1
|
Scaramella N, Glinwood R, Locke B. Unique brood ester profile in a Varroa destructor resistant population of European honey bee (Apis mellifera). Sci Rep 2024; 14:25531. [PMID: 39462055 PMCID: PMC11513966 DOI: 10.1038/s41598-024-76399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Varroa destructor is one of the greatest threats to Apis mellifera worldwide and if left untreated will kill a colony in less than three years. A Varroa-resistant population from Gotland, Sweden, has managed to survive for 25 years with little to no Varroa treatment by reducing the mite's reproductive success. The underlying mechanisms of this trait is currently not known, though previous research indicates that it is the honey bee brood, and not adult bee influence, that contributes to this phenotype. As the mite's own reproduction is synchronized with the brood's development though the interception of brood pheromones, it is possible that a change in pheromone profile would disrupt the mite's reproductive timing. To investigate this, we characterized the brood ester pheromone (BEP) profile of our resistant Gotland population compared to a non-resistant control. This was done by extracting and analyzing key cuticular compounds of the BEP using gas chromatography. A significant difference was found immediately after brood capping, indicating a divergence in their pheromonal production at this time point. This is an important step to understanding the mechanisms of the Gotland population's Varroa-resistance and contributes to our global understanding of Varroa destructor infestation and survival.
Collapse
Affiliation(s)
- Nicholas Scaramella
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Robert Glinwood
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Wu T, Dong Q, Tang X, Zhu X, Deng D, Ding Y, Ahmad S, Zhang W, Mao Z, Zhao X, Ge L. CYP303A1 regulates molting and metamorphosis through 20E signaling in Nilaparvata lugens Stål (Hemiptera: Delphacidae). Int J Biol Macromol 2024; 281:136234. [PMID: 39366602 DOI: 10.1016/j.ijbiomac.2024.136234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Cytochrome P450s play a crucial role in the breakdown of external substances and perform important activities in the hormone system of insects. It has been understood that P450s were essential in the metabolism of ecdysteroids. CYP303A1 is a highly conserved CYP in most insects, but its specific physiological functions remain poorly understood in Nilaparvata lugens Stål. In this study, NlCYP303A1 was identified and highly expressed in the pre-molt stages, predominantly in the cuticle-producing tissues. Silencing of NlCYP303A1 caused a lethal phenotype with a molting defect. Moreover, the 20E titers, the expression levels of Halloween genes, and critical genes associated with the 20E signaling pathway in N. lugens nymphs were significantly decreased with the silencing NlCYP303A1. We further performed additional backfilling of 20E to rescue the RNAi effects on NlCYP303A1. The gene expression levels that were previously reduced caused by silencing NlCYP303A1 were significantly elevated. However, the molting defects of nymphs were not effectively improved. The results demonstrated NlCYP303A1 plays a crucial role in the molting and metamorphosis of N. lugens by regulating the 20E signaling pathway and cuticular formation, enhances the understanding of the functional role of CYP 2 clans, and identifies candidate gene for RNAi-based control of N. lugens.
Collapse
Affiliation(s)
- Tao Wu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Qiaoqiao Dong
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xingyu Tang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xuhui Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Di Deng
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Yuting Ding
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Sheraz Ahmad
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Wen Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Ziyue Mao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xudong Zhao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Linquan Ge
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Valzania L, Alami A, Léopold P. A temporal allocation of amino acid resources ensures fitness and body allometry in Drosophila. Dev Cell 2024; 59:2277-2286.e6. [PMID: 38851190 DOI: 10.1016/j.devcel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024]
Abstract
Organisms have evolved strategies to store resources and overcome periods of low or no nutrient access, including transient shortages or longer non-feeding developmental transitions. Holometabolous insects like Drosophila represent an attractive model to study resource allocation during development because they alternate feeding and non-feeding periods. Amino acids are essential components for tissue growth and renewal, but the strategies used for their storage remain largely unexplored. Here, we characterize the molecular mechanisms for the temporal production, accumulation, and use of specific storage proteins called hexamerins, and demonstrate their role in ensuring tissue formation and adult fitness. Moreover, we show that preventing hexamerin stores enhances the growth of early-developing organs while compromising the emergence of late-forming ones, consequently altering body allometry.
Collapse
Affiliation(s)
- Luca Valzania
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 rue d'Ulm, 75005 Paris, France.
| | - Aya Alami
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 rue d'Ulm, 75005 Paris, France
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
4
|
Camilleri-Robles C, Amador R, Tiebe M, Teleman A, Serras F, Guigó R, Corominas M. Long non-coding RNAs involved in Drosophila development and regeneration. NAR Genom Bioinform 2024; 6:lqae091. [PMID: 39157585 PMCID: PMC11327875 DOI: 10.1093/nargab/lqae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
The discovery of functional long non-coding RNAs (lncRNAs) changed their initial concept as transcriptional noise. LncRNAs have been identified as regulators of multiple biological processes, including chromatin structure, gene expression, splicing, mRNA degradation, and translation. However, functional studies of lncRNAs are hindered by the usual lack of phenotypes upon deletion or inhibition. Here, we used Drosophila imaginal discs as a model system to identify lncRNAs involved in development and regeneration. We examined a subset of lncRNAs expressed in the wing, leg, and eye disc development. Additionally, we analyzed transcriptomic data from regenerating wing discs to profile the expression pattern of lncRNAs during tissue repair. We focused on the lncRNA CR40469, which is upregulated during regeneration. We generated CR40469 mutant flies that developed normally but showed impaired wing regeneration upon cell death induction. The ability of these mutants to regenerate was restored by the ectopic expression of CR40469. Furthermore, we found that the lncRNA CR34335 has a high degree of sequence similarity with CR40469 and can partially compensate for its function during regeneration in the absence of CR40469. Our findings point to a potential role of the lncRNA CR40469 in trans during the response to damage in the wing imaginal disc.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Raziel Amador
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Marcel Tiebe
- German Cancer Research Center (DKFZ) Heidelberg, Division B140, 69120 Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ) Heidelberg, Division B140, 69120 Heidelberg, Germany
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Ge R, Zhang L, Yang Y, Chen K, Li C. Arpc2 integrates ecdysone and juvenile hormone metabolism to influence metamorphosis and reproduction in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2024; 80:3734-3742. [PMID: 38477435 DOI: 10.1002/ps.8076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Actin-related protein 2/3 complex regulates actin polymerization and the formation of branched actin networks. However, the function and evolutionary relationship of this complex subunit 2 (Arpc2) has been poorly understood in insects. RESULTS To address these issues, we performed comprehensive analysis of Arpc2 in Tribolium castaneum. Phylogenetic analysis revealed that Arpc2 was originated from one ancestral gene in animals but evolved independently between vertebrates and insects after species differentiation. T. castaneum Arpc2 has a 906-bp coding sequence and consists of 4 exons. Arpc2 transcripts were abundantly detected in embryos and pupae but less so in larvae and adults, while it had high expression in the gut, fat body and head but low expression in the epidermis of late-stage larvae. Knockdown of it at the late larval stage inhibited the pupation and resulted in arrested larvae. Silencing it in 1-day pupae impaired eclosion, which caused adult wings to fail to close. Injection of Arpc2 dsRNAs into 5-day pupae made adults have smaller testis and ovary and could not lay eggs. The expression of vitellogenin 1 (Vg1), Vg2 and Vg receptor (VgR) was downregulated after knocking down Arpc2 5 days post-adult emergence. Arpc2 silencing reduced 20-hydroxyecdysone titer by affecting the enzymes of its biosynthesis and catabolism but increased juvenile biosynthesis via upregulating JHAMT3 expression. CONCLUSION Our results indicate that Arpc2 is associated with the metamorphosis and reproduction by integrating ecdysone and juvenile hormone metabolism in T. castaneum. This study provides theoretical basis for developing Arpc2 as a potential RNA interference target for pest control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Runting Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ling Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
6
|
Terry D, Schweibenz C, Moberg K. Local Ecdysone synthesis in a wounded epithelium sustains developmental delay and promotes regeneration in Drosophila. Development 2024; 151:dev202828. [PMID: 38775023 PMCID: PMC11234263 DOI: 10.1242/dev.202828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024]
Abstract
Regenerative ability often declines as animals mature past embryonic and juvenile stages, suggesting that regeneration requires redirection of growth pathways that promote developmental growth. Intriguingly, the Drosophila larval epithelia require the hormone ecdysone (Ec) for growth but require a drop in circulating Ec levels to regenerate. Examining Ec dynamics more closely, we find that transcriptional activity of the Ec-receptor (EcR) drops in uninjured regions of wing discs, but simultaneously rises in cells around the injury-induced blastema. In parallel, blastema depletion of genes encoding Ec biosynthesis enzymes blocks EcR activity and impairs regeneration but has no effect on uninjured wings. We find that local Ec/EcR signaling is required for injury-induced pupariation delay following injury and that key regeneration regulators upd3 and Ets21c respond to Ec levels. Collectively, these data indicate that injury induces a local source of Ec within the wing blastema that sustains a transcriptional signature necessary for developmental delay and tissue repair.
Collapse
Affiliation(s)
- Douglas Terry
- Graduate Programs in Genetic and Molecular Biology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Colby Schweibenz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Kenneth Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Ohnuki S, Tokishita S, Kojima M, Fujiwara S. Effect of chlorpyrifos-exposure on the expression levels of CYP genes in Daphnia magna and examination of a possibility that an up-regulated clan 3 CYP, CYP360A8, reacts with pesticides. ENVIRONMENTAL TOXICOLOGY 2024; 39:3641-3653. [PMID: 38504311 DOI: 10.1002/tox.24224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Daphnia magna is a test organism used for ecological risk assessments of pesticides, but little is known about the expression levels of cytochrome P450s (CYP)s and their changes after pesticide exposure in the less than 24-h-olds used for ecotoxicity tests. In this study, D. magna juveniles were exposed to 0.2 μg/L of chlorpyrifos under the conditions for acute immobilization test as specified by the OECD test guideline for 24 h, and then the gene expression was compared between the control and chlorpyrifos-exposure groups by RNA-sequencing analysis, with a focus on CYP genes. Among 38 CYP genes expressed in the control group, seven were significantly up-regulated while two were significantly down-regulated in the chlorpyrifos-exposure group. Although the sublethal concentration of chlorpyrifos did not change their expression levels so drastically (0.8 < fold change < 2.6), CY360A8 of D. magna (DmCYP360A8), which had been proposed to be responsible for metabolism of xenobiotics, was abundantly expressed in controls yet up-regulated by chlorpyrifos. Therefore, homology modeling of DmCYP360A8 was performed based on the amino acid sequence, and then molecular docking simulations with the insecticides that were indicated to be metabolized by CYPs in D. magna were conducted. The results indicated that DmCYP360A8 could contribute to the metabolism of diazinon and chlorfenapyr but not chlorpyrifos. These findings suggest that chlorpyrifos is probably detoxified by other CYP(s) including up-regulated and/or constitutively expressed one(s).
Collapse
Affiliation(s)
- Shinpei Ohnuki
- Odawara Research Center, Nippon Soda Co., Ltd., Odawara, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shinichi Tokishita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
8
|
Zhang YX, Tan Q, Jin L, Li GQ. Molecular characterization of the cytochrome P450 enzyme CYP18A1 in Henosepilachna vigintioctopunctata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22111. [PMID: 38628055 DOI: 10.1002/arch.22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
In insects, the expression of 20E response genes that initiate metamorphosis is triggered by a pulse of 20-hydroxyecdysone (20E). The 20E pulse is generated through two processes: synthesis, which increases its level, and inactivation, which decreases its titer. CYP18A1 functions as an ecdysteroid 26-hydroxylase and plays a role in 20E removal in several representative insects. However, applying 20E degradation activity of CYP18A1 to other insects remains a significant challenge. In this study, we discovered high levels of Hvcyp18a1 during the larval and late pupal stages, particularly in the larval epidermis and fat body of Henosepilachna vigintioctopunctata, a damaging Coleopteran pest of potatoes. RNA interference (RNAi) targeting Hvcyp18a1 disrupted the pupation. Approximately 75% of the Hvcyp18a1 RNAi larvae experienced developmental arrest and remained as stunted prepupae. Subsequently, they gradually turned black and eventually died. Among the Hvcyp18a1-depleted animals that successfully pupated, around half became malformed pupae with swollen elytra and hindwings. The emerged adults from these deformed pupae appeared misshapen, with shriveled elytra and hindwings, and were wrapped in the pupal exuviae. Furthermore, RNAi of Hvcyp18a1 increased the expression of a 20E receptor gene (HvEcR) and four 20E response transcripts (HvE75, HvHR3, HvBrC, and HvαFTZ-F1), while decreased the transcription of HvβFTZ-F1. Our findings confirm the vital role of CYP18A1 in the pupation, potentially involved in the degradation of 20E in H. vigintioctopunctata.
Collapse
Affiliation(s)
- Yu-Xing Zhang
- Department of Entomology, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qiao Tan
- Department of Entomology, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Department of Entomology, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Department of Entomology, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Cavigliasso F, Savitsky M, Koval A, Erkosar B, Savary L, Gallart-Ayala H, Ivanisevic J, Katanaev VL, Kawecki TJ. Cis-regulatory polymorphism at fiz ecdysone oxidase contributes to polygenic evolutionary response to malnutrition in Drosophila. PLoS Genet 2024; 20:e1011204. [PMID: 38452112 PMCID: PMC10962836 DOI: 10.1371/journal.pgen.1011204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/25/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
We investigate the contribution of a candidate gene, fiz (fezzik), to complex polygenic adaptation to juvenile malnutrition in Drosophila melanogaster. Experimental populations maintained for >250 generations of experimental evolution to a nutritionally poor larval diet (Selected populations) evolved several-fold lower fiz expression compared to unselected Control populations. Here we show that this divergence in fiz expression is mediated by a cis-regulatory polymorphism. This polymorphism, originally sampled from a natural population in Switzerland, is distinct from a second cis-regulatory SNP previously identified in non-African D. melanogaster populations, implying that two independent cis-regulatory variants promoting high fiz expression segregate in non-African populations. Enzymatic analyses of Fiz protein expressed in E. coli demonstrate that it has ecdysone oxidase activity acting on both ecdysone and 20-hydroxyecdysone. Four of five fiz paralogs annotated to ecdysteroid metabolism also show reduced expression in Selected larvae, implying that malnutrition-driven selection favored general downregulation of ecdysone oxidases. Finally, as an independent test of the role of fiz in poor diet adaptation, we show that fiz knockdown by RNAi results in faster larval growth on the poor diet, but at the cost of greatly reduced survival. These results imply that downregulation of fiz in Selected populations was favored by selection on the nutritionally poor diet because of its role in suppressing growth in response to nutrient shortage. However, they suggest that fiz downregulation is only adaptive in combination with other changes evolved by Selected populations, which ensure that the organism can sustain the faster growth promoted by fiz downregulation.
Collapse
Affiliation(s)
- Fanny Cavigliasso
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mikhail Savitsky
- HumanaFly Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexey Koval
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Berra Erkosar
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Loriane Savary
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L. Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tadeusz J. Kawecki
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Terry D, Schweibenz C, Moberg K. Local ecdysone synthesis in a wounded epithelium sustains developmental delay and promotes regeneration in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581888. [PMID: 38464192 PMCID: PMC10925115 DOI: 10.1101/2024.02.25.581888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Regenerative ability often declines as animals mature past embryonic and juvenile stages, suggesting that regeneration requires redirection of growth pathways that promote developmental growth. Intriguingly, the Drosophila larval epithelia require the hormone ecdysone (Ec) for growth but require a drop in circulating Ec levels to regenerate. Examining Ec dynamics more closely, we find that transcriptional activity of the Ec-receptor (EcR) drops in uninjured regions of wing discs, but simultaneously rises in cells around the injury-induced blastema. In parallel, blastema depletion of genes encoding Ec biosynthesis enzymes blocks EcR activity and impairs regeneration but has no effect on uninjured wings. We find that local Ec/EcR signaling is required for injury-induced pupariation delay following injury and that key regeneration regulators upd3 and Ets21c respond to Ec levels. Collectively, these data indicate that injury induces a local source of Ec within the wing blastema that sustains a transcriptional signature necessary for developmental delay and tissue repair.
Collapse
Affiliation(s)
- Douglas Terry
- Graduate Programs in Genetics and Molecular Biology, Laney Graduate School, Emory University
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Colby Schweibenz
- Graduate Programs in Biochemistry, Cell, and Developmental Biology, Laney Graduate School, Emory University
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Kenneth Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
11
|
Zhang S, Wu S, Yao R, Wei X, Ohlstein B, Guo Z. Eclosion muscles secrete ecdysteroids to initiate asymmetric intestinal stem cell division in Drosophila. Dev Cell 2024; 59:125-140.e12. [PMID: 38096823 DOI: 10.1016/j.devcel.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
During organ development, tissue stem cells first expand via symmetric divisions and then switch to asymmetric divisions to minimize the time to obtain a mature tissue. In the Drosophila midgut, intestinal stem cells switch their divisions from symmetric to asymmetric at midpupal development to produce enteroendocrine cells. However, the signals that initiate this switch are unknown. Here, we identify the signal as ecdysteroids. In the presence of ecdysone, EcR and Usp promote the expression of E93 to suppress Br expression, resulting in asymmetric divisions. Surprisingly, the primary source of pupal ecdysone is not from the prothoracic gland but from dorsal internal oblique muscles (DIOMs), a group of transient skeletal muscles that are required for eclosion. Genetic analysis shows that DIOMs secrete ecdysteroids during mTOR-mediated muscle remodeling. Our findings identify sequential endocrine and mechanical roles for skeletal muscle, which ensure the timely asymmetric divisions of intestinal stem cells.
Collapse
Affiliation(s)
- Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Song Wu
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruining Yao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueying Wei
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Benjamin Ohlstein
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
12
|
Cheng S, Jacobs CGC, Mogollón Pérez EA, Chen D, van de Sanden JT, Bretscher KM, Verweij F, Bosman JS, Hackmann A, Merks RMH, van den Heuvel J, van der Zee M. A life-history allele of large effect shortens developmental time in a wild insect population. Nat Ecol Evol 2024; 8:70-82. [PMID: 37957313 DOI: 10.1038/s41559-023-02246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Developmental time is a key life-history trait with large effects on Darwinian fitness. In many insects, developmental time is currently under strong selection to minimize ecological mismatches in seasonal timing induced by climate change. The genetic basis of responses to such selection, however, is poorly understood. To address this problem, we set up a long-term evolve-and-resequence experiment in the beetle Tribolium castaneum and selected replicate, outbred populations for fast or slow embryonic development. The response to this selection was substantial and embryonic developmental timing of the selection lines started to diverge during dorsal closure. Pooled whole-genome resequencing, gene expression analysis and an RNAi screen pinpoint a 222 bp deletion containing binding sites for Broad and Tramtrack upstream of the ecdysone degrading enzyme Cyp18a1 as a main target of selection. Using CRISPR/Cas9 to reconstruct this allele in the homogenous genetic background of a laboratory strain, we unravel how this single deletion advances the embryonic ecdysone peak inducing dorsal closure and show that this allele accelerates larval development but causes a trade-off with fecundity. Our study uncovers a life-history allele of large effect and reveals the evolvability of developmental time in a natural insect population.
Collapse
Affiliation(s)
- Shixiong Cheng
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Elisa A Mogollón Pérez
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Daipeng Chen
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Joep T van de Sanden
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | - Femke Verweij
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Jelle S Bosman
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Amke Hackmann
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Roeland M H Merks
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | | |
Collapse
|
13
|
Suyama R, Cetraro N, Yew JY, Kai T. Microbes control Drosophila germline stem cell increase and egg maturation through hormonal pathways. Commun Biol 2023; 6:1287. [PMID: 38123715 PMCID: PMC10733356 DOI: 10.1038/s42003-023-05660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Reproduction is highly dependent on environmental and physiological factors including nutrition, mating stimuli and microbes. Among these factors, microbes facilitate vital functions for host animals such as nutritional intake, metabolic regulation, and enhancing fertility under poor nutrition conditions. However, detailed molecular mechanisms by which microbes control germline maturation, leading to reproduction, remain largely unknown. In this study, we show that environmental microbes exert a beneficial effect on Drosophila oogenesis by promoting germline stem cell (GSC) proliferation and subsequent egg maturation via acceleration of ovarian cell division and suppression of apoptosis. Moreover, insulin-related signaling is not required; rather, the ecdysone pathway is necessary for microbe-induced increase of GSCs and promotion of egg maturation, while juvenile hormone contributes only to increasing GSC numbers, suggesting that hormonal pathways are activated at different stages of oogenesis. Our findings reveal that environmental microbes can enhance host reproductivity by modulating host hormone release and promoting oogenesis.
Collapse
Affiliation(s)
- Ritsuko Suyama
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka Suita, Osaka, 565-0871, Japan.
| | - Nicolas Cetraro
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA.
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Romanov SE, Shloma VV, Maksimov DA, Koryakov DE. SetDB1 and Su(var)3-9 are essential for late stages of larval development of Drosophila melanogaster. Chromosome Res 2023; 31:35. [PMID: 38099968 DOI: 10.1007/s10577-023-09743-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Methylation of H3K9 histone residue is a marker of gene silencing in eukaryotes. Three enzymes responsible for adding this modification - G9a, SetDB1/Egg, and Su(var)3-9 - are known in Drosophila. To understand how simultaneous mutations of SetDB1 and Su(var)3-9 may affect the fly development, appropriate combinations were obtained. Double mutants egg; Su(var)3-9 displayed pronounced embryonic lethality, slower larval growth and died before or during metamorphosis. Analysis of transcription in larval salivary glands and wing imaginal disks indicated that the effect of double mutation is tissue-specific. In salivary gland chromosomes, affected genes display low H3K9me2 enrichment and are rarely bound by SetDB1 or Su(var)3-9. We suppose that each of these enzymes directly or indirectly controls its own set of gene targets in different organs, and double mutation results in an imbalanced developmental program. This also indicates that SetDB1 and Su(var)3-9 may affect transcription via H3K9-independent mechanisms. Unexpectedly, in double and triple mutants, amount of di- and tri-methylated H3K9 is drastically reduced, but not completely absent. We hypothesize that this residual methylation implies the existence of additional H3K9-specific methyltransferase in Drosophila.
Collapse
Affiliation(s)
- Stanislav E Romanov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Viktor V Shloma
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Dmitry E Koryakov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia.
| |
Collapse
|
15
|
Tyson JJ, Monshizadeh A, Shvartsman SY, Shingleton AW. A dynamical model of growth and maturation in Drosophila. Proc Natl Acad Sci U S A 2023; 120:e2313224120. [PMID: 38015844 PMCID: PMC10710029 DOI: 10.1073/pnas.2313224120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023] Open
Abstract
The decision to stop growing and mature into an adult is a critical point in development that determines adult body size, impacting multiple aspects of an adult's biology. In many animals, growth cessation is a consequence of hormone release that appears to be tied to the attainment of a particular body size or condition. Nevertheless, the size-sensing mechanism animals use to initiate hormone synthesis is poorly understood. Here, we develop a simple mathematical model of growth cessation in Drosophila melanogaster, which is ostensibly triggered by the attainment of a critical weight (CW) early in the last instar. Attainment of CW is correlated with the synthesis of the steroid hormone ecdysone, which causes a larva to stop growing, pupate, and metamorphose into the adult form. Our model suggests that, contrary to expectation, the size-sensing mechanism that initiates metamorphosis occurs before the larva reaches CW; that is, the critical-weight phenomenon is a downstream consequence of an earlier size-dependent developmental decision, not a decision point itself. Further, this size-sensing mechanism does not require a direct assessment of body size but emerges from the interactions between body size, ecdysone, and nutritional signaling. Because many aspects of our model are evolutionarily conserved among all animals, the model may provide a general framework for understanding how animals commit to maturing from their juvenile to adult form.
Collapse
Affiliation(s)
- John J. Tyson
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA24061
| | - Amirali Monshizadeh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
| | - Stanislav Y. Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York City, NY10010
| | | |
Collapse
|
16
|
Lin L, Li H, Zheng Q, Hu J, Wu W. Research Progress on the Regulation of Autophagy and Apoptosis in Insects by Sterol Hormone 20-Hydroxyecdysone. INSECTS 2023; 14:871. [PMID: 37999070 PMCID: PMC10672190 DOI: 10.3390/insects14110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
20E (20-Hydroxyecdysone) is a central steroid hormone that orchestrates developmental changes and metamorphosis in arthropods. While its molecular mechanisms have been recognized for some time, detailed elucidation has primarily emerged in the past decade. PCD (Programmed cell death), including apoptosis, necrosis, efferocytosis, pyroptosis, ferroptosis, and autophagy, plays a crucial role in regulated cell elimination, which is vital for cells' development and tissue homeostasis. This review summarizes recent findings on 20E signaling regulated autophagy and apoptosis in insects, including Drosophila melanogaster, Bombyx mori, Helicoverpa armigera, and other species. Firstly, we comprehensively explore the biosynthesis of the sterol hormone 20E and its subsequent signal transduction in various species. Then, we focus on the involvement of 20E in regulating autophagy and apoptosis, elucidating its roles in both developmental contexts and bacterial infection scenarios. Furthermore, our discussion unfolds as a panoramic exposition, where we delve into the fundamental questions with our findings, anchoring them within the grander scheme of our study in insects. Deepening the understanding of 20E-autophagy/apoptosis axis not only underscores the intricate tapestry of endocrine networks, but also offers fresh perspectives on the adaptive mechanisms that have evolved in the face of environmental challenges.
Collapse
Affiliation(s)
- Luobin Lin
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.L.); (Q.Z.)
| | - Huaqin Li
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou 510520, China;
| | - Qinzhou Zheng
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.L.); (Q.Z.)
| | - Jiaxuan Hu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Wenmei Wu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.L.); (Q.Z.)
| |
Collapse
|
17
|
Benrabaa SAM, Chang SA, Chang ES, Mykles DL. Effects of molting on the expression of ecdysteroid biosynthesis genes in the Y-organ of the blackback land crab, Gecarcinus lateralis. Gen Comp Endocrinol 2023; 340:114304. [PMID: 37127083 DOI: 10.1016/j.ygcen.2023.114304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
A pair of Y-organs (YOs) synthesize ecdysteroids that initiate and coordinate molting processes in decapod crustaceans. The YO converts cholesterol to secreted products through a biosynthetic pathway involving a Rieske oxygenase encoded by Neverland (Nvd) and cytochrome P450 monooxygenases encoded by Halloween genes Spook (Spo; Cyp307a1), Phantom (Phm; Cyp306a1), Disembodied (Dib; Cyp302a1), and Shadow (Sad; Cyp315a1). NAD kinase (NADK) and 5-aminolevulinic acid synthase (ALAS) support ecdysteroid synthesis in insects. A 20-hydroxylase, encoded by Shed in decapods and Shade in insects, converts ecdysone to the active hormone 20-hydroxyecdysone (20E). 20E is inactivated by cytochrome P450 26-hydroxylase (Cyp18a1). Contigs encoding these eight proteins were extracted from a Gecarcinus lateralis YO transcriptome and their expression was quantified by quantitative polymerase chain reaction. mRNA levels of Gl-Spo and Gl-Phm were four orders of magnitude higher in YO than those in nine other tissues, while mRNA levels of Gl-NADK and Gl-ALAS were similar in all ten tissues. In G. lateralis induced to molt by multiple leg autotomy, YO mRNA levels of Gl-Nvd, Gl-Spo, Gl-Phm, Gl-NADK, and Gl-ALAS were highest in intermolt and premolt stages and lower in postmolt. Gl-Dib mRNA level was not affected by molt stage. mRNA level of Gl-Sad, which converts 2-deoxyecdysone to ecdysone, was higher in mid- and late premolt stages, when YO ecdysteroidogenic capacity is greatest. Gl-Cyp18a1 mRNA level was highest in intermolt, decreased in premolt stages, and was lowest in postmolt. In animals induced to molt by eyestalk ablation, YO mRNA levels of all eight genes were not correlated with increased hemolymph 20E titers. These results suggest that YO ecdysteroidogenic genes are differentially regulated at transcriptional and translational levels.
Collapse
Affiliation(s)
| | - Sharon A Chang
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| | - Ernest S Chang
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| | - Donald L Mykles
- Colorado State University, Fort Collins, CO 80523, USA; Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA.
| |
Collapse
|
18
|
Scaramella N, Burke A, Oddie M, Dahle B, de Miranda J, Mondet F, Rosenkranze P, Neumann P, Locke B. Host brood traits, independent of adult behaviours, reduce Varroa destructor mite reproduction in resistant honeybee populations. Int J Parasitol 2023:S0020-7519(23)00092-9. [PMID: 37164049 DOI: 10.1016/j.ijpara.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/12/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
The ectoparasitic mite Varroa destructor is an invasive species of Western honey bees (Apis mellifera) and the largest pathogenic threat to their health world-wide. Its successful invasion and expansion is related to its ability to exploit the worker brood for reproduction, which results in an exponential population growth rate in the new host. With invasion of the mite, wild honeybee populations have been nearly eradicated from Europe and North America, and the survival of managed honeybee populations relies on mite population control treatments. However, there are a few documented honeybee populations surviving extended periods without control treatments due to adapted host traits that directly impact Varroa mite fitness. The aim of this study was to investigate if Varroa mite reproductive success was affected by traits of adult bee behaviours or by traits of the worker brood, in three mite-resistant honey bee populations from Sweden, France and Norway. The mite's reproductive success was measured and compared in broods that were either exposed to, or excluded from, adult bee access. Mite-resistant bee populations were also compared with a local mite-susceptible population, as a control group. Our results show that mite reproductive success rates and mite fecundity in the three mite-resistant populations were significantly different from the control population, with the French and Swedish populations having significantly lower reproductive rates than the Norwegian population. When comparing mite reproduction in exposed or excluded brood treatments, no differences were observed, regardless of population. This result clearly demonstrates that Varroa mite reproductive success can be suppressed by traits of the brood, independent of adult worker bees.
Collapse
Affiliation(s)
- Nicholas Scaramella
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Ashley Burke
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Melissa Oddie
- Norges Birøkterlag, Dyrskuevegen 20, 2040 Kløfta, Norway
| | - Bjørn Dahle
- Norges Birøkterlag, Dyrskuevegen 20, 2040 Kløfta, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Joachim de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Fanny Mondet
- INRAE, UR 406 Abeilles et Environnement, 84914 Avignon, France
| | - Peter Rosenkranze
- Apiculture State Institute, University of Hohenheim, Erna-hruschka-Weg 6, 70599 Stuttgart, Germany
| | - Peter Neumann
- Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroscope, Swiss Bee Research Center, Bern, Switzerland
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
19
|
Scanlan JL, Robin C, Mirth CK. Rethinking the ecdysteroid source during Drosophila pupal-adult development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103891. [PMID: 36481381 DOI: 10.1016/j.ibmb.2022.103891] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Ecdysteroids, typified by 20-hydroxyecdysone (20E), are essential hormones for the development, reproduction and physiology of insects and other arthropods. For over half a century, the vinegar fly Drosophila melanogaster (Ephydroidea: Diptera) has been used as a model of ecdysteroid biology. Many aspects of the biosynthesis and regulation of ecdysteroids in this species are understood at the molecular level, particularly with respect to their secretion from the prothoracic gland (PG) cells of the ring gland, widely considered the dominant biosynthetic tissue during development. Discrete pulses of 20E orchestrate transitions during the D. melanogaster life cycle, the sources of which are generally well understood, apart from the large 20E pulse at the onset of pharate adult development, which has received little recent attention. As the source of this pharate adult pulse (PAP) is a curious blind spot in Drosophila endocrinology, we evaluate published biochemical and genetic data as they pertain to three hypotheses for the source of PAP 20E: the PG; an alternative biosynthetic tissue; or the recycling of stored 20E. Based on multiple lines of evidence, we contend the PAP cannot be derived from biosynthesis, with other data consistent with D. melanogaster able to recycle ecdysteroids before and during metamorphosis. Published data also suggest the PAP is conserved across Diptera, with evidence for pupal-adult ecdysteroid recycling occurring in other cyclorrhaphan flies. Further experimental work is required to test the ecdysteroid recycling hypothesis, which would establish fundamental knowledge of the function, regulation, and evolution of metamorphic hormones in dipterans and other insects.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
20
|
Wu L, Li L, Xu Y, Li Q, Liu F, Zhao H. Identification and characterization of CYP307A1 as a molecular target for controlling the small hive beetle, Aethina tumida. PEST MANAGEMENT SCIENCE 2023; 79:37-44. [PMID: 36054776 DOI: 10.1002/ps.7146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The molting hormone 20-hydroxyecdysone (20E) plays a key role in insect development, metamorphosis, and reproduction. Previous studies have shown that ecdysteroid metabolism is regulated by a series of CYP genes in most of the insect species. However, the roles of these CYP genes in a Coleopteran beetle, Aethina tumida (small hive beetle, SHB) have not yet been explored. RESULTS In the current study, we identified seven CYP genes (six Halloween genes and one AtCYP18A1 gene) related to 20E metabolism. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) showed that AtCYP307A1 and AtCYP307B1 were primarily expressed in the embryonic stage and in the cephalothorax of larvae. RNA interference (RNAi) screening revealed that suppression of AtCYP307A1 expression caused a lethal phenotype during the larval-pupal metamorphosis. Furthermore, Hematoxylin and Eosin staining of the integument showed that the RNAi of AtCYP307A1 inhibited the apolysis and degradation of the old cuticle. In addition, silencing of AtCYP307A1 resulted in significant down-regulation of 20E titers and the expression levels of 20E signaling pathway genes. Finally, the AtCYP307A1 RNAi phenotype was rescued by topical application of 20E. CONCLUSION Our studies suggest that AtCYP307A1 involved in 20E synthesis is indispensable during the larval-pupal metamorphosis of beetles, which could serve as a putative insecticide target for pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixian Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Liangbin Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yajing Xu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Fang Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Du H, Ge R, Zhang L, Zhang J, Chen K, Li C. Transcriptome-wide identification of development related genes and pathways in Tribolium castaneum. Genomics 2023; 115:110551. [PMID: 36566947 DOI: 10.1016/j.ygeno.2022.110551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The growth and development in Tribolium castaneum were poorly understood at the transcriptome level. Currently, we identified 15,756, 9941 and 10,080 differentially expressed transcripts between late eggs VS early larvae, late larvae VS early pupae, and late pupae VS early adults of T. castaneum by RNA-seq, which was confirmed by qRT-PCR analysis on nine genes expression. Functional enrichment analysis indicated that DNA replication, cell cycle and insect hormone biosynthesis significantly enriched differentially expressed genes. The transcription of DNA replication and cell cycle genes decreased after hatching but increased after pupation. The juvenile hormone (JH) and ecdysteroid biosynthesis genes decreased after hatching, and the JH degradation genes were stimulated after pupation and eclosion while the ecdysteroid degradation gene CYP18A1 decreased after pupation. Silencing CYP18A1 elevated the titer of ecdysteroids and caused developmental arrest at the late larval stage. This study promotes the understanding of insect growth and development.
Collapse
Affiliation(s)
- Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Runting Ge
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ling Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
22
|
Li C, Zhang J, Du H, Yang L, Wang Y, Lu Y, Li B, Chen K. Lowfat functions downstream of Myo20 to regulate wing and leg morphogenesis in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103829. [PMID: 36028072 DOI: 10.1016/j.ibmb.2022.103829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Myosin Myo20 plays vital roles in the morphogenesis of wings and legs among insects, but the function and signalling of Myo20 remain unclear. We show that Myo20 regulates wing cell division, ecdysteroid and amino acid metabolism, and gene expression in Tribolium castaneum. By RNA-seq, we identified 582 differentially expressed genes (DEGs) between control and ds-Myo20 larvae of T. castaneum. Of these DEGs, silencing Myo20 significantly decreased the mRNA and protein levels of lowfat. During development, lowfat has the highest expression in early pupae and the lowest level in 1-day embryos. Tissue-specific analysis indicated that lowfat was abundantly expressed in the head, fat body and epidermis of late-stage larvae and in wings and legs of 1, 2 and 5-day pupae. Likewise, knockdown of lowfat affected wing and leg morphogenesis, ecdysteroid and amino acid metabolism, and gene expression in T. castaneum. Silencing Myo20 or lowfat activated CYP18A1 to degrade ecdysteroids, stimulated amino acids catabolism to increase the transcription of 4E-BP but reduce S6K and cycE expression. These results suggest that Lowfat works downstream of Myo20 to employ target of rapamycin (TOR) signalling for wing and leg morphogenesis in insects.
Collapse
Affiliation(s)
- Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Youwei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
23
|
Lu X, Zhang L, Wang G, Huang S. Functional analysis of ABCG2 gene in pigment transport of Neocaridina denticulata sinensis. Gene X 2022; 844:146810. [PMID: 35985411 DOI: 10.1016/j.gene.2022.146810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 01/14/2023] Open
Abstract
Many strains of Neocaridina denticulata sinensis (cherry shrimp) possess vivid body colors.However, the molecular underpinnings of these various body colors are scarcely understood. To study the role of the ABCG2 gene in the pigmentation of cherry shrimp, four strains (red, yellow, blue, and wild strains) were sampled. The sequence and expression pattern of ABCG2in tissues and embryos were analyzed, and the distribution of ABCG2 was also explored via WFISH (whole mount flurescence in situ hybridization). And further, RNA interference (RNAi) was used to explore the role of ABCG2 in body color deposition. The results showed that the ABCG2 sequence contained the conserved motif of Walker A, Walker B, Q-loop, d-loop, and H-loop. In tissues, ABCG2 was highly expressed in the epidermis of the four strains. During development stages, it was first expressed at the cleavage stage, then decreased at the gastrula stage, with the lowest expression at the pre-nauplius stage. From the metanauplius stage, its expression level was significantly upregulated until it reached the highest level at the membrane-zoea stage. WFISH showed that ABCG2 was first expressed at the cleavage stage in all four strains, and its distribution was similar from the cleavage stage to the before-zoea stage. The strongest positive signals were observed at the membrane-zoea stage, which was consistent with the qPCR results. Moreover, at the membrane-zoea stage, the positive signals of the four strains were mainly distributed in the compound eye and appendages. RNAi knockdown of ABCG2 encumbered the development of compound eye pigment cells (CEPCs) and erythrophores. It had effects on the expressions of other genes related to body color. These results suggest that ABCG2 is involved in the development of compound eye and the proliferation of erythrophores. This study provides new ideas for the cultivation of novel body colors in cherry shrimp at the molecular level.
Collapse
Affiliation(s)
- Xiqin Lu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China
| | - Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China.
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China
| | - Shiyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China
| |
Collapse
|
24
|
Tang J, Zhai M, Yu R, Song X, Feng F, Gao H, Li B. MiR-3017b contributes to metamorphosis by targeting sarco/endoplasmic reticulum Ca 2+ ATPase in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2022; 31:286-296. [PMID: 35038196 DOI: 10.1111/imb.12758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
In recent years, increasing numbers of microRNAs (miRNAs) have been reported to regulate insect metamorphosis. One thousand, one hundred fifty-four miRNAs have been previously identified from Tribolium castaneum by high-throughput sequencing; however, little is known about which miRNAs can participate in metamorphosis, leaving the role of miRNAs in regulating the underlying mechanism elusive. Here, we report the participation of miR-3017b in the metamorphosis of T. castaneum. Temporal profiles revealed that miR-3017b was highly expressed at the late larval stage, but significantly decreased at the early pupal stage. Overexpression of miR-3017b caused larval to pupal to adult metamorphosis arrested. Dual-luciferase reporter assay and miRNA-mRNA interaction assay illustrated that miR-3017b interacts with the coding sequence of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) and suppresses its expression. Knockdown of SERCA caused metamorphosis arrested, similar to that observed in miR-3017b overexpression beetles. Further functional mechanism analyses revealed that 20-hydroxyecdysone application downregulates miR-3017b and up-regulates SERCA expression. The expression level of downstream genes in the 20E pathway was disrupted after overexpressing miR-3017 and the knockdown of SERCA. These results provided evidence miR-3017b-SERCA contributes to metamorphosis by regulating the 20E pathway in T. castaneum. It could advance our understanding of the coordination of 20E and miRNA regulation in insect metamorphosis.
Collapse
Affiliation(s)
- Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengfan Zhai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
25
|
Li C, Yang L, Wang Y, Du H, Zhang J, Lu Y, Li B, Chen K. Functional analysis of zona pellucida domain protein Dusky in Tribolium castaneum. INSECT SCIENCE 2022; 29:388-398. [PMID: 34237197 DOI: 10.1111/1744-7917.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The zona pellucida domain protein Dusky (Dy) plays a vital role in wing morphogenesis in insects, but little information on its function has been reported. In this study, we found that dy regulated wing cell size, larval and pupal duration, and the metabolism of amino acid and 20-hydroxyecdysone in Tribolium castaneum. Using RNA-seq, 413 differentially expressed genes were identified between physiological buffer-injected and dy-double-stranded RNA-treated larvae, including 88 downregulated genes and 325 upregulated genes. Among these genes, dy knockdown increased CYP18A1 expression to elevate the 26-hydroxylation of 20-hydroxyecdysone, which ultimately led to growth defects in wing cells. Silencing of dy upregulated the transcription of genes encoding tyrosine aminotransferase, 4-hydroxyphenylpyruvate dioxygenase, homogentisate 1, 2-dioxygenase, and Pale to promote the catabolism of tyrosine and phenylalanine, which eventually reduced amino acid content. Furthermore, dy knockdown upregulated 4E-BP expression, and 4E-BP silencing partially phenocopied dy RNA interference-mediated wing morphogenesis. These results suggest that Dy controls 20-hydroxyecdysone and amino acid metabolism to regulate wing morphogenesis in the insect.
Collapse
Affiliation(s)
- Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Youwei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
26
|
You L, Li Z, Zhang Z, Hu B, Yu Y, Yang F, Tan A. Two dehydroecdysone reductases act as fat body-specific 20E catalyzers in Bombyx mori. INSECT SCIENCE 2022; 29:100-110. [PMID: 34018323 DOI: 10.1111/1744-7917.12928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Periodic post-embryonic changes in insects, including growth, development and metamorphosis, are strictly controlled by many compounds, including steroid hormones. The biosynthesis and clearance of 20-hydroxyecdysone (20E), the major active form of the insect steroid hormone ecdysone, result in titer fluctuations that help control insect development. The inactivation of 20E in the silkworm Bombyx mori is highly tissue-specific, with CYP18A1 and ecdysone oxidase controlling 20E inactivation specifically in the mid-silk gland and midgut, respectively. Here, we characterized silkworm 3-dehydroecdysone 3α reductase (Bm3DE3α) and 3-dehydroecdysone 3β reductase (Bm3DE3β), two enzymes involved predominantly in the C-3-mediated catalysis of 20E in fat bodies. The ubiquitous and silk gland-specific overexpression of Bm3DE3α decreased the 20E titer, resulting in larval lethality and larval-pupal transition failure, respectively. In contrast, the ubiquitous and mid-silk gland-specific overexpression of Bm3DE3β increased the 20E titer, resulting in larval growth delays and lethality at the mid-fifth larval stage, respectively. Thus, Bm3DE3α and Bm3DE3β mediate fat body-specific steroid hormone metabolism in B. mori, indicating that highly diversified 20E metabolism-related mechanisms exist in different insect species.
Collapse
Affiliation(s)
- Lang You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, 212100, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhiqian Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, 212100, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhongjie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Hu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fangying Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, 212100, China
| |
Collapse
|
27
|
An Oatp transporter-mediated steroid sink promotes tumor-induced cachexia in Drosophila. Dev Cell 2021; 56:2741-2751.e7. [PMID: 34610327 DOI: 10.1016/j.devcel.2021.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022]
Abstract
Cancer cachexia is associated with many types of tumors and is characterized by a combination of anorexia, loss of body weight, catabolic alterations, and systemic inflammation. We developed a tumor model in Drosophila larvae that causies cachexia-like syndrome, and we found that cachectic larvae show reduced levels of the circulating steroid ecdysone (Ec). Artificially importing Ec in the tumor through the use of the EcI/Oatp74D importer aggravated cachexia, whereas feeding animals with Ec rescued cachectic defects. This suggests that a steroid sink induced by the tumor promotes catabolic alterations in healthy tissues. We found that Oatp33Eb, a member of the Oatp transporter family, is specifically induced in tumors promoting cachexia. The overexpression of Oatp33Eb in noncachectic tumors induced cachexia, whereas its inhibition in cachectic tumors restored circulating Ec and reversed cachectic alterations. Oatp transporters are induced in several types of hormone-dependent tumors, and this result suggests that a similar sink effect could modify hormonal balance in cachectic cancer patients.
Collapse
|
28
|
Brain adiponectin signaling controls peripheral insulin response in Drosophila. Nat Commun 2021; 12:5633. [PMID: 34561451 PMCID: PMC8463608 DOI: 10.1038/s41467-021-25940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/16/2021] [Indexed: 11/27/2022] Open
Abstract
The brain plays a key role in energy homeostasis, detecting nutrients, metabolites and circulating hormones from peripheral organs and integrating this information to control food intake and energy expenditure. Here, we show that a group of neurons in the Drosophila larval brain expresses the adiponectin receptor (AdipoR) and controls systemic growth and metabolism through insulin signaling. We identify glucose-regulated protein 78 (Grp78) as a circulating antagonist of AdipoR function produced by fat cells in response to dietary sugar. We further show that central AdipoR signaling inhibits peripheral Juvenile Hormone (JH) response, promoting insulin signaling. In conclusion, we identify a neuroendocrine axis whereby AdipoR-positive neurons control systemic insulin response. Circulating adiponectin controls sensitivity to insulin in tissues. Here, Arquier et al. show that adiponectin receptor activity in neurons of the Drosophila brain controls insulin response in peripheral tissues via juvenile hormone signaling.
Collapse
|
29
|
Beachum AN, Whitehead KM, McDonald SI, Phipps DN, Berghout HE, Ables ET. Orphan nuclear receptor ftz-f1 (NR5A3) promotes egg chamber survival in the Drosophila ovary. G3-GENES GENOMES GENETICS 2021; 11:6114459. [PMID: 33693603 PMCID: PMC8022936 DOI: 10.1093/g3journal/jkab003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 11/12/2022]
Abstract
Gamete production in mammals and insects is controlled by cell signaling pathways that facilitate communication between germ cells and somatic cells. Nuclear receptor signaling is a key mediator of many aspects of reproduction, including gametogenesis. For example, the NR5A subfamily of nuclear receptors is essential for gonad development and sex steroid production in mammals. Despite the original identification of the NR5A subfamily in the model insect Drosophila melanogaster, it has been unclear whether Drosophila NR5A receptors directly control oocyte production. Ftz-f1 is expressed throughout the ovary, including in germline stem cells, germline cysts, and several populations of somatic cells. We show that ftz-f1 is required in follicle cells prior to stage 10 to promote egg chamber survival at the mid-oogenesis checkpoint. Our data suggest that egg chamber death in the absence of ftz-f1 is due, at least in part, to failure of follicle cells to exit the mitotic cell cycle or failure to accumulate oocyte-specific factors in the germline. Taken together, these results show that, as in mammals, the NR5A subfamily promotes maximal reproductive output in Drosophila. Our data underscore the importance of nuclear receptors in the control of reproduction and highlight the utility of Drosophila oogenesis as a key model for unraveling the complexity of nuclear receptor signaling in gametogenesis.
Collapse
Affiliation(s)
- Allison N Beachum
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Hanna E Berghout
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Corresponding author: Department of Biology, East Carolina University, 1001 E. 10th St., Mailstop 551, 553 Science & Technology Building, Greenville, NC 27858, USA.
| |
Collapse
|
30
|
Pan X, Connacher RP, O'Connor MB. Control of the insect metamorphic transition by ecdysteroid production and secretion. CURRENT OPINION IN INSECT SCIENCE 2021; 43:11-20. [PMID: 32950745 PMCID: PMC7965781 DOI: 10.1016/j.cois.2020.09.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 05/07/2023]
Abstract
Ecdysteroids are a class of steroid hormones that controls molting and metamorphic transitions in Ecdysozoan species including insects, in which ecdysteroid biosynthesis and its regulation have been extensively studied. Insect ecdysteroids are produced from dietary sterols by a series of reduction-oxidation reactions in the prothoracic gland and in Drosophila they are released into the hemolymph via vesicle-mediated secretion at the time of metamorphosis. To initiate precisely controlled ecdysteroid pulses, the prothoracic gland functions as a central node integrating both intrinsic and extrinsic signals to control ecdysteroid biosynthesis and secretion. In this review, we outline recent progress in the characterization of ecdysone biosynthesis and steroid trafficking pathways and the discoveries of novel factors regulating prothoracic gland function.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Genetics, Cell Biology and Development, University of Minnesota, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Robert P Connacher
- Department Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, USA.
| |
Collapse
|
31
|
Aurori CM, Giurgiu A, Conlon BH, Kastally C, Dezmirean DS, Routtu J, Aurori A. Juvenile hormone pathway in honey bee larvae: A source of possible signal molecules for the reproductive behavior of Varroa destructor. Ecol Evol 2021; 11:1057-1068. [PMID: 33520186 PMCID: PMC7820148 DOI: 10.1002/ece3.7125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022] Open
Abstract
The parasitic mite Varroa destructor devastates honey bee (Apis mellifera) colonies around the world. Entering a brood cell shortly before capping, the Varroa mother feeds on the honey bee larvae. The hormones 20-hydroxyecdysone (20E) and juvenile hormone (JH), acquired from the host, have been considered to play a key role in initiating Varroa's reproductive cycle. This study focuses on differential expression of the genes involved in the biosynthesis of JH and ecdysone at six time points during the first 30 hr after cell capping in both drone and worker larvae of A. mellifera. This time frame, covering the conclusion of the honey bee brood cell invasion and the start of Varroa's ovogenesis, is critical to the successful initiation of a reproductive cycle. Our findings support a later activation of the ecdysteroid cascade in honey bee drones compared to worker larvae, which could account for the increased egg production of Varroa in A. mellifera drone cells. The JH pathway was generally downregulated confirming its activity is antagonistic to the ecdysteroid pathway during the larva development. Nevertheless, the genes involved in JH synthesis revealed an increased expression in drones. The upregulation of jhamt gene involved in methyl farnesoate (MF) synthesis came into attention since the MF is not only a precursor of JH but it is also an insect pheromone in its own right as well as JH-like hormone in Acari. This could indicate a possible kairomone effect of MF for attracting the mites into the drone brood cells, along with its potential involvement in ovogenesis after the cell capping, stimulating Varroa's initiation of egg laying.
Collapse
Affiliation(s)
- Cristian M. Aurori
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Alexandru‐Ioan Giurgiu
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Benjamin H. Conlon
- Molecular EcologyInstitute of Biology/ZoologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Chedly Kastally
- Molecular EcologyInstitute of Biology/ZoologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
- Department of Ecology and Genetics and Biocenter OuluUniversity of OuluOuluFinland
| | - Daniel S. Dezmirean
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Jarkko Routtu
- Molecular EcologyInstitute of Biology/ZoologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
| | - Adriana Aurori
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
- Advanced Horticultural Research Institute of TransylvaniaUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| |
Collapse
|
32
|
Fujinaga D, Gu J, Kawahara H, Ogihara MH, Kojima I, Takeshima M, Kataoka H. Twenty-hydroxyecdysone produced by dephosphorylation and ecdysteroidogenesis regulates early embryonic development in the silkmoth, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103491. [PMID: 33096212 DOI: 10.1016/j.ibmb.2020.103491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Ecdysteroids are key regulators of embryonic development as well as molting and metamorphosis in insects. Although an active form of ecdysteroids, 20-hydroxyecdysone (20E) is known to be produced through ecdysteroidogenesis from cholesterol and dephosphorylation of 20E-phosphate during embryogenesis in Lepidoptera, the importance of these production mechanisms in embryonic development has been unclear. Here, we investigated the activation timing of ecdysteroidogenesis from cholesterol and 20E-phosphate dephosphorylation during early embryogenesis in non-diapause eggs of the silkmoth Bombyx mori by observing morphological development, quantifying 20E and 20E-phosphate, measuring transcripts of enzymes involved in 20E production, and detecting activity of these enzymes using egg extracts. Stage-dependent 20E fluctuation and changes in mRNA amounts of enzymes suggest that the two 20E-producing mechanisms are activated at different stages during embryogenesis. Furthermore, knockdown of a dephosphorylation enzyme delayed development at early embryogenesis, whereas knockdown of an ecdysteroidogenic enzyme delayed development at early-middle embryogenesis. These results suggest that 20E is primarily produced initially by dephosphorylation of 20E-phosphate, and then by ecdysteroidogenesis from cholesterol to induce progression of embryonic development in B. mori.
Collapse
Affiliation(s)
- Daiki Fujinaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Junjie Gu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hajime Kawahara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Mari H Ogihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Ikumi Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Mika Takeshima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
33
|
Martín-Vega D, Clark B, Ferrer LM, López-Tamayo S, Colwell DD, Hall MJR. Internal morphological changes during metamorphosis in the sheep nasal bot fly, Oestrus ovis. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:476-487. [PMID: 32767606 DOI: 10.1111/mve.12465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 05/11/2023]
Abstract
During the larval stage, oestrid flies (Diptera: Oestridae) are obligate parasites, whereas during the adult stage they are free-living and do not feed. Like other cyclorrhaphous flies, oestrids undergo metamorphosis inside an opaque puparium, formed by the contracted and hardened cuticle of the third-instar larva. The present study documents the internal morphological changes taking place during metamorphosis of the sheep nasal bot fly, Oestrus ovis L., using non-invasive, micro-CT-based virtual histology and provides quantitative data of volumetric changes in specific organs. Virtual histological sections allowed visualisation of the progression and completion of the apolyses, which delimit the different intra-puparial stages, and the connection to the tracheal system of a large gas bubble, which plays an essential role during early metamorphosis. Overall, our results show that the sequence of morphological and volumetric changes in tissues and organs is similar to those found in other cyclorrhaphous flies, but they also reveal developmental differences that result in an adult vestigial digestive tract. Future studies could develop non-invasive, reliable methods for aging the intra-puparial forms of different oestrid species of veterinary importance, based on both qualitative and quantitative markers, thus improving our knowledge of their development and the efficiency of control strategies.
Collapse
Affiliation(s)
- D Martín-Vega
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Spain
- Department of Life Sciences, Natural History Museum, London, U.K
| | - B Clark
- Imaging and Analysis Centre, Natural History Museum, London, U.K
| | - L M Ferrer
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - S López-Tamayo
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - D D Colwell
- Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - M J R Hall
- Department of Life Sciences, Natural History Museum, London, U.K
| |
Collapse
|
34
|
Rotenberg D, Baumann AA, Ben-Mahmoud S, Christiaens O, Dermauw W, Ioannidis P, Jacobs CGC, Vargas Jentzsch IM, Oliver JE, Poelchau MF, Rajarapu SP, Schneweis DJ, Snoeck S, Taning CNT, Wei D, Widana Gamage SMK, Hughes DST, Murali SC, Bailey ST, Bejerman NE, Holmes CJ, Jennings EC, Rosendale AJ, Rosselot A, Hervey K, Schneweis BA, Cheng S, Childers C, Simão FA, Dietzgen RG, Chao H, Dinh H, Doddapaneni HV, Dugan S, Han Y, Lee SL, Muzny DM, Qu J, Worley KC, Benoit JB, Friedrich M, Jones JW, Panfilio KA, Park Y, Robertson HM, Smagghe G, Ullman DE, van der Zee M, Van Leeuwen T, Veenstra JA, Waterhouse RM, Weirauch MT, Werren JH, Whitfield AE, Zdobnov EM, Gibbs RA, Richards S. Genome-enabled insights into the biology of thrips as crop pests. BMC Biol 2020; 18:142. [PMID: 33070780 PMCID: PMC7570057 DOI: 10.1186/s12915-020-00862-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.
Collapse
Affiliation(s)
- Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Aaron A Baumann
- Virology Section, College of Veterinary Medicine, University of Tennessee, A239 VTH, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Olivier Christiaens
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Vassilika Vouton, 70013, Heraklion, Greece
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
| | - Jonathan E Oliver
- Department of Plant Pathology, University of Georgia - Tifton Campus, Tifton, GA, 31793-5737, USA
| | | | - Swapna Priya Rajarapu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Derek J Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Simon Snoeck
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Department of Biology, University of Washington, Seattle, WA, 98105, USA
| | - Clauvis N T Taning
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Dong Wei
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China and Ghent University, Ghent, Belgium
| | | | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Andrew Rosselot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Kaylee Hervey
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brandi A Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sammy Cheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China and Ghent University, Ghent, Belgium
| | - Diane E Ullman
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | | | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
35
|
Adhitama N, Kato Y, Matsuura T, Watanabe H. Roles of and cross-talk between ecdysteroid and sesquiterpenoid pathways in embryogenesis of branchiopod crustacean Daphnia magna. PLoS One 2020; 15:e0239893. [PMID: 33035251 PMCID: PMC7546464 DOI: 10.1371/journal.pone.0239893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/15/2020] [Indexed: 11/19/2022] Open
Abstract
The ecdysteroid and sesquiterpenoid pathways control growth, developmental transition, and embryogenesis in insects. However, the function of orthologous genes and the cross-talk between both pathways remain largely uncharacterized in non-insect arthropods. Spook (Spo) and Juvenile hormone acid o-methyltransferase (Jhamt) have been suggested to function as rate-limiting factors in ecdysteroid and sesquiterpenoid biosynthesis, respectively, in insects. In this study, we report on the functions of Spo and Jhamt and the cross-talk between them in embryos of the branchiopod crustacean Daphnia magna. Spo expression was activated at the onset of gastrulation, with the depletion of Spo transcript by RNAi resulting in developmental arrest at this stage. This phenotype could be partially rescued by supplementation with 20-hydroxyecdysone, indicating that Spo may play the same role in ecdysteroid biosynthesis in early embryos, as reported in insects. After hatching, Spo expression was repressed, while Jhamt expression was activated transiently, despite its silencing during other embryonic stages. Jhamt RNAi showed little effect on survival, but shortened the embryonic period. Exposure to the sesquiterpenoid analog Fenoxycarb extended the embryonic period and rescued the Jhamt RNAi phenotype, demonstrating a previously unidentified role of sesquiterpenoid in the repression of precocious embryogenesis. Interestingly, the knockdown of Jhamt resulted in the derepression of ecdysteroid biosynthesis genes, including Spo, similar to regulation during insect hormonal biosynthesis. Sesquiterpenoid signaling via the Methoprene-tolerant gene was found to be responsible for the repression of ecdysteroid biosynthesis genes. It upregulated an ortholog of CYP18a1 that degrades ecdysteroid in insects. These results illuminate the conserved and specific functions of the ecdysteroid and sesquiterpenoid pathways in Daphnia embryos. We also infer that the common ancestor of branchiopod crustaceans and insects exhibited antagonism between the two endocrine hormones before their divergence 400 million years ago.
Collapse
Affiliation(s)
- Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Biotechnology Global Human Resource Development Program, Division of Advanced Science and Biotechnology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Frontier Research Base of Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
36
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
37
|
Wu L, Yu Z, Jia Q, Zhang X, Ma E, Li S, Zhu KY, Feyereisen R, Zhang J. Knockdown of LmCYP303A1 alters cuticular hydrocarbon profiles and increases the susceptibility to desiccation and insecticides in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104637. [PMID: 32711771 DOI: 10.1016/j.pestbp.2020.104637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) serve many functions in insects, from the regulation of development to xenobiotic detoxification. Several conserved CYPs have been shown to play a role in insect growth and development. CYP303A1 is a highly conserved CYP with a single ortholog in most insects, but its underlying molecular characteristics and specific physiological functions remain poorly understood. In Drosophila melanogaster and Locusta migratoria, CYP303A1 is indispensable for eclosion to adult. Here, we report additional functions of the locust gene LmCYP303A1 in nymphal molts, cuticular lipid deposition and insecticide penetration. RT-qPCR revealed that LmCYP303A1 had a high expression level before ecdysis and was highly expressed in integument, wing pads, foregut and hindgut. Suppression of LmCYP303A1 expression by RNA interference (RNAi) caused a lethal phenotype with molting defect from nymph to nymph. In addition, LmCYP303A1 RNAi resulted in locusts being more susceptible to desiccation and to insecticide toxicity. Furthermore, knockdown of LmCYP303A1 efficiently suppressed the transcript level of key genes (ELO7, FAR15 and CYP4G102) responsible for cuticular hydrocarbon (CHC) synthesis, which led to a decrease in some CHC levels. Taken together, our results suggest that one of the functions of LmCYP303A1 is to regulate the biosynthesis of CHC, which plays critical roles in protecting locusts from water loss and insecticide penetration.
Collapse
Affiliation(s)
- Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xueyao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1017, Denmark; Department of Plant and Crops, Ghent University, B-9000Ghent, Belgium
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
38
|
Scanlan JL, Gledhill-Smith RS, Battlay P, Robin C. Genomic and transcriptomic analyses in Drosophila suggest that the ecdysteroid kinase-like (EcKL) gene family encodes the 'detoxification-by-phosphorylation' enzymes of insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103429. [PMID: 32540344 DOI: 10.1016/j.ibmb.2020.103429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a phase II detoxification reaction that, among animals, occurs near exclusively in insects, but the enzymes responsible have never been cloned or otherwise identified. We propose the hypothesis that members of the arthropod-specific ecdysteroid kinase-like (EcKL) gene family encode detoxicative kinases. To test this hypothesis, we annotated the EcKL gene family in 12 species of Drosophila and explored their evolution within the genus. Many ancestral EcKL clades are evolutionarily unstable and have experienced repeated gene gain and loss events, while others are conserved as single-copy orthologs. Leveraging multiple published gene expression datasets from D. melanogaster, and using the cytochrome P450s-a classical detoxification family-as a test case, we demonstrate relationships between xenobiotic induction, detoxification tissue-enriched expression and evolutionary instability in the EcKLs and the P450s. We devised a systematic method for identifying candidate detoxification genes in large gene families that is concordant with experimentally determined functions of P450 genes in D. melanogaster. Applying this method to the EcKLs suggested a significant proportion of these genes play roles in detoxification, and that the EcKLs may constitute a detoxification gene family in insects. Additionally, we estimate that between 11 and 16 uncharacterised D. melanogaster P450s are strong detoxification candidates. Lastly, we also found previously unreported genomic and transcriptomic variation in a number of EcKLs and P450s associated with toxic stress phenotypes using a targeted phenome-wide association study (PheWAS) approach in D. melanogaster, presenting multiple future avenues of research for detoxification genetics in this species.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Rebecca S Gledhill-Smith
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Paul Battlay
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
39
|
Liu S, He C, Liang J, Su Q, Hua D, Wang S, Wu Q, Xie W, Zhang Y. Molecular characterization and functional analysis of the Halloween genes and CYP18A1 in Bemisia tabaci MED. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104602. [PMID: 32527436 DOI: 10.1016/j.pestbp.2020.104602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The ecdysteroid hormone 20-hydroxyecdysone (20E), a critical hormone in arthropods, plays an essential role in insect growth, molting and reproduction. A previous study showed that 20E is actually regulated by six P450 genes (five P450 genes belonging to the Halloween family and a CYP18A1 gene) in model insects. However, the role of the six P450 genes in Bemisia tabaci Q (also call Mediterranean, MED), an important pest of field crops, remains unclear. Here, six P450 genes were cloned by RT-PCR, and the phylogenetic tree indicated a close orthologous relationship of these P450 genes between MED and other insects. Spatiotemporal expression profiling revealed that five P450 genes (CYP18A1, CYP306A1, CYP307A2, CYP314A1 and CYP315A1) were expressed at significantly higher levels in the head than in the abdomen and thorax. Four P450 genes (CYP302A1, CYP307A2, CYP314A1 and CYP315A1) were expressed at the highest levels in males, and CYP18A1 was expressed at the highest levels in the 4th nymph stage. The molting process was delayed by approximately 1-3 days after knockdown of these genes at the 4th nymph stage, and the mean proportion of shriveled or dead insects reached 8.3% (CYP18A1), 20.8% (CYP302A1), 7.0% (CYP307A2), 31.8% (CYP306A1), 28.6% (CYP314A1) and 24.1% (CYP315A1). In addition, 20E rescued the negative effect of ds-CYP306A1, ds-CYP314A1 and ds-CYP315A1 on the eclosion rate. We concluded that these Halloween genes and CYP18A1 likely participate in the development of MED, and in particular, CYP306A1 could be used as a putative insecticide target for controlling this piercing-sucking insect.
Collapse
Affiliation(s)
- Shaonan Liu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jinjin Liang
- College of Plant Protection of Hunan Agricultural University, Changsha 410128, PR China
| | - Qi Su
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Dengke Hua
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
40
|
Suzuki T, Iwami M. Ecdysteroid ingestion suppresses carbohydrate hydrolysis in larvae of the silkworm Bombyx mori. Naturwissenschaften 2020; 107:27. [PMID: 32556554 DOI: 10.1007/s00114-020-01684-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
Abstract
Ecdysteroids are widely found in terrestrial organisms, including insects, crustaceans, fungi, and plants. The function of ecdysteroids has been extensively studied in insects for decades because ecdysteroids regulate metamorphosis. In plants, in contrast, ecdysteroids (called phytoecdysteroids) do not show apparent hormonal activity and their function remains unclear. However, it has been proposed that phytoecdysteroids have an antifeedant function. Ecdysteroid ingestion disrupts insect development and alters behavior to deter insect feeding, resulting in reduced plant damage by the insect. These points of view are generally accepted, but the function of phytoecdysteroids in specific contexts has not been unveiled. In the present study, we used larvae of the silkworm, Bombyx mori, to investigate the biological significance of phytoecdysteroids. To mimic the situation where larvae consume plant leaves that contain phytoecdysteroids, 26 or 30 larvae were fed the diet containing ecdysteroid or the control diet. We show that ecdysteroid ingestion dramatically suppressed carbohydrate processing in the larval midgut to reduce the nutritional value of the ingested diet. Based on the present results, we propose a new explanation of phytoecdysteroid function: ingested ecdysteroids may lead to the erroneous perception that the plant is poor in nutrients and consequently result in cessation of feeding.
Collapse
Affiliation(s)
- Takumi Suzuki
- Laboratory of Developmental Biology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,Department of Science, Laboratory of Developmental Biology and Physiology, College of Science, Ibaraki University, 1-1-2 Bunkyo, Mito, 310-8512, Japan.
| | - Masafumi Iwami
- Laboratory of Developmental Biology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
41
|
Duan H, Yang X, Bu Z, Li X, Zhang Z, Sun W. Identification and Characterization of Genes Involved in Ecdysteroid Esterification Pathway Contributing to the High 20-Hydroxyecdysone Resistance of Helicoverpa armigera. Front Physiol 2020; 11:508. [PMID: 32581827 PMCID: PMC7296158 DOI: 10.3389/fphys.2020.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/24/2020] [Indexed: 12/01/2022] Open
Abstract
20-Hydroxyecdysone (20E), the most important regulator for insect development, is also a major component in phytoecdysteroids in plants. Therefore, this plant-derived hormone is considered as a potential natural product for use in pest management. However, some insects show high resistance to it, and the molecular mechanism of their resistance is still unclear. In this study, we find that the cotton bollworm Helicoverpa armigera larvae show high tolerance to artificial foods containing up to 50 μg 20E without any detrimental effects on growth and development. High performance liquid chromatography analysis indicates that high efficiency to transform the ingested 20E through an ecdysteroid esterification pathway may contribute to the resistance. Furthermore, comparative transcriptome analysis of the larvae's midgut after 20E treatment identifies two genes (long-chain-fatty-acid-CoA ligase, Long-FACL; sterol O-acyltransferase, SATF) involved in the pathway. Transcriptome and real-time PCR show the Long-FACL gene can be significantly induced by 20E, and this induction is only detected in the midgut. However, 20E has no effect on the transcript of the SATF gene. Moreover, the heterologously expressed protein of the SATF gene shows the ecdysteroid-22-O-acyltransferase activity that requires fatty acyl-CoA, which is produced by Long-FACL. Taken together, our results identify and demonstrate the genes involved in the ecdysteroid esterification pathway conferring high resistance to 20E in the cotton bollworm, H. armigera.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Sun
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
42
|
Knapp EM, Li W, Singh V, Sun J. Nuclear receptor Ftz-f1 promotes follicle maturation and ovulation partly via bHLH/PAS transcription factor Sim. eLife 2020; 9:54568. [PMID: 32338596 PMCID: PMC7239656 DOI: 10.7554/elife.54568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/26/2020] [Indexed: 12/27/2022] Open
Abstract
The NR5A-family nuclear receptors are highly conserved and function within the somatic follicle cells of the ovary to regulate folliculogenesis and ovulation in mammals; however, their roles in Drosophila ovaries are largely unknown. Here, we discover that Ftz-f1, one of the NR5A nuclear receptors in Drosophila, is transiently induced in follicle cells in late stages of oogenesis via ecdysteroid signaling. Genetic disruption of Ftz-f1 expression prevents follicle cell differentiation into the final maturation stage, which leads to anovulation. In addition, we demonstrate that the bHLH/PAS transcription factor Single-minded (Sim) acts as a direct target of Ftz-f1 to promote follicle cell differentiation/maturation and that Ftz-f1’s role in regulating Sim expression and follicle cell differentiation can be replaced by its mouse homolog steroidogenic factor 1 (mSF-1). Our work provides new insight into the regulation of follicle maturation in Drosophila and the conserved role of NR5A nuclear receptors in regulating folliculogenesis and ovulation. When animals reproduce, females release eggs from their ovaries which then get fertilized by sperm from males. Each egg needs to properly mature within a collection of cells known as follicle cells before it can be let go. As the egg matures, so do the follicle cells surrounding it, until both are primed and ready to discharge the egg from the ovary. Mammals rely on a protein called SF-1 to mature their follicle cells, but it is unclear how this process works. Most animals – from humans to fruit flies – release their eggs in a very similar way, using many of the same proteins and genes. For example, the gene for SF-1 in mammals is similar to a gene in fruit flies which codes for another protein called Ftz-f1. Since it is more straightforward to study ovaries in fruit flies than in humans and other mammals, investigating this protein could shed light on how follicle cells mature. However, it remained unclear whether Ftz-f1 plays a similar role to its mammalian counterpart. Here, Knapp et al. show that Ftz-f1 is present in the follicle cells of fruit flies and is required for them to properly mature. Ftz-f1 controlled this process by regulating the activity of another protein called Sim. Further experiments found that the gene that codes for the SF-1 protein in mice was able to compensate for the loss of Ftz-f1 and drive follicle cells to mature. Studying how ovaries release eggs is an essential part of understanding female fertility. This work highlights the similarities between these processes in mammals and fruit flies and may help us understand how ovaries work in humans and other mammals. In the future, the findings of Knapp et al. may lead to new therapies for infertility in females and other disorders that affect ovaries.
Collapse
Affiliation(s)
- Elizabeth M Knapp
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, United States
| | - Wei Li
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, United States
| | - Vijender Singh
- Institute for Systems Genomics, University of Connecticut, Storrs, United States
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, United States
| |
Collapse
|
43
|
Wu L, Jia Q, Zhang X, Zhang X, Liu S, Park Y, Feyereisen R, Zhu KY, Ma E, Zhang J, Li S. CYP303A1 has a conserved function in adult eclosion in Locusta migratoria and Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103210. [PMID: 31422152 DOI: 10.1016/j.ibmb.2019.103210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Insect cytochrome P450 monooxygenases (CYPs) play essential roles in both xenobiotic metabolism and developmental processes. However, the exact physiological function of many CYP genes remains largely unknown. Screening the expression of the CYP genes from the CYP2 and mitochondrial CYP clans of Drosophila melanogaster revealed that Cyp303a1 is highly expressed in the pupal stage. Knockdown of CYP303A1 transcripts by RNAi using the Gal4/UAS system with a ubiquitous driver (tubulin-Gal4) in Drosophila or by dsRNA injection in the last nymph stage of Locusta migratoria resulted in severe defects in eclosion and lethality during and after adult emergence. In Drosophila, tissue-specific RNAi of Cyp303a1 with a wing-specific driver (MS1096-Gal4) revealed that Cyp303a1 was essential for wing extension. Stage-specific RNAi of Cyp303a1 using Gal80ts for thermal-dependent-suppression found that the expression of Cyp303a1 at the middle pupal stage was absolutely required. Meanwhile, Cyp303a1 mutants exhibited more than 80% lethality at the late embryonic development stages. Embryonic lethality of the Cyp303a1 mutants was fully rescued by the ubiquitous overexpression of exogenous Cyp303a1. Taken together, we conclude that Cyp303a1 is indispensable for embryonic development and adult eclosion in D. melanogaster, the latter role being conserved over 400 million years of insect evolution.
Collapse
Affiliation(s)
- Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China; Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xubo Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xueyao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1017, Denmark; Department of Plant and Crops, Ghent University, B-9000 Ghent, Belgium
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
44
|
Street SM, Eytcheson SA, LeBlanc GA. The role of nuclear receptor E75 in regulating the molt cycle of Daphnia magna and consequences of its disruption. PLoS One 2019; 14:e0221642. [PMID: 31454379 PMCID: PMC6711514 DOI: 10.1371/journal.pone.0221642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Biological rhythms regulate innumerable physiological processes, yet little is known of factors that regulate many of these rhythms. Disruption in the timing of these rhythms can have devastating impacts on population sustainability. We hypothesized that the timing of the molt infradian rhythm in the crustacean Daphnia magna is regulated by the joint action of the protein E75 and nitric oxide. Further, we hypothesized that disruption of the function of E75 would adversely impact several physiological processes related to growth and reproduction. Analysis of mRNA levels of several genes, involved in regulating the molt cycle in insects, revealed the sequential accumulation of E75, its dimer partner HR3, FTZ-F1, and CYP18a1 during the molt cycle. Exposure to the nitric oxide donor sodium nitroprusside early in the molt cycle had no effect on E75 or HR3 mRNA levels, but delayed the peak accumulation of FTZ-F1 and CYP18a1 mRNA. The subsequent exuviation was also delayed consistent with the delay in peak accumulation of FTZ-F1 and CYP18a1. These results supported our assertion that nitric oxide binds E75 rendering it incapable of binding HR3. Excess HR3 protein then enhanced the accumulation of the downstream products FTZ-F1 and CYP18a1. Similarly, suppression of E75 mRNA levels, using siRNA, had no effect on mRNA levels of HR3 but elevated mRNA levels of FTZ-F1. Consistent with these molecular responses, the suppression of E75 using siRNA increased the duration of the molt cycle and reduced the number of offspring produced. We conclude that the molt cycle of daphnids is regulated in a manner similar to insects and disruption of E75 results in a lengthening of the molt cycle and a reduction the release of viable offspring.
Collapse
Affiliation(s)
- Stephanie M. Street
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Stephanie A. Eytcheson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gerald A. LeBlanc
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
45
|
Hall MJR, Martín-Vega D. Visualization of insect metamorphosis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190071. [PMID: 31438819 DOI: 10.1098/rstb.2019.0071] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Metamorphosis and, in particular, holometaboly, the development of organisms through a series of discrete stages (egg, larva, pupa, adult) that hardly resemble one another but are finely adapted to specific roles in the life cycle of the organism, has fascinated and mystified humans throughout history. However, it can be difficult to visualize the dramatic changes that occur during holometaboly without destructive sampling, traditionally through histology. However, advances in imaging technologies developed mainly for medical sciences have been applied to studies of insect metamorphosis over the past couple of decades. These include micro-computed tomography, magnetic resonance imaging and optical coherence tomography. A major advantage of these techniques is that they are rapid and non-destructive, enabling virtual dissection of an organism in any plane by anyone who has access to the image files and the necessary software. They can also be applied in some cases to visualize metamorphosis in vivo, including the periods of most rapid and dramatic morphological change. This review focusses on visualizing the intra-puparial holometabolous metamorphosis of cyclorraphous flies (Diptera), including the primary model organism for all genetic investigations, Drosophila melanogaster, and the blow flies of medical, veterinary and forensic importance, but also discusses similar studies on other insect orders. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Martin J R Hall
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Daniel Martín-Vega
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.,Department of Life Sciences, University of Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
46
|
Byun PK, Zhang C, Yao B, Wardwell-Ozgo J, Terry D, Jin P, Moberg K. The Taiman Transcriptional Coactivator Engages Toll Signals to Promote Apoptosis and Intertissue Invasion in Drosophila. Curr Biol 2019; 29:2790-2800.e4. [PMID: 31402304 DOI: 10.1016/j.cub.2019.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/29/2019] [Accepted: 07/04/2019] [Indexed: 01/15/2023]
Abstract
The Drosophila Taiman (Tai) protein is homologous to the human steroid-receptor coactivators SRC1-3 and activates transcription in complex with the 20-hydroxyecdysone (20E) receptor (EcR). Tai has roles in intestinal homeostasis, germline maintenance, cell motility, and proliferation through interactions with EcR and the coactivator Yorkie (Yki). Tai also promotes invasion of tumor cells in adjacent organs, but this pro-invasive mechanism is undefined. Here, we show that Tai expression transforms sessile pupal wing cells into an invasive mass that penetrates the adjacent thorax during a period of high 20E. Candidate analysis confirms a reliance on elements of the 20E and Hippo pathways, such as Yki and the Yki-Tai target dilp8. Screening the Tai-induced wing transcriptome detects enrichment for innate immune factors, including the Spätzle (Spz) family of secreted Toll ligands that induce apoptosis during cell competition. Tai-expressing wing cells induce immune signaling and apoptosis among adjacent thoracic cells, and genetic reduction of spz, Toll, or the rpr/hid/grim pro-apoptotic factors each suppresses invasion, suggesting an intercellular Spz-Toll circuit supports killing-mediated invasion. Modeling these interactions in larval epithelia confirms that Tai kills neighboring cells via a mechanism involving Toll, Spz factors, and the Spz inhibitor Necrotic. Tai-expressing cells evade death signals by repressing the immune deficiency (IMD) pathway, which operates in parallel to Toll to control nuclear factor κB (NF-κB) activity and independently regulates JNK activity. In sum, these findings suggest that Tai promotes competitive cell killing via Spz-Toll and that this killing mechanism supports pathologic intertissue invasion in Drosophila.
Collapse
Affiliation(s)
- Phil K Byun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Can Zhang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joanna Wardwell-Ozgo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Douglas Terry
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ken Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
47
|
Conlon BH, Aurori A, Giurgiu AI, Kefuss J, Dezmirean DS, Moritz RFA, Routtu J. A gene for resistance to the Varroa mite (Acari) in honey bee (Apis mellifera) pupae. Mol Ecol 2019; 28:2958-2966. [PMID: 30916410 DOI: 10.1111/mec.15080] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022]
Abstract
Social insect colonies possess a range of defences which protect them against highly virulent parasites and colony collapse. The host-parasite interaction between honey bees (Apis mellifera) and the mite Varroa destructor is unusual, as honey bee colonies are relatively poorly defended against this parasite. The interaction has existed since the mid-20th Century, when Varroa switched host to parasitize A. mellifera. The combination of a virulent parasite and relatively naïve host means that, without acaricides, honey bee colonies typically die within 3 years of Varroa infestation. A consequence of acaricide use has been a reduced selective pressure for the evolution of Varroa resistance in honey bee colonies. However, in the past 20 years, several natural-selection-based breeding programmes have resulted in the evolution of Varroa-resistant populations. In these populations, the inhibition of Varroa's reproduction is a common trait. Using a high-density genome-wide association analysis in a Varroa-resistant honey bee population, we identify an ecdysone-induced gene significantly linked to resistance. Ecdysone both initiates metamorphosis in insects and reproduction in Varroa. Previously, using a less dense genetic map and a quantitative trait loci analysis, we have identified Ecdysone-related genes at resistance loci in an independently evolved resistant population. Varroa cannot biosynthesize ecdysone but can acquire it from its diet. Using qPCR, we are able to link the expression of ecdysone-linked resistance genes to Varroa's meals and reproduction. If Varroa co-opts pupal compounds to initiate and time its own reproduction, mutations in the host's ecdysone pathway may represent a key selection tool for honey bee resistance and breeding.
Collapse
Affiliation(s)
- Benjamin H Conlon
- Molecular Ecology, Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.,Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Aurori
- University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | | | | | - Daniel S Dezmirean
- University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Robin F A Moritz
- Molecular Ecology, Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.,University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Jarkko Routtu
- Molecular Ecology, Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
48
|
A cell surface protein controls endocrine ring gland morphogenesis and steroid production. Dev Biol 2018; 445:16-28. [PMID: 30367846 DOI: 10.1016/j.ydbio.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
Identification of signals for systemic adaption of hormonal regulation would help to understand the crosstalk between cells and environmental cues contributing to growth, metabolic homeostasis and development. Physiological states are controlled by precise pulsatile hormonal release, including endocrine steroids in human and ecdysteroids in insects. We show in Drosophila that regulation of genes that control biosynthesis and signaling of the steroid hormone ecdysone, a central regulator of developmental progress, depends on the extracellular matrix protein Obstructor-A (Obst-A). Ecdysone is produced by the prothoracic gland (PG), where sensory neurons projecting axons from the brain integrate stimuli for endocrine control. By defining the extracellular surface, Obst-A promotes morphogenesis and axonal growth in the PG. This process requires Obst-A-matrix reorganization by Clathrin/Wurst-mediated endocytosis. Our data identifies the extracellular matrix as essential for endocrine ring gland function, which coordinates physiology, axon morphogenesis, and developmental programs. As Obst-A and Wurst homologs are found among all arthropods, we propose that this mechanism is evolutionary conserved.
Collapse
|
49
|
Conlon BH, Frey E, Rosenkranz P, Locke B, Moritz RFA, Routtu J. The role of epistatic interactions underpinning resistance to parasitic Varroa mites in haploid honey bee (Apis mellifera) drones. J Evol Biol 2018; 31:801-809. [PMID: 29577506 DOI: 10.1111/jeb.13271] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 01/25/2023]
Abstract
The Red Queen hypothesis predicts that host-parasite coevolutionary dynamics can select for host resistance through increased genetic diversity, recombination and evolutionary rates. However, in haplodiploid organisms such as the honeybee (Apis mellifera), models suggest the selective pressure is weaker than in diploids. Haplodiploid sex determination, found in A. mellifera, can allow deleterious recessive alleles to persist in the population through the diploid sex with negative effects predominantly expressed in the haploid sex. To overcome these negative effects in haploid genomes, epistatic interactions have been hypothesized to play an important role. Here, we use the interaction between A. mellifera and the parasitic mite Varroa destructor to test epistasis in the expression of resistance, through the inhibition of parasite reproduction, in haploid drones. We find novel loci on three chromosomes which explain over 45% of the resistance phenotype. Two of these loci interact only additively, suggesting their expression is independent of each other, but both loci interact epistatically with the third locus. With drone offspring inheriting only one copy of the queen's chromosomes, the drones will only possess one of two queen alleles throughout the years-long lifetime of the honeybee colony. Varroa, in comparison, completes its highly inbred reproductive cycle in a matter of weeks, allowing it to rapidly evolve resistance. Faced with the rapidly evolving Varroa, a diversity of pathways and epistatic interactions for the inhibition of Varroa reproduction could therefore provide a selective advantage to the high levels of recombination seen in A. mellifera. This allows for the remixing of phenotypes despite a fixed queen genotype.
Collapse
Affiliation(s)
- Benjamin H Conlon
- Molecular Ecology, Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Halle an der Saale, Germany
| | - Eva Frey
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Peter Rosenkranz
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Robin F A Moritz
- Molecular Ecology, Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Halle an der Saale, Germany
| | - Jarkko Routtu
- Molecular Ecology, Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Halle an der Saale, Germany
| |
Collapse
|
50
|
Li C, Li B, Ma S, Lü P, Chen K. Dusky works upstream of Four-jointed and Forked in wing morphogenesis in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2017; 26:677-686. [PMID: 28677915 DOI: 10.1111/imb.12327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dusky (dy) is required for cytoskeletal reorganization during wing morphogenesis in Drosophila melanogaster, but which genes participate together with dy for wing morphogenesis has remained unclear. In Tribolium castaneum, dy is highly expressed at the late embryonic stage. Tissue-specific expression analysis indicated high expression levels of dy in the epidermis, head and fat body of late-stage larvae. RNA interference (RNAi) targeting dy significantly decreased adult wing size and caused improper folding of the elytra. Meanwhile, dy knockdown reduced the transcription of four-jointed (fj) and forked (f). Our results show that fj RNAi reduces adult wing size and that silencing f results in abnormal wing folding in T. castaneum. Interestingly, knocking down fj and f simultaneously phenocopies dy RNAi, suggesting that dy probably acts upstream of fj and f to regulate wing morphogenesis in T. castaneum.
Collapse
Affiliation(s)
- C Li
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - S Ma
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - P Lü
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - K Chen
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|