1
|
Rahapsari S, Levita L. The Impact of Adverse Childhood Experiences on Cognitive Control Across the Lifespan: A Systematic Review and Meta-analysis of Prospective Studies. TRAUMA, VIOLENCE & ABUSE 2024:15248380241286812. [PMID: 39396188 DOI: 10.1177/15248380241286812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Adverse childhood experiences (ACEs) are strongly associated with impaired cognitive control, yet research on ACEs' effects across cognitive control domains-working memory, cognitive flexibility, and inhibitory control-remains sparse. This systematic review and meta-analysis evaluated the overall impact of ACEs on each of these cognitive control domains and explored moderating factors such as age, gender, cognitive control paradigms, and ACEs subtypes based on the dimensional model of adversity and psychopathology. A database search was conducted in SCOPUS, MedLine, PsycINFO, and Web of Science. Only prospective studies were included to ensure temporal order inferences, with at least two data collection points, assessing ACEs at baseline (T1) and cognitive control during follow-up (T2). Thirty-two studies (N = 26,863) producing 124 effect sizes were analyzed. Three-level meta-analyses revealed small-to-medium negative associations between ACEs and overall cognitive control (g = -0.32), and in each domain: working memory (g = -0.28), cognitive flexibility (g = -0.28), and inhibitory control (g = -0.32). The negative associations between ACEs and cognitive control were consistent across age, gender, and cognitive control paradigms. ACEs subtypes moderated the association with cognitive flexibility (p = .04) but not working memory or inhibitory control. Specifically, the deprivation subtype exhibited a stronger negative association with cognitive flexibility compared to threat and threat-and-deprivation subtypes. These findings highlight the pervasive negative impact of ACEs on cognitive control across ages and emphasize the need for targeted interventions. Implications, current gaps, limitations in research, and future study recommendations are discussed.
Collapse
Affiliation(s)
- Satwika Rahapsari
- School of Psychology, University of Sheffield, UK
- Faculty of Psychology, Universitas Gadjah Mada, Indonesia
| | - Liat Levita
- School of Psychology, University of Sussex, UK
| |
Collapse
|
2
|
Boer OD, Franken IHA, Muetzel RL, Cousijn J, El Marroun H. Examining associations between brain morphology in late childhood and early alcohol or tobacco use initiation in adolescence: Findings from a large prospective cohort. Biol Psychol 2024; 192:108859. [PMID: 39233273 DOI: 10.1016/j.biopsycho.2024.108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
A prominent challenge in understanding neural consequences of substance use involves disentangling predispositional risk factors from resulting consequences of substance use. Existing literature has identified pre-existing brain variations as vulnerability markers for substance use throughout adolescence. As early initiation of use is an important predictor for later substance use problems, we examined whether pre-existing brain variations are associated with early initiation of use. In the Generation R Study, a prospective population-based cohort, brain morphology (gray matter volume, cortical thickness and surface area) was assessed at ages 10 and 14 using neuroimaging. In the second wave, participants reported on alcohol and tobacco use initiation. From a base study population (N = 3019), we examined the longitudinal (N = 2218) and cross-sectional (N = 1817) association between brain morphology of frontolimbic regions of interest known to be associated with substance use risk, and very early (age < 13) alcohol/tobacco use initiation. Additionally, longitudinal and cross-sectional associations were examined with a brain surface-based approach. Models were adjusted for age at neuroimaging, sex and relevant sociodemographic factors. No associations were found between brain morphology (ages 10 and 14) and early alcohol/tobacco use initiation (<13 years). Sex-specific analyses suggested a cross-sectional association between smaller brain volume and early initiated tobacco use in girls. Our findings are important for interpreting studies examining neural consequences of substance use in the general population. Future longitudinal studies are needed to specify whether these findings can be extended to initiation and continuation of alcohol/tobacco use in later stages of adolescence.
Collapse
Affiliation(s)
- Olga D Boer
- Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Science, Erasmus University Rotterdam, 3000 DR Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, University Medical Center Rotterdam, Erasmus MC, Sophia Children's Hospital, 3000 CB Rotterdam, the Netherlands
| | - Ingmar H A Franken
- Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Science, Erasmus University Rotterdam, 3000 DR Rotterdam, the Netherlands
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry, University Medical Center Rotterdam, Erasmus MC, Sophia Children's Hospital, 3000 CB Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, the Netherlands
| | - Janna Cousijn
- Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Science, Erasmus University Rotterdam, 3000 DR Rotterdam, the Netherlands
| | - Hanan El Marroun
- Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Science, Erasmus University Rotterdam, 3000 DR Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, University Medical Center Rotterdam, Erasmus MC, Sophia Children's Hospital, 3000 CB Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Korbmacher M, van der Meer D, Beck D, Askeland-Gjerde DE, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Distinct Longitudinal Brain White Matter Microstructure Changes and Associated Polygenic Risk of Common Psychiatric Disorders and Alzheimer's Disease in the UK Biobank. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100323. [PMID: 39132576 PMCID: PMC11313202 DOI: 10.1016/j.bpsgos.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background During the course of adulthood and aging, white matter (WM) structure and organization are characterized by slow degradation processes such as demyelination and shrinkage. An acceleration of such aging processes has been linked to the development of a range of diseases. Thus, an accurate description of healthy brain maturation, particularly in terms of WM features, is fundamental to the understanding of aging. Methods We used longitudinal diffusion magnetic resonance imaging to provide an overview of WM changes at different spatial and temporal scales in the UK Biobank (UKB) (n = 2678; agescan 1 = 62.38 ± 7.23 years; agescan 2 = 64.81 ± 7.1 years). To examine the genetic overlap between WM structure and common clinical conditions, we tested the associations between WM structure and polygenic risk scores for the most common neurodegenerative disorder, Alzheimer's disease, and common psychiatric disorders (unipolar and bipolar depression, anxiety, obsessive-compulsive disorder, autism, schizophrenia, attention-deficit/hyperactivity disorder) in longitudinal (n = 2329) and cross-sectional (n = 31,056) UKB validation data. Results Our findings indicate spatially distributed WM changes across the brain, as well as distributed associations of polygenic risk scores with WM. Importantly, brain longitudinal changes reflected genetic risk for disorder development better than the utilized cross-sectional measures, with regional differences giving more specific insights into gene-brain change associations than global averages. Conclusions We extend recent findings by providing a detailed overview of WM microstructure degeneration on different spatial levels, helping to understand fundamental brain aging processes. Further longitudinal research is warranted to examine aging-related gene-brain associations.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Daniel E. Askeland-Gjerde
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I. Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Roy E, Van Rinsveld A, Nedelec P, Richie-Halford A, Rauschecker AM, Sugrue LP, Rokem A, McCandliss BD, Yeatman JD. Differences in educational opportunity predict white matter development. Dev Cogn Neurosci 2024; 67:101386. [PMID: 38676989 DOI: 10.1016/j.dcn.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Coarse measures of socioeconomic status, such as parental income or parental education, have been linked to differences in white matter development. However, these measures do not provide insight into specific aspects of an individual's environment and how they relate to brain development. On the other hand, educational intervention studies have shown that changes in an individual's educational context can drive measurable changes in their white matter. These studies, however, rarely consider socioeconomic factors in their results. In the present study, we examined the unique relationship between educational opportunity and white matter development, when controlling other known socioeconomic factors. To explore this question, we leveraged the rich demographic and neuroimaging data available in the ABCD study, as well the unique data-crosswalk between ABCD and the Stanford Education Data Archive (SEDA). We find that educational opportunity is related to accelerated white matter development, even when accounting for other socioeconomic factors, and that this relationship is most pronounced in white matter tracts associated with academic skills. These results suggest that the school a child attends has a measurable relationship with brain development for years to come.
Collapse
Affiliation(s)
- Ethan Roy
- Graduate School of Education, Stanford University, Stanford, CA, USA.
| | | | - Pierre Nedelec
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Adam Richie-Halford
- Graduate School of Education, Stanford University, Stanford, CA, USA; Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, USA
| | - Andreas M Rauschecker
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Leo P Sugrue
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ariel Rokem
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| | | | - Jason D Yeatman
- Graduate School of Education, Stanford University, Stanford, CA, USA; Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Johnstone N, Cohen Kadosh K. Excitatory and inhibitory neurochemical markers of anxiety in young females. Dev Cogn Neurosci 2024; 66:101363. [PMID: 38447470 PMCID: PMC10925933 DOI: 10.1016/j.dcn.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Between the ages of 10-25 years the maturing brain is sensitive to a multitude of changes, including neurochemical variations in metabolites. Of the different metabolites, gamma-aminobutyric acid (GABA) has long been linked neurobiologically to anxiety symptomology, which begins to manifest in adolescence. To prevent persistent anxiety difficulties into adulthood, we need to understand the maturational trajectories of neurochemicals and how these relate to anxiety levels during this sensitive period. We used magnetic resonance spectroscopy in a sample of younger (aged 10-11) and older (aged 18-25) females to estimate GABA and glutamate levels in brain regions linked to emotion regulation processing, as well as a conceptually distinct control region. Within the Bayesian framework, we found that GABA increased and glutamate decreased with age, negative associations between anxiety and glutamate and GABA ratios in the dorsolateral prefrontal cortex, and a positive relationship of GABA with anxiety levels. The results support the neural over-inhibition hypothesis of anxiety based on GABAergic activity.
Collapse
Affiliation(s)
- Nicola Johnstone
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Kathrin Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
6
|
Donovan A, Assari S, Grella C, Shaheen M, Richter L, Friedman TC. Neuroendocrine mechanisms in the links between early life stress, affect, and youth substance use: A conceptual model for the study of sex and gender differences. Front Neuroendocrinol 2024; 73:101121. [PMID: 38253240 PMCID: PMC11088508 DOI: 10.1016/j.yfrne.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Early life stress (ELS) is defined as an acute or chronic stressor that negatively impacts a child's development. ELS is associated with substance use and mental health problems. This narrative literature review focuses on sex and gender differences in the effects of ELS on 1) adolescent neuroendocrine development; 2) pubertal brain maturation; and 3) development of internalizing symptoms and subsequent substance use. We posit that ELS may generate larger hormonal dysregulation in females than males during puberty, increasing internalizing symptoms and substance use. Future research should consider sex and gender differences in neuroendocrine developmental processes when studying the link between ELS and negative health outcomes.
Collapse
Affiliation(s)
- Alexandra Donovan
- Department of Internal Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th St., Los Angeles, CA 90059, USA.
| | - Shervin Assari
- Department of Internal Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th St., Los Angeles, CA 90059, USA; Department of Family Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th St., Los Angeles, CA 90059, USA.
| | - Christine Grella
- Integrated Substance Abuse Programs, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 10911 Weyburn Ave, Suite 200, Los Angeles, CA 90024-2886, USA.
| | - Magda Shaheen
- Department of Internal Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th St., Los Angeles, CA 90059, USA.
| | - Linda Richter
- Department of Internal Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th St., Los Angeles, CA 90059, USA; Partnership to End Addiction, 711 Third Ave, 5(th) Floor, Suite 500, New York City, NY 10017, USA.
| | - Theodore C Friedman
- Department of Internal Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th St., Los Angeles, CA 90059, USA.
| |
Collapse
|
7
|
Wen X, Qu D, Liu D, Shu Y, Zhao S, Wu G, Wang Y, Cui Z, Zhang X, Chen R. Brain structural and functional signatures of multi-generational family history of suicidal behaviors in preadolescent children. Mol Psychiatry 2024; 29:484-495. [PMID: 38102486 DOI: 10.1038/s41380-023-02342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
Parent-child transmission of suicidal behaviors has been extensively studied, but the investigation of a three-generation family suicide risk paradigm remains limited. In this study, we aimed to explore the behavioral and brain signatures of multi-generational family history of suicidal behaviors (FHoS) in preadolescents, utilizing a longitudinal design and the dataset from Adolescent Brain and Cognitive DevelopmentSM Study (ABCD Study®), which comprised 4 years of data and includes a total of 9,653 preadolescents. Our findings revealed that multi-generational FHoS was significantly associated with an increased risk of problematic behaviors and suicidal behaviors (suicide ideation and suicide attempt) in offspring. Interestingly, the problematic behaviors were further identified as a mediator in the multi-generational transmission of suicidal behaviors. Additionally, we observed alterations in brain structure within superior temporal gyrus (STG), precentral/postcentral cortex, posterior parietal cortex (PPC), cingulate cortex (CC), and planum temporale (PT), as well as disrupted functional connectivity of default mode network (DMN), ventral attention network (VAN), dorsal attention network (DAN), fronto-parietal network (FPN), and cingulo-opercular network (CON) among preadolescents with FHoS. These results provide compelling longitudinal evidence at the population level, highlighting the associations between multi-generational FHoS and maladaptive behavioral and neurodevelopmental outcomes in offspring. These findings underscore the need for early preventive measures aimed at mitigating the familial transmission of suicide risk and reducing the global burden of deaths among children and adolescents.
Collapse
Affiliation(s)
- Xue Wen
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Diyang Qu
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Dongyu Liu
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yinuo Shu
- Chinese Institute for Brain Research, Beijing, China
| | - Shaoling Zhao
- Chinese Institute for Brain Research, Beijing, China
| | - Guowei Wu
- Chinese Institute for Brain Research, Beijing, China
| | - Yuanyuan Wang
- Key Laboratory of Brain, Cognition and Education Sciences; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China.
| | - Xiaoqian Zhang
- Wulituo Hospital of Shijingshan District, Beijing, China.
| | - Runsen Chen
- Vanke School of Public Health, Tsinghua University, Beijing, China.
- Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|