1
|
Mira-Osuna M, Borgne RL. Assembly, dynamics and remodeling of epithelial cell junctions throughout development. Development 2024; 151:dev201086. [PMID: 38205947 DOI: 10.1242/dev.201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.
Collapse
Affiliation(s)
- Marta Mira-Osuna
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| |
Collapse
|
2
|
Kalodimou K, Stapountzi M, Vüllings N, Seib E, Klein T, Delidakis C. Separable Roles for Neur and Ubiquitin in Delta Signalling in the Drosophila CNS Lineages. Cells 2023; 12:2833. [PMID: 38132160 PMCID: PMC10741450 DOI: 10.3390/cells12242833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The execution of a Notch signal at the plasma membrane relies on the mechanical force exerted onto Notch by its ligand. It has been appreciated that the DSL ligands need to collaborate with a ubiquitin (Ub) ligase, either Neuralized or Mindbomb1, in order to exert this pulling force, but the role of ubiquitylation per se is uncertain. Regarding the Delta-Neur pair, it is documented that neither the Neur catalytic domain nor the Delta intracellular lysines (putative Ub acceptors) are needed for activity. Here, we present a dissection of the Delta activity using the Delta-Notch-dependent expression of Hey in newborn Drosophila neurons as a sensitive in vivo assay. We show that the Delta-Neur interaction per se, rather than ubiquitylation, is needed for activity, pointing to the existence of a Delta-Neur signaling complex. The Neur catalytic domain, although not strictly needed, greatly improves Delta-Neur complex functionality when the Delta lysines are mutated, suggesting that the ubiquitylation of some component of the complex, other than Delta, can enhance signaling. Since Hey expression is sensitive to the perturbation of endocytosis, we propose that the Delta-Neur complex triggers a force-generating endocytosis event that activates Notch in the adjacent cell.
Collapse
Affiliation(s)
- Konstantina Kalodimou
- Department of Biology, University of Crete, 700 13 Heraklion, Greece;
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Greece;
| | - Margarita Stapountzi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Greece;
| | - Nicole Vüllings
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf, Germany
| | - Ekaterina Seib
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf, Germany
| | - Christos Delidakis
- Department of Biology, University of Crete, 700 13 Heraklion, Greece;
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Greece;
| |
Collapse
|
3
|
Bosch JA, Keith N, Escobedo F, Fisher WW, LaGraff JT, Rabasco J, Wan KH, Weiszmann R, Hu Y, Kondo S, Brown JB, Perrimon N, Celniker SE. Molecular and functional characterization of the Drosophila melanogaster conserved smORFome. Cell Rep 2023; 42:113311. [PMID: 37889754 PMCID: PMC10843857 DOI: 10.1016/j.celrep.2023.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Short polypeptides encoded by small open reading frames (smORFs) are ubiquitously found in eukaryotic genomes and are important regulators of physiology, development, and mitochondrial processes. Here, we focus on a subset of 298 smORFs that are evolutionarily conserved between Drosophila melanogaster and humans. Many of these smORFs are conserved broadly in the bilaterian lineage, and ∼182 are conserved in plants. We observe remarkably heterogeneous spatial and temporal expression patterns of smORF transcripts-indicating wide-spread tissue-specific and stage-specific mitochondrial architectures. In addition, an analysis of annotated functional domains reveals a predicted enrichment of smORF polypeptides localizing to mitochondria. We conduct an embryonic ribosome profiling experiment and find support for translation of 137 of these smORFs during embryogenesis. We further embark on functional characterization using CRISPR knockout/activation, RNAi knockdown, and cDNA overexpression, revealing diverse phenotypes. This study underscores the importance of identifying smORF function in disease and phenotypic diversity.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan Keith
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Felipe Escobedo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William W Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Thai LaGraff
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jorden Rabasco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth H Wan
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard Weiszmann
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - James B Brown
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
4
|
Masuda W, Yamakawa T, Ajima R, Miyake K, Umemiya T, Azuma K, Tamaru JI, Kiso M, Das P, Saga Y, Matsuno K, Kitagawa M. TM2D3, a mammalian homologue of Drosophila neurogenic gene product Almondex, regulates surface presentation of Notch receptors. Sci Rep 2023; 13:20913. [PMID: 38016980 PMCID: PMC10684865 DOI: 10.1038/s41598-023-46866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/31/2023] [Indexed: 11/30/2023] Open
Abstract
Notch signaling is an evolutionarily conserved mechanism required for numerous types of cell fate decisions in metazoans. It mediates short-range communication between cells with receptors and ligands, both of which are expressed on the cell surfaces. In response to the ligand-receptor interaction, the ligand and the extracellular domain of the Notch receptor (NECD) in the complex are internalized into ligand-expressing cells by endocytosis, a prerequisite process for the conformational change of the membrane proximal region of Notch to induce critical proteolytic cleavages for its activation. Here we report that overexpression of transmembrane 2 (TM2) domain containing 3 (TM2D3), a mammalian homologue of Drosophila melanogaster Almondex (Amx), activates Notch1. This activation requires the ligand-binding domain in Notch1 and the C-terminal region containing TM2 domain in TM2D3. TM2D3 physically associates with Notch1 at the region distinct from the ligand-binding domain and enhances expression of Notch1 on the cell surface. Furthermore, cell surface expression of Notch1 and Notch2 is reduced in Tm2d3-deficient cells. Finally, amx-deficient Drosophila early embryos exhibit impaired endocytosis of NECD and Delta ligand, for which surface presentation of Notch is required. These results indicate that TM2D3 is an element involved in Notch signaling through the surface presentation.
Collapse
Affiliation(s)
- Wataru Masuda
- Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
- Department of Pathology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
- Department of Pathology, The Fraternity Memorial Hospital, Tokyo, Japan
| | - Tomoko Yamakawa
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Department of Chemistry, Bioengineering and Environmental Science, National Institute of Technology, Ibaraki College, Ibaraki, Japan
| | - Rieko Ajima
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, 411-8540, Japan
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
| | - Katsuya Miyake
- Center for Basic Medical Research, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Toshifumi Umemiya
- Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
- International University of Health and Welfare Graduate School of Health and Welfare Sciences, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Kazuhiko Azuma
- Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
| | - Makoto Kiso
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, 411-8540, Japan
| | - Puspa Das
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, 411-8540, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Motoo Kitagawa
- Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan.
- Department of Biochemistry, International University of Health and Welfare School of Medicine, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan.
- Department of Basic Medical Sciences, International University of Health and Welfare Graduate School of Medicine, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan.
| |
Collapse
|
5
|
Viswanathan R, Hartmann J, Pallares Cartes C, De Renzis S. Desensitisation of Notch signalling through dynamic adaptation in the nucleus. EMBO J 2021; 40:e107245. [PMID: 34396565 PMCID: PMC8441390 DOI: 10.15252/embj.2020107245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, signalling pathways orchestrate organogenesis by controlling tissue‐specific gene expression programmes and differentiation. Although the molecular components of many common developmental signalling systems are known, our current understanding of how signalling inputs are translated into gene expression outputs in real‐time is limited. Here we employ optogenetics to control the activation of Notch signalling during Drosophila embryogenesis with minute accuracy and follow target gene expression by quantitative live imaging. Light‐induced nuclear translocation of the Notch Intracellular Domain (NICD) causes a rapid activation of target mRNA expression. However, target gene transcription gradually decays over time despite continuous photo‐activation and nuclear NICD accumulation, indicating dynamic adaptation to the signalling input. Using mathematical modelling and molecular perturbations, we show that this adaptive transcriptional response fits to known motifs capable of generating near‐perfect adaptation and can be best explained by state‐dependent inactivation at the target cis‐regulatory region. Taken together, our results reveal dynamic nuclear adaptation as a novel mechanism controlling Notch signalling output during tissue differentiation.
Collapse
Affiliation(s)
- Ranjith Viswanathan
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Jonas Hartmann
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany.,Department of Cell and Developmental Biology, University College London, London, UK
| | | | - Stefano De Renzis
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| |
Collapse
|
6
|
Seib E, Klein T. The role of ligand endocytosis in notch signalling. Biol Cell 2021; 113:401-418. [PMID: 34038572 DOI: 10.1111/boc.202100009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
The Notch signalling receptor is a mechanoreceptor that is activated by force. This force elicits a conformational change in Notch that results in the release of its intracellular domain into the cytosol by two consecutive proteolytic cleavages. In most cases, the force is generated by pulling of the ligands on the receptor upon their endocytosis. In this review, we summarise recent work that shed a more detailed light on the role of endocytosis during ligand-dependent Notch activation and discuss the role of ubiquitylation of the ligands during this process.
Collapse
Affiliation(s)
- Ekaterina Seib
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, Duesseldorf, 40225, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, Duesseldorf, 40225, Germany
| |
Collapse
|
7
|
Shard C, Luna-Escalante J, Schweisguth F. Tissue-wide coordination of epithelium-to-neural stem cell transition in the Drosophila optic lobe requires Neuralized. J Cell Biol 2021; 219:152101. [PMID: 32946560 PMCID: PMC7594497 DOI: 10.1083/jcb.202005035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many tissues are produced by specialized progenitor cells emanating from epithelia via epithelial-to-mesenchymal transition (EMT). Most studies have so far focused on EMT involving single or isolated groups of cells. Here we describe an EMT-like process that requires tissue-level coordination. This EMT-like process occurs along a continuous front in the Drosophila optic lobe neuroepithelium to produce neural stem cells (NSCs). We find that emerging NSCs remain epithelial and apically constrict before dividing asymmetrically to produce neurons. Apical constriction is associated with contractile myosin pulses and involves RhoGEF3 and down-regulation of the Crumbs complex by the E3 ubiquitin ligase Neuralized. Anisotropy in Crumbs complex levels also results in accumulation of junctional myosin. Disrupting the regulation of Crumbs by Neuralized lowered junctional myosin and led to imprecision in the integration of emerging NSCs into the front. Thus, Neuralized promotes smooth progression of the differentiation front by coupling epithelium remodeling at the tissue level with NSC fate acquisition.
Collapse
Affiliation(s)
- Chloé Shard
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France
| | - Juan Luna-Escalante
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France.,Laboratoire de Physique, Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, Paris, France
| | - François Schweisguth
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
8
|
Bellec K, Pinot M, Gicquel I, Le Borgne R. The Clathrin adaptor AP-1 and Stratum act in parallel pathways to control Notch activation in Drosophila sensory organ precursors cells. Development 2021; 148:dev191437. [PMID: 33298463 PMCID: PMC7823167 DOI: 10.1242/dev.191437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022]
Abstract
Drosophila sensory organ precursors divide asymmetrically to generate pIIa/pIIb cells, the identity of which relies on activation of Notch at cytokinesis. Although Notch is present apically and basally relative to the midbody at the pIIa-pIIb interface, the basal pool of Notch is reported to be the main contributor for Notch activation in the pIIa cell. Intra-lineage signalling requires appropriate apico-basal targeting of Notch, its ligand Delta and its trafficking partner Sanpodo. We have previously reported that AP-1 and Stratum regulate the trafficking of Notch and Sanpodo from the trans-Golgi network to the basolateral membrane. Loss of AP-1 or Stratum caused mild Notch gain-of-function phenotypes. Here, we report that their concomitant loss results in a penetrant Notch gain-of-function phenotype, indicating that they control parallel pathways. Although unequal partitioning of cell fate determinants and cell polarity were unaffected, we observed increased amounts of signalling-competent Notch as well as Delta and Sanpodo at the apical pIIa-pIIb interface, at the expense of the basal pool of Notch. We propose that AP-1 and Stratum operate in parallel pathways to localize Notch and control where receptor activation takes place.
Collapse
Affiliation(s)
- Karen Bellec
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Mathieu Pinot
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Isabelle Gicquel
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
9
|
Gheisari E, Aakhte M, Müller HAJ. Gastrulation in Drosophila melanogaster: Genetic control, cellular basis and biomechanics. Mech Dev 2020; 163:103629. [PMID: 32615151 DOI: 10.1016/j.mod.2020.103629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023]
Abstract
Gastrulation is generally understood as the morphogenetic processes that result in the spatial organization of the blastomere into the three germ layers, ectoderm, mesoderm and endoderm. This review summarizes our current knowledge of the morphogenetic mechanisms in Drosophila gastrulation. In addition to the events that drive mesoderm invagination and germband elongation, we pay particular attention to other, less well-known mechanisms including midgut invagination, cephalic furrow formation, dorsal fold formation, and mesoderm layer formation. This review covers topics ranging from the identification and functional characterization of developmental and morphogenetic control genes to the analysis of the physical properties of cells and tissues and the control of cell and tissue mechanics of the morphogenetic movements in the gastrula.
Collapse
Affiliation(s)
- Elham Gheisari
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - Mostafa Aakhte
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - H-Arno J Müller
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany.
| |
Collapse
|
10
|
Effects of Xuefu Zhuyu Decoction on Cell Migration and Ocular Tumor Invasion in Drosophila. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/5463652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Xuefu Zhuyu Decoction (XFZYD), a Traditional Chinese Medicine (TCM) decoction mainly for treating blood stasis syndrome, has been widely investigated and applied in clinic and in laboratory. XFZYD contains 11 herbs and has been identified to promoting blood circulation to remove blood stasis for cardiovascular disease. Meanwhile, blood stasis is directly related to malignant tumor according to TCM basic theory. However, the effects of XFZYD on tumor metastasis and the underlying mechanisms are still largely unknown. Here, we employed well-establishedDrosophilacell migration and tumor invasion models to explore whether XFZYD has the anticancer activity on tumor metastasisin vivo. Our work has demonstrated that XFZYD could suppress cell migration and tumor invasion at the moderate concentrations. In addition, XFZYD altered the expression of MMP1,β-integrin, and E-cadherin to impede cell migration. Moreover, XFZYD inhibited ocular tumor invasion presumably by reducing the activity of Notch signaling. Together, these evidences reveal a positive role of XFZYD in suppressing cell migration and tumor metastasis, providing the potential drug targets and key clues for cancer clinical treatment strategies.
Collapse
|
11
|
Martin AC. The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination. Genetics 2020; 214:543-560. [PMID: 32132154 PMCID: PMC7054018 DOI: 10.1534/genetics.119.301292] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
A critical juncture in early development is the partitioning of cells that will adopt different fates into three germ layers: the ectoderm, the mesoderm, and the endoderm. This step is achieved through the internalization of specified cells from the outermost surface layer, through a process called gastrulation. In Drosophila, gastrulation is achieved through cell shape changes (i.e., apical constriction) that change tissue curvature and lead to the folding of a surface epithelium. Folding of embryonic tissue results in mesoderm and endoderm invagination, not as individual cells, but as collective tissue units. The tractability of Drosophila as a model system is best exemplified by how much we know about Drosophila gastrulation, from the signals that pattern the embryo to the molecular components that generate force, and how these components are organized to promote cell and tissue shape changes. For mesoderm invagination, graded signaling by the morphogen, Spätzle, sets up a gradient in transcriptional activity that leads to the expression of a secreted ligand (Folded gastrulation) and a transmembrane protein (T48). Together with the GPCR Mist, which is expressed in the mesoderm, and the GPCR Smog, which is expressed uniformly, these signals activate heterotrimeric G-protein and small Rho-family G-protein signaling to promote apical contractility and changes in cell and tissue shape. A notable feature of this signaling pathway is its intricate organization in both space and time. At the cellular level, signaling components and the cytoskeleton exhibit striking polarity, not only along the apical-basal cell axis, but also within the apical domain. Furthermore, gene expression controls a highly choreographed chain of events, the dynamics of which are critical for primordium invagination; it does not simply throw the cytoskeletal "on" switch. Finally, studies of Drosophila gastrulation have provided insight into how global tissue mechanics and movements are intertwined as multiple tissues simultaneously change shape. Overall, these studies have contributed to the view that cells respond to forces that propagate over great distances, demonstrating that cellular decisions, and, ultimately, tissue shape changes, proceed by integrating cues across an entire embryo.
Collapse
Affiliation(s)
- Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| |
Collapse
|
12
|
Abstract
Drosophila melanogaster embryos develop initially as a syncytium of totipotent nuclei and subsequently, once cellularized, undergo morphogenetic movements associated with gastrulation to generate the three somatic germ layers of the embryo: mesoderm, ectoderm, and endoderm. In this chapter, we focus on the first phase of gastrulation in Drosophila involving patterning of early embryos when cells differentiate their gene expression programs. This patterning process requires coordination of multiple developmental processes including genome reprogramming at the maternal-to-zygotic transition, combinatorial action of transcription factors to support distinct gene expression, and dynamic feedback between this genetic patterning by transcription factors and changes in cell morphology. We discuss the gene regulatory programs acting during patterning to specify the three germ layers, which involve the regulation of spatiotemporal gene expression coupled to physical tissue morphogenesis.
Collapse
Affiliation(s)
- Angelike Stathopoulos
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Susan Newcomb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
13
|
Viswanathan R, Necakov A, Trylinski M, Harish RK, Krueger D, Esposito E, Schweisguth F, Neveu P, De Renzis S. Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue differentiation. EMBO Rep 2019; 20:e47999. [PMID: 31668010 PMCID: PMC6893285 DOI: 10.15252/embr.201947999] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 01/18/2023] Open
Abstract
Spatio-temporal regulation of signalling pathways plays a key role in generating diverse responses during the development of multicellular organisms. The role of signal dynamics in transferring signalling information in vivo is incompletely understood. Here, we employ genome engineering in Drosophila melanogaster to generate a functional optogenetic allele of the Notch ligand Delta (opto-Delta), which replaces both copies of the endogenous wild-type locus. Using clonal analysis, we show that optogenetic activation blocks Notch activation through cis-inhibition in signal-receiving cells. Signal perturbation in combination with quantitative analysis of a live transcriptional reporter of Notch pathway activity reveals differential tissue- and cell-scale regulatory modes. While at the tissue-level the duration of Notch signalling determines the probability with which a cellular response will occur, in individual cells Notch activation acts through a switch-like mechanism. Thus, time confers regulatory properties to Notch signalling that exhibit integrative digital behaviours during tissue differentiation.
Collapse
Affiliation(s)
- Ranjith Viswanathan
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Aleksandar Necakov
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Department of Biological ScienceBrock UniversitySt. CatharinesONCanada
| | - Mateusz Trylinski
- Institut PasteurUMR3738CNRSParisFrance
- Sorbonne UniversitéParisFrance
| | - Rohit Krishnan Harish
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Daniel Krueger
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Emilia Esposito
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | | | - Pierre Neveu
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Stefano De Renzis
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
14
|
Couturier L, Mazouni K, Corson F, Schweisguth F. Regulation of Notch output dynamics via specific E(spl)-HLH factors during bristle patterning in Drosophila. Nat Commun 2019; 10:3486. [PMID: 31375669 PMCID: PMC6677740 DOI: 10.1038/s41467-019-11477-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
The stereotyped arrangement of sensory bristles on the adult fly thorax arises from a self-organized process, in which inhibitory Notch signaling both delimits proneural stripes and singles out sensory organ precursor cells (SOPs). A dynamic balance between proneural factors and Enhancer of split-HLH (E(spl)-HLH) Notch targets underlies patterning, but how this is regulated is unclear. Here, were identify two classes of E(spl)-HLH factors, whose expression both precedes and delimits proneural activity, and is dependent on proneural activity and required for proper SOP spacing within the stripes, respectively. These two classes are partially redundant, since a member of the second class, that is normally cross-repressed by members of the first class, can functionally compensate for their absence. The regulation of specific E(spl)-HLH genes by proneural factors amplifies the response to Notch as SOPs are being selected, contributing to patterning dynamics in the notum, and likely operates in other developmental contexts. The patterning of sensory bristles on the dorsal thorax of flies is regulated by two transcription factor families but the dynamics of this regulation is unclear. Here, the authors visualize seven E(spl)-HLH proteins, showing their regulated expression promotes mutual inhibition by Notch during notum patterning.
Collapse
Affiliation(s)
- Lydie Couturier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015, Paris, France.,CNRS, UMR3738, 75015, Paris, France
| | - Khalil Mazouni
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015, Paris, France.,CNRS, UMR3738, 75015, Paris, France
| | - Francis Corson
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Sorbonne Université, Université Paris Diderot, 75005, Paris, France
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015, Paris, France. .,CNRS, UMR3738, 75015, Paris, France.
| |
Collapse
|
15
|
Miller SW, Posakony JW. Lateral inhibition: Two modes of non-autonomous negative autoregulation by neuralized. PLoS Genet 2018; 14:e1007528. [PMID: 30028887 PMCID: PMC6070291 DOI: 10.1371/journal.pgen.1007528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/01/2018] [Accepted: 07/01/2018] [Indexed: 11/18/2022] Open
Abstract
Developmental patterning involves the progressive subdivision of tissue into different cell types by invoking different genetic programs. In particular, cell-cell signaling is a universally deployed means of specifying distinct cell fates in adjacent cells. For this mechanism to be effective, it is essential that an asymmetry be established in the signaling and responding capacities of the participating cells. Here we focus on the regulatory mechanisms underlying the role of the neuralized gene and its protein product in establishing and maintaining asymmetry of signaling through the Notch pathway. The context is the classical process of “lateral inhibition” within Drosophila proneural clusters, which is responsible for distinguishing the sensory organ precursor (SOP) and non-SOP fates among adjacent cells. We find that neur is directly regulated in proneural clusters by both proneural transcriptional activators and Enhancer of split basic helix-loop-helix repressors (bHLH-Rs), via two separate cis-regulatory modules within the neur locus. We show that this bHLH-R regulation is required to prevent the early, pre-SOP expression of neur from being maintained in a subset of non-SOPs following SOP specification. Lastly, we demonstrate that Neur activity in the SOP is required to inhibit, in a cell non-autonomous manner, both neur expression and Neur function in non-SOPs, thus helping to secure the robust establishment of distinct cell identities within the developing proneural cluster. Much of the process of animal development is concerned with giving cells specific instructions as to what type of cell they are to become—their “fate”. Often, it is even necessary to assign very different fates to cells that are adjacent to each other in the tissue. In such cases, cell-to-cell signaling is frequently utilized as the means of distinguishing the cells’ fates. For example, one cell might send a signal to its neighbors that inhibits them from adopting the same fate as itself. Here, it is obviously vital that there is an asymmetry between the “sending” and “receiving” cells in the ability to transmit such a signal. In the fruit fly Drosophila, the gene neuralized encodes a protein that plays a critical role in establishing the capacity to send such an inhibitory signal. The work we describe here reveals specifically how the receiving cells are prevented from acquiring the ability to send the signal. Remarkably, the Neuralized protein itself is deeply involved in this process. Neuralized function in the sending cell generates two distinct mechanisms that inhibit its own activity in the receiving cells.
Collapse
Affiliation(s)
- Steven W. Miller
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - James W. Posakony
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Insight into Notch Signaling Steps That Involve pecanex from Dominant-Modifier Screens in Drosophila. Genetics 2018; 209:1099-1119. [PMID: 29853475 DOI: 10.1534/genetics.118.300935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Notch signaling plays crucial roles in intercellular communications. In Drosophila, the pecanex (pcx) gene, which encodes an evolutionarily conserved multi-pass transmembrane protein, appears to be required to activate Notch signaling in some contexts, especially during neuroblast segregation in the neuroectoderm. Although Pcx has been suggested to contribute to endoplasmic reticulum homeostasis, its functions remain unknown. Here, to elucidate these roles, we performed genetic modifier screens of pcx We found that pcx heterozygotes lacking its maternal contribution exhibit cold-sensitive lethality, which is attributed to a reduction in Notch signaling at decreased temperatures. Using sets of deletions that uncover most of the second and third chromosomes, we identified four enhancers and two suppressors of the pcx cold-sensitive lethality. Among these, five genes encode known Notch-signaling components: big brain, Delta (Dl), neuralized (neur), Brother of Bearded A (BobA), a member of the Bearded (Brd) family, and N-ethylmaleimide-sensitive factor 2 (Nsf2). We showed that BobA suppresses Dl endocytosis during neuroblast segregation in the neuroectoderm, as Brd family genes reportedly do in the mesoderm for mesectoderm specification. Analyses of Nsf2, a key regulator of vesicular fusion, suggested a novel role in neuroblast segregation, which is distinct from Nsf2's previously reported role in imaginal tissues. Finally, jim lovell, which encodes a potential transcription factor, may play a role in Notch signaling during neuroblast segregation. These results reveal new research avenues for Pcx functions and Notch signaling.
Collapse
|
17
|
Yatsenko AS, Shcherbata HR. Stereotypical architecture of the stem cell niche is spatiotemporally established by miR-125-dependent coordination of Notch and steroid signaling. Development 2018; 145:dev.159178. [PMID: 29361571 PMCID: PMC5818007 DOI: 10.1242/dev.159178] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022]
Abstract
Stem cell niches act as signaling platforms that regulate stem cell self-renewal and sustain stem cells throughout life; however, the specific developmental events controlling their assembly are not well understood. Here, we show that during Drosophila ovarian germline stem cell niche formation, the status of Notch signaling in the cell can be reprogrammed. This is controlled via steroid-induced miR-125, which targets a negative regulator of Notch signaling, Tom. Thus, miR-125 acts as a spatiotemporal coordinator between paracrine Notch and endocrine steroid signaling. Moreover, a dual security mechanism for Notch signaling activation exists to ensure the robustness of niche assembly. Particularly, stem cell niche cells can be specified either via lateral inhibition, in which a niche cell precursor acquires Notch signal-sending status randomly, or via peripheral induction, whereby Delta is produced by a specific cell. When one mechanism is perturbed due to mutations, developmental defects or environmental stress, the remaining mechanism ensures that the niche is formed, perhaps abnormally, but still functional. This guarantees that the germline stem cells will have their residence, thereby securing progressive oogenesis and, thus, organism reproduction. Highlighted Article: In Drosophila, the robustness of stem cell niche assembly is safeguarded via a dual mechanism of Notch activation. Cellular Notch status can be reprogrammed by miR-125, which spatiotemporally coordinates paracrine and endocrine signaling.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
18
|
Rink JC. Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale. Methods Mol Biol 2018; 1774:57-172. [PMID: 29916155 DOI: 10.1007/978-1-4939-7802-1_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The establishment of size and shape remains a fundamental challenge in biological research that planarian flatworms uniquely epitomize. Planarians can regenerate complete and perfectly proportioned animals from tiny and arbitrarily shaped tissue pieces; they continuously renew all organismal cell types from abundant pluripotent stem cells, yet maintain shape and anatomy in the face of constant turnover; they grow when feeding and literally degrow when starving, while scaling form and function over as much as a 40-fold range in body length or an 800-fold change in total cell numbers. This review provides a broad overview of the current understanding of the planarian stem cell system, the mechanisms that pattern the planarian body plan and how the interplay between patterning signals and cell fate choices orchestrates regeneration. What emerges is a conceptual framework for the maintenance and regeneration of the planarian body plan on basis of the interplay between pluripotent stem cells and self-organizing patterns and further, the general utility of planarians as model system for the mechanistic basis of size and shape.
Collapse
Affiliation(s)
- Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
19
|
Perez-Mockus G, Mazouni K, Roca V, Corradi G, Conte V, Schweisguth F. Spatial regulation of contractility by Neuralized and Bearded during furrow invagination in Drosophila. Nat Commun 2017; 8:1594. [PMID: 29150614 PMCID: PMC5693868 DOI: 10.1038/s41467-017-01482-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022] Open
Abstract
Embryo-scale morphogenesis arises from patterned mechanical forces. During Drosophila gastrulation, actomyosin contractility drives apical constriction in ventral cells, leading to furrow formation and mesoderm invagination. It remains unclear whether and how mechanical properties of the ectoderm influence this process. Here, we show that Neuralized (Neur), an E3 ubiquitin ligase active in the mesoderm, regulates collective apical constriction and furrow formation. Conversely, the Bearded (Brd) proteins antagonize maternal Neur and lower medial-apical contractility in the ectoderm: in Brd-mutant embryos, the ventral furrow invaginates properly but rapidly unfolds as medial MyoII levels increase in the ectoderm. Increasing contractility in the ectoderm via activated Rho similarly triggers furrow unfolding whereas decreasing contractility restores furrow invagination in Brd-mutant embryos. Thus, the inhibition of Neur by Brd in the ectoderm differentiates the mechanics of the ectoderm from that of the mesoderm and patterns the activity of MyoII along the dorsal-ventral axis.
Collapse
Affiliation(s)
- Gantas Perez-Mockus
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France.,CNRS, UMR3738, F-75015, Paris, France.,Univ. Pierre et Marie Curie, Cellule Pasteur UPMC, F-75015, Paris, France
| | - Khalil Mazouni
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France.,CNRS, UMR3738, F-75015, Paris, France
| | - Vanessa Roca
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France.,CNRS, UMR3738, F-75015, Paris, France
| | - Giulia Corradi
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France.,CNRS, UMR3738, F-75015, Paris, France
| | - Vito Conte
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France. .,CNRS, UMR3738, F-75015, Paris, France.
| |
Collapse
|
20
|
Perez-Mockus G, Schweisguth F. Cell Polarity and Notch Signaling: Linked by the E3 Ubiquitin Ligase Neuralized? Bioessays 2017; 39. [DOI: 10.1002/bies.201700128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/17/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Gantas Perez-Mockus
- Institut Pasteur,; Dept of Developmental and Stem Cell Biology; F-75015 Paris France
- CNRS; UMR3738; F-75015 Paris France
- Univ. Pierre et Marie Curie; Cellule Pasteur UPMC; rue du Dr Roux 75015 Paris France
| | - Francois Schweisguth
- Institut Pasteur,; Dept of Developmental and Stem Cell Biology; F-75015 Paris France
- CNRS; UMR3738; F-75015 Paris France
| |
Collapse
|
21
|
Intra-lineage Fate Decisions Involve Activation of Notch Receptors Basal to the Midbody in Drosophila Sensory Organ Precursor Cells. Curr Biol 2017; 27:2239-2247.e3. [PMID: 28736165 DOI: 10.1016/j.cub.2017.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 01/27/2023]
Abstract
Notch receptors regulate cell fate decisions during embryogenesis and throughout adult life. In many cell lineages, binary fate decisions are mediated by directional Notch signaling between the two sister cells produced by cell division. How Notch signaling is restricted to sister cells after division to regulate intra-lineage decision is poorly understood. More generally, where ligand-dependent activation of Notch occurs at the cell surface is not known, as methods to detect receptor activation in vivo are lacking. In Drosophila pupae, Notch signals during cytokinesis to regulate the intra-lineage pIIa/pIIb decision in the sensory organ lineage. Here, we identify two pools of Notch along the pIIa-pIIb interface, apical and basal to the midbody. Analysis of the dynamics of Notch, Delta, and Neuralized distribution in living pupae suggests that ligand endocytosis and receptor activation occur basal to the midbody. Using selective photo-bleaching of GFP-tagged Notch and photo-tracking of photo-convertible Notch, we show that nuclear Notch is indeed produced by receptors located basal to the midbody. Thus, only a specific subset of receptors, located basal to the midbody, contributes to signaling in pIIa. This is the first in vivo characterization of the pool of Notch contributing to signaling. We propose a simple mechanism of cell fate decision based on intra-lineage signaling: ligands and receptors localize during cytokinesis to the new cell-cell interface, thereby ensuring signaling between sister cells, hence intra-lineage fate decision.
Collapse
|
22
|
Perez-Mockus G, Roca V, Mazouni K, Schweisguth F. Neuralized regulates Crumbs endocytosis and epithelium morphogenesis via specific Stardust isoforms. J Cell Biol 2017; 216:1405-1420. [PMID: 28400441 PMCID: PMC5412571 DOI: 10.1083/jcb.201611196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
The E3 ubiquitin ligase Neuralized is shown to interact with a subset of the Stardust isoforms to regulate the endocytosis of the apical protein Crumbs and thereby promote epithelial remodeling during Drosophila development. Crumbs (Crb) is a conserved determinant of apical membrane identity that regulates epithelial morphogenesis in many developmental contexts. In this study, we identify the Crb complex protein Stardust (Sdt) as a target of the E3 ubiquitin ligase Neuralized (Neur) in Drosophila melanogaster. Neur interacts with and down-regulates specific Sdt isoforms containing a Neur binding motif (NBM). Using a CRISPR (clustered regularly interspaced short palindromic repeats)-induced deletion of the NBM-encoding exon, we found that Sdt is a key Neur target and that Neur acts via Sdt to down-regulate Crb. We further show that Neur promotes the endocytosis of Crb via the NBM-containing isoforms of Sdt. Although the regulation of Crb by Neur is not strictly essential, it contributes to epithelium remodeling in the posterior midgut and thereby facilitates the trans-epithelial migration of the primordial germ cells in early embryos. Thus, our study uncovers a novel regulatory mechanism for the developmental control of Crb-mediated morphogenesis.
Collapse
Affiliation(s)
- Gantas Perez-Mockus
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015 Paris, France.,Centre National de la Recherché Scientifique, UMR3738, F-75015 Paris, France.,Cellule Pasteur, Université Pierre et Marie Curie, F-75015 Paris, France
| | - Vanessa Roca
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015 Paris, France.,Centre National de la Recherché Scientifique, UMR3738, F-75015 Paris, France
| | - Khalil Mazouni
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015 Paris, France.,Centre National de la Recherché Scientifique, UMR3738, F-75015 Paris, France
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015 Paris, France .,Centre National de la Recherché Scientifique, UMR3738, F-75015 Paris, France
| |
Collapse
|
23
|
Corson F, Couturier L, Rouault H, Mazouni K, Schweisguth F. Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science 2017; 356:science.aai7407. [PMID: 28386027 DOI: 10.1126/science.aai7407] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/20/2017] [Indexed: 12/26/2022]
Abstract
The emergence of spatial patterns in developing multicellular organisms relies on positional cues and cell-cell communication. Drosophila sensory organs have informed a paradigm in which these operate in two distinct steps: Prepattern factors drive localized proneural activity, then Notch-mediated lateral inhibition singles out neural precursors. Here we show that self-organization through Notch signaling also establishes the proneural stripes that resolve into rows of sensory bristles on the fly thorax. Patterning, initiated by a gradient of Delta ligand expression, progresses through inhibitory signaling between and within stripes. Thus, Notch signaling can support self-organized tissue patterning as a prepattern is transduced by cell-cell interactions into a refined arrangement of cellular fates.
Collapse
Affiliation(s)
- Francis Corson
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, 75005 Paris, France.
| | - Lydie Couturier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France.,CNRS, UMR3738, 75015 Paris, France
| | - Hervé Rouault
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France.,CNRS, UMR3738, 75015 Paris, France
| | - Khalil Mazouni
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France.,CNRS, UMR3738, 75015 Paris, France
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France. .,CNRS, UMR3738, 75015 Paris, France
| |
Collapse
|
24
|
Liu S, Boulianne GL. The NHR domains of Neuralized and related proteins: Beyond Notch signalling. Cell Signal 2017; 29:62-68. [DOI: 10.1016/j.cellsig.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022]
|
25
|
Stappert D, Frey N, von Levetzow C, Roth S. Genome-wide identification of Tribolium dorsoventral patterning genes. Development 2016; 143:2443-54. [PMID: 27287803 DOI: 10.1242/dev.130641] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/19/2016] [Indexed: 01/24/2023]
Abstract
The gene regulatory network controlling dorsoventral axis formation in insects has undergone drastic evolutionary changes. In Drosophila, a stable long-range gradient of Toll signalling specifies ventral cell fates and restricts BMP signalling to the dorsal half of the embryo. In Tribolium, however, Toll signalling is transient and only indirectly controls BMP signalling. In order to gain unbiased insights into the Tribolium network, we performed comparative transcriptome analyses of embryos with various dorsoventral pattering defects produced by parental RNAi for Toll and BMP signalling components. We also included embryos lacking the mesoderm (produced by Tc-twist RNAi) and characterized similarities and differences between Drosophila and Tribolium twist loss-of-function phenotypes. Using stringent conditions, we identified over 750 differentially expressed genes and analysed a subset with altered expression in more than one knockdown condition. We found new genes with localized expression and showed that conserved genes frequently possess earlier and stronger phenotypes than their Drosophila orthologues. For example, the leucine-rich repeat (LRR) protein Tartan, which has only a minor influence on nervous system development in Drosophila, is essential for early neurogenesis in Tribolium and the Tc-zinc-finger homeodomain protein 1 (Tc-zfh1), the orthologue of which plays a minor role in Drosophila muscle development, is essential for maintaining early Tc-twist expression, indicating an important function for mesoderm specification.
Collapse
Affiliation(s)
- Dominik Stappert
- Institute of Developmental Biology, Biocenter, Zuelpicher Str. 47b, University of Cologne, Cologne 50674, Germany
| | - Nadine Frey
- Institute of Developmental Biology, Biocenter, Zuelpicher Str. 47b, University of Cologne, Cologne 50674, Germany
| | - Cornelia von Levetzow
- Centrum für Integrierte Onkologie (CIO) Köln Bonn, Universitätsklinikum Köln, Kerpener Str. 62, Köln 50937, Germany
| | - Siegfried Roth
- Institute of Developmental Biology, Biocenter, Zuelpicher Str. 47b, University of Cologne, Cologne 50674, Germany
| |
Collapse
|
26
|
Wurmbach E, Preiss A. Deletion mapping in the Enhancer of split complex. Hereditas 2015; 151:159-68. [PMID: 25588303 DOI: 10.1111/hrd2.00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022] Open
Abstract
The Enhancer of split complex [E(spl)-C] comprises twelve genes of different classes. Seven genes encode proteins of with a basic-helix-loop-helix-orange (bHLH-O) domain that function as transcriptional repressors and serve as effectors of the Notch signalling pathway. They have been named E(spl)m8-, m7-, m5-, m3-, mβ-, mγ- and mδ-HLH. Four genes, E(spl)m6-, m4-, m2- and mα-BFM are intermingled and encode Notch repressor proteins of the Bearded-family (BFM). The complex is split by a single gene of unrelated function, encoding a Kazal-type protease inhibitor (Kaz-m1). All members within a family, bHLH-O or BFM, are very similar in structure and in function. In an attempt to generate specific mutants, we have mobilised P-element constructs residing next to E(spl)m7-HLH and E(spl)mγ-HLH, respectively. The resulting deletions were mapped molecularly and by cytology. Two small deletions affected only E(spl)m7-HLH and E(spl)mδ. The deficient flies were viable without apparent phenotype. Larger deletions, generated also by X-ray mutagenesis, uncover most of the E(spl)-C. The phenotypes of homozygous deficient embryos were analysed to characterize the respective loss of Notch signalling activity.
Collapse
Affiliation(s)
- Elisa Wurmbach
- Office of Chief Medical Examiner, Department of Forensic Biology, New York, NY, USA
| | | |
Collapse
|
27
|
Troost T, Schneider M, Klein T. A re-examination of the selection of the sensory organ precursor of the bristle sensilla of Drosophila melanogaster. PLoS Genet 2015; 11:e1004911. [PMID: 25569355 PMCID: PMC4287480 DOI: 10.1371/journal.pgen.1004911] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022] Open
Abstract
The bristle sensillum of the imago of Drosophila is made of four cells that arise from a sensory organ precursor cell (SOP). This SOP is selected within proneural clusters (PNC) through a mechanism that involves Notch signalling. PNCs are defined through the expression domains of the proneural genes, whose activities enables cells to become SOPs. They encode tissue specific bHLH proteins that form functional heterodimers with the bHLH protein Daughterless (Da). In the prevailing lateral inhibition model for SOP selection, a transcriptional feedback loop that involves the Notch pathway amplifies small differences of proneural activity between cells of the PNC. As a result only one or two cells accumulate sufficient proneural activity to adopt the SOP fate. Most of the experiments that sustained the prevailing lateral inhibition model were performed a decade ago. We here re-examined the selection process using recently available reagents. Our data suggest a different picture of SOP selection. They indicate that a band-like region of proneural activity exists. In this proneural band the activity of the Notch pathway is required in combination with Emc to define the PNCs. We found a sub-group in the PNCs from which a pre-selected SOP arises. Our data indicate that most imaginal disc cells are able to adopt a proneural state from which they can progress to become SOPs. They further show that bristle formation can occur in the absence of the proneural genes if the function of emc is abolished. These results suggest that the tissue specific proneural proteins of Drosophila have a similar function as in the vertebrates, which is to determine the time of emergence and position of the SOP and to stabilise the proneural state. The sensory organ precursor cell (SOP) that forms the mechanosensory bristles of the adult PNS of Drosophila is a paradigm to study neural precursor determination. The current model states that the SOP is selected in proneural clusters (PNCs) defined through the expression of the proneural genes. The selection occurs through lateral inhibition mediated by the Notch signalling pathway. The SOP is pre-selected by differential expression of Extramacrochaetae (Emc), the only member of the Id proteins in Drosophila, which inactivates the proneural factors. We have re-examined the selection process using novel markers and mutants. Our data suggest a different picture of SOP selection. We discovered a band–like region of varying proneural activity where the peaks constitute the proneural clusters. Within the PNC, a subgroup exists from which the SOP arises. The Notch pathway has two distinct functions in the subgroup and in the rest of the band. We show that so far one unappreciated essential role of the proneural genes is the neutralisation of the activity of Emc. Our data suggest that the selection of the SOP is more similar to neural selection in vertebrates than previously anticipated.
Collapse
Affiliation(s)
- Tobias Troost
- Institut fuer Genetik, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| | - Markus Schneider
- Institut fuer Genetik, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| | - Thomas Klein
- Institut fuer Genetik, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
28
|
Ozdemir A, Ma L, White KP, Stathopoulos A. Su(H)-mediated repression positions gene boundaries along the dorsal-ventral axis of Drosophila embryos. Dev Cell 2015; 31:100-13. [PMID: 25313963 DOI: 10.1016/j.devcel.2014.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 06/10/2014] [Accepted: 08/05/2014] [Indexed: 12/22/2022]
Abstract
In Drosophila embryos, a nuclear gradient of the Dorsal (Dl) transcription factor directs differential gene expression along the dorsoventral (DV) axis, translating it into distinct domains that specify future mesodermal, neural, and ectodermal territories. However, the mechanisms used to differentially position gene expression boundaries along this axis are not fully understood. Here, using a combination of approaches, including mutant phenotype analyses and chromatin immunoprecipitation, we show that the transcription factor Suppressor of Hairless, Su(H), helps define dorsal boundaries for many genes expressed along the DV axis. Synthetic reporter constructs also provide molecular evidence that Su(H) binding sites support repression and act to counterbalance activation through Dl and the ubiquitous activator Zelda. Our study highlights a role for broadly expressed repressors, like Su(H), and organization of transcription factor binding sites within cis-regulatory modules as important elements controlling spatial domains of gene expression to facilitate flexible positioning of boundaries across the entire DV axis.
Collapse
Affiliation(s)
- Anil Ozdemir
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lijia Ma
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
29
|
Uninflatable and Notch control the targeting of Sara endosomes during asymmetric division. Curr Biol 2014; 24:2142-2148. [PMID: 25155514 DOI: 10.1016/j.cub.2014.07.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/11/2014] [Accepted: 07/21/2014] [Indexed: 11/21/2022]
Abstract
Cell fate decision during asymmetric division is mediated by the biased partition of cell fate determinants during mitosis [1-6]. In the case of the asymmetric division of the fly sensory organ precursor cells, directed Notch signaling from pIIb to the pIIa daughter endows pIIa with its distinct fate [1-6]. We have previously shown that Notch/Delta molecules internalized in the mother cell traffic through Sara endosomes and are directed to the pIIa daughter [6]. Here we show that the receptor Notch itself is required during the asymmetric targeting of the Sara endosomes to pIIa. Notch binds Uninflatable, and both traffic together through Sara endosomes, which is essential to direct asymmetric endosomes motility and Notch-dependent cell fate assignation. Our data uncover a part of the core machinery required for the asymmetric motility of a vesicular structure that is essential for the directed dispatch of Notch signaling molecules during asymmetric mitosis.
Collapse
|
30
|
Zacharioudaki E, Bray SJ. Tools and methods for studying Notch signaling in Drosophila melanogaster. Methods 2014; 68:173-82. [PMID: 24704358 PMCID: PMC4059942 DOI: 10.1016/j.ymeth.2014.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 01/08/2023] Open
Abstract
Notch signaling involves a highly conserved pathway that mediates communication between neighboring cells. Activation of Notch by its ligands, results in the release of the Notch intracellular domain (NICD), which enters the nucleus and regulates transcription. This pathway has been implicated in many developmental decisions and diseases (including cancers) over the past decades. The simplicity of the Notch pathway in Drosophila melanogaster, in combination with the availability of powerful genetics, make this an attractive model for studying fundamental principles of Notch regulation and function. In this article we present some of the established and emerging tools that are available to monitor and manipulate the Notch pathway in Drosophila and discuss their strengths and weaknesses.
Collapse
Affiliation(s)
- Evanthia Zacharioudaki
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
31
|
Abstract
The development of multicellular organisms relies on an intricate choreography of intercellular communication events that pattern the embryo and coordinate the formation of tissues and organs. It is therefore not surprising that developmental biology, especially using genetic model organisms, has contributed significantly to the discovery and functional dissection of the associated signal-transduction cascades. At the same time, biophysical, biochemical, and cell biological approaches have provided us with insights into the underlying cell biological machinery. Here we focus on how endocytic trafficking of signaling components (e.g., ligands or receptors) controls the generation, propagation, modulation, reception, and interpretation of developmental signals. A comprehensive enumeration of the links between endocytosis and signal transduction would exceed the limits of this review. We will instead use examples from different developmental pathways to conceptually illustrate the various functions provided by endocytic processes during key steps of intercellular signaling.
Collapse
Affiliation(s)
- Christian Bökel
- Center for Regenerative Therapies Dresden and Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | |
Collapse
|
32
|
|
33
|
Tremmel DM, Resad S, Little CJ, Wesley CS. Notch and PKC are involved in formation of the lateral region of the dorso-ventral axis in Drosophila embryos. PLoS One 2013; 8:e67789. [PMID: 23861806 PMCID: PMC3701627 DOI: 10.1371/journal.pone.0067789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/23/2013] [Indexed: 01/04/2023] Open
Abstract
The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD), an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.
Collapse
Affiliation(s)
- Daniel M. Tremmel
- Departments of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sedat Resad
- Departments of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christopher J. Little
- Departments of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cedric S. Wesley
- Departments of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
34
|
Southall TD, Gold KS, Egger B, Davidson CM, Caygill EE, Marshall OJ, Brand AH. Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 2013; 26:101-12. [PMID: 23792147 PMCID: PMC3714590 DOI: 10.1016/j.devcel.2013.05.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/20/2013] [Accepted: 05/24/2013] [Indexed: 12/20/2022]
Abstract
Cell-type-specific transcriptional profiling often requires the isolation of specific cell types from complex tissues. We have developed “TaDa,” a technique that enables cell-specific profiling without cell isolation. TaDa permits genome-wide profiling of DNA- or chromatin-binding proteins without cell sorting, fixation, or affinity purification. The method is simple, sensitive, highly reproducible, and transferable to any model system. We show that TaDa can be used to identify transcribed genes in a cell-type-specific manner with considerable temporal precision, enabling the identification of differential gene expression between neuroblasts and the neuroepithelial cells from which they derive. We profile the genome-wide binding of RNA polymerase II in these adjacent, clonally related stem cells within intact Drosophila brains. Our data reveal expression of specific metabolic genes in neuroepithelial cells, but not in neuroblasts, and highlight gene regulatory networks that may pattern neural stem cell fates. TaDa is a method for cell-type-specific profiling of chromatin binding proteins TaDa does not require cell sorting, fixation, or affinity purification This is a highly sensitive and robust technique for transcriptional profiling We report differential RNA Pol II binding in clonally related stem cells
Collapse
Affiliation(s)
- Tony D Southall
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Hartenstein V, Wodarz A. Initial neurogenesis in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:701-21. [PMID: 24014455 DOI: 10.1002/wdev.111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Early neurogenesis comprises the phase of nervous system development during which neural progenitor cells are born. In early development, the embryonic ectoderm is subdivided by a conserved signaling mechanism into two main domains, the epidermal ectoderm and the neurectoderm. Subsequently, cells of the neurectoderm are internalized and form a cell layer of proliferating neural progenitors. In vertebrates, the entire neurectoderm folds into the embryo to give rise to the neural tube. In Drosophila and many other invertebrates, a subset of neurectodermal cells, called neuroblasts (NBs), delaminates and forms the neural primordium inside the embryo where they divide in an asymmetric, stem cell-like mode. The remainder of the neurectodermal cells that stay behind at the surface loose their neurogenic potential and later give rise to the ventral part of the epidermis. The genetic and molecular analysis of the mechanisms controlling specification and proliferation of NBs in the Drosophila embryo, which played a significant part in pioneering the field of modern developmental neurobiology, represents the topic of this review.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
36
|
Regulation of epithelial polarity by the E3 ubiquitin ligase Neuralized and the Bearded inhibitors in Drosophila. Nat Cell Biol 2012; 14:467-76. [PMID: 22504274 DOI: 10.1038/ncb2481] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
Understanding how epithelial polarity is established and regulated during tissue morphogenesis is a major issue. Here, we identify a regulatory mechanism important for mesoderm invagination, germ-band extension and transepithelial migration in the Drosophila melanogaster embryo. This mechanism involves the inhibition of the conserved E3 ubiquitin ligase Neuralized by proteins of the Bearded family. First, Bearded mutant embryos exhibited a loss of epithelial polarity associated with an early loss of the apical domain. Bearded regulated epithelial polarity by antagonizing neuralized. Second, repression of Bearded gene expression by Snail was required for the Snail-dependent disassembly of adherens junctions in the mesoderm. Third, neuralized was strictly required to promote the downregulation of the apical domain in the midgut epithelium and to facilitate the transepithelial migration of primordial germ cells across this epithelium. This function of Neuralized was independent of its known role in Notch signalling. Thus, Neuralized has two distinct functions in epithelial cell polarity and Notch signalling.
Collapse
|
37
|
Song Y, Lu B. Interaction of Notch signaling modulator Numb with α-Adaptin regulates endocytosis of Notch pathway components and cell fate determination of neural stem cells. J Biol Chem 2012; 287:17716-17728. [PMID: 22474327 DOI: 10.1074/jbc.m112.360719] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ability to balance self-renewal and differentiation is a hallmark of stem cells. In Drosophila neural stem cells (NSCs), Numb/Notch (N) signaling plays a key role in this process. However, the molecular and cellular mechanisms underlying Numb function in a stem cell setting remain poorly defined. Here we show that α-Adaptin (α-Ada), a subunit of the endocytic AP-2 complex, interacts with Numb through a new mode of interaction to regulate NSC homeostasis. In α-ada mutants, N pathway component Sanpodo and the N receptor itself exhibited altered trafficking, and N signaling was up-regulated in the intermediate progenitors of type II NSC lineages, leading to their transformation into ectopic NSCs. Surprisingly, although the Ear domain of α-Ada interacts with the C terminus of Numb and is important for α-Ada function in the sensory organ precursor lineage, it was dispensable in the NSCs. Instead, α-Ada could regulate Sanpodo, N trafficking, and NSC homeostasis by interacting with Numb through new domains in both proteins previously not known to mediate their interaction. This interaction could be bypassed when α-Ada was directly fused to the phospho-tyrosine binding domain of Numb. Our results identify a critical role for the AP-2-mediated endocytosis in regulating NSC behavior and reveal a new mechanism by which Numb regulates NSC behavior through N. These findings are likely to have important implications for cancer biology.
Collapse
Affiliation(s)
- Yan Song
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305.
| |
Collapse
|
38
|
Daskalaki A, Shalaby NA, Kux K, Tsoumpekos G, Tsibidis GD, Muskavitch MAT, Delidakis C. Distinct intracellular motifs of Delta mediate its ubiquitylation and activation by Mindbomb1 and Neuralized. ACTA ACUST UNITED AC 2012; 195:1017-31. [PMID: 22162135 PMCID: PMC3241720 DOI: 10.1083/jcb.201105166] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ubiquitylation of the intracellular domain of Drosophila Delta is necessary for Notch activation. DSL proteins are transmembrane ligands of the Notch receptor. They associate with a RING (really interesting new gene) family E3 ubiquitin ligase, either Neuralized (Neur) or Mindbomb 1 (Mib1), as a prerequisite to signaling. Although Neur and Mib1 stimulate internalization of DSL ligands, it is not known how ubiquitylation contributes to signaling. We present a molecular dissection of the intracellular domain (ICD) of Drosophila melanogaster Delta (Dl), a prototype DSL protein. Using a cell-based assay, we detected ubiquitylation of Dl by both Neur and Mib1. The two enzymes use distinct docking sites and displayed different acceptor lysine preferences on the Dl ICD. We generated Dl variants that selectively perturb its interactions with Neur or Mib1 and analyzed their signaling activity in two in vivo contexts. We found an excellent correlation between the ability to undergo ubiquitylation and signaling. Therefore, ubiquitylation of the DSL ICD seems to be a necessary step in the activation of Notch.
Collapse
Affiliation(s)
- Aikaterini Daskalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
39
|
Shah DK, Zúñiga-Pflücker JC. Notch receptor-ligand interactions during T cell development, a ligand endocytosis-driven mechanism. Curr Top Microbiol Immunol 2012; 360:19-46. [PMID: 22581027 DOI: 10.1007/82_2012_225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Notch signaling plays an important role during the development of different cell types and tissues. The role of Notch signaling in lymphocyte development, in particular in the development and commitment to the T cell lineage, has been the focus of research for many years. Notch signaling is absolutely required during the commitment and early stages of T cell development. Activation of the Notch signaling pathway is initiated by ligand-receptor interactions and appears to require active endocytosis of Notch ligands. Studies addressing the mechanism underlying endocytosis of Notch ligands have helped to identify the main players important and necessary for this process. Here, we review the Notch ligands, and the proposed models of Notch activation by Notch ligand endocytosis, highlighting key molecules involved. In particular, we discuss recent studies on Notch ligands involved in T cell development, current studies aimed at elucidating the relevance of Notch ligand endocytosis during T cell development and the identification of key players necessary for ligand endocytosis in the thymus and during T cell development.
Collapse
Affiliation(s)
- Divya K Shah
- Department of Immunology, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4 N 3M5, Canada.
| | | |
Collapse
|
40
|
Rebeiz M, Castro B, Liu F, Yue F, Posakony JW. Ancestral and conserved cis-regulatory architectures in developmental control genes. Dev Biol 2011; 362:282-94. [PMID: 22185795 DOI: 10.1016/j.ydbio.2011.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/01/2011] [Accepted: 12/06/2011] [Indexed: 11/19/2022]
Abstract
Among developmental control genes, transcription factor-target gene "linkages"--the direct connections between target genes and the factors that control their patterns of expression--can show remarkable evolutionary stability. However, the specific binding sites that mediate and define these regulatory connections are themselves often subject to rapid turnover. Here we describe several instances in which particular transcription factor binding motif combinations have evidently been conserved upstream of orthologous target genes for extraordinarily long evolutionary periods. This occurs against a backdrop in which other binding sites for the same factors are coming and going rapidly. Our examples include a particular Dpp Silencer Element upstream of insect brinker genes, in combination with a novel motif we refer to as the Downstream Element; combinations of a Suppressor of Hairless Paired Site (SPS) and a specific proneural protein binding site associated with arthropod Notch pathway target genes; and a three-motif combination, also including an SPS, upstream of deuterostome Hes repressor genes, which are also Notch targets. We propose that these stable motif architectures have been conserved intact from a deep ancestor, in part because they mediate a special mode of regulation that cannot be supplied by the other, unstable motif instances.
Collapse
Affiliation(s)
- Mark Rebeiz
- Division of Biological Sciences/CDB, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
In the first volume of Developmental Cell, it was reported that the classic Drosophila neurogenic gene neuralized encodes a ubiquitin ligase that monoubiquitylates the Notch ligand Delta, thus promoting Delta endocytosis. A requirement for ligand internalization by the signal-sending cell, although counterintuitive, remains to date a feature unique to Notch signaling. Ten years and many ubiquitin ligases later, we discuss sequels to these three papers with an eye toward reviewing the development of ideas for how ligand ubiquitylation and endocytosis propel Notch signaling.
Collapse
|
42
|
Robust selection of sensory organ precursors by the Notch-Delta pathway. Curr Opin Cell Biol 2011; 23:663-7. [PMID: 21963301 DOI: 10.1016/j.ceb.2011.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/10/2011] [Accepted: 09/09/2011] [Indexed: 11/23/2022]
Abstract
The patterning of multicellular organisms is robust to environmental, genetic, or stochastic fluctuations. Mathematical modeling is instrumental in identifying mechanisms supporting this robustness. The principle of lateral inhibition, whereby a differentiating cell inhibits its neighbors from adopting the same fate, is frequently used for selecting a single cell out of a cluster of equipotent cells. For example, Sensory Organ Precursors (SOP) in the fruit-fly Drosophila implement lateral inhibition by activating the Notch-Delta pathway. We discuss parameters affecting the rate of errors in this process, and the mechanism (inhibitory cis interaction between Notch and Delta) predicted to reduce this error.
Collapse
|
43
|
Gene length may contribute to graded transcriptional responses in the Drosophila embryo. Dev Biol 2011; 360:230-40. [PMID: 21920356 DOI: 10.1016/j.ydbio.2011.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/28/2011] [Indexed: 01/22/2023]
Abstract
An important question in developmental biology is how relatively shallow gradients of morphogens can reliably establish a series of distinct transcriptional readouts. Current models emphasize interactions between transcription factors binding in distinct modes to cis-acting sequences of target genes. Another recent idea is that the cis-acting interactions may amplify preexisting biases or prepatterns to establish robust transcriptional responses. In this study, we examine the possible contribution of one such source of prepattern, namely gene length. We developed quantitative imaging tools to measure gene expression levels for several loci at a time on a single-cell basis and applied these quantitative imaging tools to dissect the establishment of a gene expression border separating the mesoderm and neuroectoderm in the early Drosophila embryo. We first characterized the formation of a transient ventral-to-dorsal gradient of the Snail (Sna) repressor and then examined the relationship between this gradient and repression of neural target genes in the mesoderm. We found that neural genes are repressed in a nested pattern within a zone of the mesoderm abutting the neuroectoderm, where Sna levels are graded. While several factors may contribute to the transient graded response to the Sna gradient, our analysis suggests that gene length may play an important, albeit transient, role in establishing these distinct transcriptional responses. One prediction of the gene-length-dependent transcriptional patterning model is that the co-regulated genes knirps (a short gene) and knirps-related (a long gene) should be transiently expressed in domains of differing widths, which we confirmed experimentally. These findings suggest that gene length may contribute to establishing graded responses to morphogen gradients by providing transient prepatterns that are subsequently amplified and stabilized by traditional cis-regulatory interactions.
Collapse
|
44
|
Shilo BZ, Schejter ED. Regulation of developmental intercellular signalling by intracellular trafficking. EMBO J 2011; 30:3516-26. [PMID: 21878993 DOI: 10.1038/emboj.2011.269] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/01/2011] [Indexed: 11/09/2022] Open
Abstract
Universal trafficking components within the cell can be recruited to coordinate and regulate the developmental signalling cascades. We will present ways in which the intracellular trafficking machinery is used to affect and modulate the outcome of signal transduction in developmental contexts, thus regulating multicellular development. Each of the signalling components must reach its proper intracellular destination, in a form that is properly folded and modified. In many instances, the ability to bring components together or segregate them into distinct compartments within the cell actually provides the switch mechanism to turn developmental signalling pathways on or off. The review will begin with a focus on the signal-sending cells, and the ways in which ligand trafficking can impinge on the signalling outcome, via processing, endocytosis and recycling. We will then turn to the signal-receiving cell, and discuss mechanisms by which endocytosis can affect the spatial features of the signal, and the compartmentalization of components downstream to the receptor.
Collapse
Affiliation(s)
- Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
45
|
Schwarz LA, Patrick GN. Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins. Mol Cell Neurosci 2011; 49:387-93. [PMID: 21884797 DOI: 10.1016/j.mcn.2011.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023] Open
Abstract
Extracellular signaling between cells is often transduced via receptors that reside at the cell membrane. In neurons this receptor-mediated signaling can promote a variety of cellular events such as differentiation, axon outgrowth and guidance, and synaptic development and function. Endocytic membrane trafficking of receptors ensures that the strength and duration of an extracellular signal is properly regulated. The covalent modification of membrane proteins by ubiquitin is a key biological mechanism controlling receptor internalization and endocytic sorting to recycling and degradative pathways in many cell types. In this review we highlight recent findings regarding the ubiquitin-dependent trafficking and turnover of receptors in neurons and the implications for neuronal development and function.
Collapse
Affiliation(s)
- Lindsay A Schwarz
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
46
|
Differential regulation of transcription through distinct Suppressor of Hairless DNA binding site architectures during Notch signaling in proneural clusters. Mol Cell Biol 2010; 31:22-9. [PMID: 21041480 DOI: 10.1128/mcb.00003-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In Drosophila melanogaster, achaete (ac) and m8 are model basic helix-loop-helix activator (bHLH A) and repressor genes, respectively, that have the opposite cell expression pattern in proneural clusters during Notch signaling. Previous studies have shown that activation of m8 transcription in specific cells within proneural clusters by Notch signaling is programmed by a "combinatorial" and "architectural" DNA transcription code containing binding sites for the Su(H) and proneural bHLH A proteins. Here we show the novel result that the ac promoter contains a similar combinatorial code of Su(H) and bHLH A binding sites but contains a different Su(H) site architectural code that does not mediate activation during Notch signaling, thus programming a cell expression pattern opposite that of m8 in proneural clusters.
Collapse
|
47
|
Egger B, Gold KS, Brand AH. Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development 2010; 137:2981-7. [PMID: 20685734 DOI: 10.1242/dev.051250] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The proper balance between symmetric and asymmetric stem cell division is crucial both to maintain a population of stem cells and to prevent tumorous overgrowth. Neural stem cells in the Drosophila optic lobe originate within a polarised neuroepithelium, where they divide symmetrically. Neuroepithelial cells are transformed into asymmetrically dividing neuroblasts in a precisely regulated fashion. This cell fate transition is highly reminiscent of the switch from neuroepithelial cells to radial glial cells in the developing mammalian cerebral cortex. To identify the molecules that mediate the transition, we microdissected neuroepithelial cells and compared their transcriptional profile with similarly obtained optic lobe neuroblasts. We find genes encoding members of the Notch pathway expressed in neuroepithelial cells. We show that Notch mutant clones are extruded from the neuroepithelium and undergo premature neurogenesis. A wave of proneural gene expression is thought to regulate the timing of the transition from neuroepithelium to neuroblast. We show that the proneural wave transiently suppresses Notch activity in neuroepithelial cells, and that inhibition of Notch triggers the switch from symmetric, proliferative division, to asymmetric, differentiative division.
Collapse
Affiliation(s)
- Boris Egger
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
48
|
Bernard F, Krejci A, Housden B, Adryan B, Bray SJ. Specificity of Notch pathway activation: twist controls the transcriptional output in adult muscle progenitors. Development 2010; 137:2633-42. [PMID: 20610485 DOI: 10.1242/dev.053181] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell-cell signalling mediated by Notch regulates many different developmental and physiological processes and is involved in a variety of human diseases. Activation of Notch impinges directly on gene expression through the Suppressor of Hairless [Su(H)] DNA-binding protein. A major question that remains to be elucidated is how the same Notch signalling pathway can result in different transcriptional responses depending on the cellular context and environment. Here, we have investigated the factors required to confer this specific response in Drosophila adult myogenic progenitor-related cells. Our analysis identifies Twist (Twi) as a crucial co-operating factor. Enhancers from several direct Notch targets require a combination of Twi and Notch activities for expression in vivo; neither alone is sufficient. Twi is bound at target enhancers prior to Notch activation and enhances Su(H) binding to these regulatory regions. To determine the breadth of the combinatorial regulation we mapped Twi occupancy genome-wide in DmD8 myogenic progenitor-related cells by chromatin immunoprecipitation. Comparing the sites bound by Su(H) and by Twi in these cells revealed a strong association, identifying a large spectrum of co-regulated genes. We conclude that Twi is an essential Notch co-regulator in myogenic progenitor cells and has the potential to confer specificity on Notch signalling at over 170 genes, showing that a single factor can have a profound effect on the output of the pathway.
Collapse
Affiliation(s)
- Fred Bernard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | | | | | |
Collapse
|
49
|
Benhra N, Vignaux F, Dussert A, Schweisguth F, Le Borgne R. Neuralized promotes basal to apical transcytosis of delta in epithelial cells. Mol Biol Cell 2010; 21:2078-86. [PMID: 20410139 PMCID: PMC2883951 DOI: 10.1091/mbc.e09-11-0926] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In this article, it is shown that a pool of Delta localizes at the basolateral membrane of sensory organ precursor cells of Drosophila and of polarized MDCK cells and that Delta is endocytosed in a Neuralized-dependent manner from this basolateral membrane to allow for relocalization to the apical domain where it can bind and activate Notch. Notch receptors mediate short-range signaling controlling many developmental decisions in metazoans. Activation of Notch requires the ubiquitin-dependent endocytosis of its ligand Delta. How ligand endocytosis in signal-sending cells regulates receptor activation in juxtaposed signal-receiving cells remains largely unknown. We show here that a pool of Delta localizes at the basolateral membrane of signal-sending sensory organ precursor cells in the dorsal thorax neuroepithelium of Drosophila and that Delta is endocytosed in a Neuralized-dependent manner from this basolateral membrane. This basolateral pool of Delta is segregated from Notch that accumulates apically. Using a compartimentalized antibody uptake assay, we show that murine Delta-like 1 is similarly internalized by mNeuralized2 from the basolateral membrane of polarized Madin-Darby canine kidney cells and that internalized ligands are transcytosed to the apical plasma membrane where mNotch1 accumulates. Thus, endocytosis of Delta by Neuralized relocalizes Delta from the basolateral to the apical membrane domain. We speculate that this Neuralized-dependent transcytosis regulates the signaling activity of Delta by relocalizing Delta from a membrane domain where it cannot interact with Notch to another membrane domain where it can bind and activate Notch.
Collapse
Affiliation(s)
- Najate Benhra
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6061, Institut de Génétique et Développement de Rennes, Université de Rennes 1, 35000 Rennes, France
| | | | | | | | | |
Collapse
|
50
|
Hamel S, Fantini J, Schweisguth F. Notch ligand activity is modulated by glycosphingolipid membrane composition in Drosophila melanogaster. ACTA ACUST UNITED AC 2010; 188:581-94. [PMID: 20176925 PMCID: PMC2828914 DOI: 10.1083/jcb.200907116] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endocytosis of the transmembrane ligands Delta (Dl) and Serrate (Ser) is required for the proper activation of Notch receptors. The E3 ubiquitin ligases Mindbomb1 (Mib1) and Neuralized (Neur) regulate the ubiquitination of Dl and Ser and thereby promote both ligand endocytosis and Notch receptor activation. In this study, we identify the alpha1,4-N-acetylgalactosaminyltransferase-1 (alpha4GT1) gene as a gain of function suppressor of Mib1 inhibition. Expression of alpha4GT1 suppressed the signaling and endocytosis defects of Dl and Ser resulting from the inhibition of mib1 and/or neur activity. Genetic and biochemical evidence indicate that alpha4GT1 plays a regulatory but nonessential function in Notch signaling via the synthesis of a specific glycosphingolipid (GSL), N5, produced by alpha4GT1. Furthermore, we show that the extracellular domain of Ser interacts with GSLs in vitro via a conserved GSL-binding motif, raising the possibility that direct GSL-protein interactions modulate the endocytosis of Notch ligands. Together, our data indicate that specific GSLs modulate the signaling activity of Notch ligands.
Collapse
Affiliation(s)
- Sophie Hamel
- Institut Pasteur, Centre National de la Recherche Scientifique URA2578, 75724 Paris, Cedex 15, France
| | | | | |
Collapse
|