1
|
Gu Y, Xu T, Fang Y, Shao J, Hu T, Wu X, Shen H, Xu Y, Zhang J, Song Y, Xia Y, Shu Y, Ma P. CBX4 counteracts cellular senescence to desensitize gastric cancer cells to chemotherapy by inducing YAP1 SUMOylation. Drug Resist Updat 2024; 77:101136. [PMID: 39154499 DOI: 10.1016/j.drup.2024.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
AIMS As our comprehension of the intricate relationship between cellular senescence and tumor biology continues to evolve, the therapeutic potential of cellular senescence is gaining increasing recognition. Here, we identify chromobox 4 (CBX4), a Small Ubiquitin-related Modifier (SUMO) E3 ligase, as an antagonist of cellular senescence and elucidate a novel mechanism by which CBX4 promotes drug resistance and malignant progression of gastric cancer (GC). METHODS In vitro and in vivo models were conducted to investigate the manifestation and impact of CBX4 on cellular senescence and chemoresistance. High-throughput sequencing, chromatin immunoprecipitation, and co-immunoprecipitation techniques were utilized to identify the upstream regulators and downstream effectors associated with CBX4, revealing its intricate regulatory network. RESULTS CBX4 diminishes the sensitivity of GC cells to cellular senescence, facilitating chemoresistance and GC development by deactivating the senescence-related Hippo pathway. Mechanistically, low-dose cisplatin transcriptionally downregulates CBX4 through CEBPB. In addition, CBX4 preserves the stability and cytoplasm-nuclear transport of YAP1, the key player of Hippo pathway, by inducing SUMO1 modification at K97 and K280, which competitively inhibits YAP1-S127 phosphorylation. CONCLUSIONS Our study highlights the anti-senescence role of CBX4 and suggests that CBX4 inhibition in combination with low-dose cisplatin has the potential to overcome chemoresistance and effectively restrict GC progression.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tingting Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuan Fang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Shao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tong Hu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xi Wu
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Haoyang Shen
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yangyue Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingxin Zhang
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Clinic School of Nanjing Medical University, Zhenjiang 212002, China
| | - Yu Song
- Zhangjiagang Hospital affiliated to Soochow University, China.
| | - Yang Xia
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, China.
| | - Pei Ma
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Dasgupta N, Arnold R, Equey A, Gandhi A, Adams PD. The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression. NPJ AGING 2024; 10:48. [PMID: 39448585 PMCID: PMC11502686 DOI: 10.1038/s41514-024-00172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Senescence and epigenetic alterations stand out as two well-characterized hallmarks of aging. When cells become senescent, they cease proliferation and release inflammatory molecules collectively termed the Senescence-Associated Secretory Phenotype (SASP). Senescence and SASP are implicated in numerous age-related diseases. Senescent cell nuclei undergo epigenetic reprogramming, which intricately regulates SASP expression. This review outlines the current understanding of how senescent cells undergo epigenetic changes and how these alterations govern SASP expression.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Rouven Arnold
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anais Equey
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Armin Gandhi
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Abdelmoaty AAA, Chen J, Zhang K, Wu C, Li Y, Li P, Xu J. Senolytic effect of triterpenoid complex from Ganoderma lucidum on adriamycin-induced senescent human hepatocellular carcinoma cells model in vitro and in vivo. Front Pharmacol 2024; 15:1422363. [PMID: 39364046 PMCID: PMC11447279 DOI: 10.3389/fphar.2024.1422363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Background Ganoderma lucidum (G. lucidum) is a famous medicinal mushroom that has been reported to prevent and treat a variety of diseases. Different extractions from G. lucidum have been used to manage age-related diseases, including cancer. Nevertheless, the senolytic activity of G. lucidum against senescent cancer cells has not been investigated. Although cellular senescence causes tumor growth inhibition, senescent cells promote the growth of the neighboring tumor cells through paracrine effects. Therefore, the elimination of senescent cells is a new strategy for cancer treatment. Methods In this study, senescence was triggered in HCC cells by the chemotherapeutic agent Adriamycin (ADR), and subsequently, cells were treated with TC to assess its senolytic activity. Results We found for the first time that the triterpenoid complex (TC) from G. lucidum had senolytic effect, which could selectively eliminate adriamycin (ADR)-induced senescent cells (SCs) of hepatocellular carcinoma (HCC) cells via caspase-dependent and mitochondrial pathways-mediated apoptosis and reduce the levels of senescence markers, thereby inhibiting the progression of cancers caused by SCs. TC could block autophagy at the late stage in SCs, resulting in a significant activation of TC-induced apoptosis. Furthermore, TC inhibited the senescence-associated secretory phenotype (SASP) in SCs through the inhibition of NF-κB, TFEB, P38, ERK, and mTOR signaling pathways and reducing the number of SCs. Sequential administration of ADR and TC in vivo significantly reduced tumor growth and reversed the toxicity of ADR. Conclusion A triterpenoid complex isolated from G. lucidum may serve as a novel senolytic agent against SCs, and its combination with chemotherapeutic agents may enhance their antitumor efficacy.
Collapse
Affiliation(s)
- Ahmed Attia Ahmed Abdelmoaty
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Jing Chen
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Kun Zhang
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Changhui Wu
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Peng Li
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jianhua Xu
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Dasgupta N, Lei X, Shi CH, Arnold R, Teneche MG, Miller KN, Rajesh A, Davis A, Anschau V, Campos AR, Gilson R, Havas A, Yin S, Chua ZM, Liu T, Proulx J, Alcaraz M, Rather MI, Baeza J, Schultz DC, Yip KY, Berger SL, Adams PD. Histone chaperone HIRA, promyelocytic leukemia protein, and p62/SQSTM1 coordinate to regulate inflammation during cell senescence. Mol Cell 2024; 84:3271-3287.e8. [PMID: 39178863 PMCID: PMC11390980 DOI: 10.1016/j.molcel.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/21/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory senescence-associated secretory phenotype (SASP), is a cause of aging. In senescent cells, cytoplasmic chromatin fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. Promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are also involved in senescence and anti-viral immunity. The HIRA histone H3.3 chaperone localizes to PML NBs in senescent cells. Here, we show that HIRA and PML are essential for SASP expression, tightly linked to HIRA's localization to PML NBs. Inactivation of HIRA does not directly block expression of nuclear factor κB (NF-κB) target genes. Instead, an H3.3-independent HIRA function activates SASP through a CCF-cGAS-STING-TBK1-NF-κB pathway. HIRA physically interacts with p62/SQSTM1, an autophagy regulator and negative SASP regulator. HIRA and p62 co-localize in PML NBs, linked to their antagonistic regulation of SASP, with PML NBs controlling their spatial configuration. These results outline a role for HIRA and PML in the regulation of SASP.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xue Lei
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christina Huan Shi
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rouven Arnold
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karl N Miller
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew Davis
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Valesca Anschau
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alexandre R Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rebecca Gilson
- Biophotonics Core, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Aaron Havas
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zong Ming Chua
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tianhui Liu
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jessica Proulx
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael Alcaraz
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mohammed Iqbal Rather
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, Glasgow G61 1BD, UK
| | - Josue Baeza
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David C Schultz
- High Throughput Screening Core, Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Y Yip
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Ji D, Xiao X, Luo A, Fan X, Ma J, Wang D, Xia M, Ma L, Wang PY, Li W, Chen P. FACT mediates the depletion of macroH2A1.2 to expedite gene transcription. Mol Cell 2024; 84:3011-3025.e7. [PMID: 39116874 DOI: 10.1016/j.molcel.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
The histone variant macroH2A is generally linked to transcriptionally inactive chromatin, but how macroH2A regulates chromatin structure and functions in the transcriptional process remains elusive. This study reveals that while the integration of human macroH2A1.2 into nucleosomes does not affect their stability or folding dynamics, it notably hinders the maintenance of facilitates chromatin transcription's (FACT's) function. We show that FACT effectively diminishes the stability of macroH2A1.2-nucleosomes and expedites their depletion subsequent to the initial unfolding process. Furthermore, we identify the residue S139 in macroH2A1.2 as a critical switch to modulate FACT's function in nucleosome maintenance. Genome-wide analyses demonstrate that FACT-mediated depletion of macroH2A-nucleosomes allows the correct localization of macroH2A, while the S139 mutation reshapes macroH2A distribution and influences stimulation-induced transcription and cellular response in macrophages. Our findings provide mechanistic insights into the intricate interplay between macroH2A and FACT at the nucleosome level and elucidate their collective role in transcriptional regulation and immune response of macrophages.
Collapse
Affiliation(s)
- Dengyu Ji
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xue Xiao
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Anfeng Luo
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Xiongxiong Fan
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Jingzhe Ma
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Dayi Wang
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Miaoran Xia
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Li
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Olan I, Ando-Kuri M, Parry AJ, Handa T, Schoenfelder S, Fraser P, Ohkawa Y, Kimura H, Narita M, Narita M. HMGA1 orchestrates chromatin compartmentalization and sequesters genes into 3D networks coordinating senescence heterogeneity. Nat Commun 2024; 15:6891. [PMID: 39134516 PMCID: PMC11319441 DOI: 10.1038/s41467-024-51153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
HMGA1 is an abundant non-histone chromatin protein that has been implicated in embryonic development, cancer, and cellular senescence, but its specific role remains elusive. Here, we combine functional genomics approaches with graph theory to investigate how HMGA1 genomic deposition controls high-order chromatin networks in an oncogene-induced senescence model. While the direct role of HMGA1 in gene activation has been described previously, we find little evidence to support this. Instead, we show that the heterogeneous linear distribution of HMGA1 drives a specific 3D chromatin organization. HMGA1-dense loci form highly interactive networks, similar to, but independent of, constitutive heterochromatic loci. This, coupled with the exclusion of HMGA1-poor chromatin regions, leads to coordinated gene regulation through the repositioning of genes. In the absence of HMGA1, the whole process is largely reversed, but many regulatory interactions also emerge, amplifying the inflammatory senescence-associated secretory phenotype. Such HMGA1-mediated fine-tuning of gene expression contributes to the heterogeneous nature of senescence at the single-cell level. A similar 'buffer' effect of HMGA1 on inflammatory signalling is also detected in lung cancer cells. Our study reveals a mechanism through which HMGA1 modulates chromatin compartmentalization and gene regulation in senescence and beyond.
Collapse
Affiliation(s)
- Ioana Olan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Masami Ando-Kuri
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Oncode In stitute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aled J Parry
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Altos Labs Cambridge Institute, Portway Building, Granta Park, Cambridge, UK
| | - Tetsuya Handa
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
- Enhanc3D Genomics Ltd, Cambridge, UK
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Masako Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
7
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Kim HJ, Szurgot MR, van Eeuwen T, Ricketts MD, Basnet P, Zhang AL, Vogt A, Sharmin S, Kaplan CD, Garcia BA, Marmorstein R, Murakami K. Structure of the Hir histone chaperone complex. Mol Cell 2024; 84:2601-2617.e12. [PMID: 38925115 PMCID: PMC11338637 DOI: 10.1016/j.molcel.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
The evolutionarily conserved HIRA/Hir histone chaperone complex and ASF1a/Asf1 co-chaperone cooperate to deposit histone (H3/H4)2 tetramers on DNA for replication-independent chromatin assembly. The molecular architecture of the HIRA/Hir complex and its mode of histone deposition have remained unknown. Here, we report the cryo-EM structure of the S. cerevisiae Hir complex with Asf1/H3/H4 at 2.9-6.8 Å resolution. We find that the Hir complex forms an arc-shaped dimer with a Hir1/Hir2/Hir3/Hpc2 stoichiometry of 2/4/2/4. The core of the complex containing two Hir1/Hir2/Hir2 trimers and N-terminal segments of Hir3 forms a central cavity containing two copies of Hpc2, with one engaged by Asf1/H3/H4, in a suitable position to accommodate a histone (H3/H4)2 tetramer, while the C-terminal segments of Hir3 harbor nucleic acid binding activity to wrap DNA around the Hpc2-assisted histone tetramer. The structure suggests a model for how the Hir/Asf1 complex promotes the formation of histone tetramers for their subsequent deposition onto DNA.
Collapse
Affiliation(s)
- Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary R Szurgot
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor van Eeuwen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Daniel Ricketts
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pratik Basnet
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Athena L Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Austin Vogt
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samah Sharmin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Sanfeliu-Redondo D, Gibert-Ramos A, Gracia-Sancho J. Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nat Rev Gastroenterol Hepatol 2024; 21:477-492. [PMID: 38485755 DOI: 10.1038/s41575-024-00913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 06/30/2024]
Abstract
The liver is not oblivious to the passage of time, as ageing is a major risk factor for the development of acute and chronic liver diseases. Ageing produces alterations in all hepatic cells, affecting their phenotype and function and worsening the prognosis of liver disease. The ageing process also implies the accumulation of a cellular state characterized by a persistent proliferation arrest and a specific secretory phenotype named cellular senescence. Indeed, senescent cells have key roles in many physiological processes; however, their accumulation owing to ageing or pathological conditions contributes to the damage occurring in chronic diseases. The aim of this Review is to provide an updated description of the pathophysiological events in which hepatic senescent cells are involved and their role in liver disease progression. Finally, we discuss novel geroscience therapies that could be applied to prevent or improve liver diseases and age-mediated hepatic deregulations.
Collapse
Affiliation(s)
- David Sanfeliu-Redondo
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Albert Gibert-Ramos
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain.
- Department of Visceral Surgery and Medicine, Inselspital - University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Dasgupta N, Lei X, Shi CH, Arnold R, Teneche MG, Miller KN, Rajesh A, Davis A, Anschau V, Campos AR, Gilson R, Havas A, Yin S, Chua ZM, Liu T, Proulx J, Alcaraz M, Rather MI, Baeza J, Schultz DC, Yip KY, Berger SL, Adams PD. Histone chaperone HIRA, Promyelocytic Leukemia (PML) protein and p62/SQSTM1 coordinate to regulate inflammation during cell senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.24.546372. [PMID: 38979156 PMCID: PMC11230268 DOI: 10.1101/2023.06.24.546372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory Senescence-Associated Secretory Phenotype (SASP), is a cause of aging. In senescent cells, Cytoplasmic Chromatin Fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. PML protein organizes PML nuclear bodies (NBs), also involved in senescence and anti-viral immunity. The HIRA histone H3.3 chaperone localizes to PML NBs in senescent cells. Here, we show that HIRA and PML are essential for SASP expression, tightly linked to HIRA's localization to PML NBs. Inactivation of HIRA does not directly block expression of NF-κB target genes. Instead, an H3.3-independent HIRA function activates SASP through a CCF-cGAS-STING-TBK1-NF-κB pathway. HIRA physically interacts with p62/SQSTM1, an autophagy regulator and negative SASP regulator. HIRA and p62 co-localize in PML NBs, linked to their antagonistic regulation of SASP, with PML NBs controlling their spatial configuration. These results outline a role for HIRA and PML in regulation of SASP.
Collapse
|
11
|
Guo S, Tang Q, Gao X, Hu L, Hu K, Zhang H, Zhang Q, Lai Y, Liu Y, Wang Z, Chang S, Zhang Y, Hu H, An D, Peng Y, Cai H, Shi J. EZH2 inhibition induces senescence via ERK1/2 signaling pathway in multiple myeloma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1055-1064. [PMID: 38804044 PMCID: PMC11322866 DOI: 10.3724/abbs.2024077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/04/2024] [Indexed: 05/29/2024] Open
Abstract
Epigenetic modifications play an important role in cellular senescence, and enhancer of zeste homolog 2 (EZH2) is a key methyltransferase involved in epigenetic remodeling in multiple myeloma (MM) cells. We have previously demonstrated that GSK126, a specific EZH2 inhibitor, exhibits anti-MM therapeutic efficacy and safety in vivo and in vitro; however, its specific mechanism remains unclear. This study shows that GSK126 induces cellular senescence in MM, which is characterized by the accumulation of senescence-associated heterochromatin foci (SAHF) and p21, and increased senescence-associated β galactosidase activity. Furthermore, EZH2 is inhibited in ribonucleotide reductase regulatory subunit M2 (RRM2)-overexpressing OCI-MY5 and RPMI-8226 cells. RRM2 overexpression inhibits the methyltransferase function of EZH2 and promotes its degradation through the ubiquitin-proteasome pathway, thereby inducing cellular senescence. In this senescence model, Lamin B1, a key component of the nuclear envelope and a marker of senescence, does not decrease but instead undergoes aberrant accumulation. Meanwhile, phosphorylation of extracellular signal-regulated protein kinase (ERK1/2) is significantly increased. The inhibition of ERK1/2 phosphorylation in turn partially restores Lamin B1 level and alleviates senescence. These findings suggest that EZH2 inhibition increases Lamin B1 level and induces senescence by promoting ERK1/2 phosphorylation. These data indicate that EZH2 plays an important role in MM cellular senescence and provide insights into the relationships among Lamin B1, p-ERK1/2, and cellular senescence.
Collapse
Affiliation(s)
- Shushan Guo
- Shanghai Clinical CollegeAnhui Medical UniversityShanghai200072China
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei230022China
| | - Qiongwei Tang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xuejie Gao
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Liangning Hu
- Department of HematologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310016China
| | - Ke Hu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Hui Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Qikai Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yue Lai
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yujie Liu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhuning Wang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Shuaikang Chang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yifei Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Huifang Hu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Dong An
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yu Peng
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Haiyan Cai
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jumei Shi
- Shanghai Clinical CollegeAnhui Medical UniversityShanghai200072China
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei230022China
| |
Collapse
|
12
|
Herr LM, Schaffer ED, Fuchs KF, Datta A, Brosh RM. Replication stress as a driver of cellular senescence and aging. Commun Biol 2024; 7:616. [PMID: 38777831 PMCID: PMC11111458 DOI: 10.1038/s42003-024-06263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Replication stress refers to slowing or stalling of replication fork progression during DNA synthesis that disrupts faithful copying of the genome. While long considered a nexus for DNA damage, the role of replication stress in aging is under-appreciated. The consequential role of replication stress in promotion of organismal aging phenotypes is evidenced by an extensive list of hereditary accelerated aging disorders marked by molecular defects in factors that promote replication fork progression and operate uniquely in the replication stress response. Additionally, recent studies have revealed cellular pathways and phenotypes elicited by replication stress that align with designated hallmarks of aging. Here we review recent advances demonstrating the role of replication stress as an ultimate driver of cellular senescence and aging. We discuss clinical implications of the intriguing links between cellular senescence and aging including application of senotherapeutic approaches in the context of replication stress.
Collapse
Affiliation(s)
- Lauren M Herr
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ethan D Schaffer
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kathleen F Fuchs
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
13
|
Dubey SK, Dubey R, Prajapati SC, Jung K, Mohan K, Liu X, Roney J, Tian W, Abney J, Giarmarco MM, Hernandez AG, Liu J, Kleinman ME. Histone deficiency and hypoacetylation in the aging retinal pigment epithelium. Aging Cell 2024; 23:e14108. [PMID: 38408164 PMCID: PMC11113634 DOI: 10.1111/acel.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Histones serve as a major carrier of epigenetic information in the form of post-translational modifications which are vital for controlling gene expression, maintaining cell identity, and ensuring proper cellular function. Loss of histones in the aging genome can drastically impact the epigenetic landscape of the cell leading to altered chromatin structure and changes in gene expression profiles. In this study, we investigated the impact of age-related changes on histone levels and histone acetylation in the retinal pigment epithelium (RPE) and retina of mice. We observed a global reduction of histones H1, H2A, H2B, H3, and H4 in aged RPE/choroid but not in the neural retina. Transcriptomic analyses revealed significant downregulation of histones in aged RPE/choroid including crucial elements of the histone locus body (HLB) complex involved in histone pre-mRNA processing. Knockdown of HINFP, a key HLB component, in human RPE cells induced histone loss, senescence, and the upregulation of senescence-associated secretory phenotype (SASP) markers. Replicative senescence and chronological aging in human RPE cells similarly resulted in progressive histone loss and acquisition of the SASP. Immunostaining of human retina sections revealed histone loss in RPE with age. Acetyl-histone profiling in aged mouse RPE/choroid revealed a specific molecular signature with loss of global acetyl-histone levels, including H3K14ac, H3K56ac, and H4K16ac marks. These findings strongly demonstrate histone loss as a unique feature of RPE aging and provide critical insights into the potential mechanisms linking histone dynamics, cellular senescence, and aging.
Collapse
Affiliation(s)
- Sushil K. Dubey
- Department of SurgeryEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Rashmi Dubey
- Department of SurgeryEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Subhash C. Prajapati
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Kyungsik Jung
- Department of SurgeryEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Kabhilan Mohan
- Department of SurgeryEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Xinan Liu
- Department of Computer ScienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Jacob Roney
- Department of Ophthalmology and Visual SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Wenjian Tian
- Department of SurgeryEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Jennifer Abney
- Department of Ophthalmology and Visual SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology CenterUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Jinze Liu
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Mark E. Kleinman
- Department of SurgeryEast Tennessee State UniversityJohnson CityTennesseeUSA
| |
Collapse
|
14
|
D'Antona S, Porro D, Gallivanone F, Bertoli G. Characterization of cell cycle, inflammation, and oxidative stress signaling role in non-communicable diseases: Insights into genetic variants, microRNAs and pathways. Comput Biol Med 2024; 174:108346. [PMID: 38581999 DOI: 10.1016/j.compbiomed.2024.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
Non-Communicable Diseases (NCDs) significantly impact global health, contributing to over 70% of premature deaths, as reported by the World Health Organization (WHO). These diseases have complex and multifactorial origins, involving genetic, epigenetic, environmental and lifestyle factors. While Genome-Wide Association Study (GWAS) is widely recognized as a valuable tool for identifying variants associated with complex phenotypes; the multifactorial nature of NCDs necessitates a more comprehensive exploration, encompassing not only the genetic but also the epigenetic aspect. For this purpose, we employed a bioinformatics-multiomics approach to examine the genetic and epigenetic characteristics of NCDs (i.e. colorectal cancer, coronary atherosclerosis, squamous cell lung cancer, psoriasis, type 2 diabetes, and multiple sclerosis), aiming to identify novel biomarkers for diagnosis and prognosis. Leveraging GWAS summary statistics, we pinpointed Single Nucleotide Polymorphisms (SNPs) independently associated with each NCD. Subsequently, we identified genes linked to cell cycle, inflammation and oxidative stress mechanisms, revealing shared genes across multiple diseases, suggesting common functional pathways. From an epigenetic perspective, we identified microRNAs (miRNAs) with regulatory functions targeting these genes of interest. Our findings underscore critical genetic pathways implicated in these diseases. In colorectal cancer, the dysregulation of the "Cytokine Signaling in Immune System" pathway, involving LAMA5 and SMAD7, regulated by Hsa-miR-21-5p, Hsa-miR-103a-3p, and Hsa-miR-195-5p, emerged as pivotal. In coronary atherosclerosis, the pathway associated with "binding of TCF/LEF:CTNNB1 to target gene promoters" displayed noteworthy implications, with the MYC factor controlled by Hsa-miR-16-5p as a potential regulatory factor. Squamous cell lung carcinoma analysis revealed significant pathways such as "PTK6 promotes HIF1A stabilization," regulated by Hsa-let-7b-5p. In psoriasis, the "Endosomal/Vacuolar pathway," involving HLA-C and Hsa-miR-148a-3p and Hsa-miR-148b-3p, was identified as crucial. Type 2 Diabetes implicated the "Regulation of TP53 Expression" pathway, controlled by Hsa-miR-106a-5p and Hsa-miR-106b-5p. In conclusion, our study elucidates the genetic framework and molecular mechanisms underlying NCDs, offering crucial insights into potential genetic/epigenetic biomarkers for diagnosis and prognosis. The specificity of pathways and related miRNAs in different pathologies highlights promising candidates for further clinical validation, with the potential to advance personalized treatments and alleviate the global burden of NCDs.
Collapse
Affiliation(s)
- Salvatore D'Antona
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy
| | - Danilo Porro
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesca Gallivanone
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy
| | - Gloria Bertoli
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy.
| |
Collapse
|
15
|
Yamamoto Y, Takahashi RU, Kinehara M, Yano K, Kuramoto T, Shimamoto A, Tahara H. Downregulation of Histone H3.3 Induces p53-Dependent Cellular Senescence in Human Diploid Fibroblasts. Genes (Basel) 2024; 15:543. [PMID: 38790171 PMCID: PMC11121134 DOI: 10.3390/genes15050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Cellular senescence is an irreversible growth arrest that acts as a barrier to cancer initiation and progression. Histone alteration is one of the major events during replicative senescence. However, little is known about the function of H3.3 in cellular senescence. Here we found that the downregulation of H3.3 induced growth suppression with senescence-like phenotypes such as senescence-associated heterochromatin foci (SAHF) and β-galactosidase (SA-β-gal) activity. Furthermore, H3.3 depletion induced senescence-like phenotypes with the p53/p21-depedent pathway. In addition, we identified miR-22-3p, tumor suppressive miRNA, as an upstream regulator of the H3F3B (H3 histone, family 3B) gene which is the histone variant H3.3 and replaces conventional H3 in active genes. Therefore, our results reveal for the first time the molecular mechanisms for cellular senescence which are regulated by H3.3 abundance. Taken together, our studies suggest that H3.3 exerts functional roles in regulating cellular senescence and is a promising target for cancer therapy.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Ryou-u Takahashi
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Masaki Kinehara
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Tatsuya Kuramoto
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Akira Shimamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda 756-0884, Japan;
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| |
Collapse
|
16
|
Elshazly AM, Shahin U, Al Shboul S, Gewirtz DA, Saleh T. A Conversation with ChatGPT on Contentious Issues in Senescence and Cancer Research. Mol Pharmacol 2024; 105:313-327. [PMID: 38458774 PMCID: PMC11026153 DOI: 10.1124/molpharm.124.000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Artificial intelligence (AI) platforms, such as Generative Pretrained Transformer (ChatGPT), have achieved a high degree of popularity within the scientific community due to their utility in providing evidence-based reviews of the literature. However, the accuracy and reliability of the information output and the ability to provide critical analysis of the literature, especially with respect to highly controversial issues, has generally not been evaluated. In this work, we arranged a question/answer session with ChatGPT regarding several unresolved questions in the field of cancer research relating to therapy-induced senescence (TIS), including the topics of senescence reversibility, its connection to tumor dormancy, and the pharmacology of the newly emerging drug class of senolytics. ChatGPT generally provided responses consistent with the available literature, although occasionally overlooking essential components of the current understanding of the role of TIS in cancer biology and treatment. Although ChatGPT, and similar AI platforms, have utility in providing an accurate evidence-based review of the literature, their outputs should still be considered carefully, especially with respect to unresolved issues in tumor biology. SIGNIFICANCE STATEMENT: Artificial Intelligence platforms have provided great utility for researchers to investigate biomedical literature in a prompt manner. However, several issues arise when it comes to certain unresolved biological questions, especially in the cancer field. This work provided a discussion with ChatGPT regarding some of the yet-to-be-fully-elucidated conundrums of the role of therapy-induced senescence in cancer treatment and highlights the strengths and weaknesses in utilizing such platforms for analyzing the scientific literature on this topic.
Collapse
Affiliation(s)
- Ahmed M Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Uruk Shahin
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Sofian Al Shboul
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Tareq Saleh
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| |
Collapse
|
17
|
Reimann M, Lee S, Schmitt CA. Cellular senescence: Neither irreversible nor reversible. J Exp Med 2024; 221:e20232136. [PMID: 38385946 PMCID: PMC10883852 DOI: 10.1084/jem.20232136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Cellular senescence is a critical stress response program implicated in embryonic development, wound healing, aging, and immunity, and it backs up apoptosis as an ultimate cell-cycle exit mechanism. In analogy to replicative exhaustion of telomere-eroded cells, premature types of senescence-referring to oncogene-, therapy-, or virus-induced senescence-are widely considered irreversible growth arrest states as well. We discuss here that entry into full-featured senescence is not necessarily a permanent endpoint, but dependent on essential maintenance components, potentially transient. Unlike a binary state switch, we view senescence with its extensive epigenomic reorganization, profound cytomorphological remodeling, and distinctive metabolic rewiring rather as a journey toward a full-featured arrest condition of variable strength and depth. Senescence-underlying maintenance-essential molecular mechanisms may allow cell-cycle reentry if not continuously provided. Importantly, senescent cells that resumed proliferation fundamentally differ from those that never entered senescence, and hence would not reflect a reversion but a dynamic progression to a post-senescent state that comes with distinct functional and clinically relevant ramifications.
Collapse
Affiliation(s)
- Maurice Reimann
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
| | - Soyoung Lee
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
- Johannes Kepler University , Linz, Austria
| | - Clemens A Schmitt
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
- Johannes Kepler University , Linz, Austria
- Department of Hematology and Oncology, Kepler University Hospital, Linz, Austria
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| |
Collapse
|
18
|
Melones-Herrero J, Alcalá S, Ruiz-Cañas L, Benítez-Buelga C, Batres-Ramos S, Calés C, Lorenzo O, Perona R, Quiroga AG, Sainz B, Sánchez-Pérez I. Platinum iodido drugs show potential anti-tumor activity, affecting cancer cell metabolism and inducing ROS and senescence in gastrointestinal cancer cells. Commun Biol 2024; 7:353. [PMID: 38519773 PMCID: PMC10959927 DOI: 10.1038/s42003-024-06052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Cisplatin-based chemotherapy has associated clinical disadvantages, such as high toxicity and resistance. Thus, the development of new antitumor metallodrugs able to overcome different clinical barriers is a public healthcare priority. Here, we studied the mechanism of action of the isomers trans and cis-[PtI2(isopropylamine)2] (I5 and I6, respectively) against gastrointestinal cancer cells. We demonstrate that I5 and I6 modulate mitochondrial metabolism, decreasing OXPHOS activity and negatively affecting ATP-linked oxygen consumption rate. Consequently, I5 and I6 generated Reactive Oxygen Species (ROS), provoking oxidative damage and eventually the induction of senescence. Thus, herein we propose a loop with three interconnected processes modulated by these iodido agents: (i) mitochondrial dysfunction and metabolic disruptions; (ii) ROS generation and oxidative damage; and (iii) cellular senescence. Functionally, I5 reduces cancer cell clonogenicity and tumor growth in a pancreatic xenograft model without systemic toxicity, highlighting a potential anticancer complex that warrants additional pre-clinical studies.
Collapse
Affiliation(s)
- Jorge Melones-Herrero
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sonia Alcalá
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Ruiz-Cañas
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carlos Benítez-Buelga
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
| | - Sandra Batres-Ramos
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmela Calés
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, Instituto de Investigaciones Sanitarias-Fundación Jimenez Díaz, CIBERDEM, UAM, Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Rare Diseases, CIBERER, ISCIII, Madrid, Spain
- Instituto de Salud Carlos III, Madrid, Spain
| | - Adoración G Quiroga
- Department of Inorganic Chemistry, School of Sciences, IAdChem, UAM, Madrid, Spain
| | - Bruno Sainz
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain.
| | - Isabel Sánchez-Pérez
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red, Área Rare Diseases, CIBERER, ISCIII, Madrid, Spain.
- Unidad Asociada de Biomedicina UCLM-CSIC, Madrid, Spain.
| |
Collapse
|
19
|
Shreeya T, Ansari MS, Kumar P, Saifi M, Shati AA, Alfaifi MY, Elbehairi SEI. Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. FRONTIERS IN AGING 2024; 4:1292053. [PMID: 38596783 PMCID: PMC11002673 DOI: 10.3389/fragi.2023.1292053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Senescence is a complicated, multi-factorial, irreversible cell cycle halt that has a tumor-suppressing effect in addition to being a significant factor in aging and neurological diseases. Damaged DNA, neuroinflammation, oxidative stress and disrupted proteostasis are a few of the factors that cause senescence. Senescence is triggered by DNA damage which initiates DNA damage response. The DNA damage response, which includes the formation of DNA damage foci containing activated H2AX, which is a key factor in cellular senescence, is provoked by a double strand DNA break. Oxidative stress impairs cognition, inhibits neurogenesis, and has an accelerated aging effect. Senescent cells generate pro-inflammatory mediators known as senescence-associated secretory phenotype (SASP). These pro-inflammatory cytokines and chemokines have an impact on neuroinflammation, neuronal death, and cell proliferation. While it is tempting to think of neurodegenerative diseases as manifestations of accelerated aging and senescence, this review will present information on brain ageing and neurodegeneration as a result of senescence and DNA damage response.
Collapse
Affiliation(s)
- Tejal Shreeya
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Mohd Saifullah Ansari
- Institute of Genetics, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Prabhat Kumar
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | | | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
20
|
Ignatyeva M, Patel AKM, Ibrahim A, Albiheyri RS, Zari AT, Bahieldin A, Bronner C, Sabir JSM, Hamiche A. Identification and Characterization of HIRIP3 as a Histone H2A Chaperone. Cells 2024; 13:273. [PMID: 38334665 PMCID: PMC10854748 DOI: 10.3390/cells13030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
HIRIP3 is a mammalian protein homologous to the yeast H2A.Z deposition chaperone Chz1. However, the structural basis underlying Chz's binding preference for H2A.Z over H2A, as well as the mechanism through which Chz1 modulates histone deposition or replacement, remains enigmatic. In this study, we aimed to characterize the function of HIRIP3 and to identify its interacting partners in HeLa cells. Our findings reveal that HIRIP3 is specifically associated in vivo with H2A-H2B dimers and CK2 kinase. While bacterially expressed HIRIP3 exhibited a similar binding affinity towards H2A and H2A.Z, the associated CK2 kinase showed a notable preference for H2A phosphorylation at serine 1. The recombinant HIRIP3 physically interacted with the H2A αC helix through an extended CHZ domain and played a crucial role in depositing the canonical core histones onto naked DNA. Our results demonstrate that mammalian HIRIP3 acts as an H2A histone chaperone, assisting in its selective phosphorylation by Ck2 kinase at serine 1 and facilitating its deposition onto chromatin.
Collapse
Affiliation(s)
- Maria Ignatyeva
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Abdul Kareem Mohideen Patel
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Abdulkhaleg Ibrahim
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Raed S. Albiheyri
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali T. Zari
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Bahieldin
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Christian Bronner
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Jamal S. M. Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
| |
Collapse
|
21
|
Saleh T, Naffa R, Barakat NA, Ismail MA, Alotaibi MR, Alsalem M. Cisplatin Provokes Peripheral Nociception and Neuronal Features of Therapy-Induced Senescence and Calcium Dysregulation in Rats. Neurotox Res 2024; 42:10. [PMID: 38294571 DOI: 10.1007/s12640-024-00690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Therapy-Induced Senescence (TIS) is a form of senescence that is typically described in malignant cells in response to the exposure of cancer chemotherapy or radiation but can also be precipitated in non-malignant cells. TIS has been shown to contribute to the development of several cancer therapy-related adverse effects; however, evidence on its role in mediating chemotherapy-induced neurotoxicity, such as Chemotherapy-induced Peripheral Neuropathy (CIPN), is limited. We here show that cisplatin treatment over two cycles (cumulative dose of 23 mg/kg) provoked mechanical allodynia and thermal hyperalgesia in Sprague-Dawley rats. Isolation of dorsal root ganglia (DRG) from the cisplatin-treated rats demonstrated robust SA-β-gal upregulation at both day 8 (after the first cycle) and day 18 (after the second cycle), decreased lmnb1 expression, increased expression of cdkn1a and cdkn2a, and of several factors of the Senescence-associated Secretory Phenotype (SASP) (Il6, Il1b, and mmp9). Moreover, single-cell calcium imaging of cultured DRGs revealed a significant increase in terms of the magnitude of KCl-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats. No significant change was observed in terms of the magnitude of capsaicin-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats but with decreased area under the curve of the responses in cisplatin-treated rats. Further evidence to support the contribution of TIS to therapy adverse effects is required but should encourage the use of senescence-modulating agents (senotherapeutics) as novel palliative approaches to mitigate chemotherapy-induced neurotoxicity.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| | - Randa Naffa
- Department of Basic Dental Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Noor A Barakat
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammad A Ismail
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
- Adelaide Medical School, South Australian ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammad Alsalem
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
22
|
Udroiu I, Marinaccio J, Sgura A. Effects of p53 and ATRX inhibition on telomeric recombination in aging fibroblasts. Front Oncol 2024; 14:1322438. [PMID: 38333682 PMCID: PMC10850245 DOI: 10.3389/fonc.2024.1322438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
In order to avoid replicative senescence, tumor cells must acquire a telomere maintenance mechanism. Beside telomerase activation, a minority of tumors employs a recombinational mechanism called Alternative Lengthening of Telomeres (ALT). Several studies have investigated the potential ALT stimulation by inactivation of ATRX in tumor cells, obtaining contrasting results. Differently, since ALT can be viewed as a mechanism to overcome telomere shortening-mediated replicative senescence, we have investigated the effects of the inhibition of ATRX and p53 in aging primary fibroblasts. We observed that senescence leads to a phenotype that seems permissive for ALT activity, i.e. high levels of ALT-associated PML bodies (APB), telomeric damage and telomeric cohesion. On the other hand, RAD51 is highly repressed and thus telomeric recombination, upon which the ALT machinery relies, is almost absent. Silencing of ATRX greatly increases telomeric recombination in young cells, but is not able to overcome senescence-induced repression of homologous recombination. Conversely, inhibition of both p53 and ATRX leads to a phenotype reminiscent of some aspects of ALT activity, with a further increase of APB, a decrease of telomere shortening (and increased proliferation) and, above all, an increase of telomeric recombination.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università “Roma Tre“, Rome, Italy
| | | | | |
Collapse
|
23
|
Zhang W, Li G, Zhou X, Liang H, Tong B, Wu D, Yang K, Song Y, Wang B, Liao Z, Ma L, Ke W, Zhang X, Lei J, Lei C, Feng X, Wang K, Zhao K, Yang C. Disassembly of the TRIM56-ATR complex promotes cytoDNA/cGAS/STING axis-dependent intervertebral disc inflammatory degeneration. J Clin Invest 2024; 134:e165140. [PMID: 38488012 PMCID: PMC10940101 DOI: 10.1172/jci165140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2024] [Indexed: 03/18/2024] Open
Abstract
As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD.
Collapse
Affiliation(s)
- Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kevin Yang
- Wuhan Britain-China School, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunchi Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Alsalem M, Ellaithy A, Bloukh S, Haddad M, Saleh T. Targeting therapy-induced senescence as a novel strategy to combat chemotherapy-induced peripheral neuropathy. Support Care Cancer 2024; 32:85. [PMID: 38177894 DOI: 10.1007/s00520-023-08287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a treatment-limiting adverse effect of anticancer therapy that complicates the lifestyle of many cancer survivors. There is currently no gold-standard for the assessment or management of CIPN. Subsequently, understanding the underlying mechanisms that lead to the development of CIPN is essential for finding better pharmacological therapy. Therapy-induced senescence (TIS) is a form of senescence that is triggered in malignant and non-malignant cells in response to the exposure to chemotherapy. Recent evidence has also suggested that TIS develops in the dorsal root ganglia of rodent models of CIPN. Interestingly, several components of the senescent phenotype are commensurate with the currently established primary processes implicated in the pathogenesis of CIPN including mitochondrial dysfunction, oxidative stress, and neuroinflammation. In this article, we review the literature that supports the hypothesis that TIS could serve as a holistic mechanism leading to CIPN, and we propose the potential for investigating senotherapeutics as means to mitigate CIPN in cancer survivors.
Collapse
Affiliation(s)
- Mohammad Alsalem
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Amr Ellaithy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Bloukh
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mansour Haddad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
25
|
Recoules L, Tanguy Le Gac N, Moutahir F, Bystricky K, Lavigne AC. Recruitment of the Histone Variant MacroH2A1 to the Pericentric Region Occurs upon Chromatin Relaxation and Is Responsible for Major Satellite Transcriptional Regulation. Cells 2023; 12:2175. [PMID: 37681907 PMCID: PMC10486525 DOI: 10.3390/cells12172175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Heterochromatin formation plays a pivotal role in regulating chromatin organization and influences nuclear architecture and genome stability and expression. Amongst the locations where heterochromatin is found, the pericentric regions have the capability to attract the histone variant macroH2A1. However, the factors and mechanisms behind macroH2A1 incorporation into these regions have not been explored. In this study, we probe different conditions that lead to the recruitment of macroH2A1 to pericentromeric regions and elucidate its underlying functions. Through experiments conducted on murine fibroblastic cells, we determine that partial chromatin relaxation resulting from DNA damage, senescence, or histone hyper-acetylation is necessary for the recruitment of macroH2A1 to pericentric regions. Furthermore, macroH2A1 is required for upregulation of noncoding pericentric RNA expression but not for pericentric chromatin organization. Our findings shed light on the functional rather than structural significance of macroH2A1 incorporation into pericentric chromatin.
Collapse
Affiliation(s)
- Ludmila Recoules
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| | - Nicolas Tanguy Le Gac
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| | - Fatima Moutahir
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| | - Kerstin Bystricky
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
- Institut Universitaire de France (IUF), F-75231 Paris, France
| | - Anne-Claire Lavigne
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| |
Collapse
|
26
|
Olan I, Handa T, Narita M. Beyond SAHF: An integrative view of chromatin compartmentalization during senescence. Curr Opin Cell Biol 2023; 83:102206. [PMID: 37451177 DOI: 10.1016/j.ceb.2023.102206] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
Cellular senescence, a persistent form of cell cycle arrest, has been linked to the formation of heterochromatic foci, accompanied by additional concentric epigenetic layers. However, senescence is a highly heterogeneous phenotype, and the formation of these structures is context dependent. Recent developments in the understanding of the high-order chromatin organization have opened new avenues for contextualizing the nuclear and chromatin phenotypes of senescence. Oncogene-induced senescence displays prominent foci and typically exhibits increased chromatin compartmentalization, based on the chromosome conformation assays, as marked by increased transcompaction and segregation of the heterochromatin and euchromatin. However, other types of senescence (e.g., replicative senescence) exhibit comparatively lower levels of compartmentalization. Thus, a more integrative view of the global rearrangement of the chromatin architecture that occurs during senescence is emerging, with potential functional implications for the heterogeneity of the senescence phenotype.
Collapse
Affiliation(s)
- Ioana Olan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK.
| | - Tetsuya Handa
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
27
|
Nikolic A, Maule F, Bobyn A, Ellestad K, Paik S, Marhon SA, Mehdipour P, Lun X, Chen HM, Mallard C, Hay AJ, Johnston MJ, Gafuik CJ, Zemp FJ, Shen Y, Ninkovic N, Osz K, Labit E, Berger ND, Brownsey DK, Kelly JJ, Biernaskie J, Dirks PB, Derksen DJ, Jones SJM, Senger DL, Chan JA, Mahoney DJ, De Carvalho DD, Gallo M. macroH2A2 antagonizes epigenetic programs of stemness in glioblastoma. Nat Commun 2023; 14:3062. [PMID: 37244935 PMCID: PMC10224928 DOI: 10.1038/s41467-023-38919-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients.
Collapse
Affiliation(s)
- Ana Nikolic
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Francesca Maule
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna Bobyn
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Katrina Ellestad
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Seungil Paik
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Xueqing Lun
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Huey-Miin Chen
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Claire Mallard
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alexander J Hay
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael J Johnston
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher J Gafuik
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Franz J Zemp
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Nicoletta Ninkovic
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katalin Osz
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Compararive Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - N Daniel Berger
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Duncan K Brownsey
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Chemistry, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - John J Kelly
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Compararive Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Peter B Dirks
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Darren J Derksen
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Chemistry, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Donna L Senger
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas J Mahoney
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Science, University of Toronto, Toronto, ON, Canada
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
28
|
Kleijwegt C, Bressac F, Seurre C, Bouchereau W, Cohen C, Texier P, Simonet T, Schaeffer L, Lomonte P, Corpet A. Interplay between PML NBs and HIRA for H3.3 dynamics following type I interferon stimulus. eLife 2023; 12:e80156. [PMID: 37227756 PMCID: PMC10212570 DOI: 10.7554/elife.80156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Promyelocytic leukemia Nuclear Bodies (PML NBs) are nuclear membrane-less organelles physically associated with chromatin underscoring their crucial role in genome function. The H3.3 histone chaperone complex HIRA accumulates in PML NBs upon senescence, viral infection or IFN-I treatment in primary cells. Yet, the molecular mechanisms of this partitioning and its function in regulating histone dynamics have remained elusive. By using specific approaches, we identify intermolecular SUMO-SIM interactions as an essential mechanism for HIRA recruitment in PML NBs. Hence, we describe a role of PML NBs as nuclear depot centers to regulate HIRA distribution in the nucleus, dependent both on SP100 and DAXX/H3.3 levels. Upon IFN-I stimulation, PML is required for interferon-stimulated genes (ISGs) transcription and PML NBs become juxtaposed to ISGs loci at late time points of IFN-I treatment. HIRA and PML are necessary for the prolonged H3.3 deposition at the transcriptional end sites of ISGs, well beyond the peak of transcription. Though, HIRA accumulation in PML NBs is dispensable for H3.3 deposition on ISGs. We thus uncover a dual function for PML/PML NBs, as buffering centers modulating the nuclear distribution of HIRA, and as chromosomal hubs regulating ISGs transcription and thus HIRA-mediated H3.3 deposition at ISGs upon inflammatory response.
Collapse
Affiliation(s)
- Constance Kleijwegt
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Florent Bressac
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Coline Seurre
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Wilhelm Bouchereau
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Camille Cohen
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Pascale Texier
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Thomas Simonet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), team Nerve-Muscle interactionsLyonFrance
| | - Laurent Schaeffer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), team Nerve-Muscle interactionsLyonFrance
| | - Patrick Lomonte
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Armelle Corpet
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| |
Collapse
|
29
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
30
|
Schmitt CA, Tchkonia T, Niedernhofer LJ, Robbins PD, Kirkland JL, Lee S. COVID-19 and cellular senescence. Nat Rev Immunol 2023; 23:251-263. [PMID: 36198912 PMCID: PMC9533263 DOI: 10.1038/s41577-022-00785-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
The clinical severity of coronavirus disease 2019 (COVID-19) is largely determined by host factors. Recent advances point to cellular senescence, an ageing-related switch in cellular state, as a critical regulator of SARS-CoV-2-evoked hyperinflammation. SARS-CoV-2, like other viruses, can induce senescence and exacerbates the senescence-associated secretory phenotype (SASP), which is comprised largely of pro-inflammatory, extracellular matrix-degrading, complement-activating and pro-coagulatory factors secreted by senescent cells. These effects are enhanced in elderly individuals who have an increased proportion of pre-existing senescent cells in their tissues. SASP factors can contribute to a 'cytokine storm', tissue-destructive immune cell infiltration, endothelialitis (endotheliitis), fibrosis and microthrombosis. SASP-driven spreading of cellular senescence uncouples tissue injury from direct SARS-CoV-2-inflicted cellular damage in a paracrine fashion and can further amplify the SASP by increasing the burden of senescent cells. Preclinical and early clinical studies indicate that targeted elimination of senescent cells may offer a novel therapeutic opportunity to attenuate clinical deterioration in COVID-19 and improve resilience following infection with SARS-CoV-2 or other pathogens.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
- Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany.
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Soyoung Lee
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
31
|
D'Incal CP, Van Rossem KE, De Man K, Konings A, Van Dijck A, Rizzuti L, Vitriolo A, Testa G, Gozes I, Vanden Berghe W, Kooy RF. Chromatin remodeler Activity-Dependent Neuroprotective Protein (ADNP) contributes to syndromic autism. Clin Epigenetics 2023; 15:45. [PMID: 36945042 PMCID: PMC10031977 DOI: 10.1186/s13148-023-01450-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Individuals affected with autism often suffer additional co-morbidities such as intellectual disability. The genes contributing to autism cluster on a relatively limited number of cellular pathways, including chromatin remodeling. However, limited information is available on how mutations in single genes can result in such pleiotropic clinical features in affected individuals. In this review, we summarize available information on one of the most frequently mutated genes in syndromic autism the Activity-Dependent Neuroprotective Protein (ADNP). RESULTS Heterozygous and predicted loss-of-function ADNP mutations in individuals inevitably result in the clinical presentation with the Helsmoortel-Van der Aa syndrome, a frequent form of syndromic autism. ADNP, a zinc finger DNA-binding protein has a role in chromatin remodeling: The protein is associated with the pericentromeric protein HP1, the SWI/SNF core complex protein BRG1, and other members of this chromatin remodeling complex and, in murine stem cells, with the chromodomain helicase CHD4 in a ChAHP complex. ADNP has recently been shown to possess R-loop processing activity. In addition, many additional functions, for instance, in association with cytoskeletal proteins have been linked to ADNP. CONCLUSIONS We here present an integrated evaluation of all current aspects of gene function and evaluate how abnormalities in chromatin remodeling might relate to the pleiotropic clinical presentation in individual"s" with Helsmoortel-Van der Aa syndrome.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Kirsten Esther Van Rossem
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Kevin De Man
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Ludovico Rizzuti
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Alessandro Vitriolo
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Sackler School of Medicine, 727, 69978, Tel Aviv, Israel
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium.
| |
Collapse
|
32
|
Abd Al-razaq MA, Freyter BM, Isermann A, Tewary G, Mangelinck A, Mann C, Rübe CE. Role of Histone Variant H2A.J in Fine-Tuning Chromatin Organization for the Establishment of Ionizing Radiation-Induced Senescence. Cells 2023; 12:916. [PMID: 36980257 PMCID: PMC10047397 DOI: 10.3390/cells12060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
PURPOSE Radiation-induced senescence is characterized by profound changes in chromatin organization with the formation of Senescence-Associated-Heterochromatin-Foci (SAHF) and DNA-Segments-with-Chromatin-Alterations-Reinforcing-Senescence (DNA-SCARS). Importantly, senescent cells also secrete complex combinations of pro-inflammatory factors, referred as Senescence-Associated-Secretory-Phenotype (SASP). Here, we analyzed the epigenetic mechanism of histone variant H2A.J in establishing radiation-induced senescence. EXPERIMENTAL DESIGN Primary and genetically-modified lung fibroblasts with down- or up-regulated H2A.J expression were exposed to ionizing radiation and were analyzed for the formation of SAHF and DNA-SCARS by immunofluorescence microscopy. Dynamic changes in chromatin organization and accessibility, transcription factor recruitment, and transcriptome signatures were mapped by ATAC-seq and RNA-seq analysis. The secretion of SASP factors and potential bystander effects were analyzed by ELISA and RT-PCR. Lung tissue of mice exposed to different doses were analyzed by the digital image analysis of H2A.J-immunohistochemistry. RESULTS Differential incorporation of H2A.J has profound effects on higher-order chromatin organization and on establishing the epigenetic state of senescence. Integrative analyses of ATAC-seq and RNA-seq datasets indicate that H2A.J-associated changes in chromatin accessibility of regulatory regions decisively modulates transcription factor recruitment and inflammatory gene expression, resulting in an altered SASP secretome. In lung parenchyma, pneumocytes show dose-dependent H2A.J expression in response to radiation-induced DNA damage, therefore contributing to pro-inflammatory tissue reactions. CONCLUSIONS The fine-tuned incorporation of H2A.J defines the epigenetic landscape for driving the senescence programme in response to radiation-induced DNA damage. Deregulated H2A.J deposition affects chromatin remodeling, transcription factor recruitment, and the pro-inflammatory secretome. Our findings provide new mechanistic insights into DNA-damage triggered epigenetic mechanisms governing the biological processes of radiation-induced injury.
Collapse
Affiliation(s)
- Mutaz A. Abd Al-razaq
- Department of Radiation Oncology, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Benjamin M. Freyter
- Department of Radiation Oncology, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Anna Isermann
- Department of Radiation Oncology, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Gargi Tewary
- Department of Radiation Oncology, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Adèle Mangelinck
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Carl Mann
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Claudia E. Rübe
- Department of Radiation Oncology, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| |
Collapse
|
33
|
DeLuca VJ, Saleh T. Insights into the role of senescence in tumor dormancy: mechanisms and applications. Cancer Metastasis Rev 2023; 42:19-35. [PMID: 36681750 DOI: 10.1007/s10555-023-10082-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/12/2023] [Indexed: 01/23/2023]
Abstract
One of the most formidable challenges in oncology and tumor biology research is to provide an accurate understanding of tumor dormancy mechanisms. Dormancy refers to the ability of tumor cells to go undetected in the body for a prolonged period, followed by "spontaneous" escape. Various models of dormancy have been postulated, including angiogenic, immune-mediated, and cellular dormancy. While the former two propose mechanisms by which tumor growth may remain static at a population level, cellular dormancy refers to molecular processes that restrict proliferation at the cell level. Senescence is a form of growth arrest, during which cells undergo distinct phenotypic, epigenetic, and metabolic changes. Senescence is also associated with the development of a robust secretome, comprised of various chemokines and cytokines that interact with the surrounding microenvironment, including other tumor cells, stromal cells, endothelial cells, and immune cells. Both tumor and non-tumor cells can undergo senescence following various stressors, many of which are present during tumorigenesis and therapy. As such, senescent cells are present within forming tumors and in residual tumors post-treatment and therefore play a major role in tumor biology. However, the contributions of senescence to dormancy are largely understudied. Here, we provide an overview of multiple processes that have been well established as being involved in tumor dormancy, and we speculate on how senescence may contribute to these mechanisms.
Collapse
Affiliation(s)
- Valerie J DeLuca
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
34
|
Abstract
Cellular senescence has become a subject of great interest within the ageing research field over the last 60 years, from the first observation in vitro by Leonard Hayflick and Paul Moorhead in 1961, to novel findings of phenotypic sub-types and senescence-like phenotype in post-mitotic cells. It has essential roles in wound healing, tumour suppression and the very first stages of human development, while causing widespread damage and dysfunction with age leading to a raft of age-related diseases. This chapter discusses these roles and their interlinking pathways, and how the observed accumulation of senescent cells with age has initiated a whole new field of ageing research, covering pathologies in the heart, liver, kidneys, muscles, brain and bone. This chapter will also examine how senescent cell accumulation presents in these different tissues, along with their roles in disease development. Finally, there is much focus on developing treatments for senescent cell accumulation in advanced age as a method of alleviating age-related disease. We will discuss here the various senolytic and senostatic treatment approaches and their successes and limitations, and the innovative new strategies being developed to address the differing effects of cellular senescence in ageing and disease.
Collapse
Affiliation(s)
- Rebecca Reed
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
35
|
Saleh T, Khasawneh AI, Himsawi N, Abu-Raideh J, Ejeilat V, Elshazly AM, Gewirtz DA. Senolytic Therapy: A Potential Approach for the Elimination of Oncogene-Induced Senescent HPV-Positive Cells. Int J Mol Sci 2022; 23:15512. [PMID: 36555154 PMCID: PMC9778669 DOI: 10.3390/ijms232415512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Senescence represents a unique cellular stress response characterized by a stable growth arrest, macromolecular alterations, and wide spectrum changes in gene expression. Classically, senescence is the end-product of progressive telomeric attrition resulting from the repetitive division of somatic cells. In addition, senescent cells accumulate in premalignant lesions, in part, as a product of oncogene hyperactivation, reflecting one element of the tumor suppressive function of senescence. Oncogenic processes that induce senescence include overexpression/hyperactivation of H-Ras, B-Raf, and cyclin E as well as inactivation of PTEN. Oncogenic viruses, such as Human Papilloma Virus (HPV), have also been shown to induce senescence. High-risk strains of HPV drive the immortalization, and hence transformation, of cervical epithelial cells via several mechanisms, but primarily via deregulation of the cell cycle, and possibly, by facilitating escape from senescence. Despite the wide and successful utilization of HPV vaccines in reducing the incidence of cervical cancer, this measure is not effective in preventing cancer development in individuals already positive for HPV. Accordingly, in this commentary, we focus on the potential contribution of oncogene and HPV-induced senescence (OIS) in cervical cancer. We further consider the potential utility of senolytic agents for the elimination of HPV-harboring senescent cells as a strategy for reducing HPV-driven transformation and the risk of cervical cancer development.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Ashraf I. Khasawneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Jumana Abu-Raideh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Vera Ejeilat
- Department of Anatomy and Histology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
36
|
Ferreira-Gonzalez S, Man TY, Esser H, Aird R, Kilpatrick AM, Rodrigo-Torres D, Younger N, Campana L, Gadd VL, Dwyer B, Aleksieva N, Boulter L, Macmillan MT, Wang Y, Mylonas KJ, Ferenbach DA, Kendall TJ, Lu WY, Acosta JC, Kurian D, O'Neill S, Oniscu GC, Banales JM, Krimpenfort PJ, Forbes SJ. Senolytic treatment preserves biliary regenerative capacity lost through cellular senescence during cold storage. Sci Transl Med 2022; 14:eabj4375. [PMID: 36475903 DOI: 10.1126/scitranslmed.abj4375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver transplantation is the only curative option for patients with end-stage liver disease. Despite improvements in surgical techniques, nonanastomotic strictures (characterized by the progressive loss of biliary tract architecture) continue to occur after liver transplantation, negatively affecting liver function and frequently leading to graft loss and retransplantation. To study the biological effects of organ preservation before liver transplantation, we generated murine models that recapitulate liver procurement and static cold storage. In these models, we explored the response of cholangiocytes and hepatocytes to cold storage, focusing on responses that affect liver regeneration, including DNA damage, apoptosis, and cellular senescence. We show that biliary senescence was induced during organ retrieval and exacerbated during static cold storage, resulting in impaired biliary regeneration. We identified decoy receptor 2 (DCR2)-dependent responses in cholangiocytes and hepatocytes, which differentially affected the outcome of those populations during cold storage. Moreover, CRISPR-mediated DCR2 knockdown in vitro increased cholangiocyte proliferation and decreased cellular senescence but had the opposite effect in hepatocytes. Using the p21KO model to inhibit senescence onset, we showed that biliary tract architecture was better preserved during cold storage. Similar results were achieved by administering senolytic ABT737 to mice before procurement. Last, we perfused senolytics into discarded human donor livers and showed that biliary architecture and regenerative capacities were better preserved. Our results indicate that cholangiocytes are susceptible to senescence and identify the use of senolytics and the combination of senotherapies and machine-perfusion preservation to prevent this phenotype and reduce the incidence of biliary injury after transplantation.
Collapse
Affiliation(s)
- Sofia Ferreira-Gonzalez
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tak Yung Man
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Hannah Esser
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Department of Visceral, Transplant and Thoracic Surgery, Centre of Operative Medicine, Innsbruck Medical University, Anichstrasse 35, Innsbruck 6020, Austria
| | - Rhona Aird
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Alastair M Kilpatrick
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daniel Rodrigo-Torres
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Nicholas Younger
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lara Campana
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Victoria L Gadd
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Benjamin Dwyer
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Niya Aleksieva
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Mark T Macmillan
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Yinmiao Wang
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Katie J Mylonas
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David A Ferenbach
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Timothy J Kendall
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN, C/ Albert Einstein 22, Santander, 39011, Spain
| | - Dominic Kurian
- Proteomic and Metabolomics Unit, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Stephen O'Neill
- Department of Transplant Surgery, Belfast City Hospital, 51 Lisburn Road, Belfast BT9 7AB, UK
- Centre for Public Health, Queen's University Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Gabriel C Oniscu
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
- Department of Clinical Surgery, University of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian 20014, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31009 Pamplona, Spain
| | | | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
37
|
Sun D, Singh DK, Carcamo S, Filipescu D, Khalil B, Huang X, Miles BA, Westra W, Sproll KC, Hasson D, Bernstein E, Aguirre-Ghiso JA. MacroH2A impedes metastatic growth by enforcing a discrete dormancy program in disseminated cancer cells. SCIENCE ADVANCES 2022; 8:eabo0876. [PMID: 36459552 PMCID: PMC10936054 DOI: 10.1126/sciadv.abo0876] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/18/2022] [Indexed: 05/04/2023]
Abstract
MacroH2A variants have been linked to inhibition of metastasis through incompletely understood mechanisms. Here, we reveal that solitary dormant disseminated cancer cells (DCCs) display increased levels of macroH2A variants in head and neck squamous cell carcinoma PDX in vivo models and patient samples compared to proliferating primary or metastatic lesions. We demonstrate that dormancy-inducing transforming growth factor-β2 and p38α/β pathways up-regulate macroH2A expression and that macroH2A variant overexpression is sufficient to induce DCC dormancy and suppress metastasis in vivo. Notably, inducible expression of the macroH2A2 variant in vivo suppresses metastasis via a reversible growth arrest of DCCs. This state does not require the dormancy-regulating transcription factors DEC2 and NR2F1; instead, transcriptomic analysis reveals that macroH2A2 overexpression inhibits cell cycle and oncogenic signaling programs, while up-regulating dormancy and senescence-associated inflammatory cytokines. We conclude that the macroH2A2-enforced dormant phenotype results from tapping into transcriptional programs of both quiescence and senescence to limit metastatic outgrowth.
Collapse
Affiliation(s)
- Dan Sun
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell Biology, Cancer Dormancy and Tumor Microenvironment Institute, Gruss-Lipper Biophotonics Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Deepak K. Singh
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell Biology, Cancer Dormancy and Tumor Microenvironment Institute, Gruss-Lipper Biophotonics Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bassem Khalil
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xin Huang
- Department of Cell Biology, Cancer Dormancy and Tumor Microenvironment Institute, Gruss-Lipper Biophotonics Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Brett A. Miles
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Westra
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karl Christoph Sproll
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julio A. Aguirre-Ghiso
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell Biology, Cancer Dormancy and Tumor Microenvironment Institute, Gruss-Lipper Biophotonics Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
38
|
Torres-Arciga K, Flores-León M, Ruiz-Pérez S, Trujillo-Pineda M, González-Barrios R, Herrera LA. Histones and their chaperones: Adaptive remodelers of an ever-changing chromatinic landscape. Front Genet 2022; 13:1057846. [PMID: 36468032 PMCID: PMC9709290 DOI: 10.3389/fgene.2022.1057846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 07/29/2023] Open
Abstract
Chromatin maintenance and remodeling are processes that take place alongside DNA repair, replication, or transcription to ensure the survival and adaptability of a cell. The environment and the needs of the cell dictate how chromatin is remodeled; particularly where and which histones are deposited, thus changing the canonical histone array to regulate chromatin structure and gene expression. Chromatin is highly dynamic, and histone variants and their chaperones play a crucial role in maintaining the epigenetic regulation at different genomic regions. Despite the large number of histone variants reported to date, studies on their roles in physiological processes and pathologies are emerging but continue to be scarce. Here, we present recent advances in the research on histone variants and their chaperones, with a focus on their importance in molecular mechanisms such as replication, transcription, and DNA damage repair. Additionally, we discuss the emerging role they have in transposable element regulation, aging, and chromatin remodeling syndromes. Finally, we describe currently used methods and their limitations in the study of these proteins and highlight the importance of improving the experimental approaches to further understand this epigenetic machinery.
Collapse
Affiliation(s)
- Karla Torres-Arciga
- Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Manuel Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Samuel Ruiz-Pérez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Magalli Trujillo-Pineda
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
39
|
Abstract
Cellular senescence is implicated in a wide range of physiological and pathological conditions throughout an organism's entire lifetime. In particular, it has become evident that senescence plays a causative role in aging and age-associated disorders. This is not due simply to the loss of function of senescent cells. Instead, the substantial alterations of the cellular activities of senescent cells, especially the array of secretory factors, impact the surrounding tissues or even entire organisms. Such non-cell-autonomous functionality is largely coordinated by tissue-specific genes, constituting a cell fate-determining state. Senescence can be viewed as a gain-of-function phenotype or a process of cell identity shift. Cellular functionality or lineage-specific gene expression is tightly linked to the cell type-specific epigenetic landscape, reinforcing the heterogeneity of senescence across cell types. Here, we aim to define the senescence cellular functionality and epigenetic features that may contribute to the gain-of-function phenotype.
Collapse
Affiliation(s)
- Ioana Olan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom; ,
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom; ,
| |
Collapse
|
40
|
F. V, V. D. P, C. M, M. LI, C. D, G. P, D. C, A. T, M. G, S. DF, M. T, V. V, G. S. Targeting epigenetic alterations in cancer stem cells. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1011882. [PMID: 39086963 PMCID: PMC11285701 DOI: 10.3389/fmmed.2022.1011882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 08/02/2024]
Abstract
Oncogenes or tumor suppressor genes are rarely mutated in several pediatric tumors and some early stage adult cancers. This suggests that an aberrant epigenetic reprogramming may crucially affect the tumorigenesis of these tumors. Compelling evidence support the hypothesis that cancer stem cells (CSCs), a cell subpopulation within the tumor bulk characterized by self-renewal capacity, metastatic potential and chemo-resistance, may derive from normal stem cells (NSCs) upon an epigenetic deregulation. Thus, a better understanding of the specific epigenetic alterations driving the transformation from NSCs into CSCs may help to identify efficacious treatments to target this aggressive subpopulation. Moreover, deepening the knowledge about these alterations may represent the framework to design novel therapeutic approaches also in the field of regenerative medicine in which bioengineering of NSCs has been evaluated. Here, we provide a broad overview about: 1) the role of aberrant epigenetic modifications contributing to CSC initiation, formation and maintenance, 2) the epigenetic inhibitors in clinical trial able to specifically target the CSC subpopulation, and 3) epigenetic drugs and stem cells used in regenerative medicine for cancer and diseases.
Collapse
Affiliation(s)
- Verona F.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Pantina V. D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Modica C.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Lo Iacono M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - D’Accardo C.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Porcelli G.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cricchio D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Turdo A.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaggianesi M.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Di Franco S.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Todaro M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veschi V.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stassi G.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
41
|
Skin-Aging Pigmentation: Who Is the Real Enemy? Cells 2022; 11:cells11162541. [PMID: 36010618 PMCID: PMC9406699 DOI: 10.3390/cells11162541] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/21/2022] Open
Abstract
Skin aging is induced and sustained by chronological aging and photoaging. Aging skin pigmentation such as mottled pigmentation (senile lentigo) and melasma are typical signs of photoaging. The skin, like other human organs, undergoes cellular senescence, and senescent cells in the skin increase with age. The crosstalk between melanocytes as pigmentary cells and other adjacent types of aged skin cells such as senescent fibroblasts play a role in skin-aging pigmentation. In this review, we provide an overview of cellular senescence during the skin-aging process. The discussion also includes cellular senescence related to skin-aging pigmentation and the therapeutic potential of regulating the senescence process.
Collapse
|
42
|
Noncanonical function of Capicua as a growth termination signal in Drosophila oogenesis. Proc Natl Acad Sci U S A 2022; 119:e2123467119. [PMID: 35881788 PMCID: PMC9351367 DOI: 10.1073/pnas.2123467119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Capicua (Cic) proteins are conserved HMG-box transcriptional repressors that control receptor tyrosine kinase (RTK) signaling responses and are implicated in human neurological syndromes and cancer. While Cic is known to exist as short (Cic-S) and long (Cic-L) isoforms with identical HMG-box and associated core regions but distinct N termini, most previous studies have focused on Cic-S, leaving the function of Cic-L unexplored. Here we show that Cic-L acts in two capacities during Drosophila oogenesis: 1) as a canonical sensor of RTK signaling in somatic follicle cells, and 2) as a regulator of postmitotic growth in germline nurse cells. In these latter cells, Cic-L behaves as a temporal signal that terminates endoreplicative growth before they dump their contents into the oocyte. We show that Cic-L is necessary and sufficient for nurse cell endoreplication arrest and induces both stabilization of CycE and down-regulation of Myc. Surprisingly, this function depends mainly on the Cic-L-specific N-terminal module, which is capable of acting independently of the Cic HMG-box-containing core. Mirroring these observations, basal metazoans possess truncated Cic-like proteins composed only of Cic-L N-terminal sequences, suggesting that this module plays unique, ancient roles unrelated to the canonical function of Cic.
Collapse
|
43
|
Hao X, Shiromoto Y, Sakurai M, Towers M, Zhang Q, Wu S, Havas A, Wang L, Berger S, Adams PD, Tian B, Nishikura K, Kossenkov AV, Liu P, Zhang R. ADAR1 downregulation by autophagy drives senescence independently of RNA editing by enhancing p16 INK4a levels. Nat Cell Biol 2022; 24:1202-1210. [PMID: 35851616 PMCID: PMC9757154 DOI: 10.1038/s41556-022-00959-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/07/2022] [Indexed: 02/03/2023]
Abstract
Cellular senescence plays a causal role in ageing and, in mice, depletion of p16INK4a-expressing senescent cells delays ageing-associated disorders1,2. Adenosine deaminases acting on RNA (ADARs) are RNA-editing enzymes that are also implicated as important regulators of human ageing, and ADAR inactivation causes age-associated pathologies such as neurodegeneration in model organisms3,4. However, the role, if any, of ADARs in cellular senescence is unknown. Here we show that ADAR1 is post-transcriptionally downregulated by autophagic degradation to promote senescence through p16INK4a upregulation. The ADAR1 downregulation is sufficient to drive senescence in both in vitro and in vivo models. Senescence induced by ADAR1 downregulation is p16INK4a-dependent and independent of its RNA-editing function. Mechanistically, ADAR1 promotes SIRT1 expression by affecting its RNA stability through HuR, an RNA-binding protein that increases the half-life and steady-state levels of its target mRNAs. SIRT1 in turn antagonizes translation of mRNA encoding p16INK4a. Hence, downregulation of ADAR1 and SIRT1 mediates p16INK4a upregulation by enhancing its mRNA translation. Finally, Adar1 is downregulated during ageing of mouse tissues such as brain, ovary and intestine, and Adar1 expression correlates with Sirt1 expression in these tissues in mice. Together, our study reveals an RNA-editing-independent role for ADAR1 in the regulation of senescence by post-transcriptionally controlling p16INK4a expression.
Collapse
Affiliation(s)
- Xue Hao
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Yusuke Shiromoto
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
- Department of Molecular Genetics, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Masayuki Sakurai
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Martina Towers
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Qiang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
| | - Shuai Wu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
| | - Aaron Havas
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Lu Wang
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley Berger
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Bin Tian
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
| | - Kazuko Nishikura
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
| | - Pingyu Liu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA.
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Sikder S, Arunkumar G, Melters DP, Dalal Y. Breaking the aging epigenetic barrier. Front Cell Dev Biol 2022; 10:943519. [PMID: 35966762 PMCID: PMC9366916 DOI: 10.3389/fcell.2022.943519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is an inexorable event occurring universally for all organisms characterized by the progressive loss of cell function. However, less is known about the key events occurring inside the nucleus in the process of aging. The advent of chromosome capture techniques and extensive modern sequencing technologies have illuminated a rather dynamic structure of chromatin inside the nucleus. As cells advance along their life cycle, chromatin condensation states alter which leads to a different epigenetic landscape, correlated with modified gene expression. The exact factors mediating these changes in the chromatin structure and function remain elusive in the context of aging cells. The accumulation of DNA damage, reactive oxygen species and loss of genomic integrity as cells cease to divide can contribute to a tumor stimulating environment. In this review, we focus on genomic and epigenomic changes occurring in an aged cell which can contribute to age-related tumor formation.
Collapse
Affiliation(s)
| | | | | | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States
| |
Collapse
|
45
|
Tan SYX, Zhang J, Tee WW. Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Front Cell Dev Biol 2022; 10:931493. [PMID: 35757000 PMCID: PMC9213816 DOI: 10.3389/fcell.2022.931493] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Epigenetics comprise a diverse array of reversible and dynamic modifications to the cell’s genome without implicating any DNA sequence alterations. Both the external environment surrounding the organism, as well as the internal microenvironment of cells and tissues, contribute to these epigenetic processes that play critical roles in cell fate specification and organismal development. On the other hand, dysregulation of epigenetic activities can initiate and sustain carcinogenesis, which is often augmented by inflammation. Chronic inflammation, one of the major hallmarks of cancer, stems from proinflammatory cytokines that are secreted by tumor and tumor-associated cells in the tumor microenvironment. At the same time, inflammatory signaling can establish positive and negative feedback circuits with chromatin to modulate changes in the global epigenetic landscape. In this review, we provide an in-depth discussion of the interconnected crosstalk between epigenetics and inflammation, specifically how epigenetic mechanisms at different hierarchical levels of the genome control inflammatory gene transcription, which in turn enact changes within the cell’s epigenomic profile, especially in the context of inflammation-induced cancer.
Collapse
Affiliation(s)
- Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
46
|
Lyu Y, Ge Y. Toward Elucidating Epigenetic and Metabolic Regulation of Stem Cell Lineage Plasticity in Skin Aging. Front Cell Dev Biol 2022; 10:903904. [PMID: 35663405 PMCID: PMC9160930 DOI: 10.3389/fcell.2022.903904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Skin is the largest organ in human body, harboring a plethora of cell types and serving as the organismal barrier. Skin aging such as wrinkling and hair graying is graphically pronounced, and the molecular mechanisms behind these phenotypic manifestations are beginning to unfold. As in many other organs and tissues, epigenetic and metabolic deregulations have emerged as key aging drivers. Particularly in the context of the skin epithelium, the epigenome and metabolome coordinately shape lineage plasticity and orchestrate stem cell function during aging. Our review discusses recent studies that proposed molecular mechanisms that drive the degeneration of hair follicles, a major appendage of the skin. By focusing on skin while comparing it to model organisms and adult stem cells of other tissues, we summarize literature on genotoxic stress, nutritional sensing, metabolic rewiring, mitochondrial activity, and epigenetic regulations of stem cell plasticity. Finally, we speculate about the rejuvenation potential of rate-limiting upstream signals during aging and the dominant role of the tissue microenvironment in dictating aged epithelial stem cell function.
Collapse
Affiliation(s)
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
47
|
Senescence Connects Autophagy Deficiency to Inflammation and Tumor Progression in the Liver. Cell Mol Gastroenterol Hepatol 2022; 14:333-355. [PMID: 35398596 PMCID: PMC9233281 DOI: 10.1016/j.jcmgh.2022.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Cellular senescence frequently is present in injured livers. The induction mechanism and the pathologic role are not always clear. We aimed to understand the dynamics of senescence induction and progression, and the mechanism responsible for the pathology using a mouse model that disables the essential process of autophagy. METHODS Mice deficient in key autophagy genes Atg7 or Atg5 in the liver were used. Senescence was measured using established cellular and molecular signatures. The mechanistic roles of nuclear factor erythroid 2 (NRF2), forkhead box K1, and C-C motif chemokine receptor 2 (CCR2) were assessed using mouse genetic models. Liver functions, pathology, and tumor development were measured using biochemical and histologic approaches. RESULTS Inducible deletion of Atg7 rapidly up-regulated cyclin-dependent kinase inhibitors independently of injury and induced senescence-associated β-galactosidase activities and senescence-associated secretory phenotype (SASP). Sustained activation of NRF2 was the major factor causing senescence by mediating oxidative DNA damage and up-regulating C-C motif chemokine ligand 2, a key component of autophagy-related SASP, via the NRF2-forkhead box K1 axis. Senescence was responsible for hepatic inflammation through CCR2-mediated recruitment of CD11b+ monocytes and CD3+ T cells. The CCR2-mediated process in turn enhanced senescence and SASP by up-regulating cyclin-dependent kinase inhibitors and chemokines. Thus, senescence and inflammation can mutually augment each other, forming an amplification loop for both events. The CCR2-mediated process also modulated liver injury and tumor progression at the later stage of autophagy deficiency-related pathology. CONCLUSIONS These results provide the insight that hepatic senescence can occur early in the disease process, triggers inflammation and is enhanced by inflammation, and has long-term effects on liver injury and tumor progression.
Collapse
|
48
|
Fakhri S, Zachariah Moradi S, DeLiberto LK, Bishayee A. Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochem Pharmacol 2022; 199:114989. [DOI: 10.1016/j.bcp.2022.114989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022]
|
49
|
Liu D, Liu J, Zhang D, Yang W. Advances in relationship between cell senescence and atherosclerosis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:95-101. [PMID: 35576118 PMCID: PMC9109755 DOI: 10.3724/zdxbyxb-2021-0270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/03/2021] [Indexed: 06/15/2023]
Abstract
Cellular senescence is a biological process associated with the degeneration of cell structure and function, which contribute to age-related diseases. Atherosclerosis is a chronic inflammatory disease that can cause a variety of cardiovascular disorders. In this article, we review the effects of cellular senescence on the development of atherosclerosis through diverse physiopathological changes, focusing on the alterations in senescent organelles and the increased senescence-associated secretory phenotype (SASP), and exploring the relevant therapeutic strategies for atherosclerosis by clearing senescent cells and reducing SASP, to provide new insights for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Dekun Liu
- 1. Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Jiali Liu
- 1. Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Dan Zhang
- 3. Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Wenqing Yang
- 2. Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| |
Collapse
|
50
|
Feng S, Ma S, Li K, Gao S, Ning S, Shang J, Guo R, Chen Y, Blumenfeld B, Simon I, Li Q, Guo R, Xu D. RIF1-ASF1-mediated high-order chromatin structure safeguards genome integrity. Nat Commun 2022; 13:957. [PMID: 35177609 PMCID: PMC8854732 DOI: 10.1038/s41467-022-28588-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/01/2022] [Indexed: 11/12/2022] Open
Abstract
The 53BP1-RIF1 pathway antagonizes resection of DNA broken ends and confers PARP inhibitor sensitivity on BRCA1-mutated tumors. However, it is unclear how this pathway suppresses initiation of resection. Here, we identify ASF1 as a partner of RIF1 via an interacting manner similar to its interactions with histone chaperones CAF-1 and HIRA. ASF1 is recruited to distal chromatin flanking DNA breaks by 53BP1-RIF1 and promotes non-homologous end joining (NHEJ) using its histone chaperone activity. Epistasis analysis shows that ASF1 acts in the same NHEJ pathway as RIF1, but via a parallel pathway with the shieldin complex, which suppresses resection after initiation. Moreover, defects in end resection and homologous recombination (HR) in BRCA1-deficient cells are largely suppressed by ASF1 deficiency. Mechanistically, ASF1 compacts adjacent chromatin by heterochromatinization to protect broken DNA ends from BRCA1-mediated resection. Taken together, our findings identify a RIF1-ASF1 histone chaperone complex that promotes changes in high-order chromatin structure to stimulate the NHEJ pathway for DSB repair. The 53BP1-RIF1 pathway is important for DNA repair. Here, the authors identified the histone chaperone ASF1, which functions as a suppressor of DNA end resection through changing high-order chromatin structure, as a partner of RIF1. This finding links DNA repair and dynamic changes of high-order chromatin structure.
Collapse
Affiliation(s)
- Sumin Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Sai Ma
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Kejiao Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Shengxian Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Shaokai Ning
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Jinfeng Shang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Ruiyuan Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Yingying Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Britny Blumenfeld
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, 91120, Israel
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, 91120, Israel
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Rong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|