right hemisphere, similar left and right P2m latencies were observed by ∼21 months of age due to faster maturation rate in the left than right hemisphere. No sex differences in the maturation of the P2m responses were observed. Finally, an earlier left than right hemisphere P2m latency predicted better language performance in older infants (12 to 24 months). Findings indicate the need to consider hemisphere when examining the maturation of auditory cortex neural activity in infants and toddlers and show that the pattern of left-right hemisphere P2m maturation is associated with language performance.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States.
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mary E Putt
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Olivia Allison
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kylie Mol
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Marybeth McNamee
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Hao Huang
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
9
|
Polver S, Háden GP, Bulf H, Winkler I, Tóth B. Early maturation of sound duration processing in the infant's brain. Sci Rep 2023; 13:10287. [PMID: 37355709 PMCID: PMC10290631 DOI: 10.1038/s41598-023-36794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/12/2023] [Indexed: 06/26/2023] Open
Abstract
The ability to process sound duration is crucial already at a very early age for laying the foundation for the main functions of auditory perception, such as object perception and music and language acquisition. With the availability of age-appropriate structural anatomical templates, we can reconstruct EEG source activity with much-improved reliability. The current study capitalized on this possibility by reconstructing the sources of event-related potential (ERP) waveforms sensitive to sound duration in 4- and 9-month-old infants. Infants were presented with short (200 ms) and long (300 ms) sounds equiprobable delivered in random order. Two temporally separate ERP waveforms were found to be modulated by sound duration. Generators of these waveforms were mainly located in the primary and secondary auditory areas and other language-related regions. The results show marked developmental changes between 4 and 9 months, partly reflected by scalp-recorded ERPs, but appearing in the underlying generators in a far more nuanced way. The results also confirm the feasibility of the application of anatomical templates in developmental populations.
Collapse
Affiliation(s)
- Silvia Polver
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Gábor P Háden
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Budapest, Hungary
- Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Hermann Bulf
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- NeuroMI, Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - István Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Budapest, Hungary
| | - Brigitta Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
10
|
Preterm neonates distinguish rhythm violation through a hierarchy of cortical processing. Dev Cogn Neurosci 2022; 58:101168. [PMID: 36335806 PMCID: PMC9638730 DOI: 10.1016/j.dcn.2022.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 09/29/2022] [Accepted: 10/27/2022] [Indexed: 01/13/2023] Open
Abstract
Rhythm is a fundamental component of the auditory world, present even during the prenatal life. While there is evidence that some auditory capacities are already present before birth, whether and how the premature neural networks process auditory rhythm is yet not known. We investigated the neural response of premature neonates at 30-34 weeks gestational age to violations from rhythmic regularities in an auditory sequence using high-resolution electroencephalography and event-related potentials. Unpredicted rhythm violations elicited a fronto-central mismatch response, indicating that the premature neonates detected the rhythmic regularities. Next, we examined the cortical effective connectivity underlying the elicited mismatch response using dynamic causal modeling. We examined the connectivity between cortical sources using a set of 16 generative models that embedded alternate hypotheses about the role of the frontal cortex as well as backward fronto-temporal connection. Our results demonstrated that the processing of rhythm violations was not limited to the primary auditory areas, and as in the case of adults, encompassed a hierarchy of temporo-frontal cortical structures. The result also emphasized the importance of top-down (backward) projections from the frontal cortex in explaining the mismatch response. Our findings demonstrate a sophisticated cortical structure underlying predictive rhythm processing at the onset of the thalamocortical and cortico-cortical circuits, two months before term.
Collapse
|
11
|
Kabdebon C, Fló A, de Heering A, Aslin R. The power of rhythms: how steady-state evoked responses reveal early neurocognitive development. Neuroimage 2022; 254:119150. [PMID: 35351649 PMCID: PMC9294992 DOI: 10.1016/j.neuroimage.2022.119150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Electroencephalography (EEG) is a non-invasive and painless recording of cerebral activity, particularly well-suited for studying young infants, allowing the inspection of cerebral responses in a constellation of different ways. Of particular interest for developmental cognitive neuroscientists is the use of rhythmic stimulation, and the analysis of steady-state evoked potentials (SS-EPs) - an approach also known as frequency tagging. In this paper we rely on the existing SS-EP early developmental literature to illustrate the important advantages of SS-EPs for studying the developing brain. We argue that (1) the technique is both objective and predictive: the response is expected at the stimulation frequency (and/or higher harmonics), (2) its high spectral specificity makes the computed responses particularly robust to artifacts, and (3) the technique allows for short and efficient recordings, compatible with infants' limited attentional spans. We additionally provide an overview of some recent inspiring use of the SS-EP technique in adult research, in order to argue that (4) the SS-EP approach can be implemented creatively to target a wide range of cognitive and neural processes. For all these reasons, we expect SS-EPs to play an increasing role in the understanding of early cognitive processes. Finally, we provide practical guidelines for implementing and analyzing SS-EP studies.
Collapse
Affiliation(s)
- Claire Kabdebon
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'études cognitives, ENS, EHESS, CNRS, PSL University, Paris, France; Haskins Laboratories, New Haven, CT, USA.
| | - Ana Fló
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
| | - Adélaïde de Heering
- Center for Research in Cognition & Neuroscience (CRCN), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Richard Aslin
- Haskins Laboratories, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Fiber tracing and microstructural characterization among audiovisual integration brain regions in neonates compared with young adults. Neuroimage 2022; 254:119141. [PMID: 35342006 DOI: 10.1016/j.neuroimage.2022.119141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Audiovisual integration has been related with cognitive-processing and behavioral advantages, as well as with various socio-cognitive disorders. While some studies have identified brain regions instantiating this ability shortly after birth, little is known about the structural pathways connecting them. The goal of the present study was to reconstruct fiber tracts linking AVI regions in the newborn in-vivo brain and assess their adult-likeness by comparing them with analogous fiber tracts of young adults. We performed probabilistic tractography and compared connective probabilities between a sample of term-born neonates (N = 311; the Developing Human Connectome Project (dHCP, http://www.developingconnectome.org) and young adults (N = 311 The Human Connectome Project; https://www.humanconnectome.org/) by means of a classification algorithm. Furthermore, we computed Dice coefficients to assess between-group spatial similarity of the reconstructed fibers and used diffusion metrics to characterize neonates' AVI brain network in terms of microstructural properties, interhemispheric differences and the association with perinatal covariates and biological sex. Overall, our results indicate that the AVI fiber bundles were successfully reconstructed in a vast majority of neonates, similarly to adults. Connective probability distributional similarities and spatial overlaps of AVI fibers between the two groups differed across the reconstructed fibers. There was a rank-order correspondence of the fibers' connective strengths across the groups. Additionally, the study revealed patterns of diffusion metrics in line with early white matter developmental trajectories and a developmental advantage for females. Altogether, these findings deliver evidence of meaningful structural connections among AVI regions in the newborn in-vivo brain.
Collapse
|
13
|
Namiranian R, Rahimi Malakshan S, Abrishami Moghaddam H, Khadem A, Jafari R. Normal development of the brain: a survey of joint structural-functional brain studies. Rev Neurosci 2022; 33:745-765. [PMID: 35304982 DOI: 10.1515/revneuro-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/15/2022]
Abstract
Joint structural-functional (S-F) developmental studies present a novel approach to address the complex neuroscience questions on how the human brain works and how it matures. Joint S-F biomarkers have the inherent potential to model effectively the brain's maturation, fill the information gap in temporal brain atlases, and demonstrate how the brain's performance matures during the lifespan. This review presents the current state of knowledge on heterochronous and heterogeneous development of S-F links during the maturation period. The S-F relationship has been investigated in early-matured unimodal and prolonged-matured transmodal regions of the brain using a variety of structural and functional biomarkers and data acquisition modalities. Joint S-F unimodal studies have employed auditory and visual stimuli, while the main focus of joint S-F transmodal studies has been resting-state and cognitive experiments. However, nonsignificant associations between some structural and functional biomarkers and their maturation show that designing and developing effective S-F biomarkers is still a challenge in the field. Maturational characteristics of brain asymmetries have been poorly investigated by the joint S-F studies, and the results were partially inconsistent with previous nonjoint ones. The inherent complexity of the brain performance can be modeled using multifactorial and nonlinear techniques as promising methods to simulate the impact of age on S-F relations considering their analysis challenges.
Collapse
Affiliation(s)
- Roxana Namiranian
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Sahar Rahimi Malakshan
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Hamid Abrishami Moghaddam
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran.,Inserm UMR 1105, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Reza Jafari
- Department of Electrical and Computer Engineering, Thompson Engineering Building, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
14
|
Fló A, Benjamin L, Palu M, Dehaene-Lambertz G. Sleeping neonates track transitional probabilities in speech but only retain the first syllable of words. Sci Rep 2022; 12:4391. [PMID: 35292694 PMCID: PMC8924158 DOI: 10.1038/s41598-022-08411-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Extracting statistical regularities from the environment is a primary learning mechanism that might support language acquisition. While it has been shown that infants are sensitive to transition probabilities between syllables in speech, it is still not known what information they encode. Here we used electrophysiology to study how full-term neonates process an artificial language constructed by randomly concatenating four pseudo-words and what information they retain after a few minutes of exposure. Neural entrainment served as a marker of the regularities the brain was tracking during learning. Then in a post-learning phase, evoked-related potentials (ERP) to different triplets explored which information was retained. After two minutes of familiarization with the artificial language, neural entrainment at the word rate emerged, demonstrating rapid learning of the regularities. ERPs in the test phase significantly differed between triplets starting or not with the correct first syllables, but no difference was associated with subsequent violations in transition probabilities. Thus, our results revealed a two-step learning process: neonates segmented the stream based on its statistical regularities, but memory encoding targeted during the word recognition phase entangled the ordinal position of the syllables but was still incomplete at that age.
Collapse
Affiliation(s)
- Ana Fló
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France.
| | - Lucas Benjamin
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
| | - Marie Palu
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
| |
Collapse
|
15
|
Guy MW, Conte S, Bursalıoğlu A, Richards JE. Peak selection and latency jitter correction in developmental event-related potentials. Dev Psychobiol 2021; 63:e22193. [PMID: 34674252 PMCID: PMC8978110 DOI: 10.1002/dev.22193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022]
Abstract
Event-related potentials (ERPs) provide great insight into neural responses, yet developmental ERP work is plagued with inconsistent approaches to identifying and quantifying component latency. In this analytical review, we describe popular conventions for the selection of time windows for ERP analysis and assert that a data-driven strategy should be applied to the identification of component latency within individual participants' data. This may overcome weaknesses of more general approaches to peak selection; however, it does not account for trial-by-trial variability within a participant. This issue, known as ERP latency jitter, may blur the average ERP, misleading the interpretation of neural mechanisms. Recently, the ReSync MATLAB toolbox has been made available for correction of latency jitter. Although not created specifically for pediatric ERP data, this approach can be adapted for developmental researchers. We have demonstrated the use of the ReSync toolbox with individual infant and child datasets to illustrate its utility. Details about our peak detection script and the ReSync toolbox are provided. The adoption of data processing procedures that allow for accurate, study-specific component selection and reduce trial-by-trial asynchrony strengthens developmental ERP research by decreasing noise included in ERP analyses and improving the representation of the neural response.
Collapse
Affiliation(s)
- Maggie W. Guy
- Department of Psychology, Loyola University Chicago, Chicago, Illinois, USA
| | - Stefania Conte
- Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - Aslı Bursalıoğlu
- Department of Psychology, Loyola University Chicago, Chicago, Illinois, USA
| | - John E. Richards
- Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
16
|
Ortiz-Mantilla S, Roesler CP, Realpe-Bonilla T, Benasich AA. Modulation of Theta Phase Synchrony during Syllable Processing as a Function of Interactive Acoustic Experience in Infancy. Cereb Cortex 2021; 32:919-932. [PMID: 34403462 PMCID: PMC8889996 DOI: 10.1093/cercor/bhab256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/13/2022] Open
Abstract
Plasticity, a prominent characteristic of the infant brain, supports formation of cortical representations as infants begin to interact with and adapt to environmental sensory events. Enhanced acoustic processing efficiency along with improved allocation of attentional resources at 7 months and establishment of well-defined phonemic maps at 9 months have been shown to be facilitated by early interactive acoustic experience (IAE). In this study, using an oddball paradigm and measures of theta phase synchrony at source level, we examined short- and long-term effects of nonspeech IAE on syllable processing. Results demonstrated that beyond maturation alone, IAE increased the efficiency of syllabic representation and discrimination, an effect that endured well beyond the immediate training period. As compared with naive controls, the IAE-trained group at 7, 9, and 18 months showed less theta phase synchrony for the standard syllable and at 7 and 18 months for the deviant syllable. The decreased theta phase synchrony exhibited by the trained group suggests more mature, efficient, acoustic processing, and thus, better cortical representation and discrimination of syllabic content. Further, the IAE modulatory effect observed on theta phase synchrony in left auditory cortex at 7 and 9 months was differentially associated with receptive and expressive language scores at 12 and 18 months of age.
Collapse
Affiliation(s)
- Silvia Ortiz-Mantilla
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Cynthia P Roesler
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Teresa Realpe-Bonilla
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - April A Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
17
|
Copeland A, Silver E, Korja R, Lehtola SJ, Merisaari H, Saukko E, Sinisalo S, Saunavaara J, Lähdesmäki T, Parkkola R, Nolvi S, Karlsson L, Karlsson H, Tuulari JJ. Infant and Child MRI: A Review of Scanning Procedures. Front Neurosci 2021; 15:666020. [PMID: 34321992 PMCID: PMC8311184 DOI: 10.3389/fnins.2021.666020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a safe method to examine human brain. However, a typical MR scan is very sensitive to motion, and it requires the subject to lie still during the acquisition, which is a major challenge for pediatric scans. Consequently, in a clinical setting, sedation or general anesthesia is often used. In the research setting including healthy subjects anesthetics are not recommended for ethical reasons and potential longer-term harm. Here we review the methods used to prepare a child for an MRI scan, but also on the techniques and tools used during the scanning to enable a successful scan. Additionally, we critically evaluate how studies have reported the scanning procedure and success of scanning. We searched articles based on special subject headings from PubMed and identified 86 studies using brain MRI in healthy subjects between 0 and 6 years of age. Scan preparations expectedly depended on subject's age; infants and young children were scanned asleep after feeding and swaddling and older children were scanned awake. Comparing the efficiency of different procedures was difficult because of the heterogeneous reporting of the used methods and the success rates. Based on this review, we recommend more detailed reporting of scanning procedure to help find out which are the factors affecting the success of scanning. In the long term, this could help the research field to get high quality data, but also the clinical field to reduce the use of anesthetics. Finally, we introduce the protocol used in scanning 2 to 5-week-old infants in the FinnBrain Birth Cohort Study, and tips for calming neonates during the scans.
Collapse
Affiliation(s)
- Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Satu J. Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Susanne Sinisalo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Pediatric Neurology, Turku University Hospital, University of Turku, Turku, Finland
| | - Riitta Parkkola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Dubois J, Alison M, Counsell SJ, Hertz‐Pannier L, Hüppi PS, Benders MJ. MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances. J Magn Reson Imaging 2021; 53:1318-1343. [PMID: 32420684 PMCID: PMC8247362 DOI: 10.1002/jmri.27192] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jessica Dubois
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Marianne Alison
- University of ParisNeuroDiderot, INSERM,ParisFrance
- Department of Pediatric RadiologyAPHP, Robert‐Debré HospitalParisFrance
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical Engineering & Imaging Sciences, King's College LondonLondonUK
| | - Lucie Hertz‐Pannier
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Petra S. Hüppi
- Division of Development and Growth, Department of Woman, Child and AdolescentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Manon J.N.L. Benders
- Department of NeonatologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|