1
|
Plygawko AT, Stephan-Otto Attolini C, Pitsidianaki I, Cook DP, Darby AC, Campbell K. The Drosophila adult midgut progenitor cells arise from asymmetric divisions of neuroblast-like cells. Dev Cell 2025; 60:429-446.e6. [PMID: 39532106 DOI: 10.1016/j.devcel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
The Drosophila adult midgut progenitor cells (AMPs) give rise to all cells in the adult midgut epithelium, including the intestinal stem cells (ISCs). While they share many characteristics with the ISCs, it remains unclear how they are generated in the early embryo. Here, we show that they arise from a population of endoderm cells, which exhibit multiple similarities with Drosophila neuroblasts. These cells, which we have termed endoblasts, are patterned by homothorax (Hth) and undergo asymmetric divisions using the same molecular machinery as neuroblasts. We also show that the conservation of this molecular machinery extends to the generation of the enteroendocrine lineages. Parallels have previously been drawn between the pupal ISCs and larval neuroblasts. Our results suggest that these commonalities exist from the earliest stages of specification of progenitor cells of the intestinal and nervous systems and may represent an ancestral pathway for multipotent progenitor cell specification.
Collapse
Affiliation(s)
- Andrew T Plygawko
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ioanna Pitsidianaki
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
2
|
Piñeiro-Sabarís R, MacGrogan D, de la Pompa JL. Deficient GATA6-CXCR7 signaling leads to bicuspid aortic valve. Dis Model Mech 2024; 17:dmm050934. [PMID: 39253784 PMCID: PMC11413932 DOI: 10.1242/dmm.050934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
The cardiac outflow tract (OFT) transiently links the ventricles to the aortic sac and forms the arterial valves. Abnormalities in these valves, such as bicuspid aortic valve (BAV), are common congenital anomalies. GATA6-inactivating variants cause cardiac OFT defects and BAV, but their mechanisms are unclear. We generated Gata6STOP/+ mice using CRISPR-Cas9, which show highly penetrant BAV (70%) and membranous ventricular septal defects (43%). These mice exhibited decreased proliferation and increased ISL1-positive progenitor cells in the OFT, indicating abnormal cardiovascular differentiation. Gata6 deletion with the Mef2cCre driver line recapitulated Gata6STOP/+ phenotypes, indicating a cell-autonomous role for Gata6 in the second heart field. Gata6STOP/+ mice showed reduced OFT length and caliber, associated with deficient cardiac neural crest cell contribution, which may cause valvulo-septal defects. RNA-sequencing analysis showed depletion in pathways related to cell proliferation and migration, highlighting Cxcr7 (also known as Ackr3) as a candidate gene. Reduced mesenchymal cell migration and invasion were observed in Gata6STOP/+ OFT tissue. CXCR7 agonists reduced mesenchymal cell migration and increased invasion in wild-type but not in Gata6STOP/+ explants, indicating the GATA6-dependent role of CXCR7 in OFT development and its potential link to BAV.
Collapse
Affiliation(s)
- Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
3
|
Stehbens SJ, Scarpa E, White MD. Perspectives in collective cell migration - moving forward. J Cell Sci 2024; 137:jcs261549. [PMID: 38904172 DOI: 10.1242/jcs.261549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Collective cell migration, where cells move as a cohesive unit, is a vital process underlying morphogenesis and cancer metastasis. Thanks to recent advances in imaging and modelling, we are beginning to understand the intricate relationship between a cell and its microenvironment and how this shapes cell polarity, metabolism and modes of migration. The use of biophysical and mathematical models offers a fresh perspective on how cells migrate collectively, either flowing in a fluid-like state or transitioning to more static states. Continuing to unite researchers in biology, physics and mathematics will enable us to decode more complex biological behaviours that underly collective cell migration; only then can we understand how this coordinated movement of cells influences the formation and organisation of tissues and directs the spread of metastatic cancer. In this Perspective, we highlight exciting discoveries, emerging themes and common challenges that have arisen in recent years, and possible ways forward to bridge the gaps in our current understanding of collective cell migration.
Collapse
Affiliation(s)
- Samantha J Stehbens
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK
| | - Melanie D White
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Saitoh M. Transcriptional regulation of EMT transcription factors in cancer. Semin Cancer Biol 2023; 97:21-29. [PMID: 37802266 DOI: 10.1016/j.semcancer.2023.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/01/2022] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is one of the processes by which epithelial cells transdifferentiate into mesenchymal cells in the developmental stage, known as "complete EMT." In epithelial cancer, EMT, also termed "partial EMT," is associated with invasion, metastasis, and resistance to therapy, and is elicited by several transcription factors, frequently referred to as EMT transcription factors. Among these transcription factors that regulate EMT, ZEB1/2 (ZEB1 and ZEB2), SNAIL, and TWIST play a prominent role in driving the EMT process (hereafter referred to as "EMT-TFs"). Among these, ZEB1/2 show positive correlation with both expression of mesenchymal marker proteins and the aggressiveness of various carcinomas. On the other hand, TWIST and SNAIL are also correlated with the aggressiveness of carcinomas, but are not highly correlated with mesenchymal marker protein expression. Interestingly, these EMT-TFs are not detected simultaneously in any studied cases of aggressive cancers, except for sarcoma. Thus, only one or some of the EMT-TFs are expressed at high levels in cells of aggressive carcinomas. Expression of EMT-TFs is regulated by transforming growth factor-β (TGF-β), a well-established inducer of EMT, in cooperation with other signaling molecules, such as active RAS signals. The focus of this review is the molecular mechanisms by which EMT-TFs are transcriptionally sustained at sufficiently high levels in cells of aggressive carcinomas and upregulated by TGF-β during cancer progression.
Collapse
Affiliation(s)
- Masao Saitoh
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Chuo-city, Yamanashi, Japan.
| |
Collapse
|
5
|
Thottacherry JJ, Chen J, Johnston DS. Apical-basal polarity in the gut. Semin Cell Dev Biol 2023; 150-151:15-22. [PMID: 36670034 DOI: 10.1016/j.semcdb.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
Apical-Basal polarity is a fundamental property of all epithelial cells that underlies both their form and function. The gut is made up of a single layer of intestinal epithelial cells, with distinct apical, lateral and basal domains. Occluding junctions at the apical side of the lateral domains create a barrier between the gut lumen and the body, which is crucial for tissue homeostasis, protection against gastrointestinal pathogens and for the maintenance of the immune response. Apical-basal polarity in most epithelia is established by conserved polarity factors, but recent evidence suggests that the gut epithelium in at least some organisms polarises by novel mechanisms. In this review, we discuss the recent advances in understanding polarity factors by focussing on work in C. elegans, Drosophila, Zebrafish and Mouse.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom.
| |
Collapse
|
6
|
Poyyakkara A, Raji GR, Padmaja KP, Ramachandran V, Changmai U, Edatt L, Punathil R, Kumar VBS. Integrin β4 induced epithelial-to-mesenchymal transition involves miR-383 mediated regulation of GATA6 levels. Mol Biol Rep 2023; 50:8623-8637. [PMID: 37656269 DOI: 10.1007/s11033-023-08682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND The process of transdifferentiating epithelial cells to mesenchymal-like cells (EMT) involves cells gradually taking on an invasive and migratory phenotype. Many cell adhesion molecules are crucial for the management of EMT, integrin β4 (ITGB4) being one among them. Although signaling downstream of ITGB4 has been reported to cause changes in the expression of several miRNAs, little is known about the role of such miRNAs in the process of EMT. METHODS AND RESULTS The cytoplasmic domain of ITGB4 (ITGB4CD) was ectopically expressed in HeLa cells to induce ITGB4 signaling, and expression analysis of mesenchymal markers indicated the induction of EMT. β-catenin and AKT signaling pathways were found to be activated downstream of ITGB4 signaling, as evidenced by the TOPFlash assay and the levels of phosphorylated AKT, respectively. Based on in silico and qRT-PCR analysis, miR-383 was selected for functional validation studies. miR-383 and Sponge were ectopically expressed in HeLa, thereafter, western blot and qRT-PCR analysis revealed that miR-383 regulates GATA binding protein 6 (GATA6) post-transcriptionally. The ectopic expression of shRNA targeting GATA6 caused the reversal of EMT and β catenin activation downstream of ITGB4 signaling. Cell migration assays revealed significantly high cell migration upon ectopic expression ITGB4CD, which was reversed upon ectopic co-expression of miR-383 or GATA6 shRNA. Besides, ITGB4CD promoted EMT in in ovo xenograft model, which was reversed by ectopic expression of miR-383 or GATA6 shRNA. CONCLUSION The induction of EMT downstream of ITGB4 involves a signaling axis encompassing AKT/miR-383/GATA6/β-catenin.
Collapse
Affiliation(s)
- Aswini Poyyakkara
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Grace R Raji
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - K P Padmaja
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
- CRP-10, Cancer Research, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, India
| | - Vishnu Ramachandran
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Udeshna Changmai
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Lincy Edatt
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Rabina Punathil
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
- Department of Zoology, School of Basic Sciences, SRM University, Sikkim, 737102, India
| | - V B Sameer Kumar
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
7
|
Pohl L, Schiessl IM. Endothelial cell plasticity in kidney fibrosis and disease. Acta Physiol (Oxf) 2023; 239:e14038. [PMID: 37661749 DOI: 10.1111/apha.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Renal endothelial cells demonstrate an impressive remodeling potential during angiogenic sprouting, vessel repair or while transitioning into mesenchymal cells. These different processes may play important roles in both renal disease progression or regeneration while underlying signaling pathways of different endothelial cell plasticity routes partly overlap. Angiogenesis contributes to wound healing after kidney injury and pharmaceutical modulation of angiogenesis may home a great therapeutic potential. Yet, it is not clear whether any differentiated endothelial cell can proliferate or whether regenerative processes are largely controlled by resident or circulating endothelial progenitor cells. In the glomerular compartment for example, a distinct endothelial progenitor cell population may remodel the glomerular endothelium after injury. Endothelial-to-mesenchymal transition (EndoMT) in the kidney is vastly documented and often associated with endothelial dysfunction, fibrosis, and kidney disease progression. Especially the role of EndoMT in renal fibrosis is controversial. Studies on EndoMT in vivo determined possible conclusions on the pathophysiological role of EndoMT in the kidney, but whether endothelial cells really contribute to kidney fibrosis and if not what other cellular and functional outcomes derive from EndoMT in kidney disease is unclear. Sequencing data, however, suggest no participation of endothelial cells in extracellular matrix deposition. Thus, more in-depth classification of cellular markers and the fate of EndoMT cells in the kidney is needed. In this review, we describe different signaling pathways of endothelial plasticity, outline methodological approaches and evidence for functional and structural implications of angiogenesis and EndoMT in the kidney, and eventually discuss controversial aspects in the literature.
Collapse
Affiliation(s)
- Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
8
|
Zhang Q, Dou W, He LQ, Yu SS, Chen JQ, Zheng LY, Wang L, Smagghe G, Wang JJ. Pannier is a key regulator of embryogenesis, pupal development and female reproduction in the insect pest Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2023; 79:1352-1361. [PMID: 36427005 DOI: 10.1002/ps.7305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/28/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Most arthropods are famous for their large reproductive capacity, with the ovary playing a vital role in the process. The study of the regulatory mechanisms of ovarian development may have the potential for a reproduction-based pest management strategy. GATA-binding transcription factors (GATAs) as important regulatory factors mediate many physiological processes, including development, immunity, insecticide resistance and reproduction. The Pannier (pnr), a member of GATA family, was confirmed to be involved in ovarian development of Bactrocera dorsalis in our previous study. However, the direct evidence of pnr regulating the fly ovarian development is still lacking. RESULTS We used CRISPR/Cas9 to create Bdpnr loss-of-function mutations. Homozygous Bdpnr-/- mutants were nonviable, with most individuals dying during embryogenesis, some surviving to the larval stages, and the remaining few dying during pupation. In contrast, heterozygous individuals reached the adult stage, but ovarian development was disrupted, with concomitant decreases in egg laying and hatching rates. We also found that two genes encoding vitellogenin proteins (BdVg1 and BdVg2) and the vitellogenin receptor (BdVgR) were significantly down-regulated in heterozygous mutants compared to wild-type controls. CONCLUSION These results indicate that Bdpnr is required for embryonic and post-embryonic development, including the formation of ovaries. Bdpnr could therefore be considered as a molecular target for tephritid fly pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li-Qiang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shan-Shan Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jia-Qing Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li-Yuan Zheng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Du Q, Liu S, Dong K, Cui X, Luo J, Geller DA. Downregulation of iNOS/NO Promotes Epithelial-Mesenchymal Transition and Metastasis in Colorectal Cancer. Mol Cancer Res 2023; 21:102-114. [PMID: 36306210 PMCID: PMC9890133 DOI: 10.1158/1541-7786.mcr-22-0509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 02/06/2023]
Abstract
Metastasis is the major cause of cancer-related death in patients with colorectal cancer. Although inducible nitric oxide synthase (iNOS) is a crucial regulator of cancer development and progression, its roles in epithelial-mesenchymal transition (EMT) and the pathogenesis of metastatic colorectal cancer have not been fully investigated. Primary colorectal cancer and liver metastatic tissue specimens were analyzed showing 90% of liver metastatic colorectal cancer with reduced expressions of iNOS compared with 6% of primary colorectal cancer. The Cancer Genome Atlas database analyses via cBioPortal reveal that mRNA expression of iNOS negatively correlated with selected EMT markers in colorectal cancer in a cancer type-dependent manner. The transcriptomic profiling (RNA sequencing data) indicates that iNOS knockdown in SW480 colorectal cancer cells induced an EMT program with upregulated expression of selected stem-cell markers. iNOS knockdown did not alter E-cadherin mRNA expression but re-localized it from membrane to cytoplasm through iNOS-GATA4-Crb2-E-cadherin pathway. iNOS knockdown induced a change in cell morphology, and promoted cell invasion and migration in vitro, and metastasis in vivo. IMPLICATIONS iNOS downregulation-induced pathway networks mediate the EMT program and metastasis. As an EMT inducer, the reduced-iNOS may serve as a potential therapeutic target for patients with colorectal cancer.
Collapse
Affiliation(s)
- Qiang Du
- Department of Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kun Dong
- Department of Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Cui
- Department of Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Luo
- Department of Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - David A. Geller
- Department of Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Chen J, St Johnston D. De novo apical domain formation inside the Drosophila adult midgut epithelium. eLife 2022; 11:e76366. [PMID: 36169289 PMCID: PMC9545526 DOI: 10.7554/elife.76366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
In the adult Drosophila midgut, basal intestinal stem cells give rise to enteroblasts that integrate into the epithelium as they differentiate into enterocytes. Integrating enteroblasts must generate a new apical domain and break through the septate junctions between neighbouring enterocytes, while maintaining barrier function. We observe that enteroblasts form an apical membrane initiation site (AMIS) when they reach the septate junction between the enterocytes. Cadherin clears from the apical surface and an apical space appears between above the enteroblast. New septate junctions then form laterally with the enterocytes and the AMIS develops into an apical domain below the enterocyte septate junction. The enteroblast therefore forms a pre-assembled apical compartment before it has a free apical surface in contact with the gut lumen. Finally, the enterocyte septate junction disassembles and the enteroblast/pre-enterocyte reaches the gut lumen with a fully formed brush border. The process of enteroblast integration resembles lumen formation in mammalian epithelial cysts, highlighting the similarities between the fly midgut and mammalian epithelia.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
11
|
Chen J, St Johnston D. Epithelial Cell Polarity During Drosophila Midgut Development. Front Cell Dev Biol 2022; 10:886773. [PMID: 35846367 PMCID: PMC9281564 DOI: 10.3389/fcell.2022.886773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
The adult Drosophila midgut epithelium is derived from a group of stem cells called adult midgut precursors (AMPs) that are specified during the migration of the endoderm in early embryogenesis. AMPs are maintained and expanded in AMP nests that lie on the basal side of the larval midgut throughout the larval development. During metamorphosis, the larval midgut undergoes histolysis and programmed cell death, while the central cells in the AMP nests form the future adult midgut and the peripheral cells form the transient pupal midgut. Here we review what is known about how cells polarise in the embryonic, larval, pupal and adult midgut, and discuss the open questions about the mechanisms that control the changes in cell arrangements, cell shape and cell polarity during midgut development.
Collapse
Affiliation(s)
| | - Daniel St Johnston
- Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Cote LE, Feldman JL. Won't You be My Neighbor: How Epithelial Cells Connect Together to Build Global Tissue Polarity. Front Cell Dev Biol 2022; 10:887107. [PMID: 35800889 PMCID: PMC9253303 DOI: 10.3389/fcell.2022.887107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues form continuous barriers to protect against external environments. Within these tissues, epithelial cells build environment-facing apical membranes, junction complexes that anchor neighbors together, and basolateral surfaces that face other cells. Critically, to form a continuous apical barrier, neighboring epithelial cells must align their apico-basolateral axes to create global polarity along the entire tissue. Here, we will review mechanisms of global tissue-level polarity establishment, with a focus on how neighboring epithelial cells of different origins align their apical surfaces. Epithelial cells with different developmental origins and/or that polarize at different times and places must align their respective apico-basolateral axes. Connecting different epithelial tissues into continuous sheets or tubes, termed epithelial fusion, has been most extensively studied in cases where neighboring cells initially dock at an apical-to-apical interface. However, epithelial cells can also meet basal-to-basal, posing several challenges for apical continuity. Pre-existing basement membrane between the tissues must be remodeled and/or removed, the cells involved in docking are specialized, and new cell-cell adhesions are formed. Each of these challenges can involve changes to apico-basolateral polarity of epithelial cells. This minireview highlights several in vivo examples of basal docking and how apico-basolateral polarity changes during epithelial fusion. Understanding the specific molecular mechanisms of basal docking is an area ripe for further exploration that will shed light on complex morphogenetic events that sculpt developing organisms and on the cellular mechanisms that can go awry during diseases involving the formation of cysts, fistulas, atresias, and metastases.
Collapse
|
13
|
Simões S, Lerchbaumer G, Pellikka M, Giannatou P, Lam T, Kim D, Yu J, ter Stal D, Al Kakouni K, Fernandez-Gonzalez R, Tepass U. Crumbs complex-directed apical membrane dynamics in epithelial cell ingression. J Cell Biol 2022; 221:213229. [PMID: 35588693 PMCID: PMC9123285 DOI: 10.1083/jcb.202108076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/24/2022] [Accepted: 04/29/2022] [Indexed: 01/07/2023] Open
Abstract
Epithelial cells often leave their tissue context and ingress to form new cell types or acquire migratory ability to move to distant sites during development and tumor progression. Cells lose their apical membrane and epithelial adherens junctions during ingression. However, how factors that organize apical-basal polarity contribute to ingression is unknown. Here, we show that the dynamic regulation of the apical Crumbs polarity complex is crucial for normal neural stem cell ingression. Crumbs endocytosis and recycling allow ingression to occur in a normal timeframe. During early ingression, Crumbs and its complex partner the RhoGEF Cysts support myosin and apical constriction to ensure robust ingression dynamics. During late ingression, the E3-ubiquitin ligase Neuralized facilitates the disassembly of the Crumbs complex and the rapid endocytic removal of the apical cell domain. Our findings reveal a mechanism integrating cell fate, apical polarity, endocytosis, vesicle trafficking, and actomyosin contractility to promote cell ingression, a fundamental morphogenetic process observed in animal development and cancer.
Collapse
Affiliation(s)
- Sérgio Simões
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Gerald Lerchbaumer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Milena Pellikka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Paraskevi Giannatou
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Lam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Dohyun Kim
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Yu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - David ter Stal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Kenana Al Kakouni
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada,Correspondence to Ulrich Tepass:
| |
Collapse
|
14
|
Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (Beijing) 2022; 3:e144. [PMID: 35601657 PMCID: PMC9115588 DOI: 10.1002/mco2.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells lose their junctions and polarity while acquiring mesenchymal properties and invasive ability. Originally defined as an embryogenesis event, EMT has been recognized as a crucial process in tumor progression. During EMT, cell–cell junctions and cell–matrix attachments are disrupted, and the cytoskeleton is remodeled to enhance mobility of cells. This transition of phenotype is largely driven by a group of key transcription factors, typically Snail, Twist, and ZEB, through epigenetic repression of epithelial markers, transcriptional activation of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanistically, EMT is orchestrated by multiple pathways, especially those involved in embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as an intrinsic link between embryonic development and cancer progression. In addition, redox signaling has also emerged as critical EMT modulator. EMT confers cancer cells with increased metastatic potential and drug resistant capacity, which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT can be a therapeutic option providing a chance of cure for cancer patients. Here, we introduce a brief history of EMT and summarize recent advances in understanding EMT mechanisms, as well as highlighting the therapeutic opportunities by targeting EMT in cancer treatment.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengwei Zhou
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Lin Liu
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
15
|
Moussalem D, Augé B, Di Stefano L, Osman D, Gobert V, Haenlin M. Two Isoforms of serpent Containing Either One or Two GATA Zinc Fingers Provide Functional Diversity During Drosophila Development. Front Cell Dev Biol 2022; 9:795680. [PMID: 35178397 PMCID: PMC8844375 DOI: 10.3389/fcell.2021.795680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
GATA transcription factors play crucial roles in various developmental processes in organisms ranging from flies to humans. In mammals, GATA factors are characterized by the presence of two highly conserved domains, the N-terminal (N-ZnF) and the C-terminal (C-ZnF) zinc fingers. The Drosophila GATA factor Serpent (Srp) is produced in different isoforms that contains either both N-ZnF and C-ZnF (SrpNC) or only the C-ZnF (SrpC). Here, we investigated the functional roles ensured by each of these isoforms during Drosophila development. Using the CRISPR/Cas9 technique, we generated new mutant fly lines deleted for one (ΔsrpNC) or the other (ΔsrpC) encoded isoform, and a third one with a single point mutation in the N-ZnF that alters its interaction with its cofactor, the Drosophila FOG homolog U-shaped (Ush). Analysis of these mutants revealed that the Srp zinc fingers are differentially required for Srp to fulfill its functions. While SrpC is essential for embryo to adult viability, SrpNC, which is the closest conserved isoform to that of vertebrates, is not. However, to ensure its specific functions in larval hematopoiesis and fertility, Srp requires the presence of both N- and C-ZnF (SrpNC) and interaction with its cofactor Ush. Our results also reveal that in vivo the presence of N-ZnF restricts rather than extends the ability of GATA factors to regulate the repertoire of C-ZnF bound target genes.
Collapse
Affiliation(s)
- Douaa Moussalem
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Benoit Augé
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Luisa Di Stefano
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Dani Osman
- Faculty of Sciences III, Lebanese University, Tripoli, Lebanon.,Azm Center for Research in Biotechnology and Its Applications, LBA3B, EDST, Lebanese University, Tripoli, Lebanon
| | - Vanessa Gobert
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Haenlin
- Molecular, Cellular and Developmental Biology Department (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
16
|
Rust K, Wodarz A. Transcriptional Control of Apical-Basal Polarity Regulators. Int J Mol Sci 2021; 22:ijms222212340. [PMID: 34830224 PMCID: PMC8624420 DOI: 10.3390/ijms222212340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Cell polarity is essential for many functions of cells and tissues including the initial establishment and subsequent maintenance of epithelial tissues, asymmetric cell division, and morphogenetic movements. Cell polarity along the apical-basal axis is controlled by three protein complexes that interact with and co-regulate each other: The Par-, Crumbs-, and Scrib-complexes. The localization and activity of the components of these complexes is predominantly controlled by protein-protein interactions and protein phosphorylation status. Increasing evidence accumulates that, besides the regulation at the protein level, the precise expression control of polarity determinants contributes substantially to cell polarity regulation. Here we review how gene expression regulation influences processes that depend on the induction, maintenance, or abolishment of cell polarity with a special focus on epithelial to mesenchymal transition and asymmetric stem cell division. We conclude that gene expression control is an important and often neglected mechanism in the control of cell polarity.
Collapse
Affiliation(s)
- Katja Rust
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University, 35037 Marburg, Germany
- Correspondence: (K.R.); (A.W.)
| | - Andreas Wodarz
- Department of Molecular Cell Biology, Institute I for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cluster of Excellence—Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Correspondence: (K.R.); (A.W.)
| |
Collapse
|
17
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
18
|
Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev Cell 2021; 56:726-746. [PMID: 33756119 DOI: 10.1016/j.devcel.2021.02.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial cells repress epithelial characteristics and elaborate mesenchymal characteristics to migrate to other locations and acquire new properties. Epithelial plasticity responses are directed through cooperation of signaling pathways, with TGF-β and TGF-β-related proteins playing prominent instructive roles. Epithelial-mesenchymal transitions (EMTs) directed by activin-like molecules, bone morphogenetic proteins, or TGF-β regulate metazoan development and wound healing and drive fibrosis and cancer progression. In carcinomas, diverse EMTs enable stem cell generation, anti-cancer drug resistance, genomic instability, and localized immunosuppression. This review discusses roles of TGF-β and TGF-β-related proteins, and underlying molecular mechanisms, in epithelial plasticity in development and wound healing, fibrosis, and cancer.
Collapse
|
19
|
Font-Noguera M, Montemurro M, Benassayag C, Monier B, Suzanne M. Getting started for migration: A focus on EMT cellular dynamics and mechanics in developmental models. Cells Dev 2021; 168:203717. [PMID: 34245942 DOI: 10.1016/j.cdev.2021.203717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022]
Abstract
The conversion of epithelial cells into mesenchymal ones, through a process known as epithelial-mesenchymal transition (or EMT) is a reversible process involved in critical steps of animal development as early as gastrulation and throughout organogenesis. In pathological conditions such as aggressive cancers, EMT is often associated with increased drug resistance, motility and invasiveness. The characterisation of the upstream signals and main decision takers, such as the EMT-transcription factors, has led to the identification of a core molecular machinery controlling the specification towards EMT. However, the cellular execution steps of this fundamental shift are poorly described, especially in cancerous cells. Here we review our current knowledge regarding the stepwise nature of EMT in model organisms as diverse as sea urchin, Drosophila, zebrafish, mouse or chicken. We focus on the cellular dynamics and mechanics of the transitional stages by which epithelial cells progressively become mesenchymal and leave the epithelium. We gather the currently available pieces of the puzzle, including the overlooked property of EMT cells to produce mechanical forces along their apico-basal axis before detaching from their neighbours. We discuss the interplay between EMT and the surrounding tissue. Finally, we propose a conceptual framework of EMT cell dynamics from the very first hint of epithelial cell reorganisation to the successful exit from the epithelial sheet.
Collapse
Affiliation(s)
- Meritxell Font-Noguera
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marianne Montemurro
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Corinne Benassayag
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Bruno Monier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France.
| |
Collapse
|
20
|
Biehler C, Rothenberg KE, Jette A, Gaude HM, Fernandez-Gonzalez R, Laprise P. Pak1 and PP2A antagonize aPKC function to support cortical tension induced by the Crumbs-Yurt complex. eLife 2021; 10:67999. [PMID: 34212861 PMCID: PMC8282337 DOI: 10.7554/elife.67999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
The Drosophila polarity protein Crumbs is essential for the establishment and growth of the apical domain in epithelial cells. The protein Yurt limits the ability of Crumbs to promote apical membrane growth, thereby defining proper apical/lateral membrane ratio that is crucial for forming and maintaining complex epithelial structures such as tubes or acini. Here, we show that Yurt also increases Myosin-dependent cortical tension downstream of Crumbs. Yurt overexpression thus induces apical constriction in epithelial cells. The kinase aPKC phosphorylates Yurt, thereby dislodging the latter from the apical domain and releasing apical tension. In contrast, the kinase Pak1 promotes Yurt dephosphorylation through activation of the phosphatase PP2A. The Pak1–PP2A module thus opposes aPKC function and supports Yurt-induced apical constriction. Hence, the complex interplay between Yurt, aPKC, Pak1, and PP2A contributes to the functional plasticity of Crumbs. Overall, our data increase our understanding of how proteins sustaining epithelial cell polarization and Myosin-dependent cell contractility interact with one another to control epithelial tissue architecture.
Collapse
Affiliation(s)
- Cornelia Biehler
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada.,axe oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-UL, Québec, Canada
| | - Katheryn E Rothenberg
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Canada
| | - Alexandra Jette
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada.,axe oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-UL, Québec, Canada
| | - Helori-Mael Gaude
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada.,axe oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-UL, Québec, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Patrick Laprise
- Centre de Recherche sur le Cancer, Université Laval, Québec, Canada.,axe oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec-UL, Québec, Canada
| |
Collapse
|
21
|
Pitsidianaki I, Morgan J, Adams J, Campbell K. Mesenchymal-to-epithelial transitions require tissue-specific interactions with distinct laminins. THE JOURNAL OF CELL BIOLOGY 2021; 220:212200. [PMID: 34047771 PMCID: PMC8167899 DOI: 10.1083/jcb.202010154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023]
Abstract
Mesenchymal-to-epithelial transition (MET) converts cells from migratory mesenchymal to polarized epithelial states. Despite its importance for both normal and pathological processes, very little is known about the regulation of MET in vivo. Here we exploit midgut morphogenesis in Drosophila melanogaster to investigate the mechanisms underlying MET. We show that down-regulation of the EMT transcription factor Serpent is required for MET, but not sufficient, as interactions with the surrounding mesoderm are also essential. We find that midgut MET relies on the secretion of specific laminins via the CopII secretory pathway from both mesoderm and midgut cells. We show that secretion of the laminin trimer containing the Wingblister α-subunit from the mesoderm is an upstream cue for midgut MET, leading to basal polarization of αPS1 integrin in midgut cells. Polarized αPS1 is required for the formation of a monolayered columnar epithelium and for the apical polarization of αPS3, Baz, and E-Cad. Secretion of a distinct LamininA-containing trimer from midgut cells is required to reinforce the localization of αPS1 basally, and αPS3 apically, for robust repolarization. Our data suggest that targeting these MET pathways, in conjunction with therapies preventing EMT, may present a two-pronged strategy toward blocking metastasis in cancer.
Collapse
Affiliation(s)
- Ioanna Pitsidianaki
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Jason Morgan
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Jamie Adams
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Kyra Campbell
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, UK
| |
Collapse
|
22
|
Abstract
AbstractAn important goal in the fight against cancer is to understand how tumors become invasive and metastatic. A crucial early step in metastasis is thought to be the epithelial mesenchymal transition (EMT), the process in which epithelial cells transition into a more migratory and invasive, mesenchymal state. Since the genetic regulatory networks driving EMT in tumors derive from those used in development, analysis of EMTs in genetic model organisms such as the vinegar fly, Drosophila melanogaster, can provide great insight into cancer. In this review I highlight the many ways in which studies in the fly are shedding light on cancer metastasis. The review covers both normal developmental events in which epithelial cells become migratory, as well as induced events, whereby normal epithelial cells become metastatic due to genetic manipulations. The ability to make such precise genetic perturbations in the context of a normal, in vivo environment, complete with a working innate immune system, is making the fly increasingly important in understanding metastasis.
Collapse
Affiliation(s)
- Michael J. Murray
- School of BioSciences, Faculty of Science, University of Melbourne, Victoria 3010, Melbourne, Australia
| |
Collapse
|
23
|
Abstract
Over 50 years after its discovery in early chick embryos, the concept of epithelial-mesenchymal transition (EMT) is now widely applied to morphogenetic studies in both physiological and pathological contexts. Indeed, the EMT field has witnessed exponential growth in recent years, driven primarily by a rapid expansion of cancer-oriented EMT research. This has led to EMT-based therapeutic interventions that bear the prospect of fighting cancer, and has given developmental biologists new impetus to investigate EMT phenomena more closely and to find suitable models to address emerging EMT-related questions. Here, and in the accompanying poster, I provide a brief summary of the current status of EMT research and give an overview of EMT models that have been used in developmental studies. I also highlight dynamic epithelialization and de-epithelialization events that are involved in many developmental processes and that should be considered to provide a broader perspective of EMT. Finally, I put forward a set of criteria to separate morphogenetic phenomena that are EMT-related from those that are not.
Collapse
Affiliation(s)
- Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
24
|
Golenkina S, Manhire-Heath R, Murray MJ. Exploiting Drosophila melanogaster Wing Imaginal Disc Eversion to Screen for New EMT Effectors. Methods Mol Biol 2021; 2179:115-134. [PMID: 32939717 DOI: 10.1007/978-1-0716-0779-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the early stages of Drosophila melanogaster (Drosophila) metamorphosis, a partial epithelial-mesenchymal transition (pEMT) takes place in the peripodial epithelium of wing imaginal discs. Blocking this pEMT results in adults with internalized wings and missing thoracic tissue. Using peripodial GAL4 drivers, GAL80ts temporal control, and UAS RNAi transgenes, one can use these phenotypes to screen for genes involved in the pEMT. Dominant modifier tests can then be employed to identify genetic enhancers and suppressors. To analyze a gene's role in the pEMT, one can then visualize peripodial cells in vivo at the time of eversion within the pupal case using live markers, and by dissecting, fixing, and immunostaining the prepupae. Alternatively, one can analyze the pEMT ex vivo by dissecting out wing discs and culturing them in the presence of ecdysone to induce eversion. This can provide a clearer view of the cellular processes involved and permit drug treatments to be easily applied.
Collapse
Affiliation(s)
- Sofia Golenkina
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Michael J Murray
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
25
|
GATA6 promotes epithelial-mesenchymal transition and metastasis through MUC1/β-catenin pathway in cholangiocarcinoma. Cell Death Dis 2020; 11:860. [PMID: 33060563 PMCID: PMC7567063 DOI: 10.1038/s41419-020-03070-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023]
Abstract
GATA6 acts as an oncogene or tumour suppressor in different cancers. Previously, we found that aberrant expression of GATA6 promoted metastasis in cholangiocarcinoma (CCA). However, the mechanism by which GATA6 promotes metastasis in CCA is unclear. In the present study, we aimed to investigate the role of GATA6 in CCA cell epithelial–mesenchymal transition (EMT). Our results showed that GATA6 expression was positively associated with N-cadherin and vimentin expression but negatively associated with E-cadherin expression in 91 CCA samples. GATA6 promoted EMT and metastasis in CCA cells in vitro and in vivo based on knockdown and overexpression analyses. ChIP-sequencing data revealed that MUC1 is a novel downstream target of GATA6. GATA6 upregulated MUC1 expression through binding to both the 1584 and 1456 GATA-motifs in the promoter region and enhancing its transcription by luciferase reporter assays and point-mutant assays. MUC1 expression was positively associated with N-cadherin and vimentin expression but negatively associated with E-cadherin expression in 91 CCA samples. In addition, MUC1 promoted EMT in CCA cells based on knockdown and overexpression analyses. Moreover, MUC1 knockdown significantly abrogated the GATA6-induced EMT in CCA cells, indicating that MUC1 promoted EMT through upregulating MUC1 in CCA cells. β-Catenin is a putative transcriptional coactivator that regulates EMT in cancers. Our data showed that MUC1 expression was positively associated with nuclear β-catenin expression in 91 CCA samples. MUC1 upregulated nuclear β-catenin expression in CCA cells. Moreover, MUC1 bound to β-catenin in CCA cells based on protein immunoprecipitation analyses. MUC1 knockdown significantly decreased the binding of MUC1 to β-catenin, and thereby decreased nuclear β-catenin protein levels in CCA cells, indicating that MUC1 bound to β-catenin and increased its nuclear expression in CCA cells. Together, our results show that GATA6 promotes EMT through MUC1/β-catenin pathway in CCA, indicating potential implications for anti-metastatic therapy.
Collapse
|
26
|
Lin B, Luo J, Lehmann R. Collectively stabilizing and orienting posterior migratory forces disperses cell clusters in vivo. Nat Commun 2020; 11:4477. [PMID: 32901019 PMCID: PMC7479147 DOI: 10.1038/s41467-020-18185-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Individual cells detach from cohesive ensembles during development and can inappropriately separate in disease. Although much is known about how cells separate from epithelia, it remains unclear how cells disperse from clusters lacking apical-basal polarity, a hallmark of advanced epithelial cancers. Here, using live imaging of the developmental migration program of Drosophila primordial germ cells (PGCs), we show that cluster dispersal is accomplished by stabilizing and orienting migratory forces. PGCs utilize a G protein coupled receptor (GPCR), Tre1, to guide front-back migratory polarity radially from the cluster toward the endoderm. Posteriorly positioned myosin-dependent contractile forces pull on cell-cell contacts until cells release. Tre1 mutant cells migrate randomly with transient enrichment of the force machinery but fail to separate, indicating a temporal contractile force threshold for detachment. E-cadherin is retained on the cell surface during cell separation and augmenting cell-cell adhesion does not impede detachment. Notably, coordinated migration improves cluster dispersal efficiency by stabilizing cell-cell interfaces and facilitating symmetric pulling. We demonstrate that guidance of inherent migratory forces is sufficient to disperse cell clusters under physiological settings and present a paradigm for how such events could occur across development and disease.
Collapse
Affiliation(s)
- B Lin
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| | - J Luo
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - R Lehmann
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
27
|
Plygawko AT, Kan S, Campbell K. Epithelial-mesenchymal plasticity: emerging parallels between tissue morphogenesis and cancer metastasis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200087. [PMID: 32829692 PMCID: PMC7482222 DOI: 10.1098/rstb.2020.0087] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Many cells possess epithelial–mesenchymal plasticity (EMP), which allows them to shift reversibly between adherent, static and more detached, migratory states. These changes in cell behaviour are driven by the programmes of epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET), both of which play vital roles during normal development and tissue homeostasis. However, the aberrant activation of these processes can also drive distinct stages of cancer progression, including tumour invasiveness, cell dissemination and metastatic colonization and outgrowth. This review examines emerging common themes underlying EMP during tissue morphogenesis and malignant progression, such as the context dependence of EMT transcription factors, a central role for partial EMTs and the nonlinear relationship between EMT and MET. This article is part of a discussion meeting issue ‘Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Andrew T Plygawko
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Shohei Kan
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Kyra Campbell
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
28
|
Abstract
With rapidly advancing microscopy techniques for live cell imaging, we are now able to image groups of migrating cells in many different in vivo contexts. However, as the resulting data sets become larger and more complex, following the behavior of these cells and extracting accurate quantitative data become increasingly challenging. Here we present a protocol for carrying out accurate automated tracking of cells moving over time in 3D, implemented as custom-built macro scripts for ImageJ. As opposed to many generic tracking workflows, the workflow we propose here accounts for the overall movement of the embryo, allows the selection of subgroups of cells, and includes a step for the complete assisted review of all 3D tracks. Furthermore, it is easy to add new custom track measurement to the code provided. Together, these present a reliable method for the precise tracking of cells, from which distinct subsets of cells can be selected from within a population.
Collapse
Affiliation(s)
- Sébastien Tosi
- Advanced Digital Microscopy Core Facility (ADMCF), Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Kyra Campbell
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, UK
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Wei W, Pan S, Ma Y, Xiao Y, Yang Y, He S, Bravo A, Soberón M, Liu K. GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103306. [PMID: 31843687 DOI: 10.1016/j.ibmb.2019.103306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The insecticidal Cry toxins produced by Bacillus thuringiensis (Bt) are powerful tools for insect control. Cry toxin receptors such as cadherin (CAD), ABCC2 transporter and alkaline phosphatase (ALP), located on insect midgut cells, are needed for Cry toxicity. Although insect cell lines are useful experimental models for elucidating toxin action mechanism, most of them show low expression of Cry-receptors genes. The GATA transcription factor family plays important roles in regulating development and differentiation of intestine stem cells. Here, we investigated whether GATAs transcription factors are involved in the expression of Cry1Ac-receptors genes, using multiple insect cell lines. Four GATA genes were identified in the transcriptome of the midgut tissue from the lepidopteran larvae Helicoverpa armigera. These HaGATA genes were transiently expressed in three lepidopteran cell lines, Spodoptera frugiperda Sf9, H. armigera QB-Ha-E5 and Trichoplusia ni Hi5. Analysis of transcription activity using transcriptional gene-fusions showed that only H. armigera GATAe (HaGATAe) significantly increased the transcription of CAD, ABCC2 and ALP receptors genes in all insect cell lines. Key DNA regions for HaGATAe regulation were identified in the promoter sequence of these Cry-receptors genes by using promoter deletion mapping. The transient expression of HaGATAe in these cell lines, conferred sensitivity to Cry1Ac toxin, although in Hi5 cells the susceptibility to Cry1Ac was lower than in other two cell lines. High sensitivity to Cry1Ac correlated with simultaneous transcription of ABCC2 and CAD genes in Sf9 and QB-Ha-E5 cells. Our results reveal that HaGATAe enhances transcription of several lepidopteran Cry1Ac receptor genes in cultured insect cells.
Collapse
Affiliation(s)
- Wei Wei
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Shuang Pan
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Yuemin Ma
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Sijia He
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, Mexico.
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China.
| |
Collapse
|
30
|
Tsunedomi R, Yoshimura K, Suzuki N, Hazama S, Nagano H. Clinical implications of cancer stem cells in digestive cancers: acquisition of stemness and prognostic impact. Surg Today 2020; 50:1560-1577. [PMID: 32025858 DOI: 10.1007/s00595-020-01968-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Digestive system cancers are the most frequent cancers worldwide and often associated with poor prognosis because of their invasive and metastatic characteristics. Recent studies have found that the plasticity of cancer cells can impart cancer stem-like properties via the epithelial-mesenchymal transition (EMT). Cancer stem-like properties such as tumor initiation are integral to the formation of metastasis, which is the main cause of poor prognosis. Numerous markers of cancer stem cells (CSCs) have been identified in many types of cancer. Therefore, CSCs, via their stem cell-like functions, may play an important role in prognosis after surgery. While several reports have described prognostic analysis using CSC markers, few reviews have summarized CSCs and their association with prognosis. Herein, we review the prognostic potential of eight CSC markers, CD133, CD44, CD90, ALDH1A1, EPCAM, SOX2, SOX9, and LGR5, in digestive cancers including those of the pancreas, colon, liver, gastric, and esophagus.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Kiyoshi Yoshimura
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Faculty of Medicine, Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
31
|
Andrikou C, Passamaneck YJ, Lowe CJ, Martindale MQ, Hejnol A. Molecular patterning during the development of Phoronopsis harmeri reveals similarities to rhynchonelliform brachiopods. EvoDevo 2019; 10:33. [PMID: 31867094 PMCID: PMC6907167 DOI: 10.1186/s13227-019-0146-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/22/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Phoronids, rhynchonelliform and linguliform brachiopods show striking similarities in their embryonic fate maps, in particular in their axis specification and regionalization. However, although brachiopod development has been studied in detail and demonstrated embryonic patterning as a causal factor of the gastrulation mode (protostomy vs deuterostomy), molecular descriptions are still missing in phoronids. To understand whether phoronids display underlying embryonic molecular mechanisms similar to those of brachiopods, here we report the expression patterns of anterior (otx, gsc, six3/6, nk2.1), posterior (cdx, bra) and endomesodermal (foxA, gata4/5/6, twist) markers during the development of the protostomic phoronid Phoronopsis harmeri. RESULTS The transcription factors foxA, gata4/5/6 and cdx show conserved expression in patterning the development and regionalization of the phoronid embryonic gut, with foxA expressed in the presumptive foregut, gata4/5/6 demarcating the midgut and cdx confined to the hindgut. Furthermore, six3/6, usually a well-conserved anterior marker, shows a remarkably dynamic expression, demarcating not only the apical organ and the oral ectoderm, but also clusters of cells of the developing midgut and the anterior mesoderm, similar to what has been reported for brachiopods, bryozoans and some deuterostome Bilateria. Surprisingly, brachyury, a transcription factor often associated with gastrulation movements and mouth and hindgut development, seems not to be involved with these patterning events in phoronids. CONCLUSIONS Our description and comparison of gene expression patterns with other studied Bilateria reveals that the timing of axis determination and cell fate distribution of the phoronid shows highest similarity to that of rhynchonelliform brachiopods, which is likely related to their shared protostomic mode of development. Despite these similarities, the phoronid Ph. harmeri also shows particularities in its development, which hint to divergences in the arrangement of gene regulatory networks responsible for germ layer formation and axis specification.
Collapse
Affiliation(s)
- Carmen Andrikou
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Yale J. Passamaneck
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd, St. Augustine, FL, 32080 USA
| | - Chris J. Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview Blvd., Pacific Grove, CA 93950 USA
| | - Mark Q. Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd, St. Augustine, FL, 32080 USA
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| |
Collapse
|
32
|
Serpent/dGATAb regulates Laminin B1 and Laminin B2 expression during Drosophila embryogenesis. Sci Rep 2019; 9:15910. [PMID: 31685844 PMCID: PMC6828711 DOI: 10.1038/s41598-019-52210-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulation of Laminin expression during embryogenesis is a key step required for proper ECM assembly. We show, that in Drosophila the Laminin B1 and Laminin B2 genes share expression patterns in mesodermal cells as well as in endodermal and ectodermal gut primordia, yolk and amnioserosa. In the absence of the GATA transcription factor Serpent, the spatial extend of Laminin reporter gene expression was strongly limited, indicating that Laminin expression in many tissues depends on Serpent activity. We demonstrate a direct binding of Serpent to the intronic enhancers of Laminin B1 and Laminin B2. In addition, ectopically expressed Serpent activated enhancer elements of Laminin B1 and Laminin B2. Our results reveal Serpent as an important regulator of Laminin expression across tissues.
Collapse
|
33
|
Nowotschin S, Hadjantonakis AK, Campbell K. The endoderm: a divergent cell lineage with many commonalities. Development 2019; 146:146/11/dev150920. [PMID: 31160415 PMCID: PMC6589075 DOI: 10.1242/dev.150920] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endoderm is a progenitor tissue that, in humans, gives rise to the majority of internal organs. Over the past few decades, genetic studies have identified many of the upstream signals specifying endoderm identity in different model systems, revealing them to be divergent from invertebrates to vertebrates. However, more recent studies of the cell behaviours driving endodermal morphogenesis have revealed a surprising number of shared features, including cells undergoing epithelial-to-mesenchymal transitions (EMTs), collective cell migration, and mesenchymal-to-epithelial transitions (METs). In this Review, we highlight how cross-organismal studies of endoderm morphogenesis provide a useful perspective that can move our understanding of this fascinating tissue forward.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyra Campbell
- Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK .,Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
34
|
Yuan S, Norgard RJ, Stanger BZ. Cellular Plasticity in Cancer. Cancer Discov 2019; 9:837-851. [PMID: 30992279 DOI: 10.1158/2159-8290.cd-19-0015] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
During cancer progression, tumor cells undergo molecular and phenotypic changes collectively referred to as cellular plasticity. Such changes result from microenvironmental cues, stochastic genetic and epigenetic alterations, and/or treatment-imposed selective pressures, thereby contributing to tumor heterogeneity and therapy resistance. Epithelial-mesenchymal plasticity is the best-known case of tumor cell plasticity, but recent work has uncovered other examples, often with functional consequences. In this review, we explore the nature and role(s) of these diverse cellular plasticity programs in premalignant progression, tumor evolution, and adaptation to therapy and consider ways in which targeting plasticity could lead to novel anticancer treatments. SIGNIFICANCE: Changes in cell identity, or cellular plasticity, are common at different stages of tumor progression, and it has become clear that cellular plasticity can be a potent mediator of tumor progression and chemoresistance. Understanding the mechanisms underlying the various forms of cell plasticity may deliver new strategies for targeting the most lethal aspects of cancer: metastasis and resistance to therapy.
Collapse
Affiliation(s)
- Salina Yuan
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert J Norgard
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Abstract
Multicellular animals face the principle challenge to deal with two distinct compartments: the internal organismal compartment and the external environment. This challenge is met by the differentiation of cell sheets into epithelia, which provide a dynamic barrier in tissues, organs, and organisms. Cell polarity is key to all functions of epithelia, and compromising polarity causes many severe diseases. Within the past 20 years, research on Drosophila melanogaster discovered a conserved molecular machinery that controls epithelial polarity. Recent findings suggest that the textbook Drosophila-based paradigm of the control of epithelial polarity may not be as universal as previously assumed.
Collapse
Affiliation(s)
- H-Arno J. Müller
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
36
|
Role of tumor-derived exosomes in cancer metastasis. Biochim Biophys Acta Rev Cancer 2018; 1871:12-19. [PMID: 30419312 DOI: 10.1016/j.bbcan.2018.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
Abstract
The highlights of cancer research include the discovery of exosomes, which are small (30-100 nm) sized vesicular nanoparticles released virtually by all cells. Tumor-derived exosomes (TDEs) are notoriously known for orchestrating the invasion-metastasis cascade via systemic pathways that we have previously proposed (1), resulting in a paradigm shift of our understanding about the pathobiology of metastases. In principle, exosomes serve as transport medium for proteins, mRNAs and miRNAs to transmit targeted cues from the primary cell to distant sites via horizontal transfer or cell-receptor interaction. In this chapter, we seek to explore in-depth the mechanisms engendering TDE in the metastatic cascade, along with experimental models to augment our understanding. The aforementioned has also paved way for parallel advancements in the therapeutic armamentarium, as evident from pronounced efforts to exploit the metastatic process for therapeutic targeting. In this light, we aim to examine potential anti-metastatic therapeutic opportunities derived from exosomal research. Lastly, exosomes may play a crucial role in the contemporary era of "liquid biopsies", given the array of molecular information with diagnostic and predictive indications. We thus intend to end this chapter off by exploring future applications of exosomes that could illuminate shortcomings and propel advancements in biomarker research.
Collapse
|
37
|
Zhou Y, Chang H, Yang B. GATA4 is upregulated in nasopharyngeal cancer and facilitates epithelial-mesenchymal transition and metastasis through regulation of SLUG. Exp Ther Med 2018; 16:5318-5326. [PMID: 30542490 DOI: 10.3892/etm.2018.6826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
GATA4, a member of the GATA family, serves a key function in several types of cancer, including hepatoblastoma, gastric cancer and breast cancer. However, the function of GATA4 in nasopharyngeal cancer (NPC) is largely unknown. The present study revealed that GATA4 was upregulated in NPC tissue samples and the NPC cell line, 5-8F. Furthermore, the expression of GATA4 was associated with tumor size, metastasis and poor prognosis. Transwell invasion and wound healing analyses demonstrated that GATA4 promoted cell invasion and migration, respectively. Western blotting and reverse transcription-quantitative polymerase chain reaction revealed that GATA4 overexpression decreased the expression of epithelial markers and increased the expression of mesenchymal markers. By contrast, GATA4 inhibition increased the expression of epithelial markers and decreased the mesenchymal markers. Additionally, chromatin immunoprecipitation and dual-luciferase reporter assays revealed that GATA4 promoted epithelial-mesenchymal transition through transcriptionally activating SLUG. Cell counting kit-8 and colony formation assays were performed to analyze the effect of GATA4 on cell proliferation. The results indicated that GATA4 facilitated cell proliferation in NPC. In conclusion, GATA4 acts as an oncogene and serves crucial roles in NPC and GATA4 may find a potential application as therapeutic option in NPC.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Huiyu Chang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Beibei Yang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
38
|
Chen J, Sayadian AC, Lowe N, Lovegrove HE, St Johnston D. An alternative mode of epithelial polarity in the Drosophila midgut. PLoS Biol 2018; 16:e3000041. [PMID: 30339698 PMCID: PMC6209374 DOI: 10.1371/journal.pbio.3000041] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/31/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022] Open
Abstract
Apical-basal polarity is essential for the formation and function of epithelial tissues, whereas loss of polarity is a hallmark of tumours. Studies in Drosophila have identified conserved polarity factors that define the apical (Crumbs, Stardust, Par-6, atypical protein kinase C [aPKC]), junctional (Bazooka [Baz]/Par-3), and basolateral (Scribbled [Scrib], Discs large [Dlg], Lethal [2] giant larvae [Lgl]) domains of epithelial cells. Because these conserved factors mark equivalent domains in diverse types of vertebrate and invertebrate epithelia, it is generally assumed that this system underlies polarity in all epithelia. Here, we show that this is not the case, as none of these canonical factors are required for the polarisation of the endodermal epithelium of the Drosophila adult midgut. Furthermore, like vertebrate epithelia but not other Drosophila epithelia, the midgut epithelium forms occluding junctions above adherens junctions (AJs) and requires the integrin adhesion complex for polarity. Thus, Drosophila contains two types of epithelia that polarise by fundamentally different mechanisms. This diversity of epithelial types may reflect their different developmental origins, junctional arrangement, or whether they polarise in an apical-basal direction or vice versa. Since knock-outs of canonical polarity factors in vertebrates often have little or no effect on epithelial polarity and the Drosophila midgut shares several common features with vertebrate epithelia, this diversity of polarity mechanisms is likely to be conserved in other animals.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Aram-Christopher Sayadian
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nick Lowe
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Holly E. Lovegrove
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Soini T, Eloranta K, Pihlajoki M, Kyrönlahti A, Akinrinade O, Andersson N, Lohi J, Pakarinen MP, Wilson DB, Heikinheimo M. Transcription factor GATA4 associates with mesenchymal-like gene expression in human hepatoblastoma cells. Tumour Biol 2018; 40:1010428318785498. [PMID: 30074440 DOI: 10.1177/1010428318785498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
GATA4, a transcription factor crucial for early liver development, has been implicated in the pathophysiology of hepatoblastoma, an embryonal tumor of childhood. However, the molecular and phenotypic consequences of GATA4 expression in hepatoblastoma are not fully understood. We surveyed GATA4 expression in 24 hepatoblastomas using RNA in situ hybridization and immunohistochemistry. RNA interference was used to inhibit GATA4 in human HUH6 hepatoblastoma cells, and changes in cell migration were measured with wound healing and transwell assays. RNA microarray hybridization was performed on control and GATA4 knockdown HUH6 cells, and differentially expressed genes were validated by quantitative polymerase chain reaction or immunostaining. Plasmid transfection was used to overexpress GATA4 in primary human hepatocytes and ensuring changes in gene expression were measured by quantitative polymerase chain reaction. We found that GATA4 expression was high in most hepatoblastomas but weak or negligible in normal hepatocytes. GATA4 gene silencing impaired HUH6 cell migration. We identified 106 differentially expressed genes (72 downregulated, 34 upregulated) in knockdown versus control HUH6 cells. GATA4 silencing altered the expression of genes associated with cytoskeleton organization, cell-to-cell adhesion, and extracellular matrix dynamics (e.g. ADD3, AHNAK, DOCK8, RHOU, MSF, IGFBP1, COL4A2). These changes in gene expression reflected a more epithelial (less malignant) phenotype. Consistent with this notion, there was reduced F-actin stress fiber formation in knockdown HUH6 cells. Forced expression of GATA4 in primary human hepatocytes triggered opposite changes in the expression of genes identified by GATA4 silencing in HUH6 cells. In conclusion, GATA4 is highly expressed in most hepatoblastomas and correlates with a mesenchymal, migratory phenotype of hepatoblastoma cells.
Collapse
Affiliation(s)
- Tea Soini
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katja Eloranta
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjut Pihlajoki
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Antti Kyrönlahti
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Oyediran Akinrinade
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Noora Andersson
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- 3 Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko P Pakarinen
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 4 Unit of Pediatric Surgery and Pediatric Liver and Gut Research Group, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David B Wilson
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- 5 Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Markku Heikinheimo
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
40
|
Campbell K. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Curr Opin Cell Biol 2018; 55:30-35. [PMID: 30006053 PMCID: PMC6284102 DOI: 10.1016/j.ceb.2018.06.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) plays crucial roles during development, and inappropriate activation of EMTs are associated with tumor progression and promoting metastasis. In recent years, increasing studies have identified developmental contexts where cells undergo an EMT and transition to a partial-state, downregulating just a subset of epithelial characteristics and increasing only some mesenchymal traits, such as invasive motility. In parallel, recent studies have shown that EMTs are rarely fully activated in tumor cells, generating a diverse array of transition states. As our appreciation of the full spectrum of intermediate phenotypes and the huge diversity in underlying mechanisms grows, cross-disciplinary collaborations investigating developmental-EMTs and cancer-EMTs will be fundamental in order to achieve a full mechanistic understanding of this complex cell process.
Collapse
Affiliation(s)
- Kyra Campbell
- Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK; Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, UK.
| |
Collapse
|
41
|
Abstract
The Drosophila GATA factor gene serpent (srp) is required for the early differentiation of the anterior and posterior midgut primordia. In particular, srp is sufficient and necessary for the primordial gut cells to undertake an epithelial-to-mesenchimal transition (EMT). Two other GATA factor genes, dGATAe and grain (grn), are also specifically expressed in the midgut. On the one hand, dGATAe expression is activated by srp. Embryos homozygous for a deficiency uncovering dGATAe were shown to lack the expression of some differentiated midgut genes. Moreover, ectopic expression of dGATAe was sufficient to drive the expression of some of these differentiation marker genes, thus establishing the role of dGATAe in the regulation of their expression. However, due to the gross abnormalities associated with this deficiency, it was not possible to assess whether, similarly to srp, dGATAe might play a role in setting the midgut morphology. To further investigate this role we decided to generate a dGATAe mutant. On the other hand, grn is expressed in the midgut primordia around stage 11 and remains expressed until the end of embryogenesis. Yet, no midgut function has been described for grn. First, here we report that, as for dGATAe, midgut grn expression is dependent on srp; conversely, dGATAe and grn expression are independent of each other. Our results also indicate that, unlike srp, dGATAe and grn are not responsible for setting the general embryonic midgut morphology. We also show that the analysed midgut genes whose expression is lacking in embryos homozygous for a deficiency uncovering dGATAe are indeed dGATAe-dependent genes. Conversely, we do not find any midgut gene to be grn-dependent, with the exception of midgut repression of the proventriculus iroquois (iro) gene. In conclusion, our results clarify the expression patterns and function of the GATA factor genes expressed in the embryonic midgut.
Collapse
Affiliation(s)
- Beatriz Hernández de Madrid
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- * E-mail: (BH); (JC)
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- * E-mail: (BH); (JC)
| |
Collapse
|
42
|
Bozzi F, Brich S, Dagrada GP, Negri T, Conca E, Cortelazzi B, Belfiore A, Perrone F, Gualeni AV, Gloghini A, Cabras A, Brenca M, Maestro R, Zaffaroni N, Casali P, Bertulli R, Deraco M, Pilotti S. Epithelioid peritoneal mesothelioma: a hybrid phenotype within a mesenchymal-epithelial/epithelial-mesenchymal transition framework. Oncotarget 2018; 7:75503-75517. [PMID: 27705913 PMCID: PMC5342756 DOI: 10.18632/oncotarget.12262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to reconsider the biological characteristics of epithelioid malignant peritoneal mesothelioma (E-MpM) in the light of new concepts about epithelial mesenchymal transition and mesenchymal epithelial reverse transition (EMT/MErT) and the role of epigenetic reprogramming in this context. To this end we profiled surgical specimens and derived cells cultures by a number of complementary approaches i.e. immunohistochemistry, immunofluorescence, in situ hybridization, biochemistry, pluripotent stem cell arrays, treatments with cytokines, growth factors and specific inhibitors.The analyses of the surgical specimens showed that i) EZH2 is expressed throughout the spectrum of MpM, ii) that E-MpM (including the high-grade undifferentiated form) are characterised by c-MYC and miRNA 17-5p expression, and iii) that progression to sarcomatoid MpM is dictated by EMT regulators. They also showed that E-MpM expressed c-MET and are enriched in E- and P-cadherins- and VEGFR2-expressing CSCs, thus strongly supporting a role for MErT reprogramming in endowing E-MpM tumour cells with stemness and plasticity, and hence with a drug resistant phenotype. The cell culture-based experiments confirmed the stemness traits and plasticity of E-MpM, and support the view that EZH2 is a druggable target in this tumor.
Collapse
Affiliation(s)
- Fabio Bozzi
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Brich
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,MOSE-DEA University of Trieste, Trieste, Italy
| | - Gian Paolo Dagrada
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tiziana Negri
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Conca
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Cortelazzi
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonino Belfiore
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Perrone
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ambra Vittoria Gualeni
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonello Cabras
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Brenca
- Experimental Oncology 1, Centro di Riferimento Oncologico, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Roberta Maestro
- Experimental Oncology 1, Centro di Riferimento Oncologico, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Casali
- Adult Mesenchymal Tumor Medical Oncology Unit, Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rossella Bertulli
- Adult Mesenchymal Tumor Medical Oncology Unit, Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marcello Deraco
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Pilotti
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
43
|
Wang F, Bie L. Application of GATA-3 gene marker in the detection of hematologic disorders in children. Exp Ther Med 2018; 15:1879-1885. [PMID: 29434778 PMCID: PMC5776561 DOI: 10.3892/etm.2017.5614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/16/2017] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to investigate the use of GATA-3 markers in the detection of hematologic disorders in children. In total, 35 pediatric patients diagnosed with blood disease and treated in Henan Red Cross Blood Center from January 2014 to June 2015 were selected for the observation group. Another 32 healthy children were selected for the control group. The differences in the GATA-3 mRNA expression levels between the control and observation groups were detected via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The differences in the GATA-3 protein expression levels were detected via enzyme-linked immunosorbent assay (ELISA) and western blot analysis. Compared with those in the healthy children, the mRNA expression levels of GATA-3 in patients with hematologic malignancies, acute lymphoblastic leukemia, myeloproliferative disorder, acute non-lymphocytic leukemia or thrombocytopenic purpura were significantly higher, and there were statistically significant differences between the groups (P<0.05). The results of ELISA showed that the GATA-3 protein expression levels in patients with hematologic malignancies (241.3±42.6 µg/l), acute lymphoblastic leukemia (196.3±21.6 µg/l), myeloproliferative disorder (284.2±45.1 µg/l), acute non-lymphocytic leukemia (269.3±31.4 µg/l) or thrombocytopenic purpura (272.1±39.1 µg/l) were significantly higher than those in healthy subjects (69.3±15.2 µg/l). The results of western blot analysis were consistent with those of ELISA. Based on our results, the expression levels of GATA-3 in healthy children and pediatric patients with blood diseases exhibit significant differences, and can be used as important markers for the clinical diagnosis of blood diseases in children.
Collapse
Affiliation(s)
- Fenghua Wang
- Institute of Physical Education, Xinjiang Normal University, Urumqi, Xinjiang 830054, P.R. China
| | - Lili Bie
- Department of Blood Component Preparation, Henan Red Cross Blood Center, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
44
|
Campbell K, Lebreton G, Franch-Marro X, Casanova J. Differential roles of the Drosophila EMT-inducing transcription factors Snail and Serpent in driving primary tumour growth. PLoS Genet 2018; 14:e1007167. [PMID: 29420531 PMCID: PMC5821384 DOI: 10.1371/journal.pgen.1007167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/21/2018] [Accepted: 12/25/2017] [Indexed: 02/06/2023] Open
Abstract
Several transcription factors have been identified that activate an epithelial-to-mesenchymal transition (EMT), which endows cells with the capacity to break through basement membranes and migrate away from their site of origin. A key program in development, in recent years it has been shown to be a crucial driver of tumour invasion and metastasis. However, several of these EMT-inducing transcription factors are often expressed long before the initiation of the invasion-metastasis cascade as well as in non-invasive tumours. Increasing evidence suggests that they may promote primary tumour growth, but their precise role in this process remains to be elucidated. To investigate this issue we have focused our studies on two Drosophila transcription factors, the classic EMT inducer Snail and the Drosophila orthologue of hGATAs4/6, Serpent, which drives an alternative mechanism of EMT; both Snail and GATA are specifically expressed in a number of human cancers, particularly at the invasive front and in metastasis. Thus, we recreated conditions of Snail and of Serpent high expression in the fly imaginal wing disc and analysed their effect. While either Snail or Serpent induced a profound loss of epithelial polarity and tissue organisation, Serpent but not Snail also induced an increase in the size of wing discs. Furthermore, the Serpent-induced tumour-like tissues were able to grow extensively when transplanted into the abdomen of adult hosts. We found the differences between Snail and Serpent to correlate with the genetic program they elicit; while activation of either results in an increase in the expression of Yorki target genes, Serpent additionally activates the Ras signalling pathway. These results provide insight into how transcription factors that induce EMT can also promote primary tumour growth, and how in some cases such as GATA factors a ‘multi hit’ effect may be achieved through the aberrant activation of just a single gene. Many cancer cells acquire abnormal motility behaviour leading to metastasis, the main cause of cancer related deaths. In many cancers, transcription factors capable of inducing motile migratory cell behaviours, so-called EMT transcription factors, are found highly expressed. However, the expression of these genes is not restricted to metastatic invasive cancers; they are often found in benign tumours, or in tumours long before they show any sign of metastasis. This observation motivated us to ask if they may play a role in driving primary tumour growth. Our results show that the Drosophila EMT-inducers Snail and Serpent are both capable of driving overproliferation. However, Snail overproliferation is accompanied by a decrease in cell size as well as cell death, and consequently the tissue does not increase in size. Serpent also drives cell proliferation but this occurs together with an increase in cell size, but not cell death, thus having a profound effect on the overall size of the tissue. We show that both Snail and Serpent trigger activation of the Yorki pathway and in addition Serpent, but not Snail, also triggers activation of the Ras pathway. These results provide insight into how activation of some EMT-inducing genes can also promote primary tumour growth.
Collapse
Affiliation(s)
- Kyra Campbell
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- * E-mail: (KC); (JC)
| | - Gaëlle Lebreton
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Functional Genomics and Evolution, Department Passeig Marítim de la Barceloneta, Barcelona, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- * E-mail: (KC); (JC)
| |
Collapse
|
45
|
Wei S, Zhong L, Wang X, Zhang W. Low expression of GATA3 promotes cell proliferation and metastasis in gastric cancer. Cancer Manag Res 2017; 9:769-780. [PMID: 29263701 PMCID: PMC5724715 DOI: 10.2147/cmar.s147973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
GATA3, a member of the GATA zinc finger transcription factor family, has been widely investigated for its role in cancer. Although a recent report has found that GATA3 is downregulated in gastric cancer (GC), the detailed mechanism of GATA3 in GC is still unknown. Here, we investigated whether GATA3 was downregulated in GC patients’ tissue samples and cell lines using quantitative real time polymerase chain reaction and Western blotting. In addition, we conducted several functional experiments to investigate the effect of GATA3 in GC, including cell proliferation, metastasis and epithelial–mesenchymal transition (EMT). The results showed that GATA3 was downregulated in GC tissue samples and cells. Moreover, the expression of GATA3 was associated with tumor size, stage and metastasis. Restoration of GATA3 levels suppressed GC cell proliferation, migration and invasion. Furthermore, chromatin immunoprecipitation and luciferase reporter assay also revealed that GATA3 transcriptionally regulated ZEB1, thereby suppressing EMT. All these findings suggest that GATA3 serves as an oncogene in GC development.
Collapse
Affiliation(s)
- Shuangqin Wei
- Department of Gastroenterology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital
| | - Liang Zhong
- Department of Gastroenterology, Huashan Hospital, Fudan University
| | - Xiaoping Wang
- Department of Gastroenterology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital
| | - Wenju Zhang
- School of Life Science, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
46
|
Perez-Mockus G, Schweisguth F. Cell Polarity and Notch Signaling: Linked by the E3 Ubiquitin Ligase Neuralized? Bioessays 2017; 39. [DOI: 10.1002/bies.201700128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/17/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Gantas Perez-Mockus
- Institut Pasteur,; Dept of Developmental and Stem Cell Biology; F-75015 Paris France
- CNRS; UMR3738; F-75015 Paris France
- Univ. Pierre et Marie Curie; Cellule Pasteur UPMC; rue du Dr Roux 75015 Paris France
| | - Francois Schweisguth
- Institut Pasteur,; Dept of Developmental and Stem Cell Biology; F-75015 Paris France
- CNRS; UMR3738; F-75015 Paris France
| |
Collapse
|
47
|
Martinelli P, Carrillo-de Santa Pau E, Cox T, Sainz B, Dusetti N, Greenhalf W, Rinaldi L, Costello E, Ghaneh P, Malats N, Büchler M, Pajic M, Biankin AV, Iovanna J, Neoptolemos J, Real FX. GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut 2017; 66:1665-1676. [PMID: 27325420 PMCID: PMC5070637 DOI: 10.1136/gutjnl-2015-311256] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The role of GATA factors in cancer has gained increasing attention recently, but the function of GATA6 in pancreatic ductal adenocarcinoma (PDAC) is controversial. GATA6 is amplified in a subset of tumours and was proposed to be oncogenic, but high GATA6 levels are found in well-differentiated tumours and are associated with better patient outcome. By contrast, a tumour-suppressive function of GATA6 was demonstrated using genetic mouse models. We aimed at clarifying GATA6 function in PDAC. DESIGN We combined GATA6 silencing and overexpression in PDAC cell lines with GATA6 ChIP-Seq and RNA-Seq data, in order to understand the mechanism of GATA6 functions. We then confirmed some of our observations in primary patient samples, some of which were included in the ESPAC-3 randomised clinical trial for adjuvant therapy. RESULTS GATA6 inhibits the epithelial-mesenchymal transition (EMT) in vitro and cell dissemination in vivo. GATA6 has a unique proepithelial and antimesenchymal function, and its transcriptional regulation is direct and implies, indirectly, the regulation of other transcription factors involved in EMT. GATA6 is lost in tumours, in association with altered differentiation and the acquisition of a basal-like molecular phenotype, consistent with an epithelial-to-epithelial (ET2) transition. Patients with basal-like GATA6low tumours have a shorter survival and have a distinctly poor response to adjuvant 5-fluorouracil (5-FU)/leucovorin. However, modulation of GATA6 expression in cultured cells does not directly regulate response to 5-FU. CONCLUSIONS We provide mechanistic insight into GATA6 tumour-suppressive function, its role as a regulator of canonical epithelial differentiation, and propose that loss of GATA6 expression is both prognostic and predictive of response to adjuvant therapy.
Collapse
Affiliation(s)
- Paola Martinelli
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain
- Cancer Progression and Metastasis Group, Institute for Cancer Research, Medical University Wien, Vienna, Austria
| | | | - Trevor Cox
- Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK
- NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Bruno Sainz
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - William Greenhalf
- NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Lorenzo Rinaldi
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Eithne Costello
- Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK
| | - Paula Ghaneh
- Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK
- NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain
| | - Markus Büchler
- Department for General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Marina Pajic
- Cancer Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | - Andrew V Biankin
- Cancer Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, Australia
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - John Neoptolemos
- Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK
- NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
48
|
Fan M, Shen J, Liu H, Wen Z, Yang J, Yang P, Liu K, Chang Y, Duan J, Lu K. Downregulation of PRRX1 via the p53-dependent signaling pathway predicts poor prognosis in hepatocellular carcinoma. Oncol Rep 2017; 38:1083-1090. [PMID: 28677793 DOI: 10.3892/or.2017.5785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/01/2017] [Indexed: 11/06/2022] Open
Abstract
Paired-related homeobox 1 (PRRX1) has been identified as a novel molecule associated with induction of epithelial-mesenchymal transition (EMT), acquisition of cancer stem cell like properties and poor prognosis in tumors. However, the function of PRRX1 in hepatocellular carcinoma has not been elucidated. In the present study, we observed that PRRX1 expression levels were downregulated and positively correlated with the downregulated expression of p53 in hepatocellular carcinoma specimens. Decreased expression of PRRX1 and/or p53 by siRNA induced both the migration and the invasion features of HCC cells in vitro. Furthermore, the loss of PRRX1 inhibits hepatocellular carcinoma (HCC) cell apoptosis, an anti-apoptotic expression profile was upregulated accompanied by downregulated expression of p53. HCC patients with low-expression of both PRRX1 and p53 had a significantly shorter overall and disease-free survival. These findings demonstrate that PRRX1 plays an important role in metastasis and apoptosis of HCC cells through the p53-dependent signaling pathway and is expected to become a novel biomarker associated with patient prognosis and survival.
Collapse
Affiliation(s)
- Mingming Fan
- Department of Laparoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Jun Shen
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Hu Liu
- Department of Laparoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Zhijian Wen
- Department of Hepatobiliary Pancreatic Vascular Surgery, No. 174 Hospital of PLA, Xiamen, Fujian, P.R. China
| | - Jue Yang
- Department of Laparoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Pinghua Yang
- Department of Laparoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Kai Liu
- Department of Laparoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Yanxin Chang
- Department of Laparoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Jicheng Duan
- Department of Laparoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Kai Lu
- Department of Laparoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
49
|
Donati G, Rognoni E, Hiratsuka T, Liakath-Ali K, Hoste E, Kar G, Kayikci M, Russell R, Kretzschmar K, Mulder KW, Teichmann SA, Watt FM. Wounding induces dedifferentiation of epidermal Gata6 + cells and acquisition of stem cell properties. Nat Cell Biol 2017; 19:603-613. [PMID: 28504705 DOI: 10.1038/ncb3532] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The epidermis is maintained by multiple stem cell populations whose progeny differentiate along diverse, and spatially distinct, lineages. Here we show that the transcription factor Gata6 controls the identity of the previously uncharacterized sebaceous duct (SD) lineage and identify the Gata6 downstream transcription factor network that specifies a lineage switch between sebocytes and SD cells. During wound healing differentiated Gata6+ cells migrate from the SD into the interfollicular epidermis and dedifferentiate, acquiring the ability to undergo long-term self-renewal and differentiate into a much wider range of epidermal lineages than in undamaged tissue. Our data not only demonstrate that the structural and functional complexity of the junctional zone is regulated by Gata6, but also reveal that dedifferentiation is a previously unrecognized property of post-mitotic, terminally differentiated cells that have lost contact with the basement membrane. This resolves the long-standing debate about the contribution of terminally differentiated cells to epidermal wound repair.
Collapse
Affiliation(s)
- Giacomo Donati
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK.,Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Emanuel Rognoni
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Toru Hiratsuka
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Kifayathullah Liakath-Ali
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Esther Hoste
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,VIB Center for Inflammation Research, Department of Biomedical Molecular Biology (Ghent University), B-9052 Ghent, Belgium
| | - Gozde Kar
- European Bioinformatics Institute and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Melis Kayikci
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Roslin Russell
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK
| | - Kai Kretzschmar
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.,Hubrecht Institute, KNAW and UMC Utrecht, 3584CT Utrecht, The Netherlands
| | - Klaas W Mulder
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK.,Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Radboud University, Nijmegen, The Netherlands
| | - Sarah A Teichmann
- European Bioinformatics Institute and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
50
|
Feitosa NM, Pechmann M, Schwager EE, Tobias-Santos V, McGregor AP, Damen WGM, Nunes da Fonseca R. Molecular control of gut formation in the spider Parasteatoda tepidariorum. Genesis 2017; 55. [PMID: 28432834 DOI: 10.1002/dvg.23033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/23/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
The development of a digestive system is an essential feature of bilaterians. Studies of the molecular control of gut formation in arthropods have been studied in detail in the fruit fly Drosophila melanogaster. However, little is known in other arthropods, especially in noninsect arthropods. To better understand the evolution of arthropod alimentary system, we investigate the molecular control of gut development in the spider Parasteatoda tepidariorum (Pt), the primary chelicerate model species for developmental studies. Orthologs of the ectodermal genes Pt-wingless (Pt-wg) and Pt-hedgehog (Pt-hh), of the endodermal genes, Pt-serpent (Pt-srp) and Pt-hepatocyte-nuclear factor-4 (Pt-hnf4) and of the mesodermal gene Pt-twist (Pt-twi) are expressed in the same germ layers during spider gut development as in D. melanogaster. Thus, our expression data suggest that the downstream molecular components involved in gut development in arthropods are conserved. However, Pt-forkhead (Pt-fkh) expression and function in spiders is considerably different from its D. melanogaster ortholog. Pt-fkh is expressed before gastrulation in a cell population that gives rise to endodermal and mesodermal precursors, suggesting a possible role for this factor in specification of both germ layers. To test this hypothesis, we knocked down Pt-fkh via RNA interference. Pt-fkh RNAi embryos not only fail to develop a proper gut, but also lack the mesodermal Pt-twi expressing cells. Thus, in spiders Pt-fkh specifies endodermal and mesodermal germ layers. We discuss the implications of these findings for the evolution and development of gut formation in Ecdysozoans.
Collapse
Affiliation(s)
- Natália Martins Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil
| | - Matthias Pechmann
- Institute for Developmental Biology, University of Cologne, Cologne, North-Rhine Westphalia, 50674, Germany
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, Massachusetts, 01854
| | - Vitória Tobias-Santos
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Wim G M Damen
- Department of Genetics, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena, 07743, Germany
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro (UFRJ), 21941-599 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|