1
|
Mahesh S, Mallappa M, Vacaras V, Shah V, Serzhantova E, Kubasheva N, Chabanov D, Tsintzas D, Jaggi L, Jaggi A, Vithoulkas G. Association between Acute and Chronic Inflammatory States: A Case-Control Study. HOMEOPATHY 2024; 113:239-244. [PMID: 38335996 PMCID: PMC11493469 DOI: 10.1055/s-0043-1777119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/05/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND Fever is the hallmark of efficient acute inflammatory response, which may be disrupted in chronic inflammatory conditions. The "continuum theory" proposes that the return of acute inflammatory states with high fever predicts improvement in chronic diseases during treatment. Our objective was to investigate the observation made, during classical homeopathic treatment, that such an association exists between chronic inflammation and efficient acute inflammation. METHODS In a case-control study, the reports of patients diagnosed with chronic inflammatory conditions with at least 6 months of follow-up under homeopathic treatment were retrospectively sampled from homeopathic medical practices from Greece, India, Romania and Russia. Twenty patients who improved under homeopathic treatment and 20 age-matched controls of those who did not improve were selected. The occurrence of common acute infectious diseases with fever during the follow-up period was investigated. RESULTS The average age of the cases and controls was 28.4 (SD: 16.64) and 27.9 (SD: 17.19) years respectively. 18/20 cases and 4/20 controls developed common infectious diseases with fever. Cramer's V co-efficient value was found to be 0.551 (p < 0.01), indicating that improvement was more in patients with fever than without. Odds ratio of improving with respect to development of acute infectious diseases was 36.0 (95% CI: 5.8 to 223.5). The binary logistic regression model indicated significant contribution of occurrence of acute infections with fever as a predictor for improvement in chronic inflammatory disease. CONCLUSIONS Classical homeopathic clinical observations indicate an association between chronic inflammatory status in the body and the ability to mount efficient acute inflammation. In this case-control study, the occurrence of common infections with fever during treatment heralded improvement in chronic inflammatory disease. Further powered studies are necessary to substantiate this finding.
Collapse
Affiliation(s)
- Seema Mahesh
- Centre for Classical Homeopathy, Bangalore, Karnataka, India
| | - Mahesh Mallappa
- Centre for Classical Homeopathy, Bangalore, Karnataka, India
| | - Vitalie Vacaras
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Viraj Shah
- Shah Homeopathic Clinic, Vastrapur, Ahmedabad, India
| | | | | | | | - Dionysios Tsintzas
- Department of Orthopaedics, General Hospital of Aitoloakarnania, Agrinion, Greece
| | - Latika Jaggi
- H3 Centre of Classical Homeopathy, Nashik, Maharashtra, India
| | - Atul Jaggi
- H3 Centre of Classical Homeopathy, Nashik, Maharashtra, India
| | | |
Collapse
|
2
|
James LM, Tsilibary EP, Wanberg EJ, Georgopoulos AP. Negative Association of Cognitive Performance With Blood Serum Neurotoxicity and Its Modulation by Human Herpes Virus 5 (HHV5) Seropositivity in Healthy Women. Neurosci Insights 2024; 19:26331055241258436. [PMID: 38827247 PMCID: PMC11143810 DOI: 10.1177/26331055241258436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Identification of early influences on cognitive decline is of paramount importance in order to stem the impacts of decrements in cognitive functioning and to potentially intervene. Thus, here we focused on 132 healthy adult women (age range 26-98 years) to (a) determine whether factors circulating in serum may exert neurotoxic effects in vitro, (b) evaluate associations between serum neurotoxicity and cognitive performance, and (c) assess the influence of human herpes virus (HHV) seroprevalence and other factors on apoptosis and cognitive performance. The results documented that the addition of serum from healthy adult women to neural cell cultures resulted in apoptosis, indicating the presence of circulating neurotoxic factors in the serum. Furthermore, apoptosis increased with age, and was associated with decreased cognitive performance. Stepwise regression evaluating the influence of 6 HHVs on apoptosis and cognitive function revealed that only HHV5 (cytomegalovirus; CMV) seropositivity was significantly associated with apoptosis and cognitive decline, controlling for age. These findings document neurotoxic effects of serum from healthy women across the adult lifespan and suggest a unique detrimental influence associated with CMV seropositivity.
Collapse
Affiliation(s)
- Lisa M James
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Effie-Photini Tsilibary
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Erik J Wanberg
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
3
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
4
|
DePaula-Silva AB. The Contribution of Microglia and Brain-Infiltrating Macrophages to the Pathogenesis of Neuroinflammatory and Neurodegenerative Diseases during TMEV Infection of the Central Nervous System. Viruses 2024; 16:119. [PMID: 38257819 PMCID: PMC10819099 DOI: 10.3390/v16010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis and epilepsy. The activation of the innate and adaptive immune response, including microglial, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under healthy conditions, resident microglia play a pivotal role in maintaining CNS homeostasis. However, during pathological events, such as CNS viral infection, microglia become reactive, and immune cells from the periphery infiltrate into the brain, disrupting CNS homeostasis and contributing to disease development. Theiler's murine encephalomyelitis virus (TMEV), a neurotropic picornavirus, is used in two distinct mouse models: TMEV-induced demyelination disease (TMEV-IDD) and TMEV-induced seizures, representing mouse models of multiple sclerosis and epilepsy, respectively. These murine models have contributed substantially to our understanding of the pathophysiology of MS and seizures/epilepsy following viral infection, serving as critical tools for identifying pharmacological targetable pathways to modulate disease development. This review aims to discuss the host-pathogen interaction during a neurotropic picornavirus infection and to shed light on our current understanding of the multifaceted roles played by microglia and macrophages in the context of these two complexes viral-induced disease.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
James LM, Georgopoulos AP. Negative association between multiple sclerosis immunogenetic profile and in silico immunogenicities of 12 viruses. Sci Rep 2023; 13:18654. [PMID: 37907711 PMCID: PMC10618254 DOI: 10.1038/s41598-023-45931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Human Leukocyte Antigen (HLA) is involved in both multiple sclerosis (MS) and immune response to viruses. Here we investigated the virus-HLA immunogenicity (V-HLA) of 12 viruses implicated in MS with respect to 17 HLA Class I alleles positively associated to MS prevalence in 14 European countries. Overall, higher V-HLA immunogenicity was associated with smaller MS-HLA effect, with human herpes virus 3 (HHV3), JC human polyoma virus (JCV), HHV1, HHV4, HHV7, HHV5 showing the strongest association, followed by HHV8, HHV6A, and HHV6B (moderate association), and human endogenous retrovirus (HERV-W), HHV2, and human papilloma virus (HPV) (weakest association). These findings suggest that viruses with proteins of high HLA immunogenicity are eliminated more effectively and, consequently, less likely to be involved in MS.
Collapse
Affiliation(s)
- Lisa M James
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA.
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Abou Mrad T, Naja K, Khoury SJ, Hannoun S. Central vein sign and paramagnetic rim sign: From radiologically isolated syndrome to multiple sclerosis. Eur J Neurol 2023; 30:2912-2918. [PMID: 37350369 DOI: 10.1111/ene.15922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
The widespread use of magnetic resonance imaging (MRI) has led to an increase in incidental findings in the central nervous system. Radiologically isolated syndrome (RIS) is a condition where imaging reveals lesions suggestive of demyelinating disease without any clinical episodes consistent with multiple sclerosis (MS). The prognosis for RIS patients is uncertain, with some remaining asymptomatic while others progress to MS. Several risk factors for disease progression have been identified, including male sex, younger age at diagnosis, and spinal cord lesions. This article reviews two promising biomarkers, the central vein sign (CVS) and the paramagnetic rim sign (PRS), and their potential role in the diagnosis and prognosis of MS and RIS. Both CVS and PRS have been shown to be accurate diagnostic markers in MS, with high sensitivity and specificity, and have been useful in distinguishing MS from other disorders. Further research is needed to validate these findings and determine the clinical utility of these biomarkers in routine practice.
Collapse
Affiliation(s)
- Tatiana Abou Mrad
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Kim Naja
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samia J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Salem Hannoun
- Medical Imaging Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
7
|
Ghasemi M, Farazandeh D, Amini B, Sedaghat M, Najafi A, Khayatzadeh Kakhki S, Torabi P, Jafarimehrabady N, Bitaraf A, Shariati H, Gholampour G, Kazemi S, Naser Moghadasi A, Vajihinejad M. The association of upper respiratory infections with neuro-radiological course and attack rate of multiple sclerosis: Results from a large prospective cohort. Mult Scler J Exp Transl Clin 2023; 9:20552173231196992. [PMID: 37767104 PMCID: PMC10521289 DOI: 10.1177/20552173231196992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background Although upper respiratory infections (URIs) are linked to multiple sclerosis (MS) attacks, SARS-COV2 has not been compared to URIs for attack rates. Objectives This study aimed to evaluate the attack rate and the results of neuroimaging in MS patients with URIs caused by COVID-19 and non-COVID-19 infections (NC-URI). Methods From May 2020 to April 2021, we followed 362 patients with relapsing-remitting MS in a prospective cohort design. Patients were monitored regularly every 12 weeks; an magnetic resonance imaging (MRI) scan was performed at enrollment and every time a relapse occurred. Poisson analysis was used to determine exacerbation rate ratios (RR) and the MRI parameters were tested using chi-square analysis. Results 347 patients with an average age of 38 and a female ratio of 86% were included. A RR of 2.24 (p < 0.001) was observed for exacerbations during the at-risk period (ARP). Attacks related to COVID-19 (RR = 2.13, p = 0.001) and NC-URIs (RR = 2.39, p < 0.001) were comparable regarding the increased risk of exacerbation (p = 0.62). Exacerbations within or outside the ARP did not significantly alter the number of baseline GAD-enhancing lesions (p > 0.05 for both). Conclusion COVID-19 has been shown to increase the risk of MS exacerbations, like other viral URIs.
Collapse
Affiliation(s)
- Moein Ghasemi
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Dorreh Farazandeh
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Behnam Amini
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mona Sedaghat
- Faculty of Medicine, Razi Educational and Therapeutic Psychiatric Center, University of Social Welfare and Rehabilitation, Tehran, Iran
| | - Anahita Najafi
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | | - Pouya Torabi
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | | - Ali Bitaraf
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Golsa Gholampour
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Saminnaz Kazemi
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Vajihinejad
- Department of Pathology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Frau J, Coghe G, Lorefice L, Fenu G, Cocco E. The Role of Microorganisms in the Etiopathogenesis of Demyelinating Diseases. Life (Basel) 2023; 13:1309. [PMID: 37374092 DOI: 10.3390/life13061309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS), neuromyelitis optica (NMO) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD) are inflammatory diseases of the central nervous system (CNS) with a multifactorial aetiology. Environmental factors are important for their development and microorganisms could play a determining role. They can directly damage the CNS, but their interaction with the immune system is even more important. The possible mechanisms involved include molecular mimicry, epitope spreading, bystander activation and the dual cell receptor theory. The role of Epstein-Barr virus (EBV) in MS has been definitely established, since being seropositive is a necessary condition for the onset of MS. EBV interacts with genetic and environmental factors, such as low levels of vitamin D and human endogenous retrovirus (HERV), another microorganism implicated in the disease. Many cases of onset or exacerbation of neuromyelitis optica spectrum disorder (NMOSD) have been described after infection with Mycobacterium tuberculosis, EBV and human immunodeficiency virus; however, no definite association with a virus has been found. A possible role has been suggested for Helicobacter pylori, in particular in individuals with aquaporin 4 antibodies. The onset of MOGAD could occur after an infection, mainly in the monophasic course of the disease. A role for the HERV in MOGAD has been hypothesized. In this review, we examined the current understanding of the involvement of infectious factors in MS, NMO and MOGAD. Our objective was to elucidate the roles of each microorganism in initiating the diseases and influencing their clinical progression. We aimed to discuss both the infectious factors that have a well-established role and those that have yielded conflicting results across various studies.
Collapse
Affiliation(s)
- Jessica Frau
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Giancarlo Coghe
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | | | - Eleonora Cocco
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
9
|
Ke Q, Greenawalt AN, Manukonda V, Ji X, Tisch RM. The regulation of self-tolerance and the role of inflammasome molecules. Front Immunol 2023; 14:1154552. [PMID: 37081890 PMCID: PMC10110889 DOI: 10.3389/fimmu.2023.1154552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Inflammasome molecules make up a family of receptors that typically function to initiate a proinflammatory response upon infection by microbial pathogens. Dysregulation of inflammasome activity has been linked to unwanted chronic inflammation, which has also been implicated in certain autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes, systemic lupus erythematosus, and related animal models. Classical inflammasome activation-dependent events have intrinsic and extrinsic effects on both innate and adaptive immune effectors, as well as resident cells in the target tissue, which all can contribute to an autoimmune response. Recently, inflammasome molecules have also been found to regulate the differentiation and function of immune effector cells independent of classical inflammasome-activated inflammation. These alternative functions for inflammasome molecules shape the nature of the adaptive immune response, that in turn can either promote or suppress the progression of autoimmunity. In this review we will summarize the roles of inflammasome molecules in regulating self-tolerance and the development of autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashley Nicole Greenawalt
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Veera Manukonda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xingqi Ji
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland Michael Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Roland Michael Tisch,
| |
Collapse
|
10
|
Rahmani M, Moghadasi AN, Shahi S, Eskandarieh S, Azizi H, Hasanzadeh A, Ahmadzade A, Dehnavi AZ, Farahani RH, Aminianfar M, Naeini AR. COVID-19 and its implications on the clinico-radiological course of multiple sclerosis: A case-control study. Med Clin (Barc) 2023; 160:187-192. [PMID: 36089420 PMCID: PMC9364744 DOI: 10.1016/j.medcli.2022.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated disease that has been related to several risk factors such as various viral infections. We carried out this study in order to establish a relationship between COVID-19 infection and MS severity. METHODS In a case-control study, we recruited patients with relapsing-remitting multiple sclerosis (RRMS). Patients were divided into two groups based on positive COVID-19 PCR at the end of the enrollment phase. Each patient was prospectively followed for 12 months. Demographical, clinical, and past medical history were collected during routine clinical practice. Assessments were performed every six months; MRI was performed at enrollment and 12 months later. RESULTS Three hundred and sixty-two patients participated in this study. MS patients with COVID-19 infection had significantly higher increases in the number of MRI lesions (p: 0.019, OR(CI): 6.37(1.54-26.34)) and EDSS scores (p: 0.017), but no difference was found in total annual relapses or relapse rates. COVID-19 infections were positively correlated with EDSS progression (p: 0.02) and the number of new MRI lesions (p: 0.004) and predicted the likelihood of the number of new MRI lesions by an odds of 5.92 (p: 0.018). CONCLUSION COVID-19 may lead to higher disability scores in the RRMS population and is associated with developing new Gd-enhancing lesions in MRI imaging. However, no difference was observed between the groups regarding the number of relapses during follow-up.
Collapse
Affiliation(s)
- Mohammad Rahmani
- Department of Neurology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Shahi
- Tehran Heart Center, Cardiovascular Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sharareh Eskandarieh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Ali Zare Dehnavi
- Department of Neurology, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Hamidi Farahani
- Department of Infectious Diseases, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Aminianfar
- Department of Infectious and Tropical Diseases, Be'sat Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Ranjbar Naeini
- Department of Neurology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Rahmani M, Moghadasi AN, Shahi S, Eskandarieh S, Azizi H, Hasanzadeh A, Ahmadzade A, Dehnavi AZ, Farahani RH, Aminianfar M, Naeini AR. COVID-19 and its implications on the clinico-radiological course of multiple sclerosis: A case-control study. MEDICINA CLINICA (ENGLISH ED.) 2023; 160:187-192. [PMID: 36883067 PMCID: PMC9983351 DOI: 10.1016/j.medcle.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/22/2022] [Indexed: 03/06/2023]
Abstract
Background Multiple sclerosis (MS) is an immune-mediated disease that has been related to several risk factors such as various viral infections. We carried out this study in order to establish a relationship between COVID-19 infection and MS severity. Methods In a case-control study, we recruited patients with relapsing-remitting multiple sclerosis (RRMS). Patients were divided into two groups based on positive COVID-19 PCR at the end of the enrollment phase. Each patient was prospectively followed for 12 months. Demographical, clinical, and past medical history were collected during routine clinical practice. Assessments were performed every six months; MRI was performed at enrollment and 12 months later. Results Three hundred and sixty-two patients participated in this study. MS patients with COVID-19 infection had significantly higher increases in the number of MRI lesions (p: 0.019, OR(CI): 6.37(1.54-26.34)) and EDSS scores (p: 0.017), but no difference was found in total annual relapses or relapse rates. COVID-19 infections were positively correlated with EDSS progression (p: 0.02) and the number of new MRI lesions (p: 0.004) and predicted the likelihood of the number of new MRI lesions by an odds of 5.92 (p: 0.018). Conclusion COVID-19 may lead to higher disability scores in the RRMS population and is associated with developing new Gd-enhancing lesions in MRI imaging. However, no difference was observed between the groups regarding the number of relapses during follow-up.
Collapse
Affiliation(s)
- Mohammad Rahmani
- Department of Neurology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Shahi
- Tehran Heart Center, Cardiovascular Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sharareh Eskandarieh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Ali Zare Dehnavi
- Department of Neurology, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Hamidi Farahani
- Department of Infectious Diseases, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Aminianfar
- Department of Infectious and Tropical Diseases, Be'sat Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Ranjbar Naeini
- Department of Neurology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Shams H, Shao X, Santaniello A, Kirkish G, Harroud A, Ma Q, Isobe N, Schaefer CA, McCauley JL, Cree BAC, Didonna A, Baranzini SE, Patsopoulos NA, Hauser SL, Barcellos LF, Henry RG, Oksenberg JR. Polygenic risk score association with multiple sclerosis susceptibility and phenotype in Europeans. Brain 2023; 146:645-656. [PMID: 35253861 PMCID: PMC10169285 DOI: 10.1093/brain/awac092] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Polygenic inheritance plays a pivotal role in driving multiple sclerosis susceptibility, an inflammatory demyelinating disease of the CNS. We developed polygenic risk scores (PRS) of multiple sclerosis and assessed associations with both disease status and severity in cohorts of European descent. The largest genome-wide association dataset for multiple sclerosis to date (n = 41 505) was leveraged to generate PRS scores, serving as an informative susceptibility marker, tested in two independent datasets, UK Biobank [area under the curve (AUC) = 0.73, 95% confidence interval (CI): 0.72-0.74, P = 6.41 × 10-146] and Kaiser Permanente in Northern California (KPNC, AUC = 0.8, 95% CI: 0.76-0.82, P = 1.5 × 10-53). Individuals within the top 10% of PRS were at higher than 5-fold increased risk in UK Biobank (95% CI: 4.7-6, P = 2.8 × 10-45) and 15-fold higher risk in KPNC (95% CI: 10.4-24, P = 3.7 × 10-11), relative to the median decile. The cumulative absolute risk of developing multiple sclerosis from age 20 onwards was significantly higher in genetically predisposed individuals according to PRS. Furthermore, inclusion of PRS in clinical risk models increased the risk discrimination by 13% to 26% over models based only on conventional risk factors in UK Biobank and KPNC, respectively. Stratifying disease risk by gene sets representative of curated cellular signalling cascades, nominated promising genetic candidate programmes for functional characterization. These pathways include inflammatory signalling mediation, response to viral infection, oxidative damage, RNA polymerase transcription, and epigenetic regulation of gene expression to be among significant contributors to multiple sclerosis susceptibility. This study also indicates that PRS is a useful measure for estimating susceptibility within related individuals in multicase families. We show a significant association of genetic predisposition with thalamic atrophy within 10 years of disease progression in the UCSF-EPIC cohort (P < 0.001), consistent with a partial overlap between the genetics of susceptibility and end-organ tissue injury. Mendelian randomization analysis suggested an effect of multiple sclerosis susceptibility on thalamic volume, which was further indicated to be through horizontal pleiotropy rather than a causal effect. In summary, this study indicates important, replicable associations of PRS with enhanced risk assessment and radiographic outcomes of tissue injury, potentially informing targeted screening and prevention strategies.
Collapse
Affiliation(s)
- Hengameh Shams
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xiaorong Shao
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA 94720, USA
| | - Adam Santaniello
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Gina Kirkish
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adil Harroud
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Qin Ma
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Noriko Isobe
- Department of Neurology, Graduate School of medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | | | - Jacob L McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Bruce A C Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alessandro Didonna
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC 27834, USA
| | - Sergio E Baranzini
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nikolaos A Patsopoulos
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, 02115 MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephen L Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lisa F Barcellos
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA 94720, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jorge R Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
13
|
Erdoğan T, Koçer B, Şen S, Balcı BP, Terzi M. Newly Diagnosed Tumefactive Demyelinating Lesion and Multiple Sclerosis After COVID-19 Infection. Noro Psikiyatr Ars 2023; 60:223-230. [PMID: 37645083 PMCID: PMC10461761 DOI: 10.29399/npa.28142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/18/2022] [Indexed: 08/31/2023] Open
Abstract
Introduction To describe the parainfectious or postinfectious effects of COVID-19 infection on the first demyelinating presentation of Multiple Sclerosis and tumefactive demyelinating lesion (TDL) developing with Longitudinally Extensive Transverse Myelitis (LETM). Methods We present six patients who presented with a first CNS demyelination event or whose demyelinating lesions had aggravated after COVID-19 infection between May and December 2020. Nasopharyngeal swab SARS-CoV-2 PCR positivity was detected in five cases and cerebrospinal fluid (CSF) PCR was positive in one. The symptoms, neurological signs, radiological and CSF findings of the cases were examined. Results A 24-year-old woman presented with LETM aggravated by COVID-19, accompanied by a newly developed open-ring enhanced TDL. Four patients were diagnosed with the first presentation of MS, and one presented with clinically isolated syndrome according to the McDonald 2017 criteria. The interval between SARS-CoV-2 infection and the onset of clinical symptoms ranged from 4-93 days. All of the cases present with pyramidal or brain stem findings and have high brain and/or spinal MRI load. This suggests the moderate activity of CNS demyelinating disease after COVID-19 infection. Conclusions Based on this case series, all these first demyelinating events suggested that COVID-19 infection might trigger or exacerbate CNS demyelinating disease. SARS-CoV-2 plays a role in the clinical onset of Multiple Sclerosis. Active delayed demyelination developed within the first three months. This can be explained by COVID-triggered neuroimmune response that had been latent, and the initiation of the active disease process began with triggering or aggravation of the lesions in MRI. Multiple Sclerosis should be maintained during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tuğba Erdoğan
- Gazi University School of Medicine, Department of Neurology, Ankara, Turkey
| | - Belgin Koçer
- Gazi University School of Medicine, Department of Neurology, Ankara, Turkey
| | - Sedat Şen
- Ondokuz Mayıs University School of Medicine, Department of Neurology, Samsun, Turkey
| | - Belgin Petek Balcı
- İstanbul Hamidiye Faculty of Medicine, University of Health Sciences, Department of Neurology, İstanbul, Turkey
| | - Murat Terzi
- Ondokuz Mayıs University School of Medicine, Department of Neurology, Samsun, Turkey
| |
Collapse
|
14
|
Sedighi S, Gholizadeh O, Yasamineh S, Akbarzadeh S, Amini P, Favakehi P, Afkhami H, Firouzi-Amandi A, Pahlevan D, Eslami M, Yousefi B, Poortahmasebi V, Dadashpour M. Comprehensive Investigations Relationship Between Viral Infections and Multiple Sclerosis Pathogenesis. Curr Microbiol 2023; 80:15. [PMID: 36459252 PMCID: PMC9716500 DOI: 10.1007/s00284-022-03112-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/05/2022] [Indexed: 12/04/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). Compared to other types of self-limiting myelin disorders, MS compartmentalizes and maintains chronic inflammation in the CNS. Even though the exact cause of MS is unclear, it is assumed that genetic and environmental factors play an important role in susceptibility to this disease. The progression of MS is triggered by certain environmental factors, such as viral infections. The most important viruses that affect MS are Epstein-Barr virus (EBV), human herpes virus 6 (HHV-6), human endogenous retrovirus (HERV), cytomegalovirus (CMV), and varicella zoster virus (VZV). These viruses all have latent stages that allow them to escape immune detection and reactivate after exposure to various stimuli. Furthermore, their tropism for CNS and immune system cells explains their possible deleterious function in neuroinflammation. In this study, the effect of viral infections on MS disease focuses on the details of viruses that can change the risk of the disease. Paying attention to the most recent articles on the role of SARS-CoV-2 in MS disease, laboratory indicators show the interaction of the immune system with the virus. Also, strategies to prevent viruses that play a role in triggering MS are discussed, such as EBV, which is one of the most important.
Collapse
Affiliation(s)
- Somayeh Sedighi
- Department of Immunology, Faculty of Medicine, Medical Science of Mashhad, Mashhad, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Parya Amini
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnia Favakehi
- Department of Microbiology, Falavargan Branch, Islamic Azad University, Isfahan, Iran
| | - Hamed Afkhami
- Department of Bacteriology, Faculty of Medicine, Medical Science of Shahed, Tehran, Iran
| | - Akram Firouzi-Amandi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryoush Pahlevan
- Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
15
|
Suvieri C, Volpi C. Analysis of Differential TLR Activation in a Mouse Model of Multiple Sclerosis. Methods Mol Biol 2023; 2700:229-247. [PMID: 37603185 DOI: 10.1007/978-1-0716-3366-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative and autoimmune disease affecting the central nervous system (CNS). The precise etiology of MS is still undeciphered, and signs and symptoms of the disease are varied and complex, ranging from axonal degeneration, synaptic, and neuronal loss to demyelination. Inflammation plays a critical role in determining the onset and the progression of MS, but there is still a lot of information missing before scientists come to understand what are the factors that contribute to the establishment of the neuroinflammation. Thus, various murine models, each representative of a specific hallmark of MS, are used to study the processes underlying the pathogenetic mechanisms of the disease in an attempt to find effective drugs for its treatment. Among the many causes of MS, viral infections appear to be one of the most prominent ones. In this scenario, the comprehension of the role of receptors activated upon the recognition of viral, and in general microbial, components in determining onset and progression of the neuroinflammation is of paramount importance. Toll-like receptors (TLRs) are evolutionarily conserved receptors that recognize several pathogen-associated molecular patterns (PAMPs), common structures of the pathogens, or the damage caused by the pathogens within the host. TLRs are thus directly involved in the regulation of inflammatory reactions and in the activation of the innate and, subsequently, the adaptive immune responses crucial for the elimination of infectious pathogens. The role of TLR activation in the development of MS is widely studied in various murine models of MS, as well as in MS patients. In this chapter, we will summarize the current knowledge about the contribution of TLRs to the development or progression of MS, and we will illustrate different methods commonly used for the investigation of the role of different TLRs in various murine models of the disease.
Collapse
Affiliation(s)
- Chiara Suvieri
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
16
|
Pike SC, Welsh N, Linzey M, Gilli F. Theiler’s virus-induced demyelinating disease as an infectious model of progressive multiple sclerosis. Front Mol Neurosci 2022; 15:1019799. [PMID: 36311024 PMCID: PMC9606571 DOI: 10.3389/fnmol.2022.1019799] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease of unknown etiology. However, several studies suggest that infectious agents, e.g., Human Herpes Viruses (HHV), may be involved in triggering the disease. Molecular mimicry, bystander effect, and epitope spreading are three mechanisms that can initiate immunoreactivity leading to CNS autoimmunity in MS. Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) is a pre-clinical model of MS in which intracerebral inoculation of TMEV results in a CNS autoimmune disease that causes demyelination, neuroaxonal damage, and progressive clinical disability. Given the spectra of different murine models used to study MS, this review highlights why TMEV-IDD represents a valuable tool for testing the viral hypotheses of MS. We initially describe how the main mechanisms of CNS autoimmunity have been identified across both MS and TMEV-IDD etiology. Next, we discuss how adaptive, innate, and CNS resident immune cells contribute to TMEV-IDD immunopathology and how this relates to MS. Lastly, we highlight the sexual dimorphism observed in TMEV-IDD and MS and how this may be tied to sexually dimorphic responses to viral infections. In summary, TMEV-IDD is an underutilized murine model that recapitulates many unique aspects of MS; as we learn more about the nature of viral infections in MS, TMEV-IDD will be critical in testing the future therapeutics that aim to intervene with disease onset and progression.
Collapse
Affiliation(s)
- Steven C. Pike
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Nora Welsh
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Michael Linzey
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
- *Correspondence: Francesca Gilli,
| |
Collapse
|
17
|
Viral Clearance and Neuroinflammation in Acute TMEV Infection Vary by Host Genetic Background. Int J Mol Sci 2022; 23:ijms231810482. [PMID: 36142395 PMCID: PMC9501595 DOI: 10.3390/ijms231810482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
A wide range of viruses cause neurological manifestations in their hosts. Infection by neurotropic viruses as well as the resulting immune response can irreversibly disrupt the complex structural and functional architecture of the brain, depending in part on host genetic background. The interaction between host genetic background, neurological response to viral infection, and subsequent clinical manifestations remains poorly understood. In the present study, we used the genetically diverse Collaborative Cross (CC) mouse resource to better understand how differences in genetic background drive clinical signs and neuropathological manifestations of acute Theiler's murine encephalomyelitis virus (TMEV) infection. For the first time, we characterized variations of TMEV viral tropism and load based on host genetic background, and correlated viral load with microglial/macrophage activation. For five CC strains (CC002, CC023, CC027, CC057, and CC078) infected with TMEV, we compared clinical signs, lesion distribution, microglial/macrophage response, expression, and distribution of TMEV mRNA, and identified genetic loci relevant to the early acute (4 days post-infection [dpi]) and late acute (14 dpi) timepoints. We examined brain pathology to determine possible causes of strain-specific differences in clinical signs, and found that fields CA1 and CA2 of the hippocampal formation were especially targeted by TMEV across all strains. Using Iba-1 immunolabeling, we identified and characterized strain- and timepoint-specific variation in microglial/macrophage reactivity in the hippocampal formation. Because viral clearance can influence disease outcome, we used RNA in situ hybridization to quantify viral load and TMEV mRNA distribution at both timepoints. TMEV mRNA expression was broadly distributed in the hippocampal formation at 4 dpi in all strains but varied between radiating and clustered distribution depending on the CC strain. We found a positive correlation between microglial/macrophage reactivity and TMEV mRNA expression at 4 dpi. At 14 dpi, we observed a dramatic reduction in TMEV mRNA expression, and localization to the medial portion of field CA1 and field CA2. To better understand how host genetic background can influence pathological outcomes, we identified quantitative trait loci associated with frequency of lesions in a particular brain region and with microglial/macrophage reactivity. These QTL were located near several loci of interest: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1), and transmembrane protein 106 B (Tmem106b). Together, these results provide a novel understanding about the influences of genetic variation on the acute neuropathological and immunopathological environment and viral load, which collectively lead to variable disease outcomes. Our findings reveal possible avenues for future investigation which may lead to more effective intervention strategies and treatment regimens.
Collapse
|
18
|
Carta A, Bellucci C, Tagliavini V, Turco EC, Farci R, Cerasti D, Bozzetti F, Paolo M. Atypical presentation of juvenile multiple sclerosis in a patient with COVID-19. Eur J Ophthalmol 2022:11206721221113910. [PMID: 35818967 PMCID: PMC9304682 DOI: 10.1177/11206721221113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Purpose: To report our experience with a case of a very atypical clinical onset of
multiple sclerosis in a young boy during a COVID-19 infection. Case report: A 16-year-old boy was referred to our ophthalmology clinic with a complete
isolated bilateral horizontal gaze palsy. The condition had onset suddenly 2
weeks prior and he had no associated symptoms, as well as no significant
medical history. His corrected visual acuity was 0.0 logMAR in both eyes.
While hospitalized, he was found infected with COVID-19. Subsequent brain
MRI showed multiple lesions typical of a yet undiagnosed MS, as well as an
active pontine plaque which was highly probable the cause of the horizontal
gaze palsy. High-dose steroid treatment was initiated 1 week later, after
the patient exhibited negative COVID-19 test results. Conclusion: Clinical manifestations of MS are rarely seen in male teenagers and only a
few cases of isolated bilateral horizontal gaze palsy have been reported as
the initial manifestation, but never during concomitant COVID-19 infection.
We presume that the presence of COVID-19 may have been a neuroinflammatory
trigger of underlying MS.
Collapse
Affiliation(s)
- Arturo Carta
- Ophthalmology Unit, Department of Medicine and Surgery, University Hospital of Parma, Italy
| | - Carlo Bellucci
- Ophthalmology Unit, Department of Medicine and Surgery, University Hospital of Parma, Italy
| | - Viola Tagliavini
- Ophthalmology Unit, Department of Medicine and Surgery, University Hospital of Parma, Italy
| | - Emanuela Claudia Turco
- Child Neuropsychiatric Unit, Maternal and Child Health Department, University Hospital of Parma, Italy
| | | | | | | | - Mora Paolo
- Ophthalmology Unit, Department of Medicine and Surgery, University Hospital of Parma, Italy
| |
Collapse
|
19
|
Kyllesbech C, Trier N, Slibinskas R, Ciplys E, Tsakiri A, Frederiksen J, Houen G. Virus-specific antibody indices may supplement the total IgG index in diagnostics of multiple sclerosis. J Neuroimmunol 2022; 367:577868. [DOI: 10.1016/j.jneuroim.2022.577868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 12/01/2022]
|
20
|
Etemadifar M, Abhari AP, Nouri H, Salari M, Maleki S, Amin A, Sedaghat N. Does COVID-19 increase the long-term relapsing-remitting multiple sclerosis clinical activity? A cohort study. BMC Neurol 2022; 22:64. [PMID: 35193507 PMCID: PMC8861623 DOI: 10.1186/s12883-022-02590-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Background Some current evidence is pointing towards an association between COVID-19 and worsening of multiple sclerosis (MS), stressing the importance of preventing COVID-19 among people with MS (pwMS). However, population-based evidence regarding the long-term post-COVID-19 course of relapsing-remitting multiple sclerosis (RRMS) was limited when this study was initiated. Objective To detect possible changes in MS clinical disease activity after COVID-19. Methods We conducted an observational study from July 2020 until July 2021 in the Isfahan MS clinic, comparing the trends of probable disability progression (PDP) – defined as a three-month sustained increase in expanded disability status scale (EDSS) score – and relapses before and after probable/definitive COVID-19 diagnosis in a cohort of people with RRMS (pwRRMS). Results Ninety pwRRMS were identified with definitive COVID-19, 53 of which were included in the final analysis. The PDP rate was significantly (0.06 vs 0.19, P = 0.04), and the relapse rate was insignificantly (0.21 vs 0.30, P = 0.30) lower post-COVID-19, compared to the pre-COVID-19 period. The results were maintained after offsetting by follow-up period in the matched binary logistic model. Survival analysis did not indicate significant difference in PDP-free (Hazard Ratio [HR] [95% CI]: 0.46 [0.12, 1.73], P = 0.25) and relapse-free (HR [95% CI]: 0.69 [0.31, 1.53], P = 0.36) survivals between the pre- and post-COVID-19 periods. Sensitivity analysis resulted similar measurements, although statistical significance was not achieved. Conclusion While subject to replication in future research settings, our results did not confirm any increase in the long-term clinical disease activity measures after COVID-19 contraction among pwRRMS. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02590-9.
Collapse
Affiliation(s)
- Masoud Etemadifar
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Parsa Abhari
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific, Education, and Research Network (USERN), Isfahan, Iran
| | - Hosein Nouri
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific, Education, and Research Network (USERN), Isfahan, Iran
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Maleki
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Amin
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahad Sedaghat
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran. .,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific, Education, and Research Network (USERN), Isfahan, Iran.
| |
Collapse
|
21
|
Zhang N, Zuo Y, Jiang L, Peng Y, Huang X, Zuo L. Epstein-Barr Virus and Neurological Diseases. Front Mol Biosci 2022; 8:816098. [PMID: 35083281 PMCID: PMC8784775 DOI: 10.3389/fmolb.2021.816098] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is a double-stranded DNA virus that is ubiquitous in 90–95% of the population as a gamma herpesvirus. It exists in two main states, latent infection and lytic replication, each encoding viral proteins with different functions. Human B-lymphocytes and epithelial cells are EBV-susceptible host cells. EBV latently infects B cells and nasopharyngeal epithelial cells throughout life in most immunologically active individuals. EBV-infected cells, free viruses, their gene products, and abnormally elevated EBV titers are observed in the cerebrospinal fluid. Studies have shown that EBV can infect neurons directly or indirectly via infected B-lymphocytes, induce neuroinflammation and demyelination, promote the proliferation, degeneration, and necrosis of glial cells, promote proliferative disorders of B- and T-lymphocytes, and contribute to the occurrence and development of nervous system diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, acute cerebellar ataxia, meningitis, acute disseminated encephalomyelitis, and brain tumors. However, the specific underlying molecular mechanisms are unclear. In this paper, we review the mechanisms underlying the role of EBV in the development of central nervous system diseases, which could bebeneficial in providing new research ideas and potential clinical therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
- Hunan Dongkou People’s Hospital, Shaoyang, China
| | - Yuxin Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Liping Jiang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Yu Peng
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Xu Huang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Lielian Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Lielian Zuo,
| |
Collapse
|
22
|
Clinical Onset and Multiple Sclerosis Relapse after SARS-CoV-2 Infection. Neurol Int 2021; 13:695-700. [PMID: 34940752 PMCID: PMC8707620 DOI: 10.3390/neurolint13040066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with several neurological disorders including headache, facial palsy, encephalitis, stroke, demyelinating disorders. The present report will discuss cases of multiple sclerosis (MS) onset and relapse both beginning early after SARS-CoV-2 infection. In both cases, magnetic resonance imaging (MRI) showed widespread bilateral subcortical and periventricular active lesions. Serum IgG against SARS-CoV-2 Spike antigens confirmed seroconversion with titers that are considered not definitely protective against possible reinfection. We hypothesize that SARS-CoV-2 infection, as previously reported for other viruses, could drive an active inflammatory response that can contribute either to the onset of MS or its relapse. The presented data further support the importance of vaccination in individuals with MS.
Collapse
|
23
|
Satheesh NJ, Salloum-Asfar S, Abdulla SA. The Potential Role of COVID-19 in the Pathogenesis of Multiple Sclerosis-A Preliminary Report. Viruses 2021; 13:2091. [PMID: 34696521 PMCID: PMC8540806 DOI: 10.3390/v13102091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Coronavirus 2019 (COVID-19) is an infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that mainly affects the lungs. COVID-19 symptoms include the presence of fevers, dry coughs, fatigue, sore throat, headaches, diarrhea, and a loss of taste or smell. However, it is understood that SARS-CoV-2 is neurotoxic and neuro-invasive and could enter the central nervous system (CNS) via the hematogenous route or via the peripheral nerve route and causes encephalitis, encephalopathy, and acute disseminated encephalomyelitis (ADEM) in COVID-19 patients. This review discusses the possibility of SARS-CoV-2-mediated Multiple Sclerosis (MS) development in the future, comparable to the surge in Parkinson's disease cases following the Spanish Flu in 1918. Moreover, the SARS-CoV-2 infection is associated with a cytokine storm. This review highlights the impact of these modulated cytokines on glial cell interactions within the CNS and their role in potentially prompting MS development as a secondary disease by SARS-CoV-2. SARS-CoV-2 is neurotropic and could interfere with various functions of neurons leading to MS development. The influence of neuroinflammation, microglia phagocytotic capabilities, as well as hypoxia-mediated mitochondrial dysfunction and neurodegeneration, are mechanisms that may ultimately trigger MS development.
Collapse
Affiliation(s)
| | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 34110, Qatar;
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 34110, Qatar;
| |
Collapse
|
24
|
Frau J, Coghe G, Lorefice L, Fenu G, Cocco E. Infections and Multiple Sclerosis: From the World to Sardinia, From Sardinia to the World. Front Immunol 2021; 12:728677. [PMID: 34691035 PMCID: PMC8527089 DOI: 10.3389/fimmu.2021.728677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory disease of the central nervous system. Sardinia, an Italian island, is one of the areas with the highest global prevalence of MS. Genetic factors have been widely explored to explain this greater prevalence among some populations; the genetic makeup of the Sardinians appears to make them more likely to develop autoimmune diseases. A strong association between MS and some infections have been reported globally. The most robust evidence indicating the role of infections is MS development concerns the Epstein-Barr virus (EBV). Anti-EBV antibodies in patients once infected by EBV are associated with the development of MS years later. These features have also been noted in Sardinian patients with MS. Many groups have found an increased expression of the Human endogenous retroviruses (HERV) family in patients with MS. A role in pathogenesis, prognosis, and prediction of treatment response has been proposed for HERV. A European multi-centre study has shown that their presence was variable among populations, ranging from 59% to 100% of patients, with higher HERV expression noted in Sardinian patients with MS. The mycobacterium avium subspecies paratuberculosis (MAP) DNA and antibodies against MAP2694 protein were found to be associated with MS in Sardinian patients. More recently, this association has also been reported in Japanese patients with MS. In this study, we analysed the role of infectious factors in Sardinian patients with MS and compared it with the findings reported in other populations.
Collapse
Affiliation(s)
- Jessica Frau
- Multiple Sclerosis Centre, Azienda Tutela Salute (ATS) Sardegna, University of Cagliari, Cagliari, Italy
| | | | | | | | | |
Collapse
|
25
|
Simões JLB, de Araújo JB, Bagatini MD. Anti-inflammatory Therapy by Cholinergic and Purinergic Modulation in Multiple Sclerosis Associated with SARS-CoV-2 Infection. Mol Neurobiol 2021; 58:5090-5111. [PMID: 34247339 PMCID: PMC8272687 DOI: 10.1007/s12035-021-02464-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The virus "acute respiratory syndrome coronavirus 2" (SARS-CoV-2) is the etiologic agent of coronavirus disease 2019 (COVID-19), initially responsible for an outbreak of pneumonia in Wuhan, China, which, due to the high level of contagion and dissemination, has become a pandemic. The clinical picture varies from mild to critical cases; however, all of these signs already show neurological problems, from sensory loss to neurological diseases. Thus, patients with multiple sclerosis (MS) infected with the new coronavirus are more likely to develop severe conditions; in addition to worsening the disease, this is due to the high level of pro-inflammatory cytokines, which is closely associated with increased mortality both in COVID-19 and MS. This increase is uncontrolled and exaggerated, characterizing the cytokine storm, so a possible therapy for this neuronal inflammation is the modulation of the cholinergic anti-inflammatory pathway, since acetylcholine (ACh) acts to reduce pro-inflammatory cytokines and acts directly on the brain for being released by cholinergic neurons, as well as acting on other cells such as immune and blood cells. In addition, due to tissue damage, there is an exacerbated release of adenosine triphosphate (ATP), potentiating the inflammatory process and activating purinergic receptors which act directly on neuroinflammation and positively modulate the inflammatory cycle. Associated with this, in neurological pathologies, there is greater expression of P2X7 in the cells of the microglia, which positively activates the immune inflammatory response. Thus, the administration of blockers of this receptor can act in conjunction with the action of ACh in the anticholinergic inflammatory pathway. Finally, there will be a reduction in the cytokine storm and triggered hyperinflammation, as well as the level of mortality in patients with multiple sclerosis infected with SARS-CoV-2 and the development of possible neurological damage.
Collapse
|
26
|
Bello-Morales R, Andreu S, Ripa I, López-Guerrero JA. HSV-1 and Endogenous Retroviruses as Risk Factors in Demyelination. Int J Mol Sci 2021; 22:ijms22115738. [PMID: 34072259 PMCID: PMC8199333 DOI: 10.3390/ijms22115738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic alphaherpesvirus that can infect the peripheral and central nervous systems, and it has been implicated in demyelinating and neurodegenerative processes. Transposable elements (TEs) are DNA sequences that can move from one genomic location to another. TEs have been linked to several diseases affecting the central nervous system (CNS), including multiple sclerosis (MS), a demyelinating disease of unknown etiology influenced by genetic and environmental factors. Exogenous viral transactivators may activate certain retrotransposons or class I TEs. In this context, several herpesviruses have been linked to MS, and one of them, HSV-1, might act as a risk factor by mediating processes such as molecular mimicry, remyelination, and activity of endogenous retroviruses (ERVs). Several herpesviruses have been involved in the regulation of human ERVs (HERVs), and HSV-1 in particular can modulate HERVs in cells involved in MS pathogenesis. This review exposes current knowledge about the relationship between HSV-1 and human ERVs, focusing on their contribution as a risk factor for MS.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
- Correspondence:
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
27
|
Skripchenko EY, Zheleznikova GF, Alekseeva LA, Skripchenko NV, Astapova AV, Gorelik EY, Vilnitz AA. [Herpesviruses and biomarkers in disseminated encephalomyelitis and multiple sclerosis in children]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:138-145. [PMID: 33834732 DOI: 10.17116/jnevro2021121031138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relevance of the study of demyelinating diseases is due to their increasing frequency in children, clarification of the role of infectious agents in their genesis, as well as the possibility of transformation of disseminated encephalomyelitis into multiple sclerosis. The literature review presents the currently available information on the causes of the development of demyelinating diseases, biomarkers of disseminated encephalomyelitis and multiple sclerosis, the causes of an unfavorable course and possible laboratory parameters indicating the transition from one disease to another, which can be used as prognostic factors. The authors also noted the experience of the authors on the importance of adequate etiopathogenetic therapy in changing the nature of the course of the disease, in particular, when confirming the relationship between the frequency of exacerbations of ADEM and MS with the activation of herpesvirus infections, courses of specific antiviral therapy are effective, as well as pathogenetic therapy aimed at correcting endothelial dysfunction using the drug cytoflavin.
Collapse
Affiliation(s)
- E Yu Skripchenko
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia.,Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - G F Zheleznikova
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - L A Alekseeva
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - N V Skripchenko
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia.,Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - A V Astapova
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - E Yu Gorelik
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - A A Vilnitz
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| |
Collapse
|
28
|
Etemadifar M, Sedaghat N, Aghababaee A, Kargaran PK, Maracy MR, Ganjalikhani-Hakemi M, Rayani M, Abhari AP, Khorvash R, Salari M, Nouri H. COVID-19 and the Risk of Relapse in Multiple Sclerosis Patients: A Fight with No Bystander Effect? Mult Scler Relat Disord 2021; 51:102915. [PMID: 33799284 PMCID: PMC7980521 DOI: 10.1016/j.msard.2021.102915] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Background COVID-19 is speculated to increase the likelihood of relapsing-remitting multiple sclerosis (RRMS) exacerbation. Objective To investigate the association between contraction of COVID-19 and incidence of acute MS attacks in RRMS patients six months post-infection. Methods This retrospective cohort study compares the risk of relapse in RRMS patients with (n=56) and without COVID-19 (n=69). Incidence of relapse was recorded for six-month following contraction of COVID-19. Incidence of RRMS exacerbation in patients with COVID-19 was compared to patients without COVID-19 (the independent control group) and the same patients six months prior to the COVID-19 pandemic. Results A lower incidence rate of RRMS exacerbation was observed in patients that contracted COVID-19 than in patients who did not contract COVID-19 (incidence rate ratio: 0.275; p=0.026). Self-controlled analysis showed no significant difference in relapse rates before the COVID-19 pandemic and after contracting COVID-19 (p=0.222). The relapse risk was not different between patients who had been hospitalized due to COVID-19 severity and those who had not (p=0.710). Conclusion COVID-19 contraction may not increase the risk of acute MS attacks shortly following contraction. We hypothesize that COVID-19-associated lymphopenia may partly preclude the autoreactive memory cells from expansion and initiating relapses through a so-called bystander effect of COVID-19 infection.
Collapse
Affiliation(s)
- Masoud Etemadifar
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahad Sedaghat
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | - Ali Aghababaee
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa K Kargaran
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mohammad Reza Maracy
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Milad Rayani
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Parsa Abhari
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | - Reza Khorvash
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosein Nouri
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran.
| |
Collapse
|
29
|
Dziedzic A, Saluk-Bijak J, Miller E, Niemcewicz M, Bijak M. The Impact of SARS-CoV-2 Infection on the Development of Neurodegeneration in Multiple Sclerosis. Int J Mol Sci 2021; 22:1804. [PMID: 33670394 PMCID: PMC7918534 DOI: 10.3390/ijms22041804] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global challenge. Currently, there is some information on the consequences of COVID-19 infection in multiple sclerosis (MS) patients, as it is a newly discovered coronavirus, but its far-reaching effects on participation in neurodegenerative diseases seem to be significant. Recent cases reports showed that SARS-CoV-2 may be responsible for initiating the demyelination process in people who previously had no symptoms associated with any nervous system disorders. It is presently known that infection of SARS-CoV-2 evokes cytokine storm syndrome, which may be one of the factors leading to the acute cerebrovascular disease. One of the substantial problems is the coexistence of cerebrovascular disease and MS in an individual's life span. Epidemiological studies showed an enhanced risk of death rate from vascular disabilities in MS patients of approximately 30%. It has been demonstrated that patients with severe SARS-CoV-2 infection usually show increased levels of D-dimer, fibrinogen, C-reactive protein (CRP), and overactivation of blood platelets, which are essential elements of prothrombotic events. In this review, the latest knowledge gathered during an ongoing pandemic of SARS-CoV-2 infection on the neurodegeneration processes in MS is discussed.
Collapse
Affiliation(s)
- Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.N.); (M.B.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.N.); (M.B.)
| |
Collapse
|
30
|
Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple Sclerosis. Front Immunol 2020; 11:587078. [PMID: 33391262 PMCID: PMC7773893 DOI: 10.3389/fimmu.2020.587078] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a neurologic disease affecting myelinated nerves in the central nervous system (CNS). The disease often debuts as a clinically isolated syndrome, e.g., optic neuritis (ON), which later develops into relapsing-remitting (RR) MS, with temporal attacks or primary progressive (PP) MS. Characteristic features of MS are inflammatory foci in the CNS and intrathecal synthesis of immunoglobulins (Igs), measured as an IgG index, oligoclonal bands (OCBs), or specific antibody indexes. Major predisposing factors for MS are certain tissue types (e.g., HLA DRB1*15:01), vitamin D deficiency, smoking, obesity, and infection with Epstein-Barr virus (EBV). Many of the clinical signs of MS described above can be explained by chronic/recurrent EBV infection and current models of EBV involvement suggest that RRMS may be caused by repeated entry of EBV-transformed B cells to the CNS in connection with attacks, while PPMS may be caused by more chronic activity of EBV-transformed B cells in the CNS. In line with the model of EBV's role in MS, new treatments based on monoclonal antibodies (MAbs) targeting B cells have shown good efficacy in clinical trials both for RRMS and PPMS, while MAbs inhibiting B cell mobilization and entry to the CNS have shown efficacy in RRMS. Thus, these agents, which are now first line therapy in many patients, may be hypothesized to function by counteracting a chronic EBV infection.
Collapse
Affiliation(s)
- Gunnar Houen
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | | | - Jette Lautrup Frederiksen
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Nagu P, Parashar A, Behl T, Mehta V. CNS implications of COVID-19: a comprehensive review. Rev Neurosci 2020; 32:219-234. [PMID: 33550782 DOI: 10.1515/revneuro-2020-0070] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 was first reported in December 2019 in the Wuhan city of China, and since then it has spread worldwide taking a heavy toll on human life and economy. COVID-19 infection is commonly associated with symptoms like coughing, fever, and shortness of breath, besides, the reports of muscle pain, anosmia, hyposmia, and loss of taste are becoming evident. Recent reports suggest the pathogenic invasion of the SARS-CoV-2 into the CNS, that could thereby result in devastating long term complications, primarily because some of these complications may go unnoticed for a long time. Evidence suggest that the virus could enter the CNS through angiotensin-converting enzyme-2 (ACE-2) receptor, neuronal transport, haematogenous route, and nasal route via olfactory bulb, cribriform plate, and propagates through trans-synaptic signalling, and shows retrograde movement into the CNS along nerve fiber. COVID-19 induces CNS inflammation and neurological degenerative damage through a diverse mechanism which includes ACE-2 receptor damage, cytokine-associated injury or cytokine storm syndrome, secondary hypoxia, demyelination, blood-brain barrier disruption, neurodegeneration, and neuroinflammation. Viral invasion into the CNS has been reported to show association with complications like Parkinsonism, Alzheimer's disorder, meningitis, encephalopathy, anosmia, hyposmia, anxiety, depression, psychiatric symptoms, seizures, stroke, etc. This review provides a detailed discussion of the CNS pathogenesis of COVID-19. Authors conclude that the COVID-19 cannot just be considered as a disorder of the pulmonary or peripheral system, rather it has a significant CNS involvement. Therefore, CNS aspects of the COVID-19 should be monitored very closely to prevent long term CNS complications, even after the patient has recovered from COVID-19.
Collapse
Affiliation(s)
- Priyanka Nagu
- Department of Pharmaceutics, Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, India
| | - Arun Parashar
- Faculty of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, District Shimla, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru 171207, District Shimla, Himachal Pradesh, India
| |
Collapse
|
32
|
The Role of Extracellular Vesicles in Demyelination of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21239111. [PMID: 33266211 PMCID: PMC7729475 DOI: 10.3390/ijms21239111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022] Open
Abstract
It is being increasingly demonstrated that extracellular vesicles (EVs) are deeply involved in the physiology of the central nervous system (CNS). Processes such as synaptic activity, neuron-glia communication, myelination and immune response are modulated by EVs. Likewise, these vesicles may participate in many pathological processes, both as triggers of disease or, on the contrary, as mechanisms of repair. EVs play relevant roles in neurodegenerative disorders such as Alzheimer’s or Parkinson’s diseases, in viral infections of the CNS and in demyelinating pathologies such as multiple sclerosis (MS). This review describes the involvement of these membrane vesicles in major demyelinating diseases, including MS, neuromyelitis optica, progressive multifocal leukoencephalopathy and demyelination associated to herpesviruses.
Collapse
|
33
|
Dilek TD, Boybay Z, Kologlu N, Tin O, Güler S, Saltık S. The impact of SARS-CoV2 on the anxiety levels of subjects and on the anxiety and depression levels of their parents. Mult Scler Relat Disord 2020; 47:102595. [PMID: 33160138 PMCID: PMC7587066 DOI: 10.1016/j.msard.2020.102595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
Abstract
Background The Severe Acute Respiratory Syndrome-CoV2 outbreak was announced a pandemic by the World Health Organization on March 11th, 2020. Both the pandemic itself and the restrictions were thought to create some psychological problems especially in patients with chronic illnesses such as Multiple Sclerosis (MS). This study was conducted to evaluate the impact of SARS-CoV2 pandemic on daily lives of children with MS, and the anxiety status of these patients and anxiety - depression status of their parents. Methods This study was performed on a group of pediatric MS patients aged 8–18 years in Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, and Child Neurology Department. Thirty patients with MS and their 30 parents were enrolled to the study. The control group consisted of 49 healthy, age- and sex-matched children and their 49 parents. The patients (and their parents) were asked to complete a web-based survey evaluating access to health care and other changes in daily life between March 11th, 2020 and June 1st, 2020. The State-Trait Anxiety Inventory (STAI) [which is composed of two parts; S-anxiety (STAI-S) and T-anxiety (STAI-T)] was administrated to the patients and healthy controls and the results were compared between the two groups to assess their anxiety levels. The Hospital Anxiety and Depression Scale (HAD) [which is composed of two parts; HAD-anxiety (HAD-A) and HAD-depression (HAD-D)] was also given to all parents. The results of the HAD tests were compared between the two groups statistically. Results The results of the web-based survey showed that 4 of 9 (44.4%) patients, who had a regular workout program, left the program and 13 (43.3%) patients put on weight during the pandemic. Twenty-two patients (73.3%) could not get direct exposure to sunlight because of the curfew. Therefore, approximately half of the patients started to take vitamin D supplement. Most of the patients (80%) thought that they had higher risk and believed that they would have severe symptoms compared to healthy people. Twenty one (70%) patients disrupted their regular health checks and the most frequent causes were identified as closure of policlinics to routine patient care (33%) and concerns of getting SARS-CoV2 infection (26,6%). Two of 3 patients who had an MS attack did not go to the doctor during this period. The mean STAI-S scores in MS patients were significantly higher compared to the healthy controls (p=<0.001). The level of S-anxiety in all patients was higher compared to the cut off value.The mean HAD A score was found to be significantly higher in them compared to the parents of healthy individuals (p = 0.001). Conclusion Our results showed that children with MS had negative changes in daily life and high anxiety levels during the pandemic. Since MS patients have also psychiatric comorbidities, they may need psychosocial support especially in this period. Besides, establishment of separate health centers to be used during pandemics for children with chronic illnesses such as MS may be recommended to facilitate access to health care.
Collapse
Affiliation(s)
- Tugce Damla Dilek
- Istanbul University-Cerrahpasa, Cerrahpasa Medicine Faculty, Department of Pediatric Neurology
| | - Zehra Boybay
- Istanbul University-Cerrahpasa, Cerrahpasa Medicine Faculty Department of Child and Adolescent Psychiatry
| | - Nursena Kologlu
- Istanbul University-Cerrahpasa, Cerrahpasa Medicine Faculty, Department of Pediatrics
| | - Oguzhan Tin
- Istanbul University-Cerrahpasa, Cerrahpasa Medicine Faculty, Department of Pediatrics
| | - Serhat Güler
- Istanbul University-Cerrahpasa, Cerrahpasa Medicine Faculty, Department of Pediatric Neurology.
| | - Sema Saltık
- Istanbul University-Cerrahpasa, Cerrahpasa Medicine Faculty, Department of Pediatric Neurology.
| |
Collapse
|
34
|
Meshkat S, Salimi A, Joshaghanian A, Sedighi S, Sedighi S, Aghamollaii V. Chronic neurological diseases and COVID-19: Associations and considerations. Transl Neurosci 2020; 11:294-301. [PMID: 33335769 PMCID: PMC7712023 DOI: 10.1515/tnsci-2020-0141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The 2019 novel coronavirus pandemic, severe acute respiratory syndrome CoV-2 (COVID-19), has been a worldwide urgent public health threat, resulting in six-hundred seventy thousand deaths to date. The COVID-19 pandemic has led to a series of public health challenges. One such challenge is the management of diseases such as chronic neurological diseases during an epidemic event. COVID-19 affects all kinds of people, including older people with chronic underlying diseases, who are particularly at risk of severe infection or even death. Chronic neurological diseases such as epilepsy, dementia, Parkinson's disease (PD), and multiple sclerosis (MS) are frequently associated with comorbidities; thus, these patients are in the high-risk category. Therefore, in this article, we review associations and challenges the people with epilepsy, dementia, PD, and MS faces during the COVID-19 pandemic and suggest approaches to provide consensus recommendations on how to provide the best possible care.
Collapse
Affiliation(s)
- Shakila Meshkat
- Department of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicine, Shiraz University of Medical Sciences, Tehran, Iran
| | - Amir Salimi
- Department of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicine, Azad University of Medical Sciences, Tehran, Iran
| | - Asef Joshaghanian
- Department of Medicine, Hamedan University of Medical Sciences, Tehran, Iran
| | - Sogol Sedighi
- Department of Medicine, Shiraz University of Medical Sciences, Tehran, Iran
| | - Saman Sedighi
- Department of Medicine, Azad University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
35
|
Sadeghmousavi S, Rezaei N. COVID-19 and Multiple Sclerosis: Predisposition and Precautions in Treatment. ACTA ACUST UNITED AC 2020; 2:1802-1807. [PMID: 32895640 PMCID: PMC7467844 DOI: 10.1007/s42399-020-00504-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leading to Coronavirus disease 2019 (COVID-19), is not always confined to the respiratory tract, while patients with can develop neurological manifestations. The patients with multiple sclerosis (MS) pose challenges in this pandemic situation, because of the immunosuppressive medications they get and the fact that viral infections may contribute to MS exacerbation and relapses as an environmental factor in genetically predisposed individuals. Herein, possible consequences of COVID-19 which may carry for the MS patients and the underlying mechanisms of its impact are discussed.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
36
|
Bello-Morales R, Andreu S, López-Guerrero JA. The Role of Herpes Simplex Virus Type 1 Infection in Demyelination of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21145026. [PMID: 32708697 PMCID: PMC7404202 DOI: 10.3390/ijms21145026] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous systems. After primary infection in epithelial cells, HSV-1 spreads retrogradely to the peripheral nervous system (PNS), where it establishes a latent infection in the trigeminal ganglia (TG). The virus can reactivate from the latent state, traveling anterogradely along the axon and replicating in the local surrounding tissue. Occasionally, HSV-1 may spread trans-synaptically from the TG to the brainstem, from where it may disseminate to higher areas of the central nervous system (CNS). It is not completely understood how HSV-1 reaches the CNS, although the most accepted idea is retrograde transport through the trigeminal or olfactory tracts. Once in the CNS, HSV-1 may induce demyelination, either as a direct trigger or as a risk factor, modulating processes such as remyelination, regulation of endogenous retroviruses, or molecular mimicry. In this review, we describe the current knowledge about the involvement of HSV-1 in demyelination, describing the pathways used by this herpesvirus to spread throughout the CNS and discussing the data that suggest its implication in demyelinating processes.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
- Correspondence:
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
37
|
Palao M, Fernández-Díaz E, Gracia-Gil J, Romero-Sánchez CM, Díaz-Maroto I, Segura T. Multiple sclerosis following SARS-CoV-2 infection. Mult Scler Relat Disord 2020; 45:102377. [PMID: 32698095 PMCID: PMC7340057 DOI: 10.1016/j.msard.2020.102377] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022]
Abstract
The first case of multiple sclerosis (MS) shortly after COVID-19 is presented. Viral infections strongly relate to MS onset and its relapses. SARS-CoV-2 can play a role in the triggering of demyelinating diseases. Systemic immune response against SARS-CoV-2 could reach CNS leading to demyelination.
SARS-CoV-2 infection can produce neurological features. The most common are headache, anosmia and dysgeusia but patients may also develop other central nervous system (CNS) injuries. We present a patient affected by Covid-19 who initially consulted for decreased visual acuity. The MRI showed inflammation in the right optic nerve and demyelinating lesions in the CNS. We speculate that an immune mechanism induced by SARS-CoV-2, which can activate lymphocytes and an inflammatory response, plays a role in the clinical onset of the disease. This pathogen may be associated with either the triggering or the exacerbation of inflammatory/demyelinating disease.
Collapse
Affiliation(s)
- M Palao
- Neurology Department, Complejo Hospitalario Universitario de Albacete, Castilla- La Mancha, Spain.
| | - E Fernández-Díaz
- Neurology Department, Complejo Hospitalario Universitario de Albacete, Castilla- La Mancha, Spain
| | - J Gracia-Gil
- Neurology Department, Complejo Hospitalario Universitario de Albacete, Castilla- La Mancha, Spain
| | - C M Romero-Sánchez
- Neurology Department, Complejo Hospitalario Universitario de Albacete, Castilla- La Mancha, Spain
| | - I Díaz-Maroto
- Neurology Department, Complejo Hospitalario Universitario de Albacete, Castilla- La Mancha, Spain
| | - T Segura
- Neurology Department, Complejo Hospitalario Universitario de Albacete, Castilla- La Mancha, Spain
| |
Collapse
|
38
|
Root-Bernstein R. Synergistic Activation of Toll-Like and NOD Receptors by Complementary Antigens as Facilitators of Autoimmune Disease: Review, Model and Novel Predictions. Int J Mol Sci 2020; 21:ijms21134645. [PMID: 32629865 PMCID: PMC7369971 DOI: 10.3390/ijms21134645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/29/2022] Open
Abstract
Persistent activation of toll-like receptors (TLR) and nucleotide-binding oligomerization domain-containing proteins (NOD) in the innate immune system is one necessary driver of autoimmune disease (AD), but its mechanism remains obscure. This study compares and contrasts TLR and NOD activation profiles for four AD (autoimmune myocarditis, myasthenia gravis, multiple sclerosis and rheumatoid arthritis) and their animal models. The failure of current AD theories to explain the disparate TLR/NOD profiles in AD is reviewed and a novel model is presented that explains innate immune support of persistent chronic inflammation in terms of unique combinations of complementary AD-specific antigens stimulating synergistic TLRs and/or NODs. The potential explanatory power of the model is explored through testable, novel predictions concerning TLR- and NOD-related AD animal models and therapies.
Collapse
|