1
|
Sousa AC, Mascarenhas P, Polido M, Vasconcelos e Cruz J. Natural Antibacterial Compounds with Potential for Incorporation into Dental Adhesives: A Systematic Review. Polymers (Basel) 2024; 16:3217. [PMID: 39599308 PMCID: PMC11598765 DOI: 10.3390/polym16223217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Dental adhesives are essential in modern restorative dentistry and are constantly evolving. However, challenges like secondary caries from bacterial infiltration at the adhesive-tooth interface persist. While synthetic antibacterial agents in adhesives show promise, safety concerns have shifted interest toward natural options that are biocompatible, sustainable, and effective. Therefore, this study evaluated whether natural antibacterial compounds in dental adhesives can provide effective antimicrobial activity without compromising their integrity. This systematic review followed PRISMA 2020 statement guidelines. Four databases were screened, PubMed, Scopus, EMBASE, and Web of Science, without language or publication date restrictions until July 2024. The selection criteria were in vitro studies in which natural antimicrobial substances were incorporated into dental adhesives and the resulting composites were tested for their antibacterial and physicochemical properties. A quality assessment was conducted on the selected studies. Most of the studies reviewed reported significant antibacterial activity while retaining the adhesive's integrity, generally achieved with lower concentrations of the natural agents. Higher concentrations increase the antimicrobial effectiveness but negatively impact the adhesive's properties. This review highlights the promising role of natural antibacterial compounds in enhancing the functionality of dental adhesives while also pointing to the need for continued research to address current challenges.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Instituto Universitário Egas Moniz (IUEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Portugal (P.M.); (M.P.)
| | - Paulo Mascarenhas
- Instituto Universitário Egas Moniz (IUEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Portugal (P.M.); (M.P.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Portugal
| | - Mário Polido
- Instituto Universitário Egas Moniz (IUEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Portugal (P.M.); (M.P.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Portugal
| | - Joana Vasconcelos e Cruz
- Instituto Universitário Egas Moniz (IUEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Portugal (P.M.); (M.P.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Portugal
| |
Collapse
|
2
|
ElSheikh SK, Eid ESG, Abdelghany AM, Abdelaziz D. Physical/mechanical and antibacterial properties of composite resin modified with selenium nanoparticles. BMC Oral Health 2024; 24:1245. [PMID: 39427128 PMCID: PMC11490041 DOI: 10.1186/s12903-024-04965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Accumulation of biofilm over composite resin restorations is one of the principal causes of recurrent caries. Therefore, this study aimed to develop antibacterial composite resins by crystalline selenium nanoparticles (SeNPs), assessing the antibacterial, mechanical, and physical properties of the composite resin after SeNPs incorporation. METHODS SeNPs were synthesized via a green method. The nanoparticles were characterized by UV-Vis spectroscopy, fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM). The nano-filled composite (Filtek™ Z350XT ) was considered as a control group (G0). Two concentrations of SeNPs (0.005 wt% and 0.01 wt%.) were added to the tested resin composite (G1& G2), respectively. The physical/mechanical and antibacterial properties of the composite specimens (n = 10/group) were characterized. A one-way ANOVA was conducted to analyze these data followed by Bonferroni post hoc test for pairwise comparison. RESULTS Modified composites with SeNPs showed antibacterial activity against E. coli and S. mutans. Mechanical properties including diametral tensile strength, compressive strength, or surface roughness were not affected by nano-incorporation compared to control. Furthermore, the degree of conversion showed no statistical difference. However, SeNPs incorporation into resin composite produces color change that can be visually perceived. CONCLUSIONS The green synthesized SeNPs significantly improved the antimicrobial properties of the dental composite without compromising mechanical performance. However, it shows color change after SeNPs incorporation.
Collapse
Affiliation(s)
- Sara Khaled ElSheikh
- Department of Dental Biomaterials, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Dakahlia Governorate, Egypt
| | - El-Sayed Gad Eid
- Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, El Gomhouria St, Mansoura, Dakahlia, 35516, Egypt
| | - A M Abdelghany
- Spectroscopy Department, Physics Research Institute, National Research Centre, 33 Elbehouth st., Dokki, Giza, 12311, Egypt
| | - Dina Abdelaziz
- Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, El Gomhouria St, Mansoura, Dakahlia, 35516, Egypt.
| |
Collapse
|
3
|
Eker F, Duman H, Akdaşçi E, Witkowska AM, Bechelany M, Karav S. Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1618. [PMID: 39452955 PMCID: PMC11510578 DOI: 10.3390/nano14201618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Silver nanoparticles (NPs) have become highly promising agents in the field of biomedical science, offering wide therapeutic potential due to their unique physicochemical properties. The unique characteristics of silver NPs, such as their higher surface-area-to-volume ratio, make them ideal for a variety of biological applications. They are easily processed thanks to their large surface area, strong surface plasmon resonance (SPR), stable nature, and multifunctionality. With an emphasis on the mechanisms of action, efficacy, and prospective advantages of silver NPs, this review attempts to give a thorough overview of the numerous biological applications of these particles. The utilization of silver NPs in diagnostics, such as bioimaging and biosensing, as well as their functions in therapeutic interventions such as antimicrobial therapies, cancer therapy, diabetes treatment, bone repair, and wound healing, are investigated. The underlying processes by which silver NPs exercise their effects, such as oxidative stress induction, apoptosis, and microbial cell membrane rupture, are explored. Furthermore, toxicological concerns and regulatory issues are discussed, as well as the present difficulties and restrictions related to the application of silver NPs in medicine.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| |
Collapse
|
4
|
Xu W, Yu F, Addison O, Zhang B, Guan F, Zhang R, Hou B, Sand W. Microbial corrosion of metallic biomaterials in the oral environment. Acta Biomater 2024; 184:22-36. [PMID: 38942189 DOI: 10.1016/j.actbio.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
A wide variety of microorganisms have been closely linked to metal corrosion in the form of adherent surface biofilms. Biofilms allow the development and maintenance of locally corrosive environments and/or permit direct corrosion including pitting corrosion. The presence of numerous genetically distinct microorganisms in the oral environment poses a threat to the integrity and durability of the surface of metallic prostheses and implants used in routine dentistry. However, the association between oral microorganisms and specific corrosion mechanisms is not clear. It is of practical importance to understand how microbial corrosion occurs and the associated risks to metallic materials in the oral environment. This knowledge is also important for researchers and clinicians who are increasingly concerned about the biological activity of the released corrosion products. Accordingly, the main goal was to comprehensively review the current literature regarding oral microbiologically influenced corrosion (MIC) including characteristics of biofilms and of the oral environment, MIC mechanisms, corrosion behavior in the presence of oral microorganisms and potentially mitigating technologies. Findings included that oral MIC has been ascribed mostly to aggressive metabolites secreted during microbial metabolism (metabolite-mediated MIC). However, from a thermodynamic point of view, extracellular electron transfer mechanisms (EET-MIC) through pili or electron transfer compounds cannot be ruled out. Various MIC mitigating methods have been demonstrated to be effective in short term, but long term evaluations are necessary before clinical applications can be considered. Currently most in-vitro studies fail to simulate the complexity of intraoral physiological conditions which may either reduce or exacerbate corrosion risk, which must be addressed in future studies. STATEMENT OF SIGNIFICANCE: A thorough analysis on literature regarding oral MIC (microbiologically influenced corrosion) of biomedical metallic materials has been carried out, including characteristics of oral environment, MIC mechanisms, corrosion behaviors in the presence of typical oral microorganisms and potential mitigating methods (materials design and surface design). There is currently a lack of mechanistic understanding of oral MIC which is very important not only to corrosion researchers but also to dentists and clinicians. This paper discusses the significance of biofilms from a biocorrosion perspective and summarizes several aspects of MIC mechanisms which could be caused by oral microorganisms. Oral MIC has been closely associated with not only the materials research but also the dental/clinical research fields in this work.
Collapse
Affiliation(s)
- Weichen Xu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China.
| | - Fei Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266021, China.
| | - Owen Addison
- Centre for Oral Clinical Translational Science, Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Binbin Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Fang Guan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Baorong Hou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Wolfgang Sand
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Biofilm Centre, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
5
|
Sahm BD, Ferreira I, Carvalho-Silva JM, Vilela Teixeira AB, Uchôa Teixeira JV, Lisboa-Filho PN, Alves OL, Cândido dos Reis A. Structure-properties correlation of acrylic resins modified with silver vanadate and graphene. Heliyon 2024; 10:e32029. [PMID: 38868038 PMCID: PMC11168394 DOI: 10.1016/j.heliyon.2024.e32029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
This study aimed to incorporate β-AgVO3 and rGO into self-curing (SC) and heat-curing (HC) acrylic resins and to evaluate their physicochemical, mechanical, and antimicrobial properties while correlating them with the characterized material structure. Acrylic resin samples were prepared at 0 % (control), 0.5 %, 1 %, and 3 % for both nanoparticles. The microstructural characterization was assessed by scanning electron microscopy (SEM) (n = 1) and energy dispersive X-ray spectroscopy (EDS) (n = 1). The physicochemical and mechanical tests included flexural strength (n = 10), Knoop hardness (n = 10), roughness (n = 10), wettability (n = 10), sorption (n = 10), solubility (n = 10), porosity (n = 10), and color evaluation (n = 10). The microbiological evaluation was performed by counting colony-forming units (CFU/mL) and cell viability (n = 8). The results showed that the β-AgVO3 samples showed lower counts of Candida albicans, Pseudomonas aeruginosa, and Streptococcus mutans due to their promising physicochemical properties. The mechanical properties were maintained with the addition of β-AgVO3. The rGO samples showed higher counts of microorganisms due to the increase in physicochemical properties. It can be concluded that the incorporation of β-AgVO3 into acrylic resins could be an alternative to improve the antimicrobial efficacy and performance of the material.
Collapse
Affiliation(s)
- Beatriz Danieletto Sahm
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Izabela Ferreira
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - João Marcos Carvalho-Silva
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana Beatriz Vilela Teixeira
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | | | - Oswaldo Luiz Alves
- Department of Inorganic Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Andréa Cândido dos Reis
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Madla-Cruz E, Villanueva-Pérez VD, De la Garza-Ramos MA, Flores-Treviño JJ, Rodríguez-Delgado I, López-Martinez F. An in vitro evaluation of endodontic sealers and an antibiotic to assess their antimicrobial effect against Enterococcus faecalis. Biomater Investig Dent 2024; 11:40646. [PMID: 38903776 PMCID: PMC11187975 DOI: 10.2340/biid.v11.40646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/12/2024] [Indexed: 06/22/2024] Open
Abstract
Objective This study aimed to compare the antimicrobial effect of three endodontic sealers (AH Plus, Mineral trioxide aggregate [MTA] Fillapex, and BioRoot RCS) with and without amoxicillin against E. faecalis. Methodology Amoxicillin, equivalent to 10% of the sealers' total weight, was mixed with the sealers. Another batch was prepared without amoxicillin. The direct contact test (DCT) and the agar diffusion test were used to assess the antibacterial effect. Results were analysed using one-way analysis of variance (ANOVA), the F-test, and the Kruskal-Wallis test. Results AH Plus significantly suppressed E. faecalis without the addition of amoxicillin in the DCT (p = 0.011), while in the agar diffusion test, BioRoot RCS had a larger inhibition zone than the control (p < 0.001). When amoxicillin was added to the sealers, AH Plus (p = 0.003) and MTA Fillapex (p = 0.042) reduced E. faecalis growth. In contrast, all three sealers showed larger inhibition zones than the control (p = 0.001), with AH Plus displaying a larger inhibition zone than MTA Fillapex (p = 0.042) and BioRoot RCS (p = 0.032). Conclusions It was thus concluded that the addition of amoxicillin to endodontic sealers enhances their antimicrobial activity against E. faecalis.
Collapse
Affiliation(s)
- Elizabeth Madla-Cruz
- Universidad Autónoma de Nuevo Leon, Facultad de Odontología, Calle Dr. Aguirre Pequeño and Silao, Colonia Mitras Centro, Monterrey, Nuevo Leon, Mexico CP 64460
| | - Vanascheck Dasaev Villanueva-Pérez
- Universidad Autónoma de Nuevo Leon, Facultad de Odontología, Calle Dr. Aguirre Pequeño and Silao, Colonia Mitras Centro, Monterrey, Nuevo Leon, Mexico CP 64460
| | - Myriam A. De la Garza-Ramos
- Universidad Autónoma de Nuevo Leon, Facultad de Odontología, Calle Dr. Aguirre Pequeño and Silao, Colonia Mitras Centro, Monterrey, Nuevo Leon, Mexico CP 64460
| | - Jorge Jaime Flores-Treviño
- Universidad Autónoma de Nuevo Leon, Facultad de Odontología, Calle Dr. Aguirre Pequeño and Silao, Colonia Mitras Centro, Monterrey, Nuevo Leon, Mexico CP 64460
| | - Idalia Rodríguez-Delgado
- Universidad Autónoma de Nuevo Leon, Facultad de Odontología, Calle Dr. Aguirre Pequeño and Silao, Colonia Mitras Centro, Monterrey, Nuevo Leon, Mexico CP 64460
| | - Fanny López-Martinez
- Universidad Autónoma de Nuevo Leon, Facultad de Odontología, Calle Dr. Aguirre Pequeño and Silao, Colonia Mitras Centro, Monterrey, Nuevo Leon, Mexico CP 64460
| |
Collapse
|
7
|
Ye W, Wu J, Jiang Q, Su Z, Liao H, Liu Z, Tao R, Yong X. Antibacterial activity of corydalis saxicola bunting total alkaloids against Porphyromonas gingivalis in vitro. Future Microbiol 2024; 19:595-606. [PMID: 38629885 PMCID: PMC11229583 DOI: 10.2217/fmb-2023-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/16/2024] [Indexed: 07/04/2024] Open
Abstract
Aim: To investigate the antibacterial effects of Corydalis Saxicola bunting total alkaloid (CSBTA) on Porphyromonas gingivalis. Methods: SEM, chemical staining, RT-qPCR and ELISA were used to detect effects of CSBTA on P. gingivalis. Results: CSBTA treatment caused shrinkage and rupture of P. gingivalis morphology, decreased biofilm density and live bacteria in biofilm, as well as reduced mRNA expression of virulence genes hagA, hagB, kgp, rgpA and rgpB of P. gingivalis. Furthermore, NOK cells induced by CSBTA-treated P. gingivalis exhibited lower IL-6 and TNF-α expression levels. Conclusion: CSBTA is able to kill free P. gingivalis, disrupt the biofilm and weaken the pathogenicity of P. gingivalis. It has the potential to be developed as a drug against P. gingivalis infection.
Collapse
Affiliation(s)
- Wenli Ye
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
| | - Jiaxuan Wu
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
| | - Qiaozhi Jiang
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Haiqing Liao
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| | - Zhenmin Liu
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| | - Renchuan Tao
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| | - Xiangzhi Yong
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| |
Collapse
|
8
|
Hammami I, Graça MPF, Gavinho SR, Jakka SK, Borges JP, Silva JC, Costa LC. Exploring the Impact of Copper Oxide Substitution on Structure, Morphology, Bioactivity, and Electrical Properties of 45S5 Bioglass ®. Biomimetics (Basel) 2024; 9:213. [PMID: 38667224 PMCID: PMC11048336 DOI: 10.3390/biomimetics9040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
In recent decades, the requirements for implantable medical devices have increased, but the risks of implant rejection still exist. These issues are primarily associated with poor osseointegration, leading to biofilm formation on the implant surface. This study focuses on addressing these issues by developing a biomaterial for implant coatings. 45S5 bioglass® has been widely used in tissue engineering due to its ability to form a hydroxyapatite layer, ensuring a strong bond between the hard tissue and the bioglass. In this context, 45S5 bioglasses®, modified by the incorporation of different amounts of copper oxide, from 0 to 8 mol%, were synthesized by the melt-quenching technique. The incorporation of Cu ions did not show a significant change in the glass structure. Since the bioglass exhibited the capacity for being polarized, thereby promoting the osseointegration effectiveness, the electrical properties of the prepared samples were studied using the impedance spectroscopy method, in the frequency range of 102-106 Hz and temperature range of 200-400 K. The effects of CuO on charge transport mobility were investigated. Additionally, the bioactivity of the modified bioglasses was evaluated through immersion tests in simulated body fluid. The results revealed the initiation of a Ca-P-rich layer formation on the surface within 24 h, indicating the potential of the bioglasses to enhance the bone regeneration process.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - Manuel Pedro Fernandes Graça
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - Sílvia Rodrigues Gavinho
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - Suresh Kumar Jakka
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - João Paulo Borges
- CENIMAT-I3N and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Jorge Carvalho Silva
- CENIMAT-I3N and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Luís Cadillon Costa
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| |
Collapse
|
9
|
Thongsri O, Thaitalay P, Srisuwan S, Khophai S, Suksaweang S, Rojviriya C, Panpisutd P, Patntirapong S, Gough J, Rattanachan ST. Enhanced remineralisation ability and antibacterial properties of sol-gel glass ionomer cement modified by fluoride containing strontium-based bioactive glass or strontium-containing fluorapatite. Dent Mater 2024; 40:716-727. [PMID: 38395738 DOI: 10.1016/j.dental.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES This study aimed to compare two types of bioactive additives which were strontium-containing fluorinated bioactive glass (SrBGF) or strontium-containing fluorapatite (SrFA) added to sol-gel derived glass ionomer cement (SGIC). The objective was to develop antibacterial and mineralisation properties, using bioactive additives, to minimize the occurrence of caries lesions in caries disease. METHODS Synthesized SrBGF and SrFA nanoparticles were added to SGIC at 1 wt% concentration to improve antibacterial properties against S. mutans, promote remineralisation, and hASCs and hDPSCs viability. Surface roughness and ion-releasing behavior were also evaluated to clarify the effect on the materials. Antibacterial activity was measured via agar disc diffusion and bacterial adhesion. Remineralisation ability was assessed by applying the material to demineralised teeth and subjecting them to a 14-day pH cycle, followed by microCT and SEM-EDS analysis. RESULTS The addition of SrFA into SGIC significantly improved its antibacterial property. SGIC modified with either SrBGF or SrFA additives could similarly induce apatite crystal precipitation onto demineralised dentin and increase dentin density, indicating its ability to remineralise dentin. Moreover, this study also showed that SGIC modified with SrBGF or SrFA additives had promising results on the in vitro cytotoxicity of hASC and hDPSC. SIGNIFICANT SrFA has superior antibacterial property as compared to SrBGF while demonstrating equal remineralisation ability. Furthermore, the modified SGIC showed promising results in reducing the cytotoxicity of hASCs and hDPSCs, indicating its potential for managing caries.
Collapse
Affiliation(s)
- Oranich Thongsri
- School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Paritat Thaitalay
- School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Sawitri Srisuwan
- School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Sasikamon Khophai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sanong Suksaweang
- School of Pathology and Laboratory Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Piyaphong Panpisutd
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
| | - Somying Patntirapong
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
| | - Julie Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Sirirat Tubsungnoen Rattanachan
- School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
10
|
Bhandari SS, Palin W, Kuehne SA, Camilleri J. Investigating best practice for specimen preparation for biological testing of root canal sealers. Dent Mater 2024; 40:387-392. [PMID: 38103958 DOI: 10.1016/j.dental.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Biological characterization of root canal sealers is important as it assesses the ability of the root canal sealer to exert antimicrobial properties thus avoiding treatment failures caused by microbial challenge and also assess the cytotoxic effect on the periapical tissues. Assessment of the biological testing of root canal sealers necessitates the sterilisation of the materials prior to evaluation. This study aims to analyse the influence of various sterilisation techniques conducted prior to biological testing on the microstructure and surface properties of endodontic sealers. Assessment of the initial microbial contamination on the material was also undertaken. METHODS Four commercial sealers were investigated. The sealers were either prepared in a laminar flow cabinet or on a laboratory bench top under ambient conditions. Each group was further divided into 5 groups (n = 3) based on the sterilization technique:1) ethanol-10 mins, 2) ultraviolet-1 h, 3) ethanol-10 mins + ultraviolet-1 h, 4) autoclave, and 5) no sterilisation (control). Microbial levels in the materials were assessed by plate streaking technique. The materials were characterized by scanning electron microscopy and energy dispersive spectroscopy, and Fourier transform infrared spectroscopy, before and after sterilisation, to assess any changes in microstructure and chemical composition. RESULTS All the materials did not exhibit contamination when prepared in laminar flow chamber in sterile conditions compared with sealers prepared on the bench top. Three of the commercial materials showed changes in microstructure while one (TotalFill) was not affected by the sterilisation. AH Plus and BioRoot RCS exhibited alterations in water and alcohol peaks in FT-IR while the single syringe sealers (TotalFill and BioRoot Flow) showed no changes. CONCLUSIONS Sterilisation methods cause physical and chemical alterations to sealers. Material preparation should be performed in a laminar flow cabinet and a test for sterility should be performed prior to any biological testing being undertaken. If the materials are not sterile, assessment of the effects of the sterilization methods is recommended.
Collapse
Affiliation(s)
- Sweta Surana Bhandari
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - William Palin
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarah A Kuehne
- Nottingham Trent University, School of Science and Technology, Nottingham, United Kingdom
| | - Josette Camilleri
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
11
|
Fathy H, Haroun H, Riad M. The optical behavior of nano filled resin composite loaded with graphene oxide nanoparticles. BMC Oral Health 2024; 24:239. [PMID: 38355530 PMCID: PMC10868066 DOI: 10.1186/s12903-023-03798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
OBJECTIVES Assessment of the effect of incorporation of graphene oxide nanoparticles (GONPs), different concentrations into resin composite with different thicknesses on its color modulation. MATERIALS AND METHODS GONPs were prepared using the chemical reduction method and characterized using a transmission electron microscope and X-ray diffraction. The minimum concentrations of GONPs that provided the most effective antibacterial action (0.05 wt% and 0.2 wt%.) were prepared to be the concentration added to the tested resin composite. Calculations were done to find the required volume of the GONPs solution needed according to the mass of the resin composite. 70 nano-filled resin composite discs were prepared with 10 mm diameter × 3 mm height. 10 resin composite discs were prepared without GONPs incorporation and served as a control (G0). The other 60 resin composite specimens were divided into 2 equal groups (G1& G2) according to the concentration of the loaded nanoparticles in the specimens. Each group was divided into 3 equal subgroups according to the thickness of the resin composite containing GONPs; [T1: GONPs dispersed in the bottom 1 mm of the disc, while the top 2 mm of the disc was of resin composite only. T2: GONPs dispersed only in the bottom 2 mm of the disc and T3: GONPs dispersed in the total thickness of the disc (3 mm)]. ∆E values were calculated using a Vita Easy shade Spectrophotometer. RESULTS Incorporation of GONPs into resin composite induced significant color change and among all the 6 experimental groups, G1T1 group (of 0.05 wt% concentration GONPs dispersed only in the bottom 1 mm of the disc) showed a non-significant color change. CONCLUSION Dispersion of GONPs has a detectable effect on the color change of resin composite. Meanwhile, dispersion in low concentration for only the bottom 1 mm thickness of resin composite has an undetectable effect on its color.
Collapse
Affiliation(s)
- Heba Fathy
- Faculty of Dentistry, Modern University for Technology and Information (MTI), Cairo, 11571, Egypt
| | - Hassan Haroun
- Faculty of Dentistry, Modern University for Technology and Information (MTI), Cairo, 11571, Egypt
| | - Mona Riad
- Faculty of Dentistry, Cairo University, 11 El-Saraya St, Manial, Cairo, 11553, Egypt.
| |
Collapse
|
12
|
Liang X, Yu B, Ye L, Lin D, Zhang W, Zhong HJ, He J. Recent Advances in Quaternary Ammonium Monomers for Dental Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:345. [PMID: 38255513 PMCID: PMC10820831 DOI: 10.3390/ma17020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Resin-based dental materials have been one of the ideal choices among various materials in the treatment of dental caries. However, resin-based dental materials still have some drawbacks, such as the lack of inherent antibacterial activity. Extensive research has been conducted on the use of novel quaternary ammonium monomers (QAMs) to impart antibacterial activity to dental materials. This review provides a comprehensive overview of the recent advances in quaternary ammonium monomers (QAMs) for dental applications. The current progress and limitations of QAMs are discussed based on the evolution of their structures. The functional diversification and enhancement of QAMs are presented. QAMs have the potential to provide long-term antibacterial activity in dental resin composites, thereby prolonging their service life. However, there is a need to balance antibacterial performance with other material properties and the potential impact on the oral microbiome and general health. Finally, the necessity for further scientific progress in the development of novel quaternary ammonium monomers and the optimization of dental resin formulations is emphasized.
Collapse
Affiliation(s)
- Xiaoxu Liang
- Foundation Department, Guangzhou Maritime University, Guangzhou 510725, China;
| | - Biao Yu
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Liuqi Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Danlei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Wen Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Hai-Jing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Jingwei He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
13
|
Mathew MG, Jeevanandan G, Rathod NN. Evaluation of Changes in Oral Microflora in Children with Early Childhood Caries after Full Mouth Rehabilitation. Int J Clin Pediatr Dent 2024; 17:21-25. [PMID: 38559854 PMCID: PMC10978515 DOI: 10.5005/jp-journals-10005-2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Aim To evaluate the change in microflora in children suffering from severe early childhood caries (ECC) after full mouth rehabilitation. Materials and methods A total of 60 children, aged 3-5 years suffering from severe ECC who fulfilled the inclusion and exclusion criteria were included in the study. Pooled plaque samples were taken and subjected to quantitative reverse transcriptase polymerase chain reaction (PCR) to obtain baseline mean values of Streptococcus mutans (S. mutans), Streptococcus sobrinus (S. sobrinus), Candida albicans (C. albicans), and Candida dubliniensis (C. dubliniensis) before full mouth rehabilitation was done under general anesthesia. Posttreatment samples were collected at 6, 12, and 18 months. Wilcoxon signed-rank test was used to compare the mean values of S. mutans, S. sobrinus, C. albicans, and C. dubliniensis before and after full mouth rehabilitation. Results A total of 60 patients recruited for the study were present at the follow-up at 6 and 12 months. At 18 months, 55 patients returned, and five were lost due to follow-up. A statistically significant reduction was seen in all microorganisms at 6, 12, and 18 months compared to baseline values. At 18 months a slight increase in S. mutans, S. sobrinus, and C. albicans was seen. C. dubliniensis was not detected in any cases after full mouth rehabilitation. Caries recurrence was seen in four patients at 18 months. Conclusion Significant reduction of S. mutans, S. sobrinus, C. albicans, and C. dubliniensis was seen at 6, 12, and 18 months. A complete reduction of only C. dubliniensis was seen. A significant but not permanent reduction of S. mutans, S. sobrinus, and C. albicans. Caries recurrence was seen in 7.27% of patients at 18 months. How to cite this article Mathew MG, Jeevanandan G, Rathod NN. Evaluation of Changes in Oral Microflora in Children with Early Childhood Caries after Full Mouth Rehabilitation. Int J Clin Pediatr Dent 2024;17(1):21-25.
Collapse
Affiliation(s)
- Mebin George Mathew
- Department of Pedodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS) (Deemed to be University), Chennai, Tamil Nadu, India
| | - Ganesh Jeevanandan
- Department of Pedodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS) (Deemed to be University), Chennai, Tamil Nadu, India
| | - Neha N Rathod
- Department of Pedodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS) (Deemed to be University), Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Tu Y, Ren H, He Y, Ying J, Chen Y. Interaction between microorganisms and dental material surfaces: general concepts and research progress. J Oral Microbiol 2023; 15:2196897. [PMID: 37035450 PMCID: PMC10078137 DOI: 10.1080/20002297.2023.2196897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacterial adhesion to dental materials’ surfaces is the initial cause of dental materials-related infections. Therefore, inhibiting bacterial adhesion is a critical step in preventing and controlling these infections. To this end, it is important to know how the properties of dental materials affect the interactions between microorganisms and material surfaces to produce materials without biological contamination. This manuscript reviews the mechanism of bacterial adhesion to dental materials, the relationships between their surface properties and bacterial adhesion, and the impact of bacterial adhesion on their surface properties. In addition, this paper summarizes how these surface properties impact oral biofilm formation and proposes designing intelligent dental material surfaces that can reduce biological contamination.
Collapse
Affiliation(s)
- Yan Tu
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Huaying Ren
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yiwen He
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Ying
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yadong Chen
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- CONTACT Yadong Chen Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou310000, China
| |
Collapse
|
15
|
Mahmoudi-Qashqay S, Zamani-Meymian MR, Sadati SJ. Improving antibacterial ability of Ti-Cu thin films with co-sputtering method. Sci Rep 2023; 13:16593. [PMID: 37789153 PMCID: PMC10547835 DOI: 10.1038/s41598-023-43875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Due to the resistance of some bacteria to antibiotics, research in the field of dealing with bacterial infections is necessary. A practical approach utilized in this study involves the preparation of an antibacterial thin film on the surfaces, which can effectively inhibit and reduce biofilm formation and bacterial adherence. In this study, we report the fabrication of bactericidal titanium (Ti) and copper (Cu) surfaces which involves a powerful co-sputtering method. This method provides a situation in which constituent elements are deposited simultaneously to control the composition of the thin film. Prepared samples were examined by energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and contact angle measurements. To evaluate antibacterial behavior, we used two bacterial strains Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Antibacterial activity of the prepared sample was assessed by determining the number of colony-forming units per milliliter (CFU/ml) using a standard viable cell count assay. Results indicated that as the Cu concentration increased, the nanoscale surfaces became rougher, with roughness values rising from 11.85 to 49.65 nm, and the contact angle increased from 40 to 80 degrees, indicating a hydrophilic character. These factors play a significant role in the antibacterial properties of the surface. The Ti-Cu films displayed superior antibacterial ability, with a 99.9% reduction (equivalent to a 5-log reduction) in bacterial viability after 2 h compared to Ti alone against both bacterial strains. Field emission scanning electron microscopy (FE-SEM) images verified that both E. coli and S. aureus cells were physically deformed and damaged the bacterial cell ultrastructure was observed. These findings highlight that adding Cu to Ti can improve the antibacterial ability of the surface while inhibiting bacterial adherence. Therefore, the Ti14-Cu86 sample with the highest percentage of Cu had the best bactericidal rate. Investigation of toxicity of Cu-Ti thin films was conducted the using the MTT assay, which revealed their biocompatibility and absence of cytotoxicity, further confirming their potential as promising biomaterials for various applications.
Collapse
Affiliation(s)
- Samaneh Mahmoudi-Qashqay
- Department of Physics, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | | | - Seyed Javad Sadati
- Department of Physics, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
16
|
Cardinali F, Camilleri J. A critical review of the material properties guiding the clinician's choice of root canal sealers. Clin Oral Investig 2023; 27:4147-4155. [PMID: 37460901 PMCID: PMC10415471 DOI: 10.1007/s00784-023-05140-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/02/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVES The introduction of hydraulic cement sealers has increased the popularity of single cone obturation where the chemistry and properties of hydraulic cement sealers are crucial. This article has investigated the materials present on the market by reviewing the chemistry aiming at understanding whether these materials are optimized or have been tested appropriately. METHODOLOGY A market search on materials called bioceramic and hydraulic sealers was undertaken. The safety data sheet and manufacturer details for every material were searched and the components were checked. The literature was searched for information about the properties of these materials based on their composition. RESULTS The safety data sheets and manufacturer details were imprecise with some manufacturers providing little detail on composition. From the publications reviewed, it is apparent that the materials used clinically are not optimized, and there is little evidence that the material chemistry and presentation aid the clinical technique in any way. CONCLUSIONS There has been a rapid increase in materials identifying as bioceramics on the market. These materials have diverse chemistries, and some of the constituents are not declared. This may affect the clinical performance of these materials. CLINICAL SIGNIFICANCE Smart materials developed on the clinical need which are appropriately tested are necessary for a paradigm shift in root canal obturation. It is important to use reputable materials that have been adequately researched in clinical practice.
Collapse
Affiliation(s)
| | - J Camilleri
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
17
|
Hu J, Yu J, Liu H, Wang Z, Haapasalo M, Haney EF, Hancock REW, Deng S, Shen Y. Dynamic killing effectiveness of mouthrinses and a D-enantiomeric peptide on oral multispecies biofilms grown on dental restorative material surfaces. J Dent 2023; 134:104552. [PMID: 37201774 DOI: 10.1016/j.jdent.2023.104552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVE To evaluate the dynamics of killing of oral multispecies biofilms grown on dental restorative materials by commercially available mouthrinses and a D-enantiomeric peptide. METHODS Four composite resins (3M Supreme, 3M Supreme flow, Kerr Sonicfill, and Shofu Beautifil II) and one glass ionomer (GC Fuji II) were used as restorative materials. Plaque biofilms were grown on the surfaces of restorative material discs for 1 week. The surface roughness and biofilm attachment were assessed by atomic force microscopy and scanning electron microscopy. One-week-old biofilms grown anaerobically at 37°C were exposed to each of five solutions for one minute (twice daily for seven days): Listerine Total care and Paroex Gum mouthrinses, 0.12% chlorhexidine, 0.001% D-enantiomeric peptide DJK-5, and sterile water. The dynamic variation of the biovolume of the biofilms and the percentage of dead bacteria were monitored and analyzed using confocal laser scanning microscopy. RESULTS All restorative materials had similar surface roughness with intact biofilm attachment. The percentage of dead bacteria and biovolume of biofilms treated by each oral rinse solution remained constant between days 1 and 7, with no statistically significant difference. DJK-5 showed the highest percentage of dead bacteria (up to 75.7%; cf. ∼20-40% for other mouthrinses) of all solutions tested within 7 days. CONCLUSIONS DJK-5 outperformed conventional mouthrinses in killing bacteria in oral multispecies biofilms grown on dental restorative materials. CLINICAL SIGNIFICANCE The antimicrobial peptide DJK-5 is effective against oral biofilms and serves as a promising candidate for the development of future mouthrinses to improve long-term oral hygiene.
Collapse
Affiliation(s)
- Jinghao Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China; Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Jian Yu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
18
|
Yoshihara K, Nagaoka N, Makita Y, Yoshida Y, Van Meerbeek B. Long-Term Antibacterial Efficacy of Cetylpyridinium Chloride-Montmorillonite Containing PMMA Resin Cement. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091495. [PMID: 37177041 PMCID: PMC10180279 DOI: 10.3390/nano13091495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Despite being able to adhesively restore teeth, adhesives and cement do not possess any anticariogenic protection potential, by which caries recurrence may still occur and reduce the clinical lifetime of adhesive restorations. Several antibacterial agents have been incorporated into dental adhesives and cement to render them anticariogenic. Due to an additional therapeutic effect, such materials are classified as 'dental combination products' with more strict market regulations. We incorporated cetylpyridinium chloride (CPC), often used for oral hygiene applications, into montmorillonite (CPC-Mont), the latter to serve as a carrier for controlled CPC release. CPC-Mont incorporated into tissue conditioner has been approved by the Pharmaceuticals and Medical Devices Agency (PmontMDA) in Japan. To produce a clinically effective dental cement with the antibacterial potential to prevent secondary caries, we incorporated CPC-Mont into PMMA resin cement. We measured the flexural strength, shear bond strength onto dentin, CPC release, and the biofilm-inhibition potential of the experimental CPC-Mont-containing PMMA cement. An 8 and 10 wt% CPC-Mont concentration revealed the antibacterial potential without reducing the mechanical properties of the PMMA cement.
Collapse
Affiliation(s)
- Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, 2217-14 Hayashi-cho, Takamatsu 761-0395, Kagawa, Japan
- Department of Pathology & Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Okayama, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Science, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Okayama, Japan
| | - Yoji Makita
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, 2217-14 Hayashi-cho, Takamatsu 761-0395, Kagawa, Japan
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Hokkaido, Japan
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), Kapucijnenvoer 7, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Alqarni D, Nakajima M, Tagami J, Alzahrani MS, Sá-Pinto AC, Alghamdi A, Hosaka K, Alzahrani F, Alsadon OA, Alharbi RA, Almalki SS, Alzahrani AAH. Study of Streptococcus mutans in Early Biofilms at the Surfaces of Various Dental Composite Resins. Cureus 2023; 15:e38090. [PMID: 37252523 PMCID: PMC10209747 DOI: 10.7759/cureus.38090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Biofilm deposit on the composite restoration is a common phenomenon and bacterial growth follows the deposition. The study aims to evaluate Streptococcus mutans (S. mutans) early biofilm formation on the surfaces of various dental composite resins by using the real-time quantitative polymerase chain reaction (qPCR) technique. MATERIALS AND METHODS Thirty-two discs, where eight discs were in each group of Filtek Supreme Ultra (FSU; 3M, St. Paul, MN), Clearfil AP-X (APX; Kuraray Noritake Dental Inc., Tokyo, Japan), Beautifil II (BE2; Shofu, Inc., Kyoto, Japan), and Estelite Sigma Quick (ESQ; Tokuyama Dental, Tokyo, Japan), were fabricated and subjected to S. mutans biofilm formation in an oral biofilm reactor for 12 hours. Contact angles (CA) were measured on the freshly fabricated specimen. The attached biofilms underwent fluorescent microscopy (FM). S. mutans from biofilms were analyzed using a qPCR technique. Surface roughness (Sa) measurements were taken before and after biofilm formation. Scanning electron microscopy (SEM), including energy dispersive X-ray spectrometer (EDS) analysis, was also performed for detecting relative elements on biofilms. RESULTS The study showed that FSU demonstrated the lowest CA while APX presented the highest values. FM revealed that condensed biofilm clusters were most on FSU. The qPCR results indicated the highest S. mutans DNA copies in the biofilm were on FSU while BE2 was the lowest (p < 0.05). Sa test signified that APX was significantly the lowest among all materials while FSU was the highest (p < 0.05). SEM displayed areas with apparently glucan-free S. mutans more on BE2 compared to APX and ESQ, while FSU had the least. Small white particles detected predominantly on the biofilms of BE2 appeared to be Si, Al, and F extruded from the resin. CONCLUSION Differences in early biofilm formation onto various composite resins are dependent on the differences in material compositions and their surface properties. BE2 showed the lowest quantity of biofilm accumulation compared to other resin composites (APX, ESQ, and FSU). This could be attributed to BE2 proprieties as a giomer and fluoride content.
Collapse
Affiliation(s)
- Dhaifallah Alqarni
- Restorative and Prosthodontic Department, Almikhawah Dental Center, Al-Baha, SAU
| | - Masatoshi Nakajima
- Department of Cariology and Operative Dentistry/Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, JPN
| | - Junji Tagami
- Department of Cariology and Operative Dentistry/Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, JPN
| | - Mohammed S Alzahrani
- Restorative Dental Sciences Department, School of Dentistry, Al-Baha University, Al-Baha, SAU
| | - Ana Clara Sá-Pinto
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Minas Gerais, BRA
| | - Ali Alghamdi
- Restorative and Prosthodontic Department, Almikhawah Dental Center, Al-Baha, SAU
| | - Keiichi Hosaka
- Department of Regenerative Dental Medicine, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, JPN
| | - Fouad Alzahrani
- Pulp Biology and Endodontic Department, Al-Baha Dental Center, Al-Baha, SAU
| | - Omar A Alsadon
- Department of Dental Health, School of Applied Medical Sciences, King Saud University, Riyadh, SAU
| | - Raed A Alharbi
- Department of Laboratory Medicine, School of Applied Medical Sciences, Al-Baha University, Al-Baha, SAU
| | - Shaia S Almalki
- Department of Laboratory Medicine, School of Applied Medical Sciences, Al-Baha University, Al-Baha, SAU
| | - Abdullah Ali H Alzahrani
- Department of Dental Health, School of Applied Medical Sciences, Al-Baha University, Al-Baha, SAU
| |
Collapse
|
20
|
Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implant. Int J Mol Sci 2023; 24:ijms24065244. [PMID: 36982320 PMCID: PMC10049186 DOI: 10.3390/ijms24065244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Dental implants have emerged as one of the most consistent and predictable treatments in the oral surgery field. However, the placement of the implant is sometimes associated with bacterial infection leading to its loss. In this work, we intend to solve this problem through the development of a biomaterial for implant coatings based on 45S5 Bioglass® modified with different amounts of niobium pentoxide (Nb2O5). The structural feature of the glasses, assessed by XRD and FTIR, did not change in spite of Nb2O5 incorporation. The Raman spectra reveal the Nb2O5 incorporation related to the appearance of NbO4 and NbO6 structural units. Since the electrical characteristics of these biomaterials influence their osseointegration ability, AC and DC electrical conductivity were studied by impedance spectroscopy, in the frequency range of 102–106 Hz and temperature range of 200–400 K. The cytotoxicity of glasses was evaluated using the osteosarcoma Saos-2 cells line. The in vitro bioactivity studies and the antibacterial tests against Gram-positive and Gram-negative bacteria revealed that the samples loaded with 2 mol% Nb2O5 had the highest bioactivity and greatest antibacterial effect. Overall, the results showed that the modified 45S5 bioactive glasses can be used as an antibacterial coating material for implants, with high bioactivity, being also non-cytotoxic to mammalian cells.
Collapse
|
21
|
Huang S, Zhong Y, Fu Y, Zheng X, Feng Z, Mo A. Graphene and its derivatives: "one stone, three birds" strategy for orthopedic implant-associated infections. Biomater Sci 2023; 11:380-399. [PMID: 36453143 DOI: 10.1039/d2bm01507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Orthopedic implants provide an avascular surface for microbial attachment and biofilm formation, impeding the entry of immune cells and the diffusion of antibiotics. The above is an important cause of dental and orthopedic implant-associated infection (IAI). For the prevention and treatment of IAI, the drawbacks of antibiotic resistance and surgical treatment are increasingly apparent. Due to their outstanding biological properties such as biocompatibility, immunomodulatory effects, and antibacterial properties, graphene-based nanomaterials (GBNs) have been applied to bone tissue engineering to deal with IAI, and in particular have great potential application in drug/gene carriers, multi-functional platforms, and coating forms. Here we review the latest research progress and achievements in GBNs for the prevention and treatment of IAI, mainly including their biomedical applications for antibacterial and immunomodulation effects, and for inducing osteogenesis. Furthermore, the biosafety of graphene family materials in bone tissue regeneration and the feasibility of clinical application are critically analyzed and discussed.
Collapse
Affiliation(s)
- Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongjin Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaofei Zheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
An ex vivo evaluation of physico-mechanical and anti-biofilm properties of resin-modified glass ionomer containing ultrasound waves-activated nanoparticles against Streptococcus mutans biofilm around orthodontic bands. Photodiagnosis Photodyn Ther 2022; 40:103051. [PMID: 35932962 DOI: 10.1016/j.pdpdt.2022.103051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The present study evaluated the physico-mechanical and antimicrobial properties of ultrasound waves-activated modified-resin glass ionomer containing nanosonosensitizers such as nano-curcumin (n-Cur), nano-emodin (n-Emo), and nano-quercetin (n-Qct) against Streptococcus mutans biofilm on the surface of modified-resin glass ionomer bonded orthodontic bands. MATERIALS AND METHODS A total of 50 human molar teeth were used in this study. The shear bond strength (SBS), adhesive remnant index (ARI), setting time, and fluoride release of modified orthodontics cement containing different concentrations of n-Cur, n-Emo, and n-Qct (0, 2, 5, and 10%) were measured. The antimicrobial effectiveness was assessed against S. mutans by the biofilm inhibition test, and the Log10 colony-forming unit (CFU)/mL was evaluated. RESULTS SBS and setting time of modified glass ionomer decreased compared with the control group. 5% n-Emo, 2% n-Qct, and 5% n-Cur were the highest concentrations that had an insignificant difference in comparison with Transbond XT (P = 0.647, 0.819, and 0.292, respectively). The groups were not significantly different in terms of ARI score (P > 0.05). The highest and lowest setting time belonged to the control and 5% n-Emo groups, respectively; this difference in setting time was significant (P < 0.05). Ultrasound waves and 0.2% CHX significantly reduced S. mutans biofilms compared with the control group (P < 0.001), and minimum S. mutans colony count was shown in 0.2% CHX and 5% n-Emo groups. The addition of nanosonosensitizers to the glass ionomer did not compromise the fluoride release of the glass ionomer. CONCLUSION It could be concluded that resin-modified glass ionomer containing ultrasound waves-activated 5% n-Emo reduces S. mutans biofilm around orthodontic bands with no adverse effect on SBS, ARI, and its application in the clinic.
Collapse
|
23
|
Jerez-Olate C, Araya N, Alcántara R, Luengo L, Bello-Toledo H, González-Rocha G, Sánchez-Sanhueza G. In vitro antibacterial activity of endodontic bioceramic materials against dual and multispecies aerobic-anaerobic biofilm models. AUST ENDOD J 2022; 48:465-472. [PMID: 34741571 DOI: 10.1111/aej.12587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022]
Abstract
The aim of this in vitro study was to evaluate the antibacterial activity of calcium silicate repair cements and sealers against a dual-species planktonic aerobic model with different aging times and the ability to inhibit the formation of a mature 21-day-old multispecies anaerobic biofilm. The antibacterial activity of ProRoot MTA, MTA Angelus, Biodentine, BioRoot RCS and TotalFill BC sealer against a dual-species aerobic planktonic model, as well as measuring how materials were affected by aging, was evaluated using the Modified Direct Contact Test. Subsequently, the ability to inhibit the formation of a mature multispecies anaerobic biofilm was evaluated using scanning electron microscopy complemented with confocal laser scanning microscopy. Biodentine and BioRoot RCS had higher antibacterial action, and Biodentine was able to maintain its antibacterial action after a prolonged aging period in vitro. Calcium silicate repair cement MTA ProRoot and Biodentine had higher antibiofilm action.
Collapse
Affiliation(s)
- Christian Jerez-Olate
- Department of Restorative Dentistry, Discipline of Endodontics, Faculty of Dentistry, Universidad de Concepción, Concepción, Chile
| | - Nancy Araya
- Department of Restorative Dentistry, Discipline of Endodontics, Faculty of Dentistry, Universidad de Concepción, Concepción, Chile
| | - Raúl Alcántara
- Department of Restorative Dentistry, Discipline of Endodontics, Faculty of Dentistry, Universidad de Concepción, Concepción, Chile
| | - Luis Luengo
- Department of Public Health and Preventive Dentistry, School of Dentistry, Universidad de Concepción, Concepción, Chile
| | - Helia Bello-Toledo
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.,Research Laboratory on Antibacterial Agents, Concepción, Chile
| | - Gerardo González-Rocha
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.,Research Laboratory on Antibacterial Agents, Concepción, Chile
| | - Gabriela Sánchez-Sanhueza
- Department of Restorative Dentistry, Discipline of Endodontics, Faculty of Dentistry, Universidad de Concepción, Concepción, Chile.,Research Laboratory on Antibacterial Agents, Concepción, Chile
| |
Collapse
|
24
|
López-Ruiz M, Navas F, Fernández-García P, Martínez-Erro S, Fuentes MV, Giráldez I, Ceballos L, Ferrer-Luque CM, Ruiz-Linares M, Morales V, Sanz R, García-Muñoz RA. L-arginine-containing mesoporous silica nanoparticles embedded in dental adhesive (Arg@MSN@DAdh) for targeting cariogenic bacteria. J Nanobiotechnology 2022; 20:502. [PMID: 36457046 PMCID: PMC9714087 DOI: 10.1186/s12951-022-01714-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Dental caries is the major biofilm-mediated oral disease in the world. The main treatment to restore caries lesions consists of the use of adhesive resin composites due to their good properties. However, the progressive degradation of the adhesive in the medium term makes possible the proliferation of cariogenic bacteria allowing secondary caries to emerge. In this study, a dental adhesive incorporating a drug delivery system based on L-arginine-containing mesoporous silica nanoparticles (MSNs) was used to release this essential amino acid as a source of basicity to neutralize the harmful acidic conditions that mediate the development of dental secondary caries. The in vitro and bacterial culture experiments proved that L-arginine was released in a sustained way from MSNs and diffused out from the dental adhesive, effectively contributing to the reduction of the bacterial strains Streptococcus mutans and Lactobacillus casei. Furthermore, the mechanical and bonding properties of the dental adhesive did not change significantly after the incorporation of L-arginine-containing MSNs. These results are yielding glimmers of promise for the cost-effective prevention of secondary caries.
Collapse
Affiliation(s)
- Marta López-Ruiz
- grid.28479.300000 0001 2206 5938Faculty of Health Sciences, IDIBO Research Group, Rey Juan Carlos University, Madrid, Spain
| | - Francisco Navas
- grid.28479.300000 0001 2206 5938Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/ Tulipán S/N Móstoles, 28933 Madrid, Spain
| | - Paloma Fernández-García
- grid.28479.300000 0001 2206 5938Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/ Tulipán S/N Móstoles, 28933 Madrid, Spain
| | - Samuel Martínez-Erro
- grid.28479.300000 0001 2206 5938Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/ Tulipán S/N Móstoles, 28933 Madrid, Spain
| | - Mª Victoria Fuentes
- grid.28479.300000 0001 2206 5938Faculty of Health Sciences, IDIBO Research Group, Rey Juan Carlos University, Madrid, Spain
| | - Isabel Giráldez
- grid.28479.300000 0001 2206 5938Faculty of Health Sciences, IDIBO Research Group, Rey Juan Carlos University, Madrid, Spain
| | - Laura Ceballos
- grid.28479.300000 0001 2206 5938Faculty of Health Sciences, IDIBO Research Group, Rey Juan Carlos University, Madrid, Spain
| | - Carmen Mª Ferrer-Luque
- grid.4489.10000000121678994Department of Stomatology, School of Dentistry, University of Granada, Campus de Cartuja, Colegio Máximo S/N, 18071 Granada, Spain
| | - Matilde Ruiz-Linares
- grid.4489.10000000121678994Department of Stomatology, School of Dentistry, University of Granada, Campus de Cartuja, Colegio Máximo S/N, 18071 Granada, Spain
| | - Victoria Morales
- grid.28479.300000 0001 2206 5938Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/ Tulipán S/N Móstoles, 28933 Madrid, Spain
| | - Raúl Sanz
- grid.28479.300000 0001 2206 5938Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/ Tulipán S/N Móstoles, 28933 Madrid, Spain
| | - Rafael A. García-Muñoz
- grid.28479.300000 0001 2206 5938Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/ Tulipán S/N Móstoles, 28933 Madrid, Spain
| |
Collapse
|
25
|
Koutroulis A, Valen H, Ørstavik D, Kapralos V, Camilleri J, Sunde PT. Surface characteristics and bacterial adhesion of endodontic cements. Clin Oral Investig 2022; 26:6995-7009. [PMID: 35931891 DOI: 10.1007/s00784-022-04655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To investigate the effect of inclusion of silver nano-particles (SNP) or bioactive glass (BG) on the surface characteristics and bacterial adhesion of prototype tricalcium silicate (TCS)-based cements alongside two commercial cements, under different aging periods and exposure conditions. MATERIALS AND METHODS A basic formulation of radio-opacified TCS without (TZ-base) and with additions of SNP (0.5, 1, or 2 mg/ml) or BG (10 or 20%) was used. Biodentine and intermediate restorative material (IRM) served as reference materials. Material disks were immersed in ultrapure water or fetal bovine serum (FBS) for 1, 7, or 28 days. Surface roughness (n = 3), microhardness (n = 9), and wettability (n = 6) were analyzed by standard procedures. Adhesion of Enterococcus faecalis was assessed by fluorescence microscopy (n = 5). Data from these assays were evaluated for normality and comparisons among groups were conducted with statistical procedures (p < 0.05 for significance). RESULTS The surface morphology of SNP- and BG-containing cements had higher roughness values than TZ-base after 28 days (p < 0.05). No differences in microhardness were observed among prototype cements (p > 0.05). Biodentine presented smooth surface characteristics and the highest hardness values (p < 0.05). The FBS-immersion resulted in surface reactions in prototype materials and Biodentine, depicted with scanning electron microscopy. All 1- and 7-day prototype cements showed negligible bacterial adhesion, while in Biodentine and IRM, noticeable E. faecalis adherence was observed from day 1 (p < 0.05). CONCLUSIONS Incorporation of SNP or BG did not improve the antibacterial effect of the experimental cement; all 28-day aged materials failed to inhibit bacterial adherence. The measured physical parameters did not appear to be related to the degree of bacterial adhesion. Exposure of TCS-based cements in FBS resulted in surface reactions, which did not affect bacterial adhesion. CLINICAL RELEVANCE Changes in the surface characteristics of prototype TCS-based cements by inclusion of SNP and BG or exposure to different environments did not affect bacterial adhesion. All experimental materials showed inferior physical properties and higher antibacterial effect than Biodentine.
Collapse
Affiliation(s)
- Andreas Koutroulis
- Section of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Blindern, P.O. Box 1109, 0317, Oslo, Norway.
| | - Håkon Valen
- Nordic Institute of Dental Materials (NIOM), Oslo, Norway
| | - Dag Ørstavik
- Section of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Blindern, P.O. Box 1109, 0317, Oslo, Norway
| | - Vasileios Kapralos
- Section of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Blindern, P.O. Box 1109, 0317, Oslo, Norway
| | - Josette Camilleri
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pia Titterud Sunde
- Section of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Blindern, P.O. Box 1109, 0317, Oslo, Norway
| |
Collapse
|
26
|
Moghaddam A, Ranjbar R, Yazdanian M, Tahmasebi E, Alam M, Abbasi K, Hosseini ZS, Tebyaniyan H. The Current Antimicrobial and Antibiofilm Activities of Synthetic/Herbal/Biomaterials in Dental Application. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8856025. [PMID: 35958811 PMCID: PMC9363208 DOI: 10.1155/2022/8856025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Herbal and chemical products are used for oral care and biofilm treatment and also have been reported to be controversial in the massive trials conducted in this regard. The present review is aimed at evaluating the potential of relevant herbal and chemical products and comparing their outcomes to conventional oral care products and summarizing the current state of evidence of the antibiofilm properties of different products by evaluating studies from the past eleven years. Chlorhexidine gluconate (CHX), essential oils (EOs), and acetylpyridinium chloride were, respectively, the most commonly studied agents in the included studies. As confirmed by all systematic reviews, CHX and EO significantly control the plaque formation and gingival indices. Fluoride is another interesting reagent in oral care products that has shown promising results of oral health improvement, but the evidence quality needs to be refined. The synergy between natural plants and chemical products should be targeted in the future to accede to the formation of new, efficient, and healthy anticaries strategies. Moreover, to discover their biofilm-interfering or biofilm-inhibiting activities, effective clinical trials are needed. In this review article, therapeutic applications of herbal/chemical materials in oral biofilm infections are discussed in recent years (2010-2022).
Collapse
Affiliation(s)
- Ali Moghaddam
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Hosseini
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Tebyaniyan
- Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Kaptan Usul S, Aslan A, Lüleci HB, Ergüden B, Çöpoğlu MT, Oflaz H, Soydan AM, Özçimen D. Investigation of antimicrobial and mechanical effects of functional nanoparticles in novel dental resin composites. J Dent 2022; 123:104180. [PMID: 35691455 DOI: 10.1016/j.jdent.2022.104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Imidazole and benzimidazole derivatives have recently attracted attention as remarkable materials due to their advantages in chemistry, pharmacology, and biomaterials. This article focuses on dental composites with azole functional groups incorporated to affect their physicochemical and mechanical properties and antibacterial activity. METHODS Dental composites were fabricated by embedding the functionalized imidazole and benzimidazole nanoparticles into a Bis-GMA/TEGDMA matrix to form the imidazole and benzimidazole dental composites series (I and B). The material was produced through hand blending of the monomer (50:50, wt%), filler (0-30, wt%), and initiator combination (CQ/EDMAB:0.8:1.6, wt%), and LED light-curing unit for 60 s. RESULTS Using various characterization techniques, I and B series were validated. The dental composites' approximate solubility and sorption significances were evaluated by conducting experiments on specific dental composite formulations. Fenton reaction test was performed to determine the chemical stability of the dental composites. The mechanical properties of the dental composites were investigated. Finally, by testing cell growth in the presence of composites, their antibacterial activities were determined. CONCLUSIONS In this study, it was observed that the mechanical, physiochemical, and antibacterial properties of the functional azole-containing nanoparticles were positively improved by adding them to the structure of dental composites. These experimental results paved the way for the synthesized materials to be used in industrial applications. CLINICAL SIGNIFICANCE Since the chemical, mechanical, and antimicrobial properties of dental composites containing 10% imidazole and benzimidazole functional nanoparticles are far superior, they constitute an excellent alternative for preventing dental caries and long-term use of dental composites.
Collapse
Affiliation(s)
- Sedef Kaptan Usul
- Bioengineering Department, Gebze Technical University, Kocaeli 41400, Turkey.
| | - Ayşe Aslan
- Bioengineering Department, Gebze Technical University, Kocaeli 41400, Turkey.
| | - Hatice Büşra Lüleci
- Bioengineering Department, Gebze Technical University, Kocaeli 41400, Turkey.
| | - Bengü Ergüden
- Bioengineering Department, Gebze Technical University, Kocaeli 41400, Turkey.
| | | | - Hakan Oflaz
- Bioengineering Department, Gebze Technical University, Kocaeli 41400, Turkey.
| | - Ali Murat Soydan
- Institute of Energy Technologies, Gebze Technical University, Kocaeli 41400, Turkey.
| | - Didem Özçimen
- Bioengineering Department, Yıldız Technical University, Istanbul 34349, Turkey.
| |
Collapse
|
28
|
Kim KH, Mai HN, Hyun DC, Lee DH. New Autonomous Water-Enabled Self-Healing Coating Material with Antibacterial-Agent-Releasing Properties. Pharmaceutics 2022; 14:pharmaceutics14051005. [PMID: 35631591 PMCID: PMC9143542 DOI: 10.3390/pharmaceutics14051005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/07/2022] Open
Abstract
A new autonomous water-enabled self-healing coating with antibacterial-agent-releasing capability was developed for the first time by precipitating an aqueous solution of hydrogen-bonded tannic acid (TA) and polyethylene glycol (PEG) (TA: 5 mg/mL; PEG: 5 mg/mL with MW = 100 kDa) to form a smooth, uniform coating layer with an average roughness of 0.688 nm and thickness of 22.3 μm on a polymethyl methacrylate (PMMA) substrate after 10 min of incubation. Our method is cost- and time-efficient, as the hydrophilic coating (water contact angle = 65.1°) forms rapidly, binding strongly to the PMMA substrate (adhesive energy = 83 mJ/m2), without the need for pretreatment or surface modification, and is capable of rapid self-repair (approximately 5 min) through hydrogen bonding in aqueous media. Furthermore, adding 0.5 mg/mL of chlorhexidine acetate (CHX), a commonly used antibacterial agent in dentistry, into the TA–PEG emulsion allowed the release of 2.89 μg/mL of the drug from the coating layer, which is promising for actively inhibiting the vitality and growth of bacteria around PMMA dental restorations. The use of CHX-loaded TA–PEG hydrogen-bonded complexes is highly favorable for the fabrication of an autonomous self-healing biocoating with active antibacterial-agent-releasing capability, which can be applied not only in dentistry but also in other medical fields.
Collapse
Affiliation(s)
- Ki-Hak Kim
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41940, Korea;
| | - Hang-Nga Mai
- Institute for Translational Research in Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Dong-Choon Hyun
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41940, Korea;
- Correspondence: (D.-C.H.); (D.-H.L.); Tel.: +82-536-007-676 (D.-H.L.)
| | - Du-Hyeong Lee
- Department of Prosthodontics, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Correspondence: (D.-C.H.); (D.-H.L.); Tel.: +82-536-007-676 (D.-H.L.)
| |
Collapse
|
29
|
Trautmann S, Künzel N, Fecher‐Trost C, Barghash A, Dudek J, Flockerzi V, Helms V, Hannig M. Is the proteomic composition of the salivary pellicle dependent on the substrate material? Proteomics Clin Appl 2022; 16:e2100109. [DOI: 10.1002/prca.202100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Simone Trautmann
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry University Hospital Saarland University Homburg Germany
| | - Nicolas Künzel
- Center for Bioinformatics Saarland Informatics Campus Saarland University Saarbruecken Germany
| | - Claudia Fecher‐Trost
- Department of Experimental and Clinical Pharmacology and Toxicology PZMS Saarland University Homburg Germany
| | - Ahmad Barghash
- Center for Bioinformatics Saarland Informatics Campus Saarland University Saarbruecken Germany
- Department of Computer Science German Jordanian University Amman Jordan
| | - Johanna Dudek
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry University Hospital Saarland University Homburg Germany
| | - Veit Flockerzi
- Department of Experimental and Clinical Pharmacology and Toxicology PZMS Saarland University Homburg Germany
| | - Volkhard Helms
- Center for Bioinformatics Saarland Informatics Campus Saarland University Saarbruecken Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry University Hospital Saarland University Homburg Germany
| |
Collapse
|
30
|
Wang Z, Shen Y, Haapasalo M. Antimicrobial and Antibiofilm Properties of Bioceramic Materials in Endodontics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7594. [PMID: 34947188 PMCID: PMC8706218 DOI: 10.3390/ma14247594] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022]
Abstract
Microbes are prevalent in the root canals of necrotic teeth, and they are the cause of primary and post-treatment apical periodontitis. Bacteria can dwell within the infected root canal system as surface-adherent biofilm structures, which exhibit high resistance to antimicrobial agents. Bioceramic materials, with their biocompatible nature and excellent physico-chemical properties, have been widely used in dental applications, including endodontics. This review focuses on the application of bioceramic technology in endodontic disinfection and the antibiofilm effects of endodontic bioceramic materials. Different bioceramic materials have shown different levels of antibiofilm effects. New supplements have emerged to potentially enhance the antibiofilm properties of bioceramics aiming to achieve the goal of microbial elimination in the root canal system.
Collapse
Affiliation(s)
| | | | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Z.W.); (Y.S.)
| |
Collapse
|
31
|
Ruiz-Linares M, Solana C, Baca P, Arias-Moliz MT, Ferrer-Luque CM. Antibiofilm potential over time of a tricalcium silicate material and its association with sodium diclofenac. Clin Oral Investig 2021; 26:2661-2669. [PMID: 34713359 DOI: 10.1007/s00784-021-04237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The objectives of this study are to investigate, over time, the antimicrobial activity against polymicrobial biofilms and ability to inhibit biofilm formation, of Biodentine (BD) alone and with 5% and 10% sodium diclofenac (DC). MATERIAL AND METHODS The antimicrobial activity of BD alone and modified with 5% and 10% DC against polymicrobial biofilm growth in dentin was determined by a modified direct contact test. The study groups were (1) BD; (2) BD + 5% DC; and (3) BD + 10% DC. The viability of microorganisms after 1 and 4 weeks was quantified by means of an ATP assay and flow cytometry. The antibiofilm efficacy of the materials, preventing polymicrobial biofilm formation over time, was assessed by confocal laser scanning microscopy (CLSM). RESULTS The results obtained with both the ATP test and flow cytometry showed that BD alone and with 5% and 10% DC exerted antibiofilm activity with respect to the control, in the two evaluated times (p < 0.001). Comparison between groups showed a tendency of increased antimicrobial effect, both over time and depending on the DC concentration. These results coincide with those obtained in CLSM analysis, where efficacy increased with time and DC concentration. CONCLUSIONS AND CLINICAL RELEVANCE Biodentine, over time, showed antimicrobial and antibiofilm efficacy on polymicrobial biofilms. The addition of 5% and 10% DC to BD enhanced this effect, in a concentration- and time-dependent manner.
Collapse
Affiliation(s)
- M Ruiz-Linares
- Department of Stomatology, School of Dentistry, Campus de Cartuja, Colegio Máximo s/n, 18071, Granada, Spain
| | - C Solana
- Department of Stomatology, School of Dentistry, Campus de Cartuja, Colegio Máximo s/n, 18071, Granada, Spain.
| | - P Baca
- Department of Stomatology, School of Dentistry, Campus de Cartuja, Colegio Máximo s/n, 18071, Granada, Spain
| | - M T Arias-Moliz
- Department of Microbiology, School of Dentistry, Campus de Cartuja, Colegio Máximo s/n, 18071, Granada, Spain
| | - C M Ferrer-Luque
- Department of Stomatology, School of Dentistry, Campus de Cartuja, Colegio Máximo s/n, 18071, Granada, Spain
| |
Collapse
|
32
|
Should local drug delivery systems be used in dentistry? Drug Deliv Transl Res 2021; 12:1395-1407. [PMID: 34545538 DOI: 10.1007/s13346-021-01053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/27/2022]
Abstract
In dentistry, the use of biomaterial-based drug delivery systems (DDS) aiming the release of the active compounds directly to the site of action is slowly getting more awareness among the scientific and medical community. Emerging technologies including nanotechnological platforms are offering novel approaches, but the majority are still in the proof-of-concept stage. This study critically reviews the potential use of DDS in anesthesiology, oral diseases, cariology, restorative dentistry, periodontics, endodontics, implantology, fixed and removable prosthodontics, and orthodontics with a special focus on infections. It also stresses the gaps and challenges faced. Despite numerous clinical and pharmacological advantages, some disadvantages of DDS pose an obstacle to their widespread use. The biomaterial's biofunctionality may be affected when the drug is incorporated and may cause an additional risk of toxicity. Also, the release of sub-therapeutic levels of drugs such as antibiotics may lead to microbial resistance. Multiple available techniques for the manufacture of DDS may affect drug release profiles and their bioavailability. If the benefits outweigh the costs, DDS may be potentially used to prevent or treat oral pathologies as an alternative to conventional strategies. A case-by-case approach must be followed.
Collapse
|
33
|
Takamizawa T, Ishii R, Tamura T, Yokoyama M, Hirokane E, Tsujimoto A, Miyazaki M, Kitahara N. Handling properties and surface characteristics of universal resin composites. Dent Mater 2021; 37:1390-1401. [PMID: 34229866 DOI: 10.1016/j.dental.2021.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study investigated the handling and surface characteristics of universal resin composites and determined the interrelations among the composites' handling, mechanical, and physical properties. METHODS Five recently introduced universal resin composites were tested. Twelve specimens per material were used to measure the stiffness and stickiness (handling properties) of the resin composite pastes. Additionally, surface properties (Knoop hardness number [KHN], surface roughness [Sa], surface gloss [SG], water contact angle [CA], and surface free energy [SFE]) of cured resin composites were determined in 12 specimens per material immediately after preparation (baseline) and after subjection to thermal cycles (TCs). RESULTS Handling and surface properties of the resin composites were material dependent. All the resin composites showed significantly lower KHN in the post-TC subgroups than that in the baseline subgroups. However, the influence of TC on the other surface properties was dependent on the material used. Some resin composites did not indicate any significant differences in Sa, SG, or CA between the baseline and post-TC groups. SIGNIFICANCE Although the resin composites in the baseline groups presented with different handling and surface properties, the surface properties of most of the composites were significantly affected by TC. Extremely strong positive or negative correlations were observed between stiffness and stickiness, KHN and Sa, KHN and SG, Sa and SG, and CA and SFE. Most correlations between the handling and surface properties were weak. Therefore, the selection of resin composites in clinical situations should be based on comprehensive consideration of their properties.
Collapse
Affiliation(s)
- Toshiki Takamizawa
- Department of Operative Dentistry, Nihon University School of Dentistry, Tokyo, Japan.
| | - Ryo Ishii
- Department of Operative Dentistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Tomohiko Tamura
- Department of Operative Dentistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Munenori Yokoyama
- Department of Operative Dentistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Eizo Hirokane
- Department of Operative Dentistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Akimasa Tsujimoto
- Department of Operative Dentistry, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Masashi Miyazaki
- Department of Operative Dentistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Nobuya Kitahara
- Department of Operative Dentistry, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
34
|
Kreve S, Dos Reis AC. Effect of surface properties of ceramic materials on bacterial adhesion: A systematic review. J ESTHET RESTOR DENT 2021; 34:461-472. [PMID: 34213078 DOI: 10.1111/jerd.12799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/24/2021] [Accepted: 06/20/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE The objective of this systematic review was to describe studies that report on whether surface characteristics such as electrostatic charge, surface free energy, and surface topography promote influence on bacterial adhesion on ceramic surfaces. MATERIAL AND METHOD Searches in the SCOPUS, PubMed/Medline, Web of Science, EMBASE, and Google Scholar databases were performed between December 2020 and January 2021 and updated in March 2021. In addition, a manual search of reference lists from relevant retrieved articles was performed. The criteria included: studies that evaluated ceramic surfaces, which described factors such as surface free energy, electrostatic charges, roughness, zeta potential, and their relationship with bacteria. RESULTS Database search resulted in 348 papers. Of the 24 studies selected for full reading, 17 articles remained in this systematic review. Another five studies were found in references of articles included, totaling 22 studies. These had a high heterogeneity making it difficult to perform statistical analysis, so a descriptive analysis was performed. CONCLUSIONS For dental ceramics, not enough results were found to demonstrate the influence of the electrostatic condition, and its relationship with bacterial adhesion. However, studies of this review show that there is a correlation between bacterial adhesion, surface free energy, and topography. CLINICAL SIGNIFICANCE The knowledge of ceramics with repulsive physical-chemical interactions would allow an environment suggestive of non-adhesion of pathogenic biofilm.
Collapse
Affiliation(s)
- Simone Kreve
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP-University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
35
|
Zhang Z, Jones MM, Sabatini C, Vanyo ST, Yang M, Kumar A, Jiang Y, Swihart MT, Visser MB, Cheng C. Synthesis and antibacterial activity of polymer-antibiotic conjugates incorporated into a resin-based dental adhesive. Biomater Sci 2021; 9:2043-2052. [PMID: 33464241 PMCID: PMC7990707 DOI: 10.1039/d0bm01910k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This work reports on polymer-antibiotic conjugates (PACs) as additives to resin-based restorative dental materials as a new strategy to convey sustained antibacterial character to these materials. Such antibacterial performance is expected to improve their longevity in the oral cavity. Using the previously reported ciprofloxacin (Cip)-based PAC as a control, a penicillin V (PV)-based PAC was investigated. The monomer-antibiotic conjugate (MAC) containing a methacrylate monomer group and a PV moiety was prepared via nucleophilic substitution between 2-chloroethyl methacrylate (CEMA) and penicillin V potassium (PVK). The PV-based PAC was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of the MAC with hydroxyethyl methacrylate (HEMA), and further characterized by 1H NMR and gel permeation chromatography (GPC) analysis. Antibiotic resistance was investigated by passaging bacteria in low concentrations of the antibiotic for 19 days, followed by a 48 h challenge at higher concentrations. Our results suggest that the development of antibiotic resistance is unlikely. Zone of inhibition (ZOI) assays revealed no clearing zones around PV-containing resins indicating minimal antibiotic leakage from the material. Similarly, MTT assay demonstrated that the antibiotic-containing specimens did not release cytotoxic byproducts that may inhibit human gingival fibroblast growth. Counting of colony-forming units in an S. mutans biofilm model was used to assess bacterial survival at baseline and after subjecting the antibiotic-containing resin specimens to an enzymatic challenge for 30 days. Significantly reduced bacterial counts were observed as the biofilm aged from 24 to 72 h, and salivary enzymatic exposure did not reduce the antibacterial efficacy of the discs, suggesting that PV-resin will be effective in reducing the re-incidence of dental caries.
Collapse
Affiliation(s)
- Ziwen Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ali S, Sangi L, Kumar N, Kumar B, Khurshid Z, Zafar MS. Evaluating antibacterial and surface mechanical properties of chitosan modified dental resin composites. Technol Health Care 2021; 28:165-173. [PMID: 31594266 DOI: 10.3233/thc-181568] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The antibacterial properties are beneficial and desired for dental restorative composite materials. The incorporation of various antimicrobial agents into resin composites may compromise their physical and mechanical properties hence limiting their applications. OBJECTIVE The aim of the current study is to evaluate the antibacterial activity and the hardness of microhybrid and flowable resin based composites (RBCs) modified using novel antimicrobial agent chitosan (CS). METHODS The antibacterial activity of microhybrid and flowable RBCs modified with 0, 0.25, 0.5 and 1% w/w chitosan (CS) against Actinomyces viscous bacteria was explored using agar diffusion test and direct contact methods. The hardness of control and experimental RBCs was determined by Vickers hardness (VH) tester. RESULTS The results revealed that control and experimental flowable and microhybrid RBCs did not demonstrate growth inhibition zone in the lawn growth of Actinomyces viscous. The direct contact test revealed that colony forming unit (CFU) count of Actinomyces viscous was comparable among the experimental and control materials. The flowable RBCs containing 1% CS had significantly higher VH compared to control and other experimental flowable RBC groups. The microhybrid RBCs consisting of 0.50% CS exhibited significantly higher VH compared to experimental microhybrid RBC group containing 1% CS.
Collapse
Affiliation(s)
- Shahid Ali
- Department of Science of Dental Materials, Bibi Aseefa Dental College, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, Pakistan
| | - Laila Sangi
- Department of Operative Dentistry, Institute of Dentistry, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Naresh Kumar
- Department of Science of Dental Materials, Dow International Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Bharat Kumar
- Department of Prosthodontics, Dow International Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Biomaterials, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muhammad S Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al Munawwarah, Saudi Arabia.,Department of Dental Material, RIPHAH International University, Islamabad, Pakistan
| |
Collapse
|
37
|
Agarwalla SV, Ellepola K, Silikas N, Castro Neto AH, Seneviratne CJ, Rosa V. Persistent inhibition of Candida albicans biofilm and hyphae growth on titanium by graphene nanocoating. Dent Mater 2020; 37:370-377. [PMID: 33358443 DOI: 10.1016/j.dental.2020.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Candida albicanscolonizes biomaterial surfaces and are highly resistant to therapeutics. Graphene nanocoating on titanium compromises initial biofilm formation. However, its sustained antibiofilm potential is unknown. The objective of this study was to investigate the potential of graphene nanocoating to decrease long-term fungal biofilm development and hyphae growth on titanium. METHODS Graphene nanocoating was deposited twice (TiGD) or five times (TiGV) on grade 4 titanium with vacuum assisted technique and characterized with Raman spectroscopy and atomic force microscope. The biofilm formation and hyphae growth of C. albicans was monitored for seven days by CFU, XTT, confocal, mean cell density and scanning electronic microscopy (SEM). Uncoated titanium was the Control. All tests had three independent biological samples and were performed in independent triplicates. Data was analyzed with one- or two-way ANOVA and Tukey's HSD (α = 0.05). RESULTS Both TiGD and TiGV presented less biofilms at all times points compared with Control. The confocal and SEM images revealed few adhered cells on graphene coated samples, absence of hyphae and no features of a mature biofilm architecture. The increase in number of layers of graphene nanocoating did not improve its antibiofilm potential. SIGNIFICANCE The graphene nanocoating exerted a long-term persistent inhibitory effect on the biofilm formation on titanium. The fewer cells that were able to attach on graphene coated titanium were scattered and unable to form a mature biofilm with hyphae elements. The findings open opportunities to prevent microbial attachment and proliferation on implantable materials without the use of antibiotics.
Collapse
Affiliation(s)
| | - Kassapa Ellepola
- Louisiana State University Health Sciences Center, School of Dentistry, USA
| | - Nikolaos Silikas
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - A H Castro Neto
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore
| | - Chaminda Jayampath Seneviratne
- National Dental Centre Singapore, SingHealth, Duke NUS Medical School, 05, Hospital Avenue, National Dental Centre Singapor, Singapore.
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore; Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore; NUS Craniofacial Research and Innovation Center, National University of Singapore, Singapore.
| |
Collapse
|
38
|
Nunes J, Farias I, Vieira C, Ribeiro T, Sampaio F, Menezes V. Antimicrobial activity and toxicity of glass ionomer cement containing an essential oil. Braz J Med Biol Res 2020; 53:e9468. [PMID: 33146285 PMCID: PMC7643930 DOI: 10.1590/1414-431x20209468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/28/2020] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to evaluate the antimicrobial activity and toxicity of glass ionomer cement (GIC) modified with 5-methyl-2-(1-methylethyl)phenol (thymol) against Streptococcus mutans in silico and in vitro. The antimicrobial activity of thymol on GIC modified with concentrations of 2% (GIC-2) and 4% (GIC-4) was evaluated in a model of planktonic cell biofilm using agar diffusion test, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), dynamic biofilm (continuous flow cell parallel), and bacterial kinetics. Conventional GIC (GIC-0) was used as a control. Thymol toxicity was evaluated in Artemia salina and in silico using Osiris® software. Differences between groups were estimated by analysis of variance, followed by Tukey post hoc test, with a 5% significance level. The results of the agar diffusion test between groups were not significantly different (P≥0.05). Thymol had potential bacteriostatic and bactericidal activity against Streptococcus mutans with respect to planktonic growth, with MIC of 100 µg/mL and MBC of 400 µg/mL. The groups GIC-0, GIC-2, and GIC-4 reduced the biofilm by approximately 10, 85, and 95%, respectively. Bacterial kinetics showed efficiency of the modified GICs for up to 96 h. GIC with thymol was effective against S. mutans, with significant inhibition of the biofilms. Analyses in silico and using Artemia salina resulted in no relevant toxicity, suggesting potential for use in humans. GIC-2 was effective against S. mutans biofilm, with decreased cell viability.
Collapse
Affiliation(s)
- J.M.F.F. Nunes
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - I.A.P. Farias
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - C.A. Vieira
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - T.M. Ribeiro
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - F.C. Sampaio
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - V.A. Menezes
- Departamento de Odontologia, Faculdade de Odontologia, Universidade de Pernambuco, Camaragibe, PE, Brasil
| |
Collapse
|
39
|
Mouhat M, Moorehead R, Murdoch C. In vitro Candida albicans biofilm formation on different titanium surface topographies. Biomater Investig Dent 2020; 7:146-157. [PMID: 33134957 PMCID: PMC7580804 DOI: 10.1080/26415275.2020.1829489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives To investigate if differences in titanium implant surface topography influence Candida albicans biofilm formation. Materials and Methods Titanium discs were prepared and characterized using a profilometer: Group A (Ra 0.15 µm, smooth), Group B (Ra 0.64 µm, minimally rough) and Group C (Ra 1.3 µm, moderately rough). Contact angle and surface free energy (SFE) were determined for each group. Non-preconditioned titanium discs were incubated with C. albicans for 24 h. In additional experiments, the titanium discs were initially coated with human saliva, bovine serum albumin or phosphate-buffered saline for 2 h before incubation with C. albicans for 24 h. The amount of fungal biofilm formation was quantified using a colorimetric assay. Results C. albicans biofilm formation was significantly lower (p < 0.05) on the minimally rough titanium surface compared to smooth and moderately rough surfaces. The titanium surface displaying the lowest SFE (Group B) was associated with significantly lower (p < 0.05) C. albicans biofilm formation than the other two groups. Salivary coating resulted in greater adherence of C. albicans with increased surface roughness. Conclusions The minimally rough titanium discs displayed lowest SFE compared to smooth and moderately rough surfaces and showed the least C. albicans biofilm formation. This study demonstrated that C. albicans biofilm formation increased in a SFE-dependent manner. These findings suggest that SFE might be a more explanatory factor for C. albicans biofilm formation on titanium surfaces than roughness. The presence of a pellicle coating may negate the impact of SFE on C. albicans biofilm formation on titanium surfaces.
Collapse
Affiliation(s)
- Mathieu Mouhat
- Department for Clinical Dentistry, Faculty of Health Sciences, The Arctic University of Norway (UiT), Tromsø, Norway.,School of Clinical Dentistry, The University of Sheffield, Sheffield, UK
| | - Robert Moorehead
- The Henry Royce Institute, The University of Sheffield, Sheffield, UK
| | - Craig Murdoch
- School of Clinical Dentistry, The University of Sheffield, Sheffield, UK
| |
Collapse
|
40
|
Osteogenic Potential of Fast Set Bioceramic Cements: Molecular and In Vitro Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, pre-mixed bioceramics in fast set formulations have been increasingly utilized in clinical practice as an alternative to mineral trioxide aggregate (MTA) for their shorter setting time and better handling properties. However, the impact on their osteogenic potential, due to modifications in chemical composition to promote a fast setting, is still unclear. This molecular and in vitro study compared the osteogenic potential of root repairing material putty fast set (FSP) with root-repairing material putty (RRMPU), root-repairing material paste (RRMPA), Biodentine™ and MTA. The null hypothesis tested was that there are no differences among the tricalcium silicate materials in terms of osteogenic potential. Standardized discs were cultured with MG-63 human osteoblastic-like cells to assess biocompatibility, the activity of alkaline phosphatase (ALP) and osteogenic potential. Biocompatibility was evaluated at baseline and after 24 and 48 h. Osteogenic differentiation was assessed after 15 days. Data were analyzed with one-way ANOVAs and Tukey’s post-hoc test (p < 0.05). All materials showed biocompatibility and bioactivity. ALP activity, which induces mineral nodule deposition, increased in all the cements tested, with a significant increase in RRMPU (p < 0.001) and FSP (p < 0.001) samples versus MTA. In vitro mineralization was significantly increased for RRMPU (p < 0.0001), FSP (p = 0.00012) and Biodentine™ (p < 0.0001) versus MTA. The bioceramics tested showed higher levels of biocompatibility and bioactivity than MTA; a higher capacity for mineralization was observed with RRMPU and FSP versus MTA.
Collapse
|
41
|
Kim HJ, Cho MY, Lee ES, Jung HI, Kim BI. Effects of short-time exposure of surface pre-reacted glass-ionomer eluate on dental microcosm biofilm. Sci Rep 2020; 10:14425. [PMID: 32879370 PMCID: PMC7467919 DOI: 10.1038/s41598-020-71363-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/11/2020] [Indexed: 11/12/2022] Open
Abstract
This study evaluated the antibacterial effects of short-time exposure of surface pre-reacted glass-ionomer (S-PRG) eluate on oral microcosm biofilm. Biofilms were treated with an S-PRG eluate at different concentrations (25%, 50%, and 100%), distilled water (DW), and 0.1% chlorhexidine (CHX) twice a day for 5 min repeatedly. After 7 days, the total and aciduric bacterial counts and biofilm dry weights were measured. An image analysis program calculated the red/green (R/G) ratios in the biofilm autofluorescence images. Microscopic analyses quantified the biofilm thickness and live/dead cell ratio and determined morphological changes in the biofilm. Bacterial counts and dry weights were not significantly different in the DW group for all S-PRG eluate concentrations. An increasing trend in the R/G ratio for 7 days biofilm treatment was observed for the S-PRG eluate and the DW groups. Furthermore, the live/dead cell ratios in the biofilm and the biofilm thickness of the S-PRG eluate groups were similar to those of the DW group. The bacteria morphology inside the biofilm changed only in the CHX group. Short-time S-PRG eluate treatment showed no significant antibacterial and antibiofilm effects. These results indicated that limited biofilm formation inhibition can be obtained by using only the S-PRG eluate.
Collapse
Affiliation(s)
- Hyo-Jung Kim
- Department of Preventive Dentistry & Public Oral Health, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.,BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Mu-Yeol Cho
- Department of Preventive Dentistry & Public Oral Health, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.,BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Eun-Song Lee
- Department of Preventive Dentistry & Public Oral Health, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.,BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Hoi In Jung
- Department of Preventive Dentistry & Public Oral Health, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Baek-Il Kim
- Department of Preventive Dentistry & Public Oral Health, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea. .,BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
42
|
Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. Int J Pharm 2020; 586:119531. [PMID: 32540348 DOI: 10.1016/j.ijpharm.2020.119531] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
Abstract
This review details the antimicrobial applications of inorganic nanomaterials of mostly metallic form, and the augmentation of activity by surface conjugation of peptide ligands. The review is subdivided into three main sections, of which the first describes the antimicrobial activity of inorganic nanomaterials against gram-positive, gram-negative and multidrug-resistant bacterial strains. The second section highlights the range of antimicrobial peptides and the drug resistance strategies employed by bacterial species to counter lethality. The final part discusses the role of antimicrobial peptide-decorated inorganic nanomaterials in the fight against bacterial strains that show resistance. General strategies for the preparation of antimicrobial peptides and their conjugation to nanomaterials are discussed, emphasizing the use of elemental and metallic oxide nanomaterials. Importantly, the permeation of antimicrobial peptides through the bacterial membrane is shown to aid the delivery of nanomaterials into bacterial cells. By judicious use of targeting ligands, the nanomaterial becomes able to differentiate between bacterial and mammalian cells and, thus, reduce side effects. Moreover, peptide conjugation to the surface of a nanomaterial will alter surface chemistry in ways that lead to reduction in toxicity and improvements in biocompatibility.
Collapse
|
43
|
The synergistic effects of SrF 2 nanoparticles, YSZ nanoparticles, and poly-ε-l-lysin on physicomechanical, ion release, and antibacterial-cellular behavior of the flowable dental composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110592. [PMID: 32228986 DOI: 10.1016/j.msec.2019.110592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 12/15/2019] [Accepted: 12/21/2019] [Indexed: 11/23/2022]
Abstract
Resin-based pit-and-fissure sealants (flowable resin composites) were formulated using bisphenol-A-glycerolatedimethacrylate (Bis-GMA)-triethylene glycol dimethacrylate-(TEGDMA)-diurethanedimethacrylate (UDMA) mixed monomers and multiple fillers, including synthetic strontium fluoride (SrF2) nanoparticles as a fluoride-releasing and antibacterial agent, yttria-stabilized zirconia (YSZ) nanoparticles as an auxiliary filler, and poly-ε-l-lysin (ε-PL) as an auxiliary antibacterial agent. Based on the physical, mechanical and initial antibacterial properties, the formulated nano-sealant containing 5 wt% SrF2, 5 wt% YSZ and 0.5 wt% ε-PL was selected as the optimal specimen and examined for ion release and cytotoxicity. The results showed an average release rate of 0.87 μg·cm-2·day-1 in the aqueous medium (pH 6.9) and 1.58 μg·cm-2·day-1 in acidic medium (pH 4.0). The maximum cytotoxicity of 20% toward human bone marrow mesenchymal stem cells (hMSCs) was observed according to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) cytotoxicity assay and acridine orange staining test. A synergy between SrF2 nanoparticles and ε-PL exhibited a better antibacterial activity in terms of colony reduction compared to the other samples. However, the inclusion of SrF2 and ε-PL caused mechanically weakening of the sealants that was partly compensated by incorporation of YSZ nanoparticles (up to 10 wt%).
Collapse
|
44
|
Pranno N, La Monaca G, Polimeni A, Sarto MS, Uccelletti D, Bruni E, Cristalli MP, Cavallini D, Vozza I. Antibacterial Activity against Staphylococcus Aureus of Titanium Surfaces Coated with Graphene Nanoplatelets to Prevent Peri-Implant Diseases. An In-Vitro Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1568. [PMID: 32121336 PMCID: PMC7084449 DOI: 10.3390/ijerph17051568] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022]
Abstract
Dental implants are one of the most commonly used ways to replace missing teeth. Nevertheless, the close contact with hard and soft oral tissues expose these devices to infectious peri-implant diseases. To prevent such infection, several surface treatments have been developed in the last few years to improve the antimicrobial properties of titanium dental implants. In this in-vitro pilot study, the antimicrobial activity of titanium surfaces coated with different types of graphene nanoplatelets are investigated. Six different colloidal suspensions of graphene nanoplatelets (GNPs) were produced from graphite intercalated compounds, setting the temperature and duration of the thermal shock and varying the number of the exfoliation cycles. Titanium disks with sand-blasted and acid-etched surfaces were sprayed with 2 mL of colloidal GNPs suspensions. The size of the GNPs and the percentage of titanium disk surfaces coated by GNPs were evaluated through a field emission-scanning electron microscope. The antibacterial activity of the specimens against Staphylococcus aureus was estimated using a crystal violet assay. The dimension of GNPs decreased progressively after each sonication cycle. The two best mean percentages of titanium disk surfaces coated by GNPs were GNPs1050°/2 and GNPs1150°/2. The reduction of biofilm development was 14.4% in GNPs1150°/2, 20.1% in GNPs1150°/3, 30.3% in GNPs1050°/3, and 39.2% in GNPs1050°/2. The results of the study suggested that the surface treatment of titanium disks with GNPs represents a promising solution to improve the antibacterial activity of titanium implants.
Collapse
Affiliation(s)
- Nicola Pranno
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, 00100 Rome, Italy; (N.P.); (A.P.); (I.V.)
| | - Gerardo La Monaca
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, 00100 Rome, Italy; (N.P.); (A.P.); (I.V.)
| | - Antonella Polimeni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, 00100 Rome, Italy; (N.P.); (A.P.); (I.V.)
| | - Maria Sabrina Sarto
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza, University of Rome, 00100 Rome, Italy; (M.S.S.); (D.C.)
- DIAEE, Department of Astronautical, Electrical, Energy Engineering, Sapienza University of Rome, 00100 Rome, Italy
| | - Daniela Uccelletti
- BBCD, Department of Biology and Biotechnology, Sapienza University of Rome, 00100 Rome, Italy; (D.U.); (E.B.)
| | - Erika Bruni
- BBCD, Department of Biology and Biotechnology, Sapienza University of Rome, 00100 Rome, Italy; (D.U.); (E.B.)
| | - Maria Paola Cristalli
- Department of Biotechnologies and Medico Surgical Sciences, Sapienza University of Rome, 00100 Rome, Italy;
| | - Domenico Cavallini
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza, University of Rome, 00100 Rome, Italy; (M.S.S.); (D.C.)
- DIAEE, Department of Astronautical, Electrical, Energy Engineering, Sapienza University of Rome, 00100 Rome, Italy
| | - Iole Vozza
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, 00100 Rome, Italy; (N.P.); (A.P.); (I.V.)
| |
Collapse
|
45
|
Evaluation of adhesion of Streptococcus mutans, plaque accumulation on zirconia and stainless steel crowns, and surrounding gingival inflammation in primary molars: randomized controlled trial. Clin Oral Investig 2020; 24:3275-3280. [DOI: 10.1007/s00784-020-03204-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/07/2020] [Indexed: 01/20/2023]
|
46
|
Makvandi P, Gu JT, Zare EN, Ashtari B, Moeini A, Tay FR, Niu LN. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater 2020; 101:69-101. [PMID: 31542502 DOI: 10.1016/j.actbio.2019.09.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Failure of dental treatments is mainly due to the biofilm accumulated on the dental materials. Many investigations have been conducted on the advancements of antimicrobial dental materials. Polymeric and inorganic nanoscopical agents are capable of inhibiting microorganism proliferation. Applying them as fillers in dental materials can achieve enhanced microbicidal ability. The present review provides a broad overview on the state-of-the-art research in the field of antimicrobial fillers which have been adopted for incorporation into dental materials over the last 5 years. The antibacterial agents and applications are described, with the aim of providing information for future investigations. STATEMENT OF SIGNIFICANCE: Microbial infection is the primary cause of dental treatment failure. The present review provides an overview on the state-of-art in the field of antimicrobial nanoscopical or polymeric fillers that have been applied in dental materials. Trends in the biotechnological development of these antimicrobial fillers over the last 5 years are reviewed to provide a backdrop for further advancement in this field of research.
Collapse
|
47
|
Matsuo K, Yoshihara K, Nagaoka N, Makita Y, Obika H, Okihara T, Matsukawa A, Yoshida Y, Van Meerbeek B. Rechargeable anti-microbial adhesive formulation containing cetylpyridinium chloride montmorillonite. Acta Biomater 2019; 100:388-397. [PMID: 31568874 DOI: 10.1016/j.actbio.2019.09.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Long-term anti-bacterial effect is a desired ability of any dental material in combating tooth caries as one of the most common and widespread persistent diseases today. Among several cationic quaternary ammonium compounds with antiseptic properties, cetylpyridinium chloride (CPC) is often used in mouthrinses and toothpastes. In this study, we incorporated CPC in a soft phyllosilicate mineral (clay), referred to as montmorillonite (Mont), to enable gradual CPC release with rechargeability. Besides measuring CPC release and recharge, we examined the anti-bacterial effect, cytotoxicity and bonding effectiveness of five experimental adhesive formulations, prepared by adding 1 and 3 wt% CPC_Mont, 3 wt% Mont (without CPC), and 1 and 3 wt% CPC (without Mont) to the commercial adhesive Clearfil S3 Bond ND Quick ('C-S3B'; Kuraray Noritake). Strong inhibition of Streptococcus mutans biofilm formation by CPC_Mont adhesives was confirmed by optical density and SEM. CPC release from CPC_Mont adhesives was higher and lasted longer than from CPC adhesives, while CPC_Mont adhesives could also be recharged with CPC upon immersion in 2 wt% CPC. In conclusion, CPC_Mont technology rendered adhesives anti-bacterial properties with recharge ability, this without reducing its bonding potential, neither increasing its cytotoxicity. STATEMENT OF SIGNIFICANCE: Dental caries is one of the most prevalent chronic diseases in the population worldwide and is the major cause of tooth loss. In this study, we developed cetylpyridinium chloride (CPC) loaded montmorillonite (CPC-Mont) with a long-term antibacterial efficacy to prevent caries. CPC is an antibacterial agent approved by FDA, used as an OTC drug and contained in oral hygiene aids. CPC-Mont was incorporated in a dental adhesive to gradually release CPC. CPC_Mont technology rendered adhesives anti-bacterial properties with rechargeability, this without reducing its bonding potential, neither increasing its cytotoxicity.
Collapse
|
48
|
Xie K, Guo Y, Zhao S, Wang L, Wu J, Tan J, Yang Y, Wu W, Jiang W, Hao Y. Partially Melted Ti6Al4V Particles Increase Bacterial Adhesion and Inhibit Osteogenic Activity on 3D-printed Implants: An In Vitro Study. Clin Orthop Relat Res 2019; 477:2772-2782. [PMID: 31764350 PMCID: PMC6907305 DOI: 10.1097/corr.0000000000000954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/14/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND A porous Ti6Al4V implant that is manufactured using selective laser melting (SLM) has broad potential applications in the field of orthopaedic implants. The pore structure of the SLM porous Ti6Al4V implant allows for cell migration and osteogenic differentiation, which is favorable for bone ingrowth and osseointegration. However, it is unclear whether the pore structure and partially melted Ti6Al4V particles on a SLM porous Ti6Al4V implant will increase bacterial adhesion and, perhaps, the risk of implant-related infection. QUESTIONS/PURPOSES (1) Is there more bacterial adhesion and colonization on SLM porous Ti6Al4V implants than on polished orthopaedic implants? (2) Do partially melted Ti6Al4V particles on SLM porous Ti6Al4V implants reduce human bone mesenchymal stem cells (hBMSCs) adhesion, viability, and activity? METHODS To determine bacterial adhesion and biofilm formation, we incubated five different Ti6Al4V discs (polished, grit-blasted, plasma-sprayed, particle SLM porous, and nonparticle SLM porous discs) with methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli. Bacterial coverage on the surface of the five different Ti6Al4V discs were evaluated based on scanning electron microscopy (SEM) images quantitatively. In addition, a spread-plate method was used to quantitatively evaluate the bacterial adhesion on those implants. The biofilm formation was stained with crystal violet and semi-quantitatively determined with a microplate reader. The morphology and adhesion of hBMSCs on the five Ti6Al4V discs were observed with SEM. The cell viability was quantitatively evaluated with a Cell Counting Kit-8 assay. In addition, the osteogenic activity was determined in vitro with a quantitatively alkaline phosphatase activity assay and alizarin-red staining. For semiquantitative analysis, the alizarin-red stained mineralized nodules were dissolved and determined with a microplate reader. RESULTS The polished discs had the lowest MRSA adhesion (8.3% ± 2.6%) compared with grit-blasted (19.1% ± 3.9%; p = 0.006), plasma-sprayed (38.5% ± 5.3%; p < 0.001), particle (23.1% ± 2.8%; p < 0.001), and nonparticle discs (15.7% ± 2.5%; p = 0.003). Additionally, when comparing the two SLM discs, we found that particle discs had higher bacterial coverage than nonparticle discs (23.1% ± 2.8% versus 15.7% ± 2.5%; p = 0.020). An E. coli analysis showed similar results, with the higher adhesion to particle SLM discs than to nonparticle discs (20.7% ± 4.2% versus 14.4% ± 3.6%; p = 0.011). In addition, on particle SLM porous discs, bacterial colonies were localized around the partially melted Ti6Al4V particles, based on SEM images. After a 7-day incubation period, the cell viability in the particle group (optical density value 0.72 ± 0.05) was lower than that in the nonparticle groups (optical density value: 0.87 ± 0.08; p = 0.003). Alkaline phosphatase activity, as a marker of osteogenic differentiation, was lower in the particle group than in the nonparticle group (1.32 ± 0.12 U/mL versus 1.58 ± 0.09 U/mL; p = 0.012). CONCLUSION Higher bacterial adhesion was observed on SLM porous discs than on polished discs. The partially melted Ti6Al4V particles on SLM porous discs not only enhanced bacterial adhesion but also inhibited the osteogenic activity of hBMSCs. Postprocessing treatment is necessary to remove partially melted Ti6Al4V particles on an SLM implant before further use. Additional studies are needed to determine whether an SLM porous Ti6Al4V implant increases the risk of implant-related infection in vivo. CLINICAL RELEVANCE As implants with porous Ti6Al4V made using SLM are being designed, our preliminary findings suggest that postprocessing treatment is needed to remove partially melted Ti6Al4V particles before further use. In addition, the depth of the porous structure of the SLM implant should not exceed the maximum depth of bone ingrowth because the host immune defense cannot prevent bacterial adhesion without integration.
Collapse
Affiliation(s)
- Kai Xie
- K. Xie, Y. Guo, S. Zhao, L. Wang, J. Wu, J. Tan, Y. Yang, W. Wu, Y. Hao, Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China W. Jiang, Y. Hao, Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ruiz-Linares M, Baca P, Arias-Moliz MT, Ternero FJ, Rodríguez J, Ferrer-Luque CM. Antibacterial and antibiofilm activity over time of GuttaFlow Bioseal and AH Plus. Dent Mater J 2019; 38:701-706. [PMID: 31257302 DOI: 10.4012/dmj.2018-090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The sealers' antibacterial and antibiofilm activities against Enterococcus faecalis were evaluated by direct contact test (DCT) and confocal laser scanning microscopy (CLSM), respectively, after 1 day, and 1 and 4 weeks of aging. Cell viability was determined by adenosin triphosphate (ATP) assay after DCT. The parameters evaluated for the antibiofilm property were total biovolume and percentage of green cells in E.faecalis biofilms. The data from the bioluminescence ATP assay as well as the total biovolume and green percentage were analyzed by non-parametric tests, Kruskal-Wallis for global comparison and Kolmogorov-Smirnov for each two variables. Results of the DCT and CLSM for all parameters evaluated show that the antimicrobial activity of AH Plus decreased over time, whereas GuttaFlow Bioseal had an opposite property, increasing its antibacterial activity as the material aged.
Collapse
Affiliation(s)
- Matilde Ruiz-Linares
- Department of Stomatology, School of Dentistry, University of Granada, Campus de Cartuja
| | - Pilar Baca
- Department of Stomatology, School of Dentistry, University of Granada, Campus de Cartuja
| | | | | | - Jesús Rodríguez
- Department of Stomatology, School of Dentistry, University of Granada, Campus de Cartuja
| | | |
Collapse
|
50
|
Astasov-Frauenhoffer M, Koegel S, Waltimo T, Zimmermann A, Walker C, Hauser-Gerspach I, Jung C. Antimicrobial efficacy of copper-doped titanium surfaces for dental implants. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:84. [PMID: 31292785 DOI: 10.1007/s10856-019-6286-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 05/11/2023]
Abstract
The aim of this in vitro study was to quantify the antibacterial effect of a copper-deposited titanium surface as a model for dental implants on the peri-implantitis-associated strain Porphyromonas gingivalis (DSM 20709). A spark-assisted anodization method in a combined deposition-anodization process was applied to deposit copper on discs made of titanium. This method allows the deposition of different concentrations of copper on the surface by varying the process time. Conventional culturing was used to investigate the adhesion of P. gingivalis onto the discs over 2, 4, and 6 h as well as to study the antibacterial effect of copper released in solution. The viability of the bacterial cells is strongly inhibited on copper-deposited discs and reaches a CFU reduction of 3 log-units after 6 h in comparison to the reference. The copper released in solution causes a reduction of 4 log-units after a 6 h incubation time. With a 6 h incubation time, the CFU count decreases with increasing copper concentrations on the disc (by 2% for the 1.3 µg/disc; 32% for the 5.6 µg/disc; and 34% for the 9.5 µg/disc). However, at a higher copper concentration of 17.7 µg/disc, after 6 h, the decrease in the CFU count is less pronounced than that observed in solution, where a further decrease is observed. In conclusion, copper-functionalized titanium significantly reduces the survival of adhered bacteria and decreases the viable bacterial count in the environment surrounding the titanium. Thus, the area surrounding implants is being protected by copper released from the surface, forming a "safe zone" for improved implant healing.
Collapse
Affiliation(s)
- Monika Astasov-Frauenhoffer
- Department of Oral Health & Medicine, University Center for Dental Medicine, University of Basel, Hebelstrasse 3, 4056, Basel, Switzerland.
| | - Sally Koegel
- Department of Oral Health & Medicine, University Center for Dental Medicine, University of Basel, Hebelstrasse 3, 4056, Basel, Switzerland
| | - Tuomas Waltimo
- Department of Oral Health & Medicine, University Center for Dental Medicine, University of Basel, Hebelstrasse 3, 4056, Basel, Switzerland
| | - Andrea Zimmermann
- KKS Ultraschall AG, Medical Surface Center, Frauholzring 29, 6422, Steinen, Switzerland
| | - Cyril Walker
- KKS Ultraschall AG, Medical Surface Center, Frauholzring 29, 6422, Steinen, Switzerland
| | - Irmgard Hauser-Gerspach
- Department of Oral Health & Medicine, University Center for Dental Medicine, University of Basel, Hebelstrasse 3, 4056, Basel, Switzerland
| | - Christiane Jung
- KKS Ultraschall AG, Medical Surface Center, Frauholzring 29, 6422, Steinen, Switzerland.
| |
Collapse
|