1
|
Levis SC, Birnie MT, Bolton JL, Perrone CR, Montesinos JS, Baram TZ, Mahler SV. Enduring disruption of reward and stress circuit activities by early-life adversity in male rats. Transl Psychiatry 2022; 12:251. [PMID: 35705547 PMCID: PMC9200783 DOI: 10.1038/s41398-022-01988-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
In humans, early-life adversity (ELA) such as trauma, poverty, and chaotic environment is linked to increased risk of later-life emotional disorders including depression and substance abuse. These disorders involve underlying disruption of reward circuits and likely vary by sex. Accordingly, we previously found that ELA leads to anhedonia for natural rewards and cocaine in male rodents, whereas in females ELA instead increases vulnerability to addiction-like use of opioid drugs and palatable food. While these findings suggest that ELA-induced disruption of reward circuitry may differ between the sexes, the specific circuit nodes that are influenced by ELA in either sex remain poorly understood. Here, in adult male Sprague-Dawley rats, we ask how ELA impacts opioid addiction-relevant behaviors that we previously tested after ELA in females. We probe potential circuit mechanisms in males by assessing opioid-associated neuronal activation in stress and reward circuit nodes including nucleus accumbens (NAc), amygdala, medial prefrontal cortex (mPFC), and paraventricular thalamus. We find that ELA diminishes opioid-seeking behaviors in males, and alters heroin-induced activation of NAc, PFC, and amygdala, suggesting a potential circuit-based mechanism. These studies demonstrate that ELA leads to behavioral and neurobiological disruptions consistent with anhedonia in male rodents, unlike the increased opioid seeking we previously saw in females. Our findings, taken together with our prior work, suggest that men and women could face qualitatively different mental health consequences of ELA, which may be essential for individually tailoring future intervention strategies.
Collapse
Affiliation(s)
- Sophia C Levis
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA.
| | - Matthew T Birnie
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Jessica L Bolton
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Christina R Perrone
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA
| | - Johanna S Montesinos
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Stephen V Mahler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
2
|
Levis SC, Baram TZ, Mahler SV. Neurodevelopmental origins of substance use disorders: Evidence from animal models of early-life adversity and addiction. Eur J Neurosci 2022; 55:2170-2195. [PMID: 33825217 PMCID: PMC8494863 DOI: 10.1111/ejn.15223] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Addiction is a chronic relapsing disorder with devastating personal, societal, and economic consequences. In humans, early-life adversity (ELA) such as trauma, neglect, and resource scarcity are linked with increased risk of later-life addiction, but the brain mechanisms underlying this link are still poorly understood. Here, we focus on data from rodent models of ELA and addiction, in which causal effects of ELA on later-life responses to drugs and the neurodevelopmental mechanisms by which ELA increases vulnerability to addiction can be determined. We first summarize evidence for a link between ELA and addiction in humans, then describe how ELA is commonly modeled in rodents. Since addiction is a heterogeneous disease with many individually varying behavioral aspects that may be impacted by ELA, we next discuss common rodent assays of addiction-like behaviors. We then summarize the specific addiction-relevant behavioral phenotypes caused by ELA in male and female rodents and discuss some of the underlying changes in brain reward and stress circuits that are likely responsible. By better understanding the behavioral and neural mechanisms by which ELA promotes addiction vulnerability, we hope to facilitate development of new approaches for preventing or treating addiction in those with a history of ELA.
Collapse
Affiliation(s)
- Sophia C. Levis
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Pediatrics, University of California Irvine, Irvine, CA
| | - Stephen V. Mahler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
3
|
Birnie MT, Levis SC, Mahler SV, Baram TZ. Developmental Trajectories of Anhedonia in Preclinical Models. Curr Top Behav Neurosci 2022; 58:23-41. [PMID: 35156184 DOI: 10.1007/7854_2021_299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This chapter discusses how the complex concept of anhedonia can be operationalized and studied in preclinical models. It provides information about the development of anhedonia in the context of early-life adversity, and the power of preclinical models to tease out the diverse molecular, epigenetic, and network mechanisms that are responsible for anhedonia-like behaviors.Specifically, we first discuss the term anhedonia, reviewing the conceptual components underlying reward-related behaviors and distinguish anhedonia pertaining to deficits in motivational versus consummatory behaviors. We then describe the repertoire of experimental approaches employed to study anhedonia-like behaviors in preclinical models, and the progressive refinement over the past decade of both experimental instruments (e.g., chemogenetics, optogenetics) and conceptual constructs (salience, valence, conflict). We follow with an overview of the state of current knowledge of brain circuits, nodes, and projections that execute distinct aspects of hedonic-like behaviors, as well as neurotransmitters, modulators, and receptors involved in the generation of anhedonia-like behaviors. Finally, we discuss the special case of anhedonia that arises following early-life adversity as an eloquent example enabling the study of causality, mechanisms, and sex dependence of anhedonia.Together, this chapter highlights the power, potential, and limitations of using preclinical models to advance our understanding of the origin and mechanisms of anhedonia and to discover potential targets for its prevention and mitigation.
Collapse
Affiliation(s)
- Matthew T Birnie
- Departments of Anatomy/Neurobiology and Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Sophia C Levis
- Departments of Anatomy/Neurobiology and Neurobiology/Behavior, University of California-Irvine, Irvine, CA, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Departments of Anatomy/Neurobiology and Pediatrics, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
On the early life origins of vulnerability to opioid addiction. Mol Psychiatry 2021; 26:4409-4416. [PMID: 31822817 PMCID: PMC7282971 DOI: 10.1038/s41380-019-0628-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022]
Abstract
The origins and neural bases of the current opioid addiction epidemic are unclear. Genetics plays a major role in addiction vulnerability, but cannot account for the recent exponential rise in opioid abuse, so environmental factors must contribute. Individuals with history of early life adversity (ELA) are disproportionately prone to opioid addiction, yet whether ELA interacts with factors such as increased access to opioids to directly influence brain development and function, and cause opioid addiction vulnerability, is unknown. We simulated ELA in female rats and this led to a striking opioid addiction-like phenotype. This was characterized by resistance to extinction, increased relapse-like behavior, and, as in addicted humans, major increases in opioid economic demand. By contrast, seeking of a less salient natural reward was unaffected by ELA, whereas demand for highly palatable treats was augmented. These discoveries provide novel insights into the origins and nature of reward circuit malfunction that may set the stage for addiction.
Collapse
|
5
|
Shifts in the neurobiological mechanisms motivating cocaine use with the development of an addiction-like phenotype in male rats. Psychopharmacology (Berl) 2021; 238:811-823. [PMID: 33241478 PMCID: PMC8290931 DOI: 10.1007/s00213-020-05732-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
RATIONALE The development of addiction is accompanied by a shift in the mechanisms motivating cocaine use from nucleus accumbens (NAc) dopamine D1 receptor (D1R) signaling to glutamate AMPA-kainate receptor (AMPA-R) signaling. OBJECTIVE Here, we determined whether similar shifts occur for NAc-D2R signaling and following systemic manipulation of D1R, D2R, and AMPA-R signaling. METHODS Male rats were given short-access (20 infusions/day) or extended-access to cocaine (24 h/day, 96 infusions/day, 10 days). Motivation for cocaine was assessed following 14 days of abstinence using a progressive-ratio schedule. Once responding stabilized, the effects of NAc-D2R antagonism (eticlopride; 0-10.0 μg/side) and systemic D1R (SCH-23390; 0-1.0 mg/kg), D2R (eticlopride; 0-0.1 mg/kg), and AMPA-R (CNQX; 0-1.5 mg/kg) antagonism, and NAc-dopamine-R gene expression (Drd1/2/3) were examined. RESULTS Motivation for cocaine was markedly higher in the extended- versus short-access group confirming the development of an addiction-like phenotype in the extended-access group. NAc-infused eticlopride decreased motivation for cocaine in both the short- and extended-access groups although low doses (0.1-0.3 μg) were more effective in the short-access group and high doses (3-10 μg/side) tended to be more effective in the extended-access group. Systemic administration of eticlopride (0.1 mg/kg) was more effective in the extended-access group, and systemic administration of CNQX was effective in the extended- but not short-access group. NAc-Drd2 expression was decreased in both the short- and extended-access groups. CONCLUSION These findings indicate that in contrast to NAc-D1R, D2R remain critical for motivating cocaine use with the development of an addiction-like phenotype. These findings also indicate that shifts in the mechanisms motivating cocaine use impact the response to both site-specific and systemic pharmacological treatment.
Collapse
|
6
|
Abstract
An increasing emphasis has been placed on the development and use of animal models of addiction that capture defining features of human drug addiction, including escalation/binge drug use, enhanced motivation for the drug, preference for the drug over other reward options, use despite negative consequences, and enhanced drug-seeking/relapse vulnerability. The need to examine behavior in both males and females has also become apparent given evidence demonstrating that the addiction process occurs differently in males and females. This review discusses the procedures that are used to model features of addiction in animals, as well as factors that influence their development. Individual differences are also discussed, with a particular focus on sex differences. While no one procedure consistently produces all characteristics, different models have been developed to focus on certain characteristics. A history of escalating/binge patterns of use appears to be critical for producing other features characteristic of addiction, including an enhanced motivation for the drug, enhanced drug seeking, and use despite negative consequences. These characteristics tend to emerge over abstinence, and appear to increase rather than decrease in magnitude over time. In females, these characteristics develop sooner during abstinence and/or following less drug exposure as compared to males, and for psychostimulant addiction, may require estradiol. Although preference for the drug over other reward options has been demonstrated in non-human primates, it has been more difficult to establish in rats. Future research is needed to define the parameters that optimally induce each of these features of addiction in the majority of animals. Such models are essential for advancing our understanding of human drug addiction and its treatment in men and women.
Collapse
Affiliation(s)
- Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
7
|
Itzhak Y, Perez-Lanza D, Liddie S. The strength of aversive and appetitive associations and maladaptive behaviors. IUBMB Life 2014; 66:559-71. [PMID: 25196552 DOI: 10.1002/iub.1310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 12/22/2022]
Abstract
Certain maladaptive behaviors are thought to be acquired through classical Pavlovian conditioning. Exaggerated fear response, which can develop through Pavlovian conditioning, is associated with acquired anxiety disorders such as post-traumatic stress disorders (PTSDs). Inflated reward-seeking behavior, which develops through Pavlovian conditioning, underlies some types of addictive behavior (e.g., addiction to drugs, food, and gambling). These maladaptive behaviors are dependent on associative learning and the development of long-term memory (LTM). In animal models, an aversive reinforcer (fear conditioning) encodes an aversive contextual and cued LTM. On the other hand, an appetitive reinforcer results in conditioned place preference (CPP) that encodes an appetitive contextual LTM. The literature on weak and strong associative learning pertaining to the development of aversive and appetitive LTM is relatively scarce; thus, this review is particularly focused on the strength of associative learning. The strength of associative learning is dependent on the valence of the reinforcer and the salience of the conditioned stimulus that ultimately sways the strength of the memory trace. Our studies suggest that labile (weak) aversive and appetitive LTM may share similar signaling pathways, whereas stable (strong) aversive and appetitive LTM is mediated through different pathways. In addition, we provide some evidence suggesting that extinction of aversive fear memory and appetitive drug memory is likely to be mediated through different signaling molecules. We put forward the importance of studies aimed to investigate the molecular mechanisms underlying the development of weak and strong memories (aversive and appetitive), which would ultimately help in the development of targeted pharmacotherapies for the management of maladaptive behaviors that arise from classical Pavlovian conditioning.
Collapse
Affiliation(s)
- Yossef Itzhak
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | |
Collapse
|
8
|
Abstract
Drug addiction is a syndrome of impaired response inhibition and salience attribution, which involves a complex neurocircuitry underlying drug reinforcement, drug craving, and compulsive drug-seeking and drug-taking behaviors despite adverse consequences. The concept of disease stages with transitions from acute rewarding effects to early- and end-stage addiction has had an important impact on the design of nonclinical animal models. This chapter reviews the main advances in nonclinical paradigms that aim to at model (1) positive and negative reinforcing effects of addictive drugs; (2) relapse to drug-seeking behavior; (3) reconsolidation of drug cue memories, and (4) compulsive/impulsive drug intake. In addition, recent small animal neuroimaging studies and invertebrate models will be briefly discussed (see also Bifone and Gozzi, Animal models of ADHD, 2011). Continuous improvement in modeling drug intake, craving, withdrawal symptoms, relapse, and comorbid psychiatric associations is a necessary step to better understand the etiology of the disease and to ultimately foster the discovery, validation and optimization of new efficacious pharmacotherapeutic approaches. The modeling of specific subprocesses or constructs that address clinically defined criteria will ultimately increase our understanding of the disease as a whole. Future research will have to address the questions of whether some of these constructs can be reliably used as outcome measures to assess the effects of a treatment in clinical settings, whether changes in those measures can be a target of therapeutic efforts, and whether they relate to biological markers of traits such as impulsivity, which contribute to increased drug-seeking and may predict binge-like patterns of drug intake.
Collapse
Affiliation(s)
- Christian Heidbreder
- Reckitt Benckiser Pharmaceuticals Inc., 10710 Midlothian Turnpike, Suite 430, Richmond, VA, 23235, USA,
| |
Collapse
|
9
|
Yap JJ, Miczek KA. Stress and Rodent Models of Drug Addiction: Role of VTA-Accumbens-PFC-Amygdala Circuit. DRUG DISCOVERY TODAY. DISEASE MODELS 2008; 5:259-270. [PMID: 20016773 PMCID: PMC2794209 DOI: 10.1016/j.ddmod.2009.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Stress can trigger, intensify, and prolong drug consumption, as well as reinstate previously extinguished drug-taking behavior by directly impacting a neural circuit often referred to as a reward pathways. Animal models of drug abuse have been used to understand these neural circuits mediating stress-induced drug intake and relapse through examination of cellular and subcellular molecular mechanisms. Several types of intermittent stressors have been shown to induce cross-sensitization to psychomotor stimulants, enhance conditioned place preference under most conditions, increase self-administration of cocaine and amphetamine and induce reinstatement of heroin and cocaine seeking via activation of the mesocorticolimbic dopamine system.
Collapse
Affiliation(s)
- Jasmine J Yap
- Department of Psychology, Tufts University, 530 Boston Ave., Medford, MA 02155
| | | |
Collapse
|