1
|
Smith LT, Bishop OC, Nusslock R, Alloy LB. The path from mood symptoms to substance use: A longitudinal examination in individuals with and at risk for bipolar spectrum disorders. J Affect Disord 2024; 360:33-41. [PMID: 38815758 PMCID: PMC11185173 DOI: 10.1016/j.jad.2024.05.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Adolescent substance use poses a critical public health challenge, intertwined with risk-taking behavior, criminality, functional impairment, and comorbid mental and physical health issues. Adolescents with bipolar spectrum disorders (BSD) exhibit heightened susceptibility to substance use, necessitating a nuanced exploration of the bipolar-substance use relationship. METHODS This study addressed gaps in the literature by employing a prospective, longitudinal design with 443 Philadelphia-area adolescents, tracking BSD symptoms and substance use. We predicted that BSD symptoms would be associated with increases in substance use, and that these effects would be more pronounced for individuals with a BSD and those with high reward sensitivity. RESULTS Hypomanic symptoms predicted subsequent substance use, with a stronger association observed in individuals diagnosed with BSD. Contrary to expectations, depressive symptoms did not exhibit a similar relationship. Although the hypothesized moderating role of reward sensitivity was not supported, higher reward sensitivity predicted increased substance use. LIMITATIONS Symptoms and substance use are only captured for the month prior to each session due to the assessment timeline. This highlights the benefits of frequent assessments over a shorter time frame to monitor real-time changes. Alternative classification methods for reward sensitivity, such as brain or behavior-based assessments, might yield different results. CONCLUSIONS This study's contributions include evaluating substance use broadly, utilizing a longitudinal design for temporal clarity, and shifting the focus from substance use predicting mood symptoms to the inverse. The findings underscore the need for continued exploration of mood symptom predictors of substance use, emphasizing the role of reward sensitivity.
Collapse
Affiliation(s)
- Logan T Smith
- Department of Psychology and Neuroscience, Temple University, United States of America
| | - Olivia C Bishop
- Department of Psychology and Neuroscience, Temple University, United States of America
| | - Robin Nusslock
- Department of Psychology, Northwestern University, United States of America
| | - Lauren B Alloy
- Department of Psychology and Neuroscience, Temple University, United States of America.
| |
Collapse
|
2
|
Kohler R, Lichenstein SD, Cheng A, Holmes A, Bzdok D, Pearlson G, Yip SW. Identification of a Composite Latent Dimension of Reward and Impulsivity Across Clinical, Behavioral, and Neurobiological Domains Among Youth. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:407-416. [PMID: 38052266 PMCID: PMC11149944 DOI: 10.1016/j.bpsc.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Individual differences in reward processing are central to heightened risk-taking behaviors during adolescence, but there is inconsistent evidence for the relationship between risk-taking phenotypes and the neural substrates of these behaviors. METHODS Here, we identify latent features of reward in an attempt to provide a unifying framework linking together aspects of the brain and behavior during early adolescence using a multivariate pattern learning approach. Data (N = 8295; n male = 4190; n female = 4105) were acquired as part of the Adolescent Brain Cognitive Development (ABCD) Study and included neuroimaging (regional neural activity responses during reward anticipation) and behavioral (e.g., impulsivity measures, delay discounting) variables. RESULTS We revealed a single latent dimension of reward driven by shared covariation between striatal, thalamic, and anterior cingulate responses during reward anticipation, negative urgency, and delay discounting behaviors. Expression of these latent features differed among adolescents with attention-deficit/hyperactivity disorder and disruptive behavior disorder, compared with those without, and higher expression of these latent features was negatively associated with multiple dimensions of executive function and cognition. CONCLUSIONS These results suggest that cross-domain patterns of anticipatory reward processing linked to negative features of impulsivity exist in both the brain and in behavior during early adolescence and that these are representative of 2 commonly diagnosed reward-related psychiatric disorders, attention-deficit/hyperactivity disorder and disruptive behavior disorder. Furthermore, they provide an explicit baseline from which multivariate developmental trajectories of reward processes may be tracked in later waves of the ABCD Study and other developmental cohorts.
Collapse
Affiliation(s)
- Robert Kohler
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Sarah D Lichenstein
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Annie Cheng
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Avram Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, New Jersey
| | - Danilo Bzdok
- Quebec AI Institute, Montreal, Quebec, Canada and Montreal Neurological Institute, Department of Biomedical Engineering, BIC, McGill University, Montreal, Québec, Canada
| | - Godfrey Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut; Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Sarah W Yip
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
3
|
Demidenko MI, Mumford JA, Ram N, Poldrack RA. A multi-sample evaluation of the measurement structure and function of the modified monetary incentive delay task in adolescents. Dev Cogn Neurosci 2024; 65:101337. [PMID: 38160517 PMCID: PMC10801229 DOI: 10.1016/j.dcn.2023.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Interpreting the neural response elicited during task functional magnetic resonance imaging (fMRI) remains a challenge in neurodevelopmental research. The monetary incentive delay (MID) task is an fMRI reward processing task that is extensively used in the literature. However, modern psychometric tools have not been used to evaluate measurement properties of the MID task fMRI data. The current study uses data for a similar task design across three adolescent samples (N = 346 [Agemean 12.0; 44 % Female]; N = 97 [19.3; 58 %]; N = 112 [20.2; 38 %]) to evaluate multiple measurement properties of fMRI responses on the MID task. Confirmatory factor analysis (CFA) is used to evaluate an a priori theoretical model for the task and its measurement invariance across three samples. Exploratory factor analysis (EFA) is used to identify the data-driven measurement structure across the samples. CFA results suggest that the a priori model is a poor representation of these MID task fMRI data. Across the samples, the data-driven EFA models consistently identify a six-to-seven factor structure with run and bilateral brain region factors. This factor structure is moderately-to-highly congruent across the samples. Altogether, these findings demonstrate a need to evaluate theoretical frameworks for popular fMRI task designs to improve our understanding and interpretation of brain-behavior associations.
Collapse
Affiliation(s)
| | | | - Nilam Ram
- Department of Psychology, Stanford University, Stanford, United States
| | | |
Collapse
|
4
|
Kwon M, Kim H, Yang J, Lee Y, Hur JK, Lee TH, Bjork JM, Ahn WY. Caffeinated Soda Intake in Children Is Associated with Neurobehavioral Risk Factors for Substance Misuse. Subst Use Misuse 2023; 59:79-89. [PMID: 37936270 DOI: 10.1080/10826084.2023.2259471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Use of psychotropic substances in childhood has been associated with both impulsivity and other manifestations of poor executive function as well as escalation over time to use of progressively stronger substances. However, how this relationship may start in earlier childhood has not been well explored. Here, we investigated the neurobehavioral correlates of daily caffeinated soda consumption in preadolescent children and examined whether caffeinated soda intake is associated with a higher risk of subsequent alcohol initiation. METHODS Using Adolescent Brain Cognitive Development study data (N = 2,092), we first investigated cross-sectional relationships between frequent caffeinated soda intake and well-known risk factors of substance misuse: impaired working memory, high impulsivity, and aberrant reward processing. We then examined whether caffeinated soda intake at baseline predicts more alcohol sipping at 12 months follow-up using a machine learning algorithm. RESULTS Daily consumption of caffeinated soda was cross-sectionally associated with neurobehavioral risk factors for substance misuse such as higher impulsivity scores and lower working memory performance. Furthermore, caffeinated soda intake predicted a 2.04 times greater likelihood of alcohol sipping after 12 months, even after controlling for rates of baseline alcohol sipping rates. CONCLUSIONS These findings suggest that previous linkages between caffeine and substance use in adolescence also extend to younger initiation, and may stem from core neurocognitive features thought conducive to substance initiation.
Collapse
Affiliation(s)
- Mina Kwon
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Hyeonjin Kim
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Jaeyeong Yang
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Yoseph Lee
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Jihyun K Hur
- Department of Psychology, Seoul National University, Seoul, Korea
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech, Blacksburg, Virginia, USA
| | - James M Bjork
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Woo-Young Ahn
- Department of Psychology, Seoul National University, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
5
|
Beltz AM, Demidenko MI, Wilson SJ, Berenbaum SA. Prenatal androgen influences on the brain: A review, critique, and illustration of research on congenital adrenal hyperplasia. J Neurosci Res 2023; 101:563-574. [PMID: 34139025 DOI: 10.1002/jnr.24900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
Sex hormones, especially androgens, contribute to sex and gender differences in the brain and behavior. Organizational effects are particularly important because they are thought to be permanent, reflecting hormone exposure during sensitive periods of development. In human beings, they are often studied with natural experiments in which sex hormones are dissociated from other biopsychosocial aspects of development, such as genes and experiences. Indeed, the greatest evidence for organizational effects on sex differences in human behavior comes from studies of females with congenital adrenal hyperplasia (CAH), who have heightened prenatal androgen exposure, female-typical rearing, and masculinized toy play, activity and career interests, spatial skills, and some personal characteristics. Interestingly, however, neuroimaging studies of females with CAH have revealed few neural mechanisms underlying these hormone-behavior links, with the exception of emotion processing; studies have instead shown reduced gray matter volumes and reduced white matter integrity most consistent with other disease-related processes. The goals of this narrative review are to: (a) describe methods for studying prenatal androgen influences, while offering a brief overview of behavioral outcomes; (b) provide a critical methodological review of neuroimaging research on females with CAH; (c) present an illustrative analysis that overcomes methodological limitations of previous work, focusing on person-specific neural reward networks (and their associations with sensation seeking) in women with CAH and their unaffected sisters in order to inform future research questions and approaches that are most likely to reveal organizational hormone effects on brain structure and function.
Collapse
Affiliation(s)
- Adriene M Beltz
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | | | - Stephen J Wilson
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Sheri A Berenbaum
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Constante K, Demidenko MI, Huntley ED, Rivas-Drake D, Keating DP, Beltz AM. Personalized Neural Networks Underlie Individual Differences in Ethnic Identity Exploration and Resolution. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2023; 33:24-42. [PMID: 35429195 PMCID: PMC9673182 DOI: 10.1111/jora.12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/16/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
This study examined how ethnic identity relates to large-scale brain networks implicated in social interactions, social cognition, self-definition, and cognitive control. Group Iterative Multiple Model Estimation (GIMME) was used to create sparse, person-specific networks among the default mode and frontoparietal resting-state networks in a diverse sample of 104 youths aged 17-21. Links between neural density (i.e., number of connections within and between these networks) and ethnic identity exploration and resolution were evaluated in the full sample. Ethnic identity resolution was positively related to frontoparietal network density, suggesting that having clarity about one's ethnic group membership is associated with brain network organization reflecting cognitive control. These findings help fill a critical knowledge gap about the neural underpinnings of ethnic identity.
Collapse
Affiliation(s)
- Kevin Constante
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Edward D. Huntley
- Institute of Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Daniel P. Keating
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
- Institute of Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Adriene M. Beltz
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Demidenko MI, Huntley ED, Weigard AS, Keating DP, Beltz AM. Neural heterogeneity underlying late adolescent motivational processing is linked to individual differences in behavioral sensation seeking. J Neurosci Res 2022; 100:762-779. [PMID: 35043448 PMCID: PMC8978150 DOI: 10.1002/jnr.25005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 11/08/2022]
Abstract
Adolescent risk-taking, including sensation seeking (SS), is often attributed to developmental changes in connectivity among brain regions implicated in cognitive control and reward processing. Despite considerable scientific and popular interest in this neurodevelopmental framework, there are few empirical investigations of adolescent functional connectivity, let alone examinations of its links to SS behavior. The studies that have been done focus on mean-based approaches and leave unanswered questions about individual differences in neurodevelopment and behavior. The goal of this paper is to take a person-specific approach to the study of adolescent functional connectivity during a continuous motivational state, and to examine links between connectivity and self-reported SS behavior in 104 adolescents (MAge = 19.3; SDAge = 1.3). Using Group Iterative Multiple Model Estimation (GIMME), person-specific connectivity during two neuroimaging runs of a monetary incentive delay task was estimated among 12 a priori brain regions of interest representing reward, cognitive, and salience networks. Two data-driven subgroups were detected, a finding that was consistent between both neuroimaging runs, but associations with SS were only found in the first run, potentially reflecting neural habituation in the second run. Specifically, the subgroup that had unique connections between reward-related regions had greater SS and showed a distinctive relation between connectivity strength in the reward regions and SS. These findings provide novel evidence for heterogeneity in adolescent brain-behavior relations by showing that subsets of adolescents have unique associations between neural motivational processing and SS. Findings have broader implications for future work on reward processing, as they demonstrate that brain-behavior relations may attenuate across runs.
Collapse
Affiliation(s)
| | - Edward D. Huntley
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Daniel P. Keating
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Adriene M. Beltz
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Del Giacco AC, Jones SA, Morales AM, Kliamovich D, Nagel BJ. Adolescent novelty seeking is associated with greater ventral striatal and prefrontal brain response during evaluation of risk and reward. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:123-133. [PMID: 34342865 PMCID: PMC8792307 DOI: 10.3758/s13415-021-00937-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 01/14/2023]
Abstract
Adolescence is a period during which reward sensitivity is heightened. Studies suggest that there are individual differences in adolescent reward-seeking behavior, attributable to a variety of factors, including temperament. This study investigated the neurobiological underpinnings of risk and reward evaluation as they relate to self-reported pleasure derived from novel experiences on the revised Early Adolescent Temperament Questionnaire (EATQ-R). Healthy participants (N = 265, ~50% male), aged 12-17 years, underwent functional magnetic resonance imaging during a modified Wheel of Fortune task, where they evaluated choices with varying probability of winning different monetary rewards. Across all participants, there was increased brain response in salience, reward, and cognitive control circuitry when evaluating choices with larger (compared with moderate) difference in risk/reward. Whole brain and a priori region-of-interest regression analyses revealed that individuals reporting higher novelty seeking had greater activation in bilateral ventral striatum, left middle frontal gyrus, and bilateral posterior cingulate cortex when evaluating the choices for largest difference in risk/reward. These novelty seeking associations with brain response were seen in the absence of temperament-related differences in decision-making behavior. Thus, while heightened novelty seeking in adolescents might be associated with greater neural sensitivity to risk/reward, accompanying increased activation in cognitive control regions might regulate reward-driven risk-taking behavior. More research is needed to determine whether individual differences in brain activation associated with novelty seeking are related to decision making in more ecologically valid settings.
Collapse
Affiliation(s)
- Amanda C Del Giacco
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Angelica M Morales
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Dakota Kliamovich
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road UHN-80R1, Portland, OR, 97239, USA
| | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road UHN-80R1, Portland, OR, 97239, USA.
| |
Collapse
|
9
|
Srirangarajan T, Mortazavi L, Bortolini T, Moll J, Knutson B. Multi-band FMRI compromises detection of mesolimbic reward responses. Neuroimage 2021; 244:118617. [PMID: 34600102 PMCID: PMC8626533 DOI: 10.1016/j.neuroimage.2021.118617] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/09/2022] Open
Abstract
Recent innovations in Functional Magnetic Resonance Imaging (FMRI) have sped data collection by enabling simultaneous scans of neural activity in multiple brain locations, but have these innovations come at a cost? In a meta-analysis and preregistered direct comparison of original data, we examined whether acquiring FMRI data with multi-band versus single-band scanning protocols might compromise detection of mesolimbic activity during reward processing. Meta-analytic results (n = 44 studies; cumulative n = 5005 subjects) indicated that relative to single-band scans, multi-band scans showed significantly decreased effect sizes for reward anticipation in the Nucleus Accumbens (NAcc) by more than half. Direct within-subject comparison of single-band versus multi-band scanning data (multi-band factors = 4 and 8; n = 12 subjects) acquired during repeated administration of the Monetary Incentive Delay task indicated that reductions in temporal signal-to-noise ratio could account for compromised detection of task-related responses in mesolimbic regions (i.e., the NAcc). Together, these findings imply that researchers should opt for single-band over multi-band scanning protocols when probing mesolimbic responses with FMRI. The findings also have implications for inferring mesolimbic activity during related tasks and rest, for summarizing historical results, and for using neuroimaging data to track individual differences in reward-related brain activity.
Collapse
Affiliation(s)
- Tara Srirangarajan
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Leili Mortazavi
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Tiago Bortolini
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Jorge Moll
- Department of Psychology, Stanford University, Stanford, CA, United States; D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
10
|
Bjork JM. The ups and downs of relating nondrug reward activation to substance use risk in adolescents. CURRENT ADDICTION REPORTS 2021; 7:421-429. [PMID: 33585160 DOI: 10.1007/s40429-020-00327-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose of review A wealth of epidemiological and cohort research, together with a healthy dose of anecdote, has characterized late-adolescence and emerging adulthood as a time of increased substance use and other risky behaviors. This review will address whether differences between adolescents or between adolescents and other age groups in dopaminergic mesolimbic recruitment by (non-drug) rewards inferred from functional magnetic resonance imaging (fMRI) could partially explain morbidity and mortality from risky-behavior-related causes in adolescents. Recent findings Recent findings do not suggest a definitive directionality with regard to whether increased vs decreased mesolimbic responsiveness to nondrug rewards correlates with real-world risk-taking. Inconsistent relationships between reward-activation and real-world risky behavior in these reports reflect in part methodological differences as well as conceptual differences between populations in terms of whether tepid mesolimbic recruitment by rewards is a marker of psychiatric health. Summary There are several potential reasons why the directionality of relationships between reward-elicited brain activation and substance use risk (specifically) might differ. These factors include differences between adolescents in histories/exposure of substance use, motivation for substance use, the component of the instrumental behavior being studied, and the cognitive demands of the incentive tasks. Systematic manipulation of these discrepant study factors might offer a way forward to clarify how motivational neurocircuit function relates to addiction risk in adolescents.
Collapse
Affiliation(s)
- James M Bjork
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| |
Collapse
|