1
|
Shi J, Liu D, Jin Q, Chen X, Zhang R, Shi T, Zhu S, Zhang Y, Zong X, Wang C, Li L. Whole-Transcriptome Analysis of Repeated Low-Level Sarin-Exposed Rat Hippocampus and Identification of Cerna Networks to Investigate the Mechanism of Sarin-Induced Cognitive Impairment. BIOLOGY 2023; 12:biology12040627. [PMID: 37106826 PMCID: PMC10136365 DOI: 10.3390/biology12040627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Sarin is a potent organophosphorus nerve agent that causes cognitive dysfunction, but its underlying molecular mechanisms are poorly understood. In this study, a rat model of repeated low-level sarin exposure was established using the subcutaneous injection of 0.4 × LD50 for 21 consecutive days. Sarin-exposed rats showed persistent learning and memory impairment and reduced hippocampal dendritic spine density. A whole-transcriptome analysis was applied to study the mechanism of sarin-induced cognitive impairment, and a total of 1035 differentially expressed mRNA (DEmRNA), including 44 DEmiRNA, 305 DElncRNA, and 412 DEcircRNA, were found in the hippocampus of sarin-treated rats. According to Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Protein-Protein Interaction (PPI) analysis, these DERNAs were mainly involved in neuronal synaptic plasticity and were related to the pathogenesis of neurodegenerative diseases. The circRNA/lncRNA-miRNA-mRNA ceRNA network was constructed, in which Circ_Fmn1, miR-741-3p, miR-764-3p, miR-871-3p, KIF1A, PTPN11, SYN1, and MT-CO3 formed one circuit, and Circ_Cacna1c, miR-10b-5p, miR-18a-5p, CACNA1C, PRKCD, and RASGRP1 constituted another circuit. The balance between the two circuits was crucial for maintaining synaptic plasticity and may be the regulatory mechanism by which sarin causes cognitive impairment. Our study reveals the ceRNA regulation mechanism of sarin exposure for the first time and provides new insights into the molecular mechanisms of other organophosphorus toxicants.
Collapse
Affiliation(s)
- Jingjing Shi
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Dongxin Liu
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Siqing Zhu
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| |
Collapse
|
2
|
McClelland SJ, Woodley SK. Developmental Exposure to Trace Concentrations of Chlorpyrifos Results in Nonmonotonic Changes in Brain Shape and Behavior in Amphibians. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9379-9386. [PMID: 35704902 DOI: 10.1021/acs.est.2c01039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite regulations and improved design, pesticides remain ubiquitous in the environment at relatively low, trace concentrations. To understand how prolonged exposure to trace pesticide concentrations impacts vertebrate brain development and behavior, we raised larval amphibians (northern leopard frogs, Lithobates pipiens) in 0, 1, or 10 μg/L of the organophosphorus pesticide chlorpyrifos (CPF) from hatching to metamorphosis. Tadpoles exposed to 1 μg/L CPF, but not 10 μg/L CPF, had changes in relative brain mass, relative telencephalon shape, and behavioral responses to a novel visual cue. Tadpoles exposed to 10 μg/L CPF had altered behavioral responses to predator-associated olfactory cues. After metamorphosis, frogs raised in 1 μg/L CPF, but not 10 μg/L CPF, had changes in the shape of their optic tectum and medulla. Thus, we provide robust evidence that even trace, yet ecologically realistic, concentrations of CPF have neurodevelopmental and behavioral effects that carry over to later life-history stages, further emphasizing the potent effects of trace levels of CPF on vertebrate development. Also, some but not all effects were nonmonotonic, meaning that effects were evident at the lowest but not at the higher concentration of CPF.
Collapse
Affiliation(s)
- Sara J McClelland
- Duquesne University, Pittsburgh, Pennsylvania 15217, United States
- Moravian University, Bethlehem, Pennsylvania 18018, United States
| | - Sarah K Woodley
- Duquesne University, Pittsburgh, Pennsylvania 15217, United States
| |
Collapse
|
3
|
Kumar S, Pal A, Jain S, Velpandian T, Mathur R. Electromagnetic Field Stimulation Attenuates Phasic Nociception after Complete Spinal Cord Injury in Rats. Brain Sci 2021; 11:brainsci11111431. [PMID: 34827430 PMCID: PMC8615391 DOI: 10.3390/brainsci11111431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is one of the most incapacitating pathologies, leading to huge rehabilitation challenges besides a social-economic burden on SCI patients and their families. There is no complete curative treatment available so far. Non-invasive and patient-friendly use of extremely low-frequency electromagnetic field stimulation (EMF) has emerged as a therapeutic and rehabilitation option. In this study, we tested whole-body EMF stimulation on thoracic complete SCI-induced nociception including sensorimotor deficits in rats. The EMF application significantly attenuated hyperalgesia and allodynia to thermal, electrical, and chemical stimuli from 6 weeks onwards as well as restoration of spinal reflexes, viz., H-reflex and nociceptive flexion reflex at the study endpoint (week 8). Besides, massively increased glutamate at the SCI injury site was observed in SCI rats with no treatment, which was also attenuated significantly by EMF stimulation. Spinal cord histology of the injury area showed a decrease in lesion volume and glial population in the EMF-stimulated rats. These findings indicate the beneficial role of EMF stimulation after thoracic complete SCI in adult male rats and, thereby, a beneficial patient-friendly rehabilitation tool.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.P.); (S.J.); (R.M.)
- Correspondence:
| | - Ajay Pal
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.P.); (S.J.); (R.M.)
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.P.); (S.J.); (R.M.)
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacy and Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rashmi Mathur
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.P.); (S.J.); (R.M.)
| |
Collapse
|
4
|
van den Dries MA, Lamballais S, El Marroun H, Pronk A, Spaan S, Ferguson KK, Longnecker MP, Tiemeier H, Guxens M. Prenatal exposure to organophosphate pesticides and brain morphology and white matter microstructure in preadolescents. ENVIRONMENTAL RESEARCH 2020; 191:110047. [PMID: 32805249 PMCID: PMC7657967 DOI: 10.1016/j.envres.2020.110047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Prenatal exposure to organophosphate (OP) pesticides associate with impaired neurodevelopment in humans and animal models. However, much uncertainty exists about the brain structural alterations underlying these associations. The objective of this study was to determine whether maternal OP pesticide metabolite concentrations in urine repeatedly measured during gestation are associated with brain morphology and white matter microstructure in 518 preadolescents aged 9-12 years. METHOD Data came from 518 mother-child pairs participating in the Generation R Study, a population-based birth cohort from Rotterdam, the Netherlands. Maternal urine concentrations were determined for 6 dialkylphosphates (DAPs) including 3 dimethyl (DM) and 3 diethyl (DE) alkyl phosphate metabolites, collected at early, mid, and late pregnancy. At child's age 9-12 years, magnetic resonance imaging was performed to obtain T1-weighted images for brain volumes and surface-based cortical thickness and cortical surface area, and diffusion tensor imaging was used to measure white matter microstructure through fractional anisotropy (FA) and mean diffusivity (MD). Linear regression models were fit for the averaged prenatal exposure across pregnancy. RESULTS DM and DE metabolite concentrations were not associated with brain volumes, cortical thickness, and cortical surface area. However, a 10-fold increase in averaged DM metabolite concentrations across pregnancy was associated with lower FA (B = -1.00, 95%CI = -1.80, -0.20) and higher MD (B = 0.13, 95%CI = 0.04, 0.21). Similar associations were observed for DE concentrations. CONCLUSIONS This study provides the first evidence that OP pesticides may alter normal white matter microstructure in children, which could have consequences for normal neurodevelopment. No associations were observed with structural brain morphology, including brain volumes, cortical thickness, and cortical surface area.
Collapse
Affiliation(s)
- Michiel A van den Dries
- Erasmus MC, University Medical Center Rotterdam, Department of Child and Adolescent Psychiatry, Rotterdam, 3015 CN, the Netherlands; Erasmus MC, University Medical Center Rotterdam, The Generation R Study Group, Rotterdam, 3015 CN, the Netherlands
| | - Sander Lamballais
- Erasmus MC, University Medical Center Rotterdam, The Generation R Study Group, Rotterdam, 3015 CN, the Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, 3015 CN, the Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, 3015 CN, the Netherlands
| | - Hanan El Marroun
- Erasmus MC, University Medical Center Rotterdam, Department of Child and Adolescent Psychiatry, Rotterdam, 3015 CN, the Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Pediatrics, Rotterdam, 3015 CN, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, 3062 PA, the Netherlands
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, TNO, Utrecht, 3584 CB, the Netherlands
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, TNO, Utrecht, 3584 CB, the Netherlands
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, NC, 27709, USA
| | | | - Henning Tiemeier
- Erasmus MC, University Medical Center Rotterdam, Department of Child and Adolescent Psychiatry, Rotterdam, 3015 CN, the Netherlands; Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Mònica Guxens
- Erasmus MC, University Medical Center Rotterdam, Department of Child and Adolescent Psychiatry, Rotterdam, 3015 CN, the Netherlands; ISGlobal, Barcelona, 08003, Spain; Pompeu Fabra University, Barcelona, 08002, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Spain.
| |
Collapse
|
5
|
Shahid A, Saher M. Repeated exposure of pyriproxyfen to pregnant female mice causes developmental abnormalities in prenatal pups. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26998-27009. [PMID: 32382916 DOI: 10.1007/s11356-020-08656-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The continuous exposure to conventional pesticides leads to severe health and environmental issues especially at prenatal stage during developmental period. Herein, we aimed to investigate the anomalies due to repeated exposure of pyriproxyfen in pregnant female mice and their neonates. Twenty-four pregnant female mice were repeatedly administered with pyriproxyfen at 30, 100, 300, and 1000 mg/kg by oral gauge from gestation day (GD) 7 to gestation day 17 and six females were given distilled water in the control group. All the live pups were euthanized at postnatal day (PND) 7 and their organs (heart, liver, kidney, and brain) were dissected out, weighed, and assessed for further histopathological examinations. The results exhibited a significant (P < 0.001) decrease in the body weight gain of all treated pregnant mice in comparison to the controls and a significant increase in the gestational length was observed in group IV (P < 0.01) and group V (P < 0.001). In addition, no live pups were born in groups IV and V and one pregnant female mouse was also found dead in both treatments. The body weights of the pups were significantly decreased in group II (P < 0.05) and group III (P < 0.001) and the relative organ (liver, heart, and kidney) weight of the pups was increased significantly (P < 0.001, P < 0.01, P < 0.05) due to prenatal exposure in group II as compared to group I. The relative brain weights of the pups were decreased significantly (P < 0.001) in groups II and III as compared to group I. The liver, kidney, heart, and brain sections exhibited various histological alterations in groups II and III by hematoxylin and eosin staining. Furthermore, immunohistochemical staining of the coronal sections of pup's brain showed significant (P < 0.001) reduction in cortical radial thickness and total neural count in group II and III as compared to group I. Therefore, the prenatal exposure to pyriproxyfen provoked the damage to various organs in mice offspring and an increase in fetal death at higher doses.
Collapse
Affiliation(s)
- Amna Shahid
- Department of Zoology, Government College University, Katchery Road, Lahore, 54000, Pakistan.
| | - Marryam Saher
- Department of Zoology, Government College University, Katchery Road, Lahore, 54000, Pakistan
| |
Collapse
|
6
|
Farizatto KLG, Almeida MF, Long RT, Bahr BA. Early Synaptic Alterations and Selective Adhesion Signaling in Hippocampal Dendritic Zones Following Organophosphate Exposure. Sci Rep 2019; 9:6532. [PMID: 31024077 PMCID: PMC6484076 DOI: 10.1038/s41598-019-42934-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/11/2019] [Indexed: 11/09/2022] Open
Abstract
Organophosphates account for many of the world's deadliest poisons. They inhibit acetylcholinesterase causing cholinergic crises that lead to seizures and death, while survivors commonly experience long-term neurological problems. Here, we treated brain explants with the organophosphate compound paraoxon and uncovered a unique mechanism of neurotoxicity. Paraoxon-exposed hippocampal slice cultures exhibited progressive declines in synaptophysin, synapsin II, and PSD-95, whereas reduction in GluR1 was slower and NeuN and Nissl staining showed no indications of neuronal damage. The distinctive synaptotoxicity was observed in dendritic zones of CA1 and dentate gyrus. Interestingly, declines in synapsin II dendritic labeling correlated with increased staining for β1 integrin, a component of adhesion receptors that regulate synapse maintenance and plasticity. The paraoxon-induced β1 integrin response was targeted to synapses, and the two-fold increase in β1 integrin was selective as other synaptic adhesion molecules were unchanged. Additionally, β1 integrin-cofilin signaling was triggered by the exposure and correlations were found between the extent of synaptic decline and the level of β1 integrin responses. These findings identified organophosphate-mediated early and lasting synaptotoxicity which can explain delayed neurological dysfunction later in life. They also suggest that the interplay between synaptotoxic events and compensatory adhesion responses influences neuronal fate in exposed individuals.
Collapse
Affiliation(s)
- Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, North Carolina, USA
| | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, North Carolina, USA
| | - Ronald T Long
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, North Carolina, USA.,Department of Biology, University of North Carolina-Pembroke, Pembroke, North Carolina, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, North Carolina, USA. .,Department of Biology, University of North Carolina-Pembroke, Pembroke, North Carolina, USA. .,Department of Chemistry and Physics, University of North Carolina-Pembroke, Pembroke, North Carolina, USA.
| |
Collapse
|
7
|
Silver MK, Shao J, Ji C, Zhu B, Xu L, Li M, Chen M, Xia Y, Kaciroti N, Lozoff B, Meeker JD. Prenatal organophosphate insecticide exposure and infant sensory function. Int J Hyg Environ Health 2019; 221:469-478. [PMID: 29402694 DOI: 10.1016/j.ijheh.2018.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/29/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Occupational studies suggest that exposure to organophosphate insecticides (OPs) can lead to vision or hearing loss. Yet the effects of early-life exposure on visual and auditory function are unknown. Here we examined associations between prenatal OP exposure and grating visual acuity (VA) and auditory brainstem response (ABR) during infancy. METHODS 30 OPs were measured in umbilical cord blood using gas chromatography tandem mass spectrometry in a cohort of Chinese infants. Grating visual acuity (VA) (n = 179-200) and auditory brainstem response (ABR) (n = 139-183) were assessed at 6 weeks, 9 months, and 18 months. Outcomes included VA score, ABR wave V latency and central conduction time, and head circumference (HC). Associations between sensory outcomes during infancy and cord OPs were examined using linear mixed models. RESULTS Prenatal chlorpyrifos exposure was associated with lower 9-month grating VA scores; scores were 0.64 (95% CI: -1.22, -0.06) points lower for exposed versus unexposed infants (p = 0.03). The OPs examined were not associated with infant ABR latencies, but chlorpyrifos and phorate were both significantly inversely associated with HC at 9 months; HCs were 0.41 (95% CI: 0.75, 0.6) cm and 0.44 (95% CI: 0.88, 0.1) cm smaller for chlorpyrifos (p = 0.02) and phorate (p = 0.04), respectively. CONCLUSIONS We found deficits in grating VA and HC in 9-month-old infants with prenatal exposure to chlorpyrifos. The clinical significance of these small but statistically significant deficits is unclear. However, the disruption of visual or auditory pathway maturation in infancy could potentially negatively affect downstream cognitive development.
Collapse
Affiliation(s)
- Monica K Silver
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Shao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chai Ji
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Binquan Zhu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Xu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Mingyan Li
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Minjian Chen
- Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
| | - Yankai Xia
- Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
| | - Niko Kaciroti
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Betsy Lozoff
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI 48109, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
McClelland SJ, Bendis RJ, Relyea RA, Woodley SK. Insecticide-induced changes in amphibian brains: How sublethal concentrations of chlorpyrifos directly affect neurodevelopment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2692-2698. [PMID: 30187530 DOI: 10.1002/etc.4240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Widespread use of pesticides often contaminates natural habitats, exposing nontarget organisms to pesticides that were designed to control pest populations. Even low levels of pesticides can affect aquatic communities both directly and indirectly. Previous work has shown that trace amounts of the pesticide chlorpyrifos altered tadpole morphology and neurodevelopment in artificial ponds (mesocosms). To determine whether effects resulted from direct chlorpyrifos exposure or from disruption of the food web due to a pesticide-induced decline in zooplankton, we examined the impacts of chlorpyrifos on amphibian development in the presence of chlorpyrifos-resistant zooplankton, a key component of the aquatic trophic community. Northern leopard frog (Lithobates pipiens) tadpoles were reared through metamorphosis in mesocosms containing either 0 or 1 µg/L chlorpyrifos and either chlorpyrifos-resistant or chlorpyrifos-sensitive Daphnia pulex zooplankton. Developmental exposure to chlorpyrifos resulted in metamorphs with a relatively wider optic tectum, medulla, and diencephalon compared with controls, and this result was found regardless of the zooplankton population within the mesocosm. Thus, chlorpyrifos directly impacted brain development, independent of the effects on the trophic community. With respect to body shape, chlorpyrifos had no effect on body shape of metamorphs reared in mesocosms with chlorpyrifos-sensitive zooplankton, but body shape was sensitive to zooplankton population in the absence of chlorpyrifos. To conclude, low, ecologically relevant doses of organophosphorous pesticides can directly impact neurodevelopment in a vertebrate model. Environ Toxicol Chem 2018;37:2692-2698. © 2018 SETAC.
Collapse
Affiliation(s)
| | | | - Rick A Relyea
- Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | |
Collapse
|
9
|
Knockdown of Butyrylcholinesterase but Not Inhibition by Chlorpyrifos Alters Early Differentiation Mechanisms in Human Neural Stem Cells. TOXICS 2018; 6:toxics6030052. [PMID: 30200437 PMCID: PMC6160911 DOI: 10.3390/toxics6030052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/14/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Butyrylcholinesterase (BChE) is the evolutionary counterpart to acetylcholinesterase (AChE). Both are expressed early in nervous system development prior to cholinergic synapse formation. The organophosphate pesticide chlorpyrifos (CPF) primarily exerts toxicity through the inhibition of AChE, which results in excess cholinergic stimulation at the synapse. We hypothesized that the inhibition of AChE and BChE by CPF may impair early neurogenesis in neural stem cells (NSCs). To model neurodevelopment in vitro, we used human NSCs derived from induced pluripotent stem cells (iPSCs) with a focus on the initial differentiation mechanisms. Over the six days of NSC differentiation, the BChE activity and mRNA expression significantly increased, while the AChE activity and expression remained unchanged. The CPF treatment (10 μM) caused 82% and 92% inhibition of AChE and BChE, respectively. The CPF exposure had no effect on the cell viability or the expression of the differentiation markers HES5, DCX, or MAP2. However, the shRNA-knockdown of the BChE expression resulted in the decreased or delayed expression of the transcription factors HES5 and HES3. BChE may have a role in the differentiation of NSCs independent of, or in addition to, its enzymatic activity.
Collapse
|
10
|
Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events. Neurobiol Dis 2018; 117:82-113. [PMID: 29859868 DOI: 10.1016/j.nbd.2018.05.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 01/13/2023] Open
Abstract
The organophosphate (OP) pesticide chlorpyrifos (CPF), used in agricultural settings, induces developmental and neurological impairments. Recent studies using in vitro cell culture models have reported CPF exposure to have a positive association with mitochondria-mediated oxidative stress response and dopaminergic cell death; however, the mechanism by which mitochondrial reactive oxygen species (ROS) contribute to dopaminergic cell death remains unclear. Therefore, we hypothesized that STAT1, a transcription factor, causes apoptotic dopaminergic cell death via mitochondria-mediated oxidative stress mechanisms. Here we show that exposure of dopaminergic neuronal cells such as N27 cells (immortalized murine mesencephalic dopaminergic cells) to CPF resulted in a dose-dependent increase in apoptotic cell death as measured by MTS assay and DNA fragmentation. Similar effects were observed in CPF-treated human dopaminergic neuronal cells (LUHMES cells), with an associated increase in mitochondrial dysfunction. Moreover, CPF (10 μM) induced time-dependent increase in STAT1 activation coincided with the collapse of mitochondrial transmembrane potential, increase in ROS generation, proteolytic cleavage of protein kinase C delta (PKCδ), inhibition of the mitochondrial basal oxygen consumption rate (OCR), with a concomitant reduction in ATP-linked OCR and reserve capacity, increase in Bax/Bcl-2 ratio and enhancement of autophagy. Additionally, by chromatin immunoprecipitation (ChIP), we demonstrated that STAT1 bound to a putative regulatory sequence in the NOX1 and Bax promoter regions in response to CPF in N27 cells. Interestingly, overexpression of non-phosphorylatable STAT1 mutants (STAT1Y701F and STAT1S727A) but not STAT1 WT construct attenuated the cleavage of PKCδ and ultimately cell death in CPF-treated cells. Furthermore, small interfering RNA knockdown demonstrated STAT1 to be a critical regulator of autophagy and mitochondria-mediated proapoptotic cell signaling events after CPF treatment in N27 cells. Finally, oral administration of CPF (5 mg/kg) in postnatal rats (PNDs 27-61) induced motor deficits, and nigrostriatal dopaminergic neurodegeneration with a concomitant induction of STAT1-dependent proapoptotic cell signaling events. Conversely, co-treatment with mitoapocynin (a mitochondrially-targeted antioxidant) and CPF rescued motor deficits, and restored dopaminergic neuronal survival via abrogation of STAT1-dependent proapoptotic cell signaling events. Taken together, our study identifies a novel mechanism by which STAT1 regulates mitochondria-mediated oxidative stress response, PKCδ activation and autophagy. In this context, the phosphorylation of Tyrosine 701 and Serine 727 in STAT1 was found to be essential for PKCδ cleavage. By attenuating mitochondrial-derived ROS, mitoapocynin may have therapeutic applications for reversing CPF-induced dopaminergic neurotoxicity and associated neurobehavioral deficits as well as neurodegenerative diseases.
Collapse
|
11
|
Naha N, Gandhi DN, Gautam AK, Prakash JR. Nicotine and cigarette smoke modulate Nrf2-BDNF-dopaminergic signal and neurobehavioral disorders in adult rat cerebral cortex . Hum Exp Toxicol 2018; 37:540-556. [PMID: 28641491 DOI: 10.1177/0960327117698543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nicotine and cigarette smoking (CS) are associated with addiction behavior, drug-seeking, and abuse. However, the mechanisms that mediate this association especially, the role of brain-derived neurotrophic factor (BDNF), dopamine (DA), and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in the cerebral cortex, are not fully known. Therefore, we hypothesized that overexpression of BDNF and DA, and suppression of Nrf2 contribute to several pathological and behavioral alterations in adult cerebral cortex. Methodology/Principal Observations: We treated Wistar rats with different doses of oral nicotine and passive CS for 4-week (short-term) and 12-week (long-term) duration, where doses closely mimic the human smoking scenario. Our result showed dose-dependent association of anxiogenic and depressive behavior, and cognitive interference with neurodegeneration and DNA damage in the cerebral cortex upon exposure to nicotine/CS as compared to the control. Further, the results are linked to upregulation of oxidative stress, overexpression of BDNF, DA, and DA marker, tyrosine hydroxylase (TH), with concomitant downregulation of ascorbate and Nrf2 expression in the exposed cerebral cortex when compared with the control. CONCLUSION/SIGNIFICANCE Overall, our data strongly suggest that the intervention of DA and BDNF, and depletion of antioxidants are important factors during nicotine/CS-induced cerebral cortex pathological changes leading to neurobehavioral impairments, which could underpin the novel therapeutic approaches targeted at tobacco smoking/nicotine's neuropsychological disorders including cognition and drug addiction.
Collapse
Affiliation(s)
| | - D N Gandhi
- DN Gandhi: Former scientist & Head, NBT Div., ICMR-NIOH
| | | | | |
Collapse
|
12
|
Slotkin TA, Skavicus S, Stapleton HM, Seidler FJ. Brominated and organophosphate flame retardants target different neurodevelopmental stages, characterized with embryonic neural stem cells and neuronotypic PC12 cells. Toxicology 2017; 390:32-42. [PMID: 28851516 DOI: 10.1016/j.tox.2017.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
Abstract
In addition to their activity as endocrine disruptors, brominated and organophosphate flame retardants are suspected to be developmental neurotoxicants, although identifying their specific mechanisms for that activity has been elusive. In the current study, we evaluated the effects of several flame retardants on neurodifferentiation using two in vitro models that assess distinct "decision nodes" in neural cell development: embryonic rat neural stem cells (NSCs), which evaluate the origination of neurons and glia from precursors, and rat neuronotypic PC12 cells, which characterize a later stage where cells committed to a neuronal phenotype undergo neurite outgrowth and neurotransmitter specification. In NSCs, both brominated and organophosphate flame retardants diverted the phenotype in favor of glia and away from formation of neurons, leading to an increased glia/neuron ratio, a common hallmark of the in vivo effects of neurotoxicants. For this early decision node, the brominated flame retardants were far more potent than the organophosphates. In PC12 cells, the brominated flame retardants were far less effective, whereas tris (1,3-dichloro-2-propyl) phosphate, an organophosphate, was more effective. Thus, the two classes of flame retardants differentially impact the two distinct vulnerable periods of neurodifferentiation. Furthermore, the effects on neurodifferentiation were separable from outright cytotoxicity, an important requirement in establishing a specific effect of these agents on neural cell development. These results reinforce the likelihood that flame retardants act as developmental neurotoxicants via direct effects on neural cell differentiation, over and above other activities that can impact nervous system development, such as endocrine disruption.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Samantha Skavicus
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
13
|
Abreu-Villaça Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. ENVIRONMENT INTERNATIONAL 2017; 99:55-77. [PMID: 27908457 PMCID: PMC5285268 DOI: 10.1016/j.envint.2016.11.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 05/19/2023]
Abstract
Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Departamento de Ciências Fisiologicas, Universidade do Estado do Rio de Janeiro (UERJ), RJ, Brazil
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
14
|
Chen XP, Chao YS, Chen WZ, Dong JY. Mother gestational exposure to organophosphorus pesticide induces neuron and glia loss in daughter adult brain. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:77-83. [PMID: 28099088 DOI: 10.1080/03601234.2016.1239973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphorus pesticide with developmental neurotoxicity such as morphogenesis toxicity. In the present study, we assessed the effects of prenatal CPF exposure on systemic parameters and cytoarchitecture of medial prefrontal cortex (mPFC) in adulthood. Gestational dams were exposed to 5mg/kg/d of CPF during gestational days 13-17, while body weight, organ coefficient, and neuron and glia counts of offspring were determined on postnatal day 60. Our results showed that CPF treatment induced little or no effects on body weight and organ coefficients. There were also no significant pathological changes in mPFC. However, neuron and glia count analysis showed that CPF treatment reduced neuron and glia counts in anterior cingulate, prelimbic, and infralimbic areas of mPFC. The CPF react pattern was similar in both sexes, and there was no statistical difference in most of the sub-regions. Thus, our results revealed an embryonic origin brain deficit induced by gestational mother pesticide exposure.
Collapse
Affiliation(s)
- Xiao P Chen
- a College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou , China
| | - Yong S Chao
- a College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou , China
| | - Wen Z Chen
- a College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou , China
| | - Jing Y Dong
- b School of Medicine and Life Sciences, Zhejiang University City College , Hangzhou , China
| |
Collapse
|
15
|
Slotkin TA, Skavicus S, Card J, Giulio RTD, Seidler FJ. In vitro models reveal differences in the developmental neurotoxicity of an environmental polycylic aromatic hydrocarbon mixture compared to benzo[a]pyrene: Neuronotypic PC12 Cells and embryonic neural stem cells. Toxicology 2016; 377:49-56. [PMID: 28049045 DOI: 10.1016/j.tox.2016.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/14/2016] [Accepted: 12/31/2016] [Indexed: 12/27/2022]
Abstract
In addition to their carcinogenic activity, polycyclic aromatic hydrocarbons (PAHs) are suspected to be developmental neurotoxicants. We evaluated the effects of PAHs with two in vitro models that assess distinct "decision nodes" in neurodifferentiation: neuronotypic PC12 cells, which characterize the transition from cell replication to neurodifferentiation, neurite outgrowth and neurotransmitter specification; and embryonic neural stem cells (NSCs), which evaluate the origination of neurons and glia from precursors. We compared an environmentally-derived PAH mixture from a Superfund contamination site (Elizabeth River Sediment Extract, ERSE) to those of a single PAH, benzo[a]pyrene (BaP). In PC12 cells, BaP impaired the transition from cell replication to neurodifferentiation, resulting in higher numbers of cells, but with reduced cell size and deficits in all indices of neuronal features (neurite formation, development of dopamine and acetylcholine phenotypes). ERSE was far less effective, causing only modest changes in cell numbers and size and no impairment of neurite formation or neurotransmitter specification; in fact, ERSE evoked a slight increase in emergence of the acetylcholine phenotype. In the NSC model, this relationship was entirely reversed, with far greater sensitivity to ERSE than to BaP. Furthermore, ERSE, but not BaP, enhanced NSC differentiation into neurons, whereas both ERSE and BaP suppressed the glial phenotype. Our studies provide a cause-and-effect relationship for the observed association of developmental PAH exposure to behavioral deficits. Further, PAH sensitivity occurs over developmental stages corresponding to rudimentary brain formation through terminal neurodifferentiation, suggesting that vulnerability likely extends throughout fetal brain development and into early childhood.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Samantha Skavicus
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jennifer Card
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
16
|
Slotkin TA, Skavicus S, Card J, Levin ED, Seidler FJ. Diverse neurotoxicants target the differentiation of embryonic neural stem cells into neuronal and glial phenotypes. Toxicology 2016; 372:42-51. [PMID: 27816694 DOI: 10.1016/j.tox.2016.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 01/01/2023]
Abstract
The large number of compounds that needs to be tested for developmental neurotoxicity drives the need to establish in vitro models to evaluate specific neurotoxic endpoints. We used neural stem cells derived from rat neuroepithelium on embryonic day 14 to evaluate the impact of diverse toxicants on their ability to differentiate into glia and neurons: a glucocorticoid (dexamethasone), organophosphate insecticides (chlorpyrifos, diazinon, parathion), insecticides targeting the GABAA receptor (dieldrin, fipronil), heavy metals (Ni2+, Ag+), nicotine and tobacco smoke extract. We found three broad groupings of effects. One diverse set of compounds, dexamethasone, the organophosphate pesticides, Ni2+ and nicotine, suppressed expression of the glial phenotype while having little or no effect on the neuronal phenotype. The second pattern was restricted to the pesticides acting on GABAA receptors. These compounds promoted the glial phenotype and suppressed the neuronal phenotype. Notably, the actions of compounds eliciting either of these differentiation patterns were clearly unrelated to deficits in cell numbers: dexamethasone, dieldrin and fipronil all reduced cell numbers, whereas organophosphates and Ni2+ had no effect. The third pattern, shared by Ag+ and tobacco smoke extract, clearly delineated cytotoxicity, characterized by major cell loss with suppression of differentiation into both glial and neuronal phenotypes; but here again, there was some selectivity in that glia were suppressed more than neurons. Our results, from this survey with diverse compounds, point to convergence of neurotoxicant effects on a specific "decision node" that controls the emergence of neurons and glia from neural stem cells.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Samantha Skavicus
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jennifer Card
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward D Levin
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
17
|
Woodley SK, Mattes BM, Yates EK, Relyea RA. Exposure to sublethal concentrations of a pesticide or predator cues induces changes in brain architecture in larval amphibians. Oecologia 2015; 179:655-65. [PMID: 26169394 DOI: 10.1007/s00442-015-3386-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 06/28/2015] [Indexed: 02/04/2023]
Abstract
Naturally occurring environmental factors shape developmental trajectories to produce variable phenotypes. Such developmental phenotypic plasticity can have important effects on fitness, and has been demonstrated for numerous behavioral and morphological traits. However, surprisingly few studies have examined developmental plasticity of the nervous system in response to naturally occurring environmental variation, despite accumulating evidence for neuroplasticity in a variety of organisms. Here, we asked whether the brain is developmentally plastic by exposing larval amphibians to natural and anthropogenic factors. Leopard frog tadpoles were exposed to predator cues, reduced food availability, or sublethal concentrations of the pesticide chlorpyrifos in semi-natural enclosures. Mass, growth, survival, activity, larval period, external morphology, brain mass, and brain morphology were measured in tadpoles and after metamorphosis. Tadpoles in the experimental treatments had lower masses than controls, although developmental rates and survival were similar. Tadpoles exposed to predator cues or a high dose of chlorpyrifos had altered body shapes compared to controls. In addition, brains from tadpoles exposed to predator cues or a low dose of chlorpyrifos were narrower and shorter in several dimensions compared to control tadpoles and tadpoles with low food availability. Interestingly, the changes in brain morphology present at the tadpole stage did not persist in the metamorphs. Our results show that brain morphology is a developmentally plastic trait that is responsive to ecologically relevant natural and anthropogenic factors. Whether these effects on brain morphology are linked to performance or fitness is unknown.
Collapse
Affiliation(s)
- Sarah K Woodley
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, 15282, USA.
| | - Brian M Mattes
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Erika K Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
18
|
Gulf War agent exposure causes impairment of long-term memory formation and neuropathological changes in a mouse model of Gulf War Illness. PLoS One 2015; 10:e0119579. [PMID: 25785457 PMCID: PMC4364893 DOI: 10.1371/journal.pone.0119579] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 01/28/2015] [Indexed: 01/14/2023] Open
Abstract
Gulf War Illness (GWI) is a chronic multisymptom illness with a central nervous system component such as memory deficits, neurological, and musculoskeletal problems. There are ample data that demonstrate that exposure to Gulf War (GW) agents, such as pyridostigmine bromide (PB) and pesticides such as permethrin (PER), were key contributors to the etiology of GWI post deployment to the Persian GW. In the current study, we examined the consequences of acute (10 days) exposure to PB and PER in C57BL6 mice. Learning and memory tests were performed at 18 days and at 5 months post-exposure. We investigated the relationship between the cognitive phenotype and neuropathological changes at short and long-term time points post-exposure. No cognitive deficits were observed at the short-term time point, and only minor neuropathological changes were detected. However, cognitive deficits emerged at the later time point and were associated with increased astrogliosis and reduction of synaptophysin staining in the hippocampi and cerebral cortices of exposed mice, 5 months post exposure. In summary, our findings in this mouse model of GW agent exposure are consistent with some GWI symptom manifestations, including delayed onset of symptoms and CNS disturbances observed in GWI veterans.
Collapse
|
19
|
Sashidhara KV, Modukuri RK, Jadiya P, Dodda RP, Kumar M, Sridhar B, Kumar V, Haque R, Siddiqi MI, Nazir A. Benzofuran-chalcone hybrids as potential multifunctional agents against Alzheimer's disease: synthesis and in vivo studies with transgenic Caenorhabditis elegans. ChemMedChem 2014; 9:2671-84. [PMID: 25251917 DOI: 10.1002/cmdc.201402291] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Indexed: 12/20/2022]
Abstract
In the search for effective multifunctional agents for the treatment of Alzheimer's disease (AD), a series of novel hybrids incorporating benzofuran and chalcone fragments were designed and synthesized. These hybrids were screened by using a transgenic Caenorhabditis elegans model that expresses the human β-amyloid (Aβ) peptide. Among the hybrids investigated, (E)-3-(7-methyl-2-(4-methylbenzoyl)benzofuran-5-yl)-1-phenylprop-2-en-1-one (4 f), (E)-3-(2-benzoyl-7-methylbenzofuran-5-yl)-1-phenylprop-2-en-1-one (4 i), and (E)-3-(2-benzoyl-7-methylbenzofuran-5-yl)-1-(thiophen-2-yl)prop-2-en-1-one (4 m) significantly decreased Aβ aggregation and increased acetylcholine (ACh) levels along with the overall availability of ACh at the synaptic junction. These compounds were also found to decrease acetylcholinesterase (AChE) levels, reduce oxidative stress in the worms, lower lipid content, and to provide protection against chemically induced cholinergic neurodegeneration. Overall, the multifunctional effects of these hybrids qualify them as potential drug leads for further development in AD therapy.
Collapse
Affiliation(s)
- Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow 226031 (India).
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Koutroulakis D, Sifakis S, Tzatzarakis M, Alegakis A, Theodoropoulou E, Kavvalakis M, Kappou D, Tsatsakis A. Dialkyl phosphates in amniotic fluid as a biomarker of fetal exposure to organophosphates in Crete, Greece; association with fetal growth. Reprod Toxicol 2014; 46:98-105. [DOI: 10.1016/j.reprotox.2014.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 01/21/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
21
|
Morphological changes in the suprachiasmatic nucleus of aging female marmosets (Callithrix jacchus). BIOMED RESEARCH INTERNATIONAL 2014; 2014:243825. [PMID: 24987675 PMCID: PMC4060761 DOI: 10.1155/2014/243825] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/04/2014] [Accepted: 04/18/2014] [Indexed: 12/13/2022]
Abstract
The suprachiasmatic nuclei (SCN) are pointed to as the mammals central circadian pacemaker. Aged animals show internal time disruption possibly caused by morphological and neurochemical changes in SCN components. Some studies reported changes of neuronal cells and neuroglia in the SCN of rats and nonhuman primates during aging. The effects of senescence on morphological aspects in SCN are important for understanding some alterations in biological rhythms expression. Therefore, our aim was to perform a comparative study of the morphological aspects of SCN in adult and aged female marmoset. Morphometric analysis of SCN was performed using Nissl staining, NeuN-IR, GFAP-IR, and CB-IR. A significant decrease in the SCN cells staining with Nissl, NeuN, and CB were observed in aged female marmosets compared to adults, while a significant increase in glial cells was found in aged marmosets, thus suggesting compensatory process due to neuronal loss evoked by aging.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The prevalence of childhood neurodevelopmental disorders has been increasing over the last several decades. Prenatal and early childhood exposure to environmental toxicants is increasingly recognized as contributing to the growing rate of neurodevelopmental disorders. Very little information is known about the mechanistic processes by which environmental chemicals alter brain development. We review the recent advances in brain imaging modalities and discuss their application in epidemiologic studies of prenatal and early childhood exposure to environmental toxicants. RECENT FINDINGS Neuroimaging techniques (volumetric and functional MRI, diffusor tensor imaging, and magnetic resonance spectroscopy) have opened unprecedented access to study the developing human brain. These techniques are noninvasive and free of ionization radiation making them suitable for research applications in children. Using these techniques, we now understand much about structural and functional patterns in the typically developing brain. This knowledge allows us to investigate how prenatal exposure to environmental toxicants may alter the typical developmental trajectory. SUMMARY MRI is a powerful tool that allows in-vivo visualization of brain structure and function. Used in epidemiologic studies of environmental exposure, it offers the promise to causally link exposure with behavioral and cognitive manifestations and ultimately to inform programs to reduce exposure and mitigate adverse effects of exposure.
Collapse
|
23
|
Slotkin TA, Card J, Stadler A, Levin ED, Seidler FJ. Effects of tobacco smoke on PC12 cell neurodifferentiation are distinct from those of nicotine or benzo[a]pyrene. Neurotoxicol Teratol 2014; 43:19-24. [PMID: 24642111 DOI: 10.1016/j.ntt.2014.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 01/31/2023]
Abstract
Although nicotine accounts for a great deal of the neurodevelopmental damage associated with maternal smoking or second-hand exposure, tobacco smoke contains thousands of potentially neurotoxic compounds. We used PC12 cells, a standard in vitro model of neurodifferentiation, to compare tobacco smoke extract (TSE) to nicotine, matching TSE exposure (with its inherent nicotine content) to parallel concentrations of nicotine, or to benzo[a]pyrene, a tobacco combustion product. TSE promoted the transition from cell replication to differentiation, resulting in fewer, but larger cells with greater neurite extension. TSE also biased differentiation into the dopaminergic versus the cholinergic phenotype, evidenced by an increase in tyrosine hydroxylase activity but not choline acetyltransferase. Nicotine likewise promoted differentiation at the expense of cell numbers, but its effect on growth and neurite extension was smaller than that of TSE; furthermore, nicotine did not promote the dopaminergic phenotype. Benzo[a]pyrene had effects opposite to those of TSE, retarding neurodifferentiation, which resulted in higher cell numbers, smaller cells, reduced neurite information, and impaired emergence of both dopaminergic and cholinergic phenotypes. Our studies show that the complex mixture of compounds in tobacco smoke exerts direct effects on neural cell replication and differentiation that resemble those of nicotine in some ways but not others, and most importantly, that are greater in magnitude than can be accounted for from just the nicotine content of TSE. Thus, fetal tobacco smoke exposure, including lower levels associated with second-hand smoke, could be more injurious than would be anticipated from measured levels of nicotine or its metabolites.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Jennifer Card
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashley Stadler
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
24
|
Kaler S, Dhar P, Bhattacharya A, Mehra RD. Preliminary morphological and immunohistochemical changes in rat hippocampus following postnatal exposure to sodium arsenite. Toxicol Int 2013; 20:160-9. [PMID: 24082510 PMCID: PMC3783683 DOI: 10.4103/0971-6580.117259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The effects of arsenic exposure during rapid brain growth period (RBGP) (postnatal period 4-11) on pyramidal neurons of cornu ammonis (specifically CA1 and CA3 regions) and granule cells of dentate gyrus (DG) of rat hippocampus were studied. Wistar rat pups, subdivided into the control (group I) and the experimental groups (group II, III, and IV), received distilled water and sodium arsenite (aqueous solution of 1.0, 1.5, and 2.0 mg/kg body weight, respectively) by intraperitoneal (i.p.) route. On postnatal day (PND) 12, the animals were sacrificed and brain tissue obtained. Paraffin sections (8 μm thick) stained with Cresyl Violet (CV) were observed for morphological and morphometric parameters. Arsenic induced programmed cell death (apoptosis) was studied using Terminal deoxyribonucleotidyl transferase mediated dUTP biotin Nick End Labeling (TUNEL) technique on the paraffin sections. Microscopy revealed decreased number and isolation of pyramidal neurons in superficial layers, misalignments of pyramidal cells in stratum pyramidale (SP) of CA1 and CA3 in experimental group III and IV, and presence of polymorphic cells in subgranular zone of ectal limb of dentate gyrus (suggestive of arsenic induced proliferation and migration of granule cells in the dentate gyrus). Morphometric assessments quantified and confirmed the microscopic findings. The mean nuclear area of pyramidal cells was increased and cell density was decreased in the CA1, CA3, and DG of experimental groups in comparison to the control group. Increase in the TUNEL positive cells in DG was observed in the experimental group IV, suggestive of increased apoptosis. These observations confirm vulnerability of pyramidal (CA1, CA3) and granule cells (DG) of hippocampus during RBGP.
Collapse
Affiliation(s)
- Saroj Kaler
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
25
|
Ojo JO, Abdullah L, Evans J, Reed JM, Montague H, Mullan MJ, Crawford FC. Exposure to an organophosphate pesticide, individually or in combination with other Gulf War agents, impairs synaptic integrity and neuronal differentiation, and is accompanied by subtle microvascular injury in a mouse model of Gulf War agent exposure. Neuropathology 2013; 34:109-27. [DOI: 10.1111/neup.12061] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 11/27/2022]
|
26
|
Young JK, Heinbockel T, Gondré-Lewis MC. Astrocyte fatty acid binding protein-7 is a marker for neurogenic niches in the rat hippocampus. Hippocampus 2013; 23:1476-83. [PMID: 23996503 DOI: 10.1002/hipo.22200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 12/16/2022]
Abstract
Recent research has determined that newborn neurons in the dentate gyrus of the hippocampus of the macaque are frequently adjacent to astrocytes immunoreactive for fatty acid binding protein-7 (FABP7). To investigate if a similar relationship between FABP7-positive (FABP7+) astrocytes and proliferating cells exists in the rodent brain, sections of brains from juvenile rats were stained by immunohistochemistry to demonstrate newborn cells (antibody to Ki67 protein) and FABP7+ astrocytes. In rat brains, FABP7+ astrocytes were particularly abundant in the dentate gyrus of the hippocampus and were frequently close to dividing cells immunoreactive for Ki67 protein. FABP7+ astrocytes were also present in the olfactory bulbs, arcuate nucleus of the hypothalamus, and in the dorsal medulla subjacent to the area postrema, sites where more modest numbers of newborn neurons can also be found. These data suggest that regional accumulations of FABP7+ astrocytes may represent reservoirs of cells having the potential for neurogenesis. Because FABP7+ astrocytes are particularly abundant in the hippocampus, and since the gene for FABP7 has been linked to Alzheimer's disease, age-related changes in FABP7+ astrocytes (mitochondrial degeneration) may be relevant to age-associated disorders of the hippocampus.
Collapse
Affiliation(s)
- John K Young
- Department of Anatomy, Howard University College of Medicine, 520 W St., NW, Washington, DC
| | | | | |
Collapse
|
27
|
Slotkin TA, Card J, Seidler FJ. Adverse benzo[a]pyrene effects on neurodifferentiation are altered by other neurotoxicant coexposures: interactions with dexamethasone, chlorpyrifos, or nicotine in PC12 cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:825-31. [PMID: 23603068 PMCID: PMC3702011 DOI: 10.1289/ehp.1306528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/18/2013] [Indexed: 05/26/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons are suspected developmental neurotoxicants, but human exposures typically occur in combination with other neurotoxic contaminants. OBJECTIVE AND METHODS We explored the effects of benzo[a]pyrene (BaP) on neurodifferentiation in PC12 cells, in combination with a glucocorticoid (dexamethasone, used in preterm labor), an organophosphate pesticide (chlorpyrifos), or nicotine. RESULTS In cells treated with BaP alone, the transition from cell division to neurodifferentiation was suppressed, resulting in increased cell numbers at the expense of cell growth, neurite formation, and development of dopaminergic and cholinergic phenotypes. Dexamethasone enhanced the effect of BaP on cell numbers and altered the impact on neurotransmitter phenotypes. Whereas BaP alone shifted differentiation away from the cholinergic phenotype and toward the dopaminergic phenotype, the addition of dexamethasone along with BaP did the opposite. Chlorpyrifos coexposure augmented BaP inhibition of cell growth and enhanced the BaP-induced shift in phenotype toward a higher proportion of dopaminergic cells. Nicotine had no effect on BaP-induced changes in cell number or growth, but it synergistically enhanced the BaP suppression of differentiation into both dopaminergic and cholinergic phenotypes equally. CONCLUSION Our results indicate that, although BaP can act directly as a developmental neurotoxicant, its impact is greatly modified by coexposure to other commonly encountered neurotoxicants from prenatal drug therapy, pesticides, or tobacco. Accordingly, neurodevelopmental effects attributable to polycyclic aromatic hydrocarbons may be quite different depending on which other agents are present and on their concentrations relative to each other.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710 , USA
| | | | | |
Collapse
|
28
|
Slotkin TA, Card J, Infante A, Seidler FJ. BDE99 (2,2',4,4',5-pentabromodiphenyl ether) suppresses differentiation into neurotransmitter phenotypes in PC12 cells. Neurotoxicol Teratol 2013; 37:13-7. [PMID: 23422510 DOI: 10.1016/j.ntt.2013.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/23/2013] [Accepted: 02/02/2013] [Indexed: 11/29/2022]
Abstract
Early-life exposures to brominated diphenyl ethers (BDEs) lead to neurobehavioral abnormalities later in life. Although these agents are thyroid disruptors, it is not clear whether this mechanism alone accounts for the adverse effects. We evaluated the impact of 2,2',4,4',5-pentabromodiphenyl ether (BDE99) on PC12 cells undergoing neurodifferentiation, contrasting the effects with chlorpyrifos, a known developmental neurotoxicant. BDE99 elicited decrements in the number of cells, evidenced by a reduction in DNA levels, to a lesser extent than did chlorpyrifos. This did not reflect cytotoxicity from oxidative stress, since cell enlargement, monitored by the total protein/DNA ratio, was not only unimpaired by BDE99, but was actually enhanced. Importantly, BDE99 impaired neurodifferentiation into both the dopamine and acetylcholine neurotransmitter phenotypes. The cholinergic phenotype was affected to a greater extent, so that neurotransmitter fate was diverted away from acetylcholine and toward dopamine. Chlorpyrifos produced the same imbalance, but through a different underlying mechanism, promoting dopaminergic development at the expense of cholinergic development. In our earlier work, we did not find these effects with BDE47, a BDE that has greater endocrine disrupting and cytotoxic effects than BDE99. Thus, our results point to interference with neurodifferentiation by specific BDE congeners, distinct from cytotoxic or endocrine mechanisms.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| | | | | | | |
Collapse
|
29
|
Mullins RJ, Xu S, Pereira EFR, Mamczarz J, Albuquerque EX, Gullapalli RP. Delayed hippocampal effects from a single exposure of prepubertal guinea pigs to sub-lethal dose of chlorpyrifos: a magnetic resonance imaging and spectroscopy study. Neurotoxicology 2013; 36:42-8. [PMID: 23411083 DOI: 10.1016/j.neuro.2013.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/29/2013] [Accepted: 02/03/2013] [Indexed: 01/09/2023]
Abstract
This study was designed to test the hypothesis that in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS) can detect in adulthood the neurotoxic effects of a single exposure of prepubertal guinea pigs to the organophosphorus pesticide chlorpyrifos. Twelve female guinea pigs were given either a single dose of chlorpyrifos (0.6×LD50 or 300mg/kg, sc) or peanut oil (vehicle; 0.5ml/kg, sc) at 35-40 days of age. One year after the exposure, the animals were tested in the Morris water maze. Three days after the end of the behavioral testing, the metabolic and structural integrity of the brain of the animals was examined by means of MRI/MRS. In the Morris water maze, the chlorpyrifos-exposed guinea pigs showed significant memory deficit. Although no significant anatomical differences were found between the chlorpyrifos-exposed guinea pigs and the control animals by in vivo MRI, the chlorpyrifos-exposed animals showed significant decreases in hippocampal myo-inositol concentration using MRS. The present results indicate that a single sub-lethal exposure of prepubertal guinea pigs to the organophosphorus pesticide chlorpyrifos can lead to long-term memory deficits that are accompanied by significant reductions in the levels of hippocampal myo-inositol.
Collapse
Affiliation(s)
- Roger J Mullins
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | | | | | | | | |
Collapse
|
30
|
Burns CJ, McIntosh LJ, Mink PJ, Jurek AM, Li AA. Pesticide exposure and neurodevelopmental outcomes: review of the epidemiologic and animal studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:127-283. [PMID: 23777200 PMCID: PMC3705499 DOI: 10.1080/10937404.2013.783383] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Assessment of whether pesticide exposure is associated with neurodevelopmental outcomes in children can best be addressed with a systematic review of both the human and animal peer-reviewed literature. This review analyzed epidemiologic studies testing the hypothesis that exposure to pesticides during pregnancy and/or early childhood is associated with neurodevelopmental outcomes in children. Studies that directly queried pesticide exposure (e.g., via questionnaire or interview) or measured pesticide or metabolite levels in biological specimens from study participants (e.g., blood, urine, etc.) or their immediate environment (e.g., personal air monitoring, home dust samples, etc.) were eligible for inclusion. Consistency, strength of association, and dose response were key elements of the framework utilized for evaluating epidemiologic studies. As a whole, the epidemiologic studies did not strongly implicate any particular pesticide as being causally related to adverse neurodevelopmental outcomes in infants and children. A few associations were unique for a health outcome and specific pesticide, and alternative hypotheses could not be ruled out. Our survey of the in vivo peer-reviewed published mammalian literature focused on effects of the specific active ingredient of pesticides on functional neurodevelopmental endpoints (i.e., behavior, neuropharmacology and neuropathology). In most cases, effects were noted at dose levels within the same order of magnitude or higher compared to the point of departure used for chronic risk assessments in the United States. Thus, although the published animal studies may have characterized potential neurodevelopmental outcomes using endpoints not required by guideline studies, the effects were generally observed at or above effect levels measured in repeated-dose toxicology studies submitted to the U.S. Environmental Protection Agency (EPA). Suggestions for improved exposure assessment in epidemiology studies and more effective and tiered approaches in animal testing are discussed.
Collapse
Affiliation(s)
| | | | - Pamela J. Mink
- Allina Health Center for Healthcare Research & Innovation, Minneapolis, Minnesota, USA
| | - Anne M. Jurek
- Allina Health Center for Healthcare Research & Innovation, Minneapolis, Minnesota, USA
| | - Abby A. Li
- Exponent, Inc., Menlo Park, California, USA
- Address correspondence to Abby A. Li, PhD, Attn: Rebecca Edwards, Exponent, Inc., Health Sciences Group, 149 Commonwealth Drive, Menlo Park, CA 94025-1133, USA. E-mail:
| |
Collapse
|
31
|
Bozkurt A, Yardan T, Ciftcioglu E, Baydin A, Hakligor A, Bitigic M, Bilge S. Time course of serum S100B protein and neuron-specific enolase levels of a single dose of chlorpyrifos in rats. Basic Clin Pharmacol Toxicol 2012; 107:893-8. [PMID: 20456333 DOI: 10.1111/j.1742-7843.2010.00593.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Organophosphate (OP) compounds are a large class of chemicals, many of which are used as pesticides. It is suggested that OPs specifically affect glia and neurons. Effects of acute exposure to chlorpyrifos (CPF), which is a common organophosphorus pesticide used worldwide, on neuron-specific enolase (NSE) and S100B levels in rat blood during 7 days were assessed. Rats were evaluated either before (0 hr) or 2, 12, 24, 48 and 168 hr (7 days) after injection of CPF (279 mg/kg, s.c.) or vehicle (peanut oil, 2 ml/kg, s.c.) for clinical signs of toxicity. Immediately after the evaluation of toxicity, blood samples were taken for biochemical assays. CPF administration produced decreases in body-weight and temperature, which were observed for first time at 12 hr after CPF administration and continued for 168 hr (p < 0.05-0.001). Serum S100B and NSE levels were acutely increased 2 hr after CPF administration and remained high at 12 hr (p < 0.01-0.001). NSE and S100B levels were not different in either CPF or vehicle groups at following time points. Serum butyrylcholinesterase (EC 3.1.1.8; BuChE) activity was dramatically reduced at 2 hr after CPF and remained low at each time points during 7 days (p < 0.01-0.001). Our results suggest that the usefulness of serum levels of these glia- and neuron-specific marker proteins in assessing OP toxicity, specifically CPF-induced toxicity.
Collapse
Affiliation(s)
- Ayhan Bozkurt
- Department of Physiology, Ondokuz Mayıs University, School of Medicine, Samsun, Turkey.
| | | | | | | | | | | | | |
Collapse
|
32
|
Uran S, Aon-Bertolino M, Caceres L, Capani F, Guelman L. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels. Brain Res 2012; 1471:1-12. [DOI: 10.1016/j.brainres.2012.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
|
33
|
Chlorpyrifos developmental neurotoxicity: interaction with glucocorticoids in PC12 cells. Neurotoxicol Teratol 2012; 34:505-12. [PMID: 22796634 DOI: 10.1016/j.ntt.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/25/2012] [Accepted: 07/08/2012] [Indexed: 11/20/2022]
Abstract
Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on models relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuritogenesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent.
Collapse
|
34
|
Differentiating experimental animal doses from human exposures to chlorpyrifos. Proc Natl Acad Sci U S A 2012; 109:E2195; author reply E2196. [PMID: 22797900 DOI: 10.1073/pnas.1208081109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc Natl Acad Sci U S A 2012; 109:7871-6. [PMID: 22547821 DOI: 10.1073/pnas.1203396109] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prenatal exposure to chlorpyrifos (CPF), an organophosphate insecticide, is associated with neurobehavioral deficits in humans and animal models. We investigated associations between CPF exposure and brain morphology using magnetic resonance imaging in 40 children, 5.9-11.2 y, selected from a nonclinical, representative community-based cohort. Twenty high-exposure children (upper tertile of CPF concentrations in umbilical cord blood) were compared with 20 low-exposure children on cortical surface features; all participants had minimal prenatal exposure to environmental tobacco smoke and polycyclic aromatic hydrocarbons. High CPF exposure was associated with enlargement of superior temporal, posterior middle temporal, and inferior postcentral gyri bilaterally, and enlarged superior frontal gyrus, gyrus rectus, cuneus, and precuneus along the mesial wall of the right hemisphere. Group differences were derived from exposure effects on underlying white matter. A significant exposure × IQ interaction was derived from CPF disruption of normal IQ associations with surface measures in low-exposure children. In preliminary analyses, high-exposure children did not show expected sex differences in the right inferior parietal lobule and superior marginal gyrus, and displayed reversal of sex differences in the right mesial superior frontal gyrus, consistent with disruption by CPF of normal behavioral sexual dimorphisms reported in animal models. High-exposure children also showed frontal and parietal cortical thinning, and an inverse dose-response relationship between CPF and cortical thickness. This study reports significant associations of prenatal exposure to a widely used environmental neurotoxicant, at standard use levels, with structural changes in the developing human brain.
Collapse
|
36
|
Kizil C, Kaslin J, Kroehne V, Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 2012; 72:429-61. [DOI: 10.1002/dneu.20918] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Li AA, Lowe KA, McIntosh LJ, Mink PJ. Evaluation of epidemiology and animal data for risk assessment: chlorpyrifos developmental neurobehavioral outcomes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2012; 15:109-184. [PMID: 22401178 PMCID: PMC3386549 DOI: 10.1080/10937404.2012.645142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Developmental neurobehavioral outcomes attributed to exposure to chlorpyrifos (CPF) obtained from epidemiologic and animal studies published before June 2010 were reviewed for risk assessment purposes. For epidemiological studies, this review considered (1) overall strength of study design, (2) specificity of CPF exposure biomarkers, (3) potential for bias, and (4) Hill guidelines for causal inference. In the case of animal studies, this review focused on evaluating the consistency of outcomes for developmental neurobehavioral endpoints from in vivo mammalian studies that exposed dams and/or offspring to CPF prior to weaning. Developmental neuropharmacologic and neuropathologic outcomes were also evaluated. Experimental design and methods were examined as part of the weight of evidence. There was insufficient evidence that human developmental exposures to CPF produce adverse neurobehavioral effects in infants and children across different cohort studies that may be relevant to CPF exposure. In animals, few behavioral parameters were affected following gestational exposures to 1 mg/kg-d but were not consistently reported by different laboratories. For postnatal exposures, behavioral effects found in more than one study at 1 mg/kg-d were decreased errors on a radial arm maze in female rats and increased errors in males dosed subcutaneously from postnatal day (PND) 1 to 4. A similar finding was seen in rats exposed orally from PND 1 to 21 with incremental dose levels of 1, 2, and 4 mg/kg-d, but not in rats dosed with constant dose level of 1 mg/kg-d. Neurodevelopmental behavioral, pharmacological, and morphologic effects occurred at doses that produced significant brain or red blood cell acetylcholinesterase inhibition in dams or offspring.
Collapse
Affiliation(s)
- Abby A Li
- Exponent Health Sciences Group, Menlo Park, California, USA.
| | | | | | | |
Collapse
|
38
|
Slotkin TA, Seidler FJ. Developmental neurotoxicity of organophosphates targets cell cycle and apoptosis, revealed by transcriptional profiles in vivo and in vitro. Neurotoxicol Teratol 2011; 34:232-41. [PMID: 22222554 DOI: 10.1016/j.ntt.2011.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 11/25/2022]
Abstract
Developmental organophosphate exposure reduces the numbers of neural cells, contributing to neurobehavioral deficits. We administered chlorpyrifos or diazinon to newborn rats on postnatal days 1-4, in doses straddling the threshold for barely-detectable cholinesterase inhibition, and evaluated gene expression in the cell cycle and apoptosis pathways on postnatal day 5. Both organophosphates evoked transcriptional changes in 20-25% of the genes in each category; chlorpyrifos and diazinon targeted the same genes, with similar magnitudes of change, as evidenced by high concordance. Furthermore, the same effects were obtained with doses above or below the threshold for cholinesterase inhibition, indicating a mechanism unrelated to anticholinesterase actions. We then evaluated the effects of chlorpyrifos in undifferentiated and differentiating PC12 cells and found even greater targeting of cell cycle and apoptosis genes, affecting up to 40% of all genes in the pathways. Notably, the genes affected in undifferentiated cells were not concordant with those in differentiating cells, pointing to dissimilar outcomes dependent on developmental stage. The in vitro model successfully identified 60-70% of the genes affected by chlorpyrifos in vivo, indicating that the effects are exerted directly on developing neural cells. Our results show that organophosphates target the genes regulating the cell cycle and apoptosis in the developing brain and in neuronotypic cells in culture, with the pattern of vulnerability dependent on the specific stage of development. Equally important, these effects do not reflect actions on cholinesterase and operate at exposures below the threshold for any detectable inhibition of this enzyme.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
39
|
Chlorpyrifos Induced Region Specific Vulnerability in Rat CNS and Modulation by Age and Cold Stress: An Interactive Study. Neurochem Res 2010; 36:241-9. [DOI: 10.1007/s11064-010-0311-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
|
40
|
Marcuzzo S, Dutra MF, Stigger F, do Nascimento PS, Ilha J, Kalil-Gaspar PI, Achaval M. Different effects of anoxia and hind-limb immobilization on sensorimotor development and cell numbers in the somatosensory cortex in rats. Brain Dev 2010; 32:323-31. [PMID: 19467580 DOI: 10.1016/j.braindev.2009.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 04/10/2009] [Accepted: 04/25/2009] [Indexed: 12/19/2022]
Abstract
Cerebral palsy (CP) is a group of movement and posture disorders attributed to insults in the developing brain. In rats, CP-like motor deficits can be induced by early hind-limb sensorimotor restriction (SR; from postnatal days P2 to P28), associated or otherwise with perinatal anoxia (PA; on P0 and P1). In this study, we address the question of whether PA, early SR or a combination of both produces alterations to sensorimotor development. Developmental milestones (surface righting, cliff aversion, stability on an inclined surface, proprioceptive placing, auditory startle, eye opening) were assessed daily from P3 to P14. Motor skills (horizontal ladder and beam walking) were evaluated weekly (from P31 to P52). In addition, on P52, the thickness of the somatosensory (S1) and cerebellar cortices, and corpus callosum were measured, and the neuronal and glial cell numbers in S1 were counted. SR (with or without PA) significantly delayed the stability on an inclined surface and hastened the appearance of the placing reflex and impaired motor skills. No significant differences were found in the thickness measurements between the groups. Quantitative histology of S1 showed that PA, either alone or associated with SR, increased the number of glial cells, while SR alone reduced neuronal cell numbers. Finally, the combination of PA and SR increased the size of neuronal somata. We conclude that SR impairs the achievement of developmental milestones and motor skills. Moreover, both SR and PA induce histological alterations in the S1 cortex, which may contribute to sensorimotor deficits.
Collapse
Affiliation(s)
- Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
Rush T, Liu X, Hjelmhaug J, Lobner D. Mechanisms of chlorpyrifos and diazinon induced neurotoxicity in cortical culture. Neuroscience 2010; 166:899-906. [DOI: 10.1016/j.neuroscience.2010.01.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 12/29/2009] [Accepted: 01/13/2010] [Indexed: 11/24/2022]
|
42
|
Buzanska L, Sypecka J, Nerini-Molteni S, Compagnoni A, Hogberg HT, del Torchio R, Domanska-Janik K, Zimmer J, Coecke S. A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system. Stem Cells 2010; 27:2591-601. [PMID: 19609937 DOI: 10.1002/stem.179] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of our study was to investigate whether a human neural stem cell line derived from umbilical cord blood (HUCB-NSC) can serve as a reliable test model for developmental neurotoxicity (DNT). We assessed the sensitivity of HUCB-NSCs at different developmental stages to a panel of neurotoxic (sodium tellurite, methylmercury chloride, cadmium chloride, chlorpyrifos, and L-glutamate) and non-neurotoxic (acetaminophen, theophylline, and D-glutamate) compounds. In addition, we investigated the effect of some compounds on key neurodevelopmental processes like cell proliferation, apoptotic cell death, and neuronal and glial differentiation. Less differentiated HUCB-NSCs were generally more sensitive to neurotoxicants, with the notable exception of L-glutamate, which showed a higher toxicity to later stages. The relative potencies of the compounds were: cadmium chloride > methylmercury chloride >> chlorpyrifos >> L-glutamate. Fifty nanomolar methylmercury chloride (MeHgCl) inhibited proliferation and induced apoptosis in early-stage cells. At the differentiated stage, 1 muM MeHgCl induced selective loss of S100 beta-expressing astrocytic cells. One millimolar L-glutamate did not influence the early stages of HUCB-NSC development, but it affected late stages of neuronal differentiation. A valuable system for in vitro DNT assessment should be able to discriminate between neurotoxic and non-neurotoxic compounds and show different susceptibilities to chemicals according to developmental stage and cell lineage. Although not exhaustive, this work shows that the HUCB-NSC model fulfils these criteria and may serve as a human in vitro model for DNT priority setting.
Collapse
Affiliation(s)
- Leonora Buzanska
- NeuroRepair Department, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hyperpolarization-activated and cyclic nucleotide-gated channels are differentially expressed in juxtaglomerular cells in the olfactory bulb of mice. Cell Tissue Res 2010; 339:463-79. [PMID: 20140458 PMCID: PMC2838509 DOI: 10.1007/s00441-009-0904-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 10/30/2009] [Indexed: 10/25/2022]
Abstract
In the olfactory bulb, input from olfactory receptor neurons is processed by neuronal networks before it is relayed to higher brain regions. In many neurons, hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels generate and control oscillations of the membrane potential. Oscillations also appear crucial for information processing in the olfactory bulb. Four channel isoforms exist (HCN1-HCN4) that can form homo- or heteromers. Here, we describe the expression pattern of HCN isoforms in the olfactory bulb of mice by using a novel and comprehensive set of antibodies against all four isoforms. HCN isoforms are abundantly expressed in the olfactory bulb. HCN channels can be detected in most cell populations identified by commonly used marker antibodies. The combination of staining with marker and HCN antibodies has revealed at least 17 different staining patterns in juxtaglomerular cells. Furthermore, HCN isoforms give rise to an unexpected wealth of co-expression patterns but are rarely expressed in the same combination and at the same level in two given cell populations. Therefore, heteromeric HCN channels may exist in several cell populations in vivo. Our results suggest that HCN channels play an important role in olfactory information processing. The staining patterns are consistent with the possibility that both homomeric and heteromeric HCN channels are involved in oscillations of the membrane potential of juxtaglomerular cells.
Collapse
|
44
|
Caceres LG, Aon Bertolino L, Saraceno GE, Zorrilla Zubilete MA, Uran SL, Capani F, Guelman LR. Hippocampal-related memory deficits and histological damage induced by neonatal ionizing radiation exposure. Role of oxidative status. Brain Res 2010; 1312:67-78. [DOI: 10.1016/j.brainres.2009.11.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/12/2009] [Accepted: 11/20/2009] [Indexed: 02/03/2023]
|
45
|
Sharma V, Nag TC, Wadhwa S, Roy TS. Stereological investigation and expression of calcium-binding proteins in developing human inferior colliculus. J Chem Neuroanat 2008; 37:78-86. [PMID: 19095058 DOI: 10.1016/j.jchemneu.2008.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Revised: 09/24/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
The mammalian inferior colliculus (IC) is a major relay nucleus in the auditory pathway. Prenatal development of the human IC has been inadequately studied. The present study reports the morphometric development and maturation of the human IC using unbiased stereology, in 18 aborted fetuses of various gestational ages (12-29 weeks) and two babies aged 40 postnatal days (PND) and 5 months (that died of postoperative complications). It also demonstrates the functional maturation of the IC by examining the expression of calcium-binding proteins--parvalbumin (PV) and calbindin (CB). There was a significant increase in the total number of neurons and glia from 18 weeks of gestation (WG). The glia and neuron volume increased significantly from 16 WG to 22 WG, respectively. The total volume of IC also increased significantly from 18 WG onwards. On the other hand, the number and volume of undifferentiated cell bodies across all ages decreased significantly. Expression of CB was concentrated in the dorsal cortex while that of PV was mainly confined to the central nucleus of the IC, possibly indicating an early segregation of parallel processing of information in the auditory pathways. Intense staining for CB in the soma and dendrites appeared earlier than that of the PV. The morphological maturation appeared to overlap the onset of functional maturation suggesting an activity-dependent mechanism in the development of IC.
Collapse
Affiliation(s)
- Vikram Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | |
Collapse
|
46
|
Eaton DL, Daroff RB, Autrup H, Bridges J, Buffler P, Costa LG, Coyle J, McKhann G, Mobley WC, Nadel L, Neubert D, Schulte-Hermann R, Spencer PS. Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Crit Rev Toxicol 2008; 38 Suppl 2:1-125. [PMID: 18726789 DOI: 10.1080/10408440802272158] [Citation(s) in RCA: 428] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Timofeeva OA, Sanders D, Seemann K, Yang L, Hermanson D, Regenbogen S, Agoos S, Kallepalli A, Rastogi A, Braddy D, Wells C, Perraut C, Seidler FJ, Slotkin TA, Levin ED. Persistent behavioral alterations in rats neonatally exposed to low doses of the organophosphate pesticide, parathion. Brain Res Bull 2008; 77:404-11. [PMID: 18817854 DOI: 10.1016/j.brainresbull.2008.08.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 08/17/2008] [Accepted: 08/18/2008] [Indexed: 11/26/2022]
Abstract
Although developmental exposures of rats to low levels of the organophosphate pesticides (OPs), chlorpyrifos (CPF) or diazinon (DZN), both cause persistent neurobehavioral effects, there are important differences in their neurotoxicity. The current study extended investigation to parathion (PTN), an OP that has higher systemic toxicity than either CPF or DZN. We gave PTN on postnatal days (PND) 1-4 at doses spanning the threshold for systemic toxicity (0, 0.1 or 0.2 mg/kg/day, s.c.) and performed a battery of emotional and cognitive behavioral tests in adolescence through adulthood. The higher PTN dose increased time spent on the open arms and the number of center crossings in the plus maze, indicating greater risk-taking and overall activity. This group also showed a decrease in tactile startle response without altering prepulse inhibition, indicating a blunted acute sensorimotor reaction without alteration in sensorimotor plasticity. T-maze spontaneous alternation, novelty-suppressed feeding, preference for sweetened chocolate milk, and locomotor activity were not significantly affected by neonatal PTN exposure. During radial-arm maze acquisition, rats given the lower PTN dose committed fewer errors compared to controls and displayed lower sensitivity to the amnestic effects of the NMDA receptor blocker, dizocilpine. No PTN effects were observed with regard to the sensitivity to blockade of muscarinic and nicotinic cholinergic receptors, or serotonin 5HT(2) receptors. This study shows that neonatal PTN exposure evokes long-term changes in behavior, but the effects are less severe, and in some incidences opposite in nature, to those seen earlier for CPF or DZN, findings consistent with our neurochemical studies showing different patterns of effects and less neurotoxic damage with PTN. Our results reinforce the conclusion that low dose exposure to different OPs can have quite different neurotoxic effects, obviously unconnected to their shared property as cholinesterase inhibitors.
Collapse
Affiliation(s)
- Olga A Timofeeva
- Department of Psychiatry and Behavioral Sciences, Box #3412, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Campaña AD, Sanchez F, Gamboa C, Gómez-Villalobos MDJ, De La Cruz F, Zamudio S, Flores G. Dendritic morphology on neurons from prefrontal cortex, hippocampus, and nucleus accumbens is altered in adult male mice exposed to repeated low dose of malathion. Synapse 2008; 62:283-90. [DOI: 10.1002/syn.20494] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Harper DG, Stopa EG, Kuo-Leblanc V, McKee AC, Asayama K, Volicer L, Kowall N, Satlin A. Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain 2008; 131:1609-17. [PMID: 18372313 DOI: 10.1093/brain/awn049] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The suprachiasmatic nuclei (SCN) are necessary and sufficient for the maintenance of circadian rhythms in primate and other mammalian species. The human dorsomedial SCN contains populations of non-species-specific vasopressin and species-specific neurotensin neurons. We made time-series recordings of core body temperature and locomotor activity in 19 elderly, male, end-stage dementia patients and 8 normal elderly controls. Following the death of the dementia patients, neuropathological diagnostic information and tissue samples from the hypothalamus were obtained. Hypothalamic tissue was also obtained from eight normal control cases that had not had activity or core temperature recordings previously. Core temperature was analysed for parametric, circadian features, and activity was analysed for non-parametric and parametric circadian features. These indices were then correlated with the degree of degeneration seen in the SCN (glia/neuron ratio) and neuronal counts from the dorsomedial SCN (vasopressin, neurotensin). Specific loss of SCN neurotensin neurons was associated with loss of activity and temperature amplitude without increase in activity fragmentation. Loss of SCN vasopressin neurons was associated with increased activity fragmentation but not loss of amplitude. Evidence for a circadian rhythm of vasopressinergic activity was seen in the dementia cases but no evidence was seen for a circadian rhythm in neurotensinergic activity. These results provide evidence that the SCN is necessary for the maintenance of the circadian rhythm in humans, information on the role of neuronal subpopulations in subserving this function and the utility of dementia in elaborating brain-behaviour relationships in the human.
Collapse
Affiliation(s)
- David G Harper
- Geriatric Psychiatry Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Slotkin TA, Seidler FJ, Fumagalli F. Targeting of neurotrophic factors, their receptors, and signaling pathways in the developmental neurotoxicity of organophosphates in vivo and in vitro. Brain Res Bull 2008; 76:424-38. [PMID: 18502319 DOI: 10.1016/j.brainresbull.2008.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/11/2007] [Accepted: 01/01/2008] [Indexed: 11/16/2022]
Abstract
Neurotrophic factors control neural cell differentiation and assembly of neural circuits. We previously showed that organophosphate pesticides differentially regulate members of the fibroblast growth factor (fgf) gene family. We administered chlorpyrifos and diazinon to neonatal rats on postnatal days 1-4 at doses devoid of systemic toxicity or growth impairment, and spanning the threshold for barely-detectable cholinesterase inhibition. We evaluated the impact on gene families for different classes of neurotrophic factors. Using microarrays, we examined the regional expression of mRNAs encoding the neurotrophins (ntfs), brain-derived neurotrophic factor (bdnf), nerve growth factor (ngf), the wnt and fzd gene families and the corresponding receptors. Chlorpyrifos and diazinon both had widespread effects on the fgf, ntf, wnt and fzd families but much less on the bdnf and ngf groups. However, the two organophosphates showed disparate effects on a number of key neurotrophic factors. To determine if the actions were mediated directly on differentiating neurons, we tested chlorpyrifos in PC12 cells, an in vitro model of neural cell development. Effects in PC12 cells mirrored many of those for members of the fgf, ntf and wnt families, as well as the receptors for the ntfs, especially during early differentiation, the stage known to be most susceptible to disruption by organophosphates. Our results suggest that actions on neurotrophic factors provide a mechanism for the developmental neurotoxicity of low doses of organophosphates, and, since effects on expression of the affected genes differed with test agent, may help explain regional disparities in effects and critical periods of vulnerability.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Box 3813 DUMC, Durham, NC 27710, USA.
| | | | | |
Collapse
|