1
|
Sekiguchi M, Reinhard N, Fukuda A, Katoh S, Rieger D, Helfrich-Förster C, Yoshii T. A Detailed Re-Examination of the Period Gene Rescue Experiments Shows That Four to Six Cryptochrome-Positive Posterior Dorsal Clock Neurons (DN 1p) of Drosophila melanogaster Can Control Morning and Evening Activity. J Biol Rhythms 2024; 39:463-483. [PMID: 39082442 DOI: 10.1177/07487304241263130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Animal circadian clocks play a crucial role in regulating behavioral adaptations to daily environmental changes. The fruit fly Drosophila melanogaster exhibits 2 prominent peaks of activity in the morning and evening, known as morning (M) and evening (E) peaks. These peaks are controlled by 2 distinct circadian oscillators located in separate groups of clock neurons in the brain. To investigate the clock neurons responsible for the M and E peaks, a cell-specific gene expression system, the GAL4-UAS system, has been commonly employed. In this study, we re-examined the two-oscillator model for the M and E peaks of Drosophila by utilizing more than 50 Gal4 lines in conjunction with the UAS-period16 line, which enables the restoration of the clock function in specific cells in the period (per) null mutant background. Previous studies have indicated that the group of small ventrolateral neurons (s-LNv) is responsible for controlling the M peak, while the other group, consisting of the 5th ventrolateral neuron (5th LNv) and the three cryptochrome (CRY)-positive dorsolateral neurons (LNd), is responsible for the E peak. Furthermore, the group of posterior dorsal neurons 1 (DN1p) is thought to also contain M and E oscillators. In this study, we found that Gal4 lines directed at the same clock neuron groups can lead to different results, underscoring the fact that activity patterns are influenced by many factors. Nevertheless, we were able to confirm previous findings that the entire network of circadian clock neurons controls M and E peaks, with the lateral neurons playing a dominant role. In addition, we demonstrate that 4 to 6 CRY-positive DN1p cells are sufficient to generate M and E peaks in light-dark cycles and complex free-running rhythms in constant darkness. Ultimately, our detailed screening could serve as a catalog to choose the best Gal4 lines that can be used to rescue per in specific clock neurons.
Collapse
Affiliation(s)
- Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ayumi Fukuda
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shun Katoh
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Yamaguchi Y. Arginine vasopressin: Critical regulator of circadian homeostasis. Peptides 2024; 177:171229. [PMID: 38663583 DOI: 10.1016/j.peptides.2024.171229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Circadian rhythms optimally regulate numerous physiological processes in an organism and synchronize them with the external environment. The suprachiasmatic nucleus (SCN), the center of the circadian clock in mammals, is composed of multiple cell types that form a network that provides the basis for the remarkable stability of the circadian clock. Among the neuropeptides expressed in the SCN, arginine vasopressin (AVP) has attracted much attention because of its deep involvement in the function of circadian rhythms, as elucidated in particular by studies using genetically engineered mice. This review briefly summarizes the current knowledge on the peptidergic distribution and topographic neuronal organization in the SCN, the molecular mechanisms of the clock genes, and the relationship between the SCN and peripheral clocks. With respect to the physiological roles of AVP and AVP-expressing neurons, in addition to a sex-dependent action of AVP in the SCN, studies using AVP receptor knockout mice and mice genetically manipulated to alter the clock properties of AVP neurons are summarized here, highlighting its importance in maintaining circadian homeostasis and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Yoshiaki Yamaguchi
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan.
| |
Collapse
|
3
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Lee J, Yang JH, Weber APM, Bhattacharya D, Kim WY, Yoon HS. Diurnal Rhythms in the Red Seaweed Gracilariopsis chorda are Characterized by Unique Regulatory Networks of Carbon Metabolism. Mol Biol Evol 2024; 41:msae012. [PMID: 38267085 PMCID: PMC10853006 DOI: 10.1093/molbev/msae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
5
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
6
|
Siebieszuk A, Sejbuk M, Witkowska AM. Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping. Int J Mol Sci 2023; 24:16169. [PMID: 38003359 PMCID: PMC10671191 DOI: 10.3390/ijms242216169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The recently observed circadian oscillations of the intestinal microbiota underscore the profound nature of the human-microbiome relationship and its importance for health. Together with the discovery of circadian clocks in non-photosynthetic gut bacteria and circadian rhythms in anucleated cells, these findings have indicated the possibility that virtually all microorganisms may possess functional biological clocks. However, they have also raised many essential questions concerning the fundamentals of biological timekeeping, its evolution, and its origin. This narrative review provides a comprehensive overview of the recent literature in molecular chronobiology, aiming to bring together the latest evidence on the structure and mechanisms driving microbial biological clocks while pointing to potential applications of this knowledge in medicine. Moreover, it discusses the latest hypotheses regarding the evolution of timing mechanisms and describes the functions of peroxiredoxins in cells and their contribution to the cellular clockwork. The diversity of biological clocks among various human-associated microorganisms and the role of transcriptional and post-translational timekeeping mechanisms are also addressed. Finally, recent evidence on metabolic oscillators and host-microbiome communication is presented.
Collapse
Affiliation(s)
- Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Monika Sejbuk
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| |
Collapse
|
7
|
Xie B, Yuan H, Zou X, Lu M, Zhang Y, Xu D, Peng X, Wang D, Zhao M, Wen X. p75NTR promotes tooth rhythmic mineralization via upregulation of BMAL1/CLOCK. Front Cell Dev Biol 2023; 11:1283878. [PMID: 38020910 PMCID: PMC10662321 DOI: 10.3389/fcell.2023.1283878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The circadian clock plays a critical role in dentomaxillofacial development. Tooth biomineralization is characterized by the circadian clock; however, the mechanisms underlying the coordination of circadian rhythms with tooth development and biomineralization remain unclear. The p75 neurotrophin receptor (p75NTR) is a clock factor that regulates the oscillatory components of the circadian rhythm. This study aims to investigate the impact of p75NTR on the rhythmic mineralization of teeth and elucidate its underlying molecular mechanisms. We generated p75NTR knockout mice to examine the effects of p75NTR deficiency on tooth mineralization. Ectomesenchymal stem cells (EMSCs), derived from mouse tooth germs, were used for in vitro experiments. Results showed a reduction in tooth mineral density and daily mineralization rate in p75NTR knockout mice. Deletion of p75NTR decreased the expression of DMP1, DSPP, RUNX2, and ALP in tooth germ. Odontogenic differentiation and mineralization of EMSCs were activated by p75NTR. Histological results demonstrated predominant detection of p75NTR protein in odontoblasts and stratum intermedium cells during rapid formation phases of dental hard tissue. The mRNA expression of p75NTR exhibited circadian variations in tooth germs and EMSCs, consistent with the expression patterns of the core clock genes Bmal1 and Clock. The upregulation of BMAL1/CLOCK expression by p75NTR positively regulated the mineralization ability of EMSCs, whereas BMAL1 and CLOCK exerted a negative feedback regulation on p75NTR by inhibiting its promoter activity. Our findings suggest that p75NTR is necessary to maintain normal tooth biomineralization. Odontogenic differentiation and mineralization of EMSCs is regulated by the p75NTR-BMAL1/CLOCK signaling axis. These findings offer valuable insights into the associations between circadian rhythms, tooth development, and biomineralization.
Collapse
Affiliation(s)
- Bo Xie
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Hongyan Yuan
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xuqiang Zou
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Mingjie Lu
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yixin Zhang
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Dan Xu
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xuelian Peng
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Di Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Manzhu Zhao
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xiujie Wen
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Azzi A, Tao Z, Sun Y, Erb H, Guarino C, Wu X. The circadian clock protein Cryptochrome 1 is a direct target and feedback regulator of the Hippo pathway. iScience 2023; 26:107449. [PMID: 37593458 PMCID: PMC10428131 DOI: 10.1016/j.isci.2023.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Circadian clock controls daily behavior and physiology. The activity of various signaling pathways affects clock gene expression. Here, we show that the core circadian clock gene CRY1 is a direct target of the Hippo pathway effector YAP. YAP binds to TEADs and occupies the proximal promoter regions of CRY1, positively regulating its transcription. Interestingly, we further identified that CRY1 acts in a feedback loop to fine-tune Hippo pathway activation by modulating the expression of YAP and MOB1. Indeed, loss of CRY1 results in enhanced YAP activation. Consistently, we found that YAP levels and activity control clock gene expression and oscillation in synchronized cells. Furthermore, in breast cancer cells, CRY1 downregulation causes YAP/TAZ hyperactivation and enhanced DNA damage. Together, our findings provide a direct mechanistic link between the Hippo pathway and the circadian clock, where CRY1 and Hippo components form an orchestrated signaling network that influences cell growth and circadian rhythm.
Collapse
Affiliation(s)
- Abdelhalim Azzi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yang Sun
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hannah Erb
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Carla Guarino
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
9
|
Soejima Y, Yamamoto K, Nakano Y, Suyama A, Iwata N, Otsuka F. Functional interaction of Clock genes and bone morphogenetic proteins in the adrenal cortex. VITAMINS AND HORMONES 2023; 124:429-447. [PMID: 38408807 DOI: 10.1016/bs.vh.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The bone morphogenetic protein (BMP) system in the adrenal cortex plays modulatory roles in the control of adrenocortical steroidogenesis. BMP-6 enhances aldosterone production by modulating angiotensin (Ang) II-mitogen-activated protein kinase (MAPK) signaling, whereas activin regulates the adrenocorticotropin (ACTH)-cAMP cascade in adrenocortical cells. A peripheral clock system in the adrenal cortex was discovered and it has been shown to have functional roles in the adjustment of adrenocortical steroidogenesis by interacting with the BMP system. It was found that follistatin, a binding protein of activin, increased Clock mRNA levels, indicating an endogenous function of activin in the regulation of Clock mRNA expression. Elucidation of the interrelationships among the circadian clock system, the BMP system and adrenocortical steroidogenesis regulated by the hypothalamic-pituitary-adrenal (HPA) axis would lead to an understanding of the pathophysiology of adrenal disorders and metabolic disorders and the establishment of better medical treatment from the viewpoint of pharmacokinetics.
Collapse
Affiliation(s)
- Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan.
| |
Collapse
|
10
|
Jin Z, Ji Y, Su W, Zhou L, Wu X, Gao L, Guo J, Liu Y, Zhang Y, Wen X, Xia ZY, Xia Z, Lei S. The role of circadian clock-controlled mitochondrial dynamics in diabetic cardiomyopathy. Front Immunol 2023; 14:1142512. [PMID: 37215098 PMCID: PMC10196400 DOI: 10.3389/fimmu.2023.1142512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetes mellitus is a metabolic disease with a high prevalence worldwide, and cardiovascular complications are the leading cause of mortality in patients with diabetes. Diabetic cardiomyopathy (DCM), which is prone to heart failure with preserved ejection fraction, is defined as a cardiac dysfunction without conventional cardiac risk factors such as coronary heart disease and hypertension. Mitochondria are the centers of energy metabolism that are very important for maintaining the function of the heart. They are highly dynamic in response to environmental changes through mitochondrial dynamics. The disruption of mitochondrial dynamics is closely related to the occurrence and development of DCM. Mitochondrial dynamics are controlled by circadian clock and show oscillation rhythm. This rhythm enables mitochondria to respond to changing energy demands in different environments, but it is disordered in diabetes. In this review, we summarize the significant role of circadian clock-controlled mitochondrial dynamics in the etiology of DCM and hope to play a certain enlightening role in the treatment of DCM.
Collapse
Affiliation(s)
- Zhenshuai Jin
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wating Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Gao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junfan Guo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yutong Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuefu Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Li W, Wang Z, Cao J, Dong Y, Chen Y. Perfecting the Life Clock: The Journey from PTO to TTFL. Int J Mol Sci 2023; 24:ijms24032402. [PMID: 36768725 PMCID: PMC9916482 DOI: 10.3390/ijms24032402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquity of biological rhythms in life implies that it results from selection in the evolutionary process. The origin of the biological clock has two possible hypotheses: the selective pressure hypothesis of the oxidative stress cycle and the light evasion hypothesis. Moreover, the biological clock gives life higher adaptability. Two biological clock mechanisms have been discovered: the negative feedback loop of transcription-translation (TTFL) and the post-translational oscillation mechanism (PTO). The TTFL mechanism is the most classic and relatively conservative circadian clock oscillation mechanism, commonly found in eukaryotes. We have introduced the TTFL mechanism of the classical model organisms. However, the biological clock of prokaryotes is based on the PTO mechanism. The Peroxiredoxin (PRX or PRDX) protein-based PTO mechanism circadian clock widely existing in eukaryotic and prokaryotic life is considered a more conservative oscillation mechanism. The coexistence of the PTO and TTFL mechanisms in eukaryotes prompted us to explain the relationship between the two. Finally, we speculated that there might be a driving force for the evolution of the biological clock. The biological clock may have an evolutionary trend from the PTO mechanism to the TTFL mechanism, resulting from the evolution of organisms adapting to the environment.
Collapse
Affiliation(s)
- Weitian Li
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
- Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62733778
| |
Collapse
|
12
|
Skubatz H. Nonsteroidal anti-inflammatory drugs as antipyretics and modulators of a molecular clock(s) in the appendix of Sauromatum venosum inflorescence. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:152-160. [PMID: 36074072 DOI: 10.1111/plb.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The appendix of the Sauromatum senosum inflorescence is a striking example of thermogenesis in plants. On the day of opening, the Sauromatum appendix becomes hot, reaching up to 32 °C. Aspirin, salicylic acid and 2,6-dihydroxybenzoic acid, a subclass of NSAIDs, induce a temperature rise from three mitochondrial sources: alternative oxidase, F1 FO -ATP synthase and adenine nucleotide translocator. This temperature rise is synchronized and compounded under various light/dark regimes. We studied the effect of different subgroups of NSAIDs on the temperature rise. Tissue slices of appendix of Sauromatum and Arum italicum inflorescences at a pre-mature stage were treated with the three inducers in combination with one NSAID under constant light or darkness and under different photoperiods. Temperature rise generated by the three heat sources in the presence of inducers and different non-selective NSAIDs were not compounded and occurred at three different times. Under constant light, DuP-697, ibuprofen, flurbiprofen, acetaminophen and diclofenac suppressed the temperature rise induced by the three salicylates. Desynchronization and delayed temperature rise were detected with 6/42-h light/ dark and 15/33-h light/dark regimes in the presence of celecoxib and ibuprofen. With a 24/24-h light/dark regime, temperature rise was suppressed in the presence of ibuprofen. There were differences in response to individual NSAIDs between appendix tissue of A. italicum and S. venosum. Mitochondrial energy balance is affected by NSAIDs. There is an interaction between light/dark regime and temperature rise and a relationship between timing mechanism and temperature rise.
Collapse
|
13
|
Preston R, Meng QJ, Lennon R. The dynamic kidney matrisome - is the circadian clock in control? Matrix Biol 2022; 114:138-155. [PMID: 35569693 DOI: 10.1016/j.matbio.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
The circadian clock network in mammals is responsible for the temporal coordination of numerous physiological processes that are necessary for homeostasis. Peripheral tissues demonstrate circadian rhythmicity and dysfunction of core clock components has been implicated in the pathogenesis of diseases that are characterized by abnormal extracellular matrix, such as fibrosis (too much disorganized matrix) and tissue breakdown (too little matrix). Kidney disease is characterized by proteinuria, which along with the rate of filtration, displays robust circadian oscillation. Clinical observation and mouse studies suggest the presence of 24 h kidney clocks responsible for circadian oscillation in kidney function. Recent experimental evidence has also revealed that cell-matrix interactions and the biomechanical properties of extracellular matrix have key roles in regulating peripheral circadian clocks and this mechanism appears to be cell- and tissue-type specific. Thus, establishing a temporally resolved kidney matrisome may provide a useful tool for studying the two-way interactions between the extracellular matrix and the intracellular time-keeping mechanisms in this critical niche tissue. This review summarizes the latest genetic and biochemical evidence linking kidney physiology and disease to the circadian system with a particular focus on the extracellular matrix. We also review the experimental approaches and methodologies required to dissect the roles of circadian pathways in specific tissues and outline the translational aspects of circadian biology, including how circadian medicine could be used for the treatment of kidney disease.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.
| |
Collapse
|
14
|
Yuan H, Xie B, Yu X, Lin C, Li M, Zhang Y, Zou X, Lu M, Zhao M, Wen X. A potential role of p75NTR in the regulation of circadian rhythm and incremental growth lines during tooth development. Front Physiol 2022; 13:981311. [PMID: 36213234 PMCID: PMC9539461 DOI: 10.3389/fphys.2022.981311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Tooth morphogenesis and the formation of hard tissues have been reported to be closely related to circadian rhythms. This study investigates the spatiotemporal expression and relationship of p75NTR with core clock genes, mineralization-related or odontogenesis-related genes, and aims to derive the potential role of p75NTR in regulating circadian rhythm and incrementality growth line formation during tooth development. Materials and methods: The dynamic morphology of the rat dental germ was observed at seven stages (E14.5 d, E16.5 d, E18.5 d, P.N. 4 d, P.N. 7 d, P.N. 10 d, and P.N. 15 d). Next, the expressions of p75NTR and other target factors were traced. The ectomesenchymal stem cells (EMSCs) were isolated from the E18.5d rat dental germs and synchronized using 50% of fetal bovine serum. Then, they were cultured in light/light (L.L.), dark/dark (D.D.), and light/dark (L.D.) conditions for 48 h. The total RNA was collected every 4 h, and the circadian rhythm dynamics of target factors were observed. To reveal the mechanism further, p75NTR was down-regulated in p75NTRExIII−/− mice and up-regulated in immortalized mouse dental apical papilla progenitor cells. The change tendencies of other target factors were also detected. Results: The clock genes Bmal1, Clock, Per1, and Per2 were all expressed in tooth germs before the formation of dental hard tissues and demonstrated a regular oscillating expression pattern in EMSCs from dental germs. Their expression was affected by the L.D. stimulus, and most of them were promoted by D.D. conditions. p75NTR presented a similar expression pattern and a positive or negative relationship with most clock genes, mineralization-related and odontogenesis-related factors, such as brain and muscle ARNT-like protein-1 (Bmal1), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), MSH-like 1 (MSX1), dentin matrix acidic phosphoprotein 1 (Dmp1), and dentin sialophosphoprotein (Dspp). Moreover, the arrangement, morphology, and even boundary in pre-odontoblast/pre-ameloblast layers were disordered in the p75NTRExIII−/− mice. Conclusion: Circadian rhythm was found to affect tooth development. p75NTR might play a crucial role in regulating clock genes in the mineralization and formation of the dental hard tissues. p75NTR is actively involved in the odontoblast-ameloblast junction and cell polarity establishment during tooth morphogenesis.
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Bo Xie
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Xia Yu
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Lin
- Department of Oral Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Meng Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Xuqiang Zou
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Mingjie Lu
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Manzhu Zhao
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
- *Correspondence: Xiujie Wen, ; Manzhu Zhao,
| | - Xiujie Wen
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Xiujie Wen, ; Manzhu Zhao,
| |
Collapse
|
15
|
Nakahata Y, Fukada Y. Molecular connections between circadian clock and health/aging. J Biochem 2022; 171:473-476. [PMID: 35383844 DOI: 10.1093/jb/mvac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
For decades, considerable efforts have been expended for solving the molecular mechanisms of disease progression. An important clue to tackle this question is the circadian clock. Recent findings have uncovered previously unknown molecular connections between circadian clock and disease incidence, consequently causing the aging process. Furthermore, "chronotherapy" is emerging as a new concept of optimizing the time of the day for drug administration according to target gene expressions in order to maximize therapeutic efficacy and minimize the side effects. This concept will help cure patients and prevent them from suffering evitable pain and side effects. This JB special issue "Molecular connections between circadian clock and health/aging" discusses how the circadian clocks link to health and aging from molecular to organismal levels.
Collapse
Affiliation(s)
- Yasukazu Nakahata
- Department of Neurobiology & Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Wavelengths and irradiances modulate the circadian rhythm of Neurospora crassa. PLoS One 2022; 17:e0266266. [PMID: 35353854 PMCID: PMC8967017 DOI: 10.1371/journal.pone.0266266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
The circadian rhythm affects the biological evolution and operating mechanisms of organisms. The impact of light on the circadian rhythm is a significant concern for both biology and human well-being. However, the relation between different wavelengths, irradiances, and circadian rhythm is unknown. In this study, we compared the effects of four different monochromatic light-emitting diode (LED) light and two different irradiances on the circadian rhythm of a wild-type Neurospora crassa. The results demonstrated that the circadian rhythm of Neurospora crassa can be modulated by violet (λp = 393 nm), blue (λp = 462 nm), and green (λp = 521 nm) light, regardless of the irradiances, in the visible region. Unexpectedly, for the yellow light (λp = 591 nm), the 2 W/m2 light had a more significant impact on circadian rhythm modulation than the 0.04 W/m2 light had. Considering the highest energy of yellow light (2.25 eV) is lower than the High Occupied Molecular Orbital (HOMO)-Lowest Unoccupied Molecular Orbital (LUMO) gap of WC-1 (2.43 eV). We speculate that there may be other potential photoreceptors that are involved in circadian rhythm modulation. The HOMO-LOMO gaps of these proteins are greater than 1.98 eV and less than 2.25 eV. These results provide a strong foundation for a deeper understanding of the impact of different light on the circadian rhythm and also shed light on the identification of new circadian rhythm modulation photoreceptors.
Collapse
|
17
|
Özata Uyar G, Yildiran H. The association among circadian rhythm, circadian genes and chrononutrition, its effect on obesity: a review of current evidence. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2022.2044631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Gizem Özata Uyar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Hilal Yildiran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| |
Collapse
|
18
|
Bevinakoppamath S, Ramachandra SC, Yadav AK, Basavaraj V, Vishwanath P, Prashant A. Understanding the Emerging Link Between Circadian Rhythm, Nrf2 Pathway, and Breast Cancer to Overcome Drug Resistance. Front Pharmacol 2022; 12:719631. [PMID: 35126099 PMCID: PMC8807567 DOI: 10.3389/fphar.2021.719631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The levels of different molecules in the cell are rhythmically cycled by the molecular clock present at the cellular level. The circadian rhythm is closely linked to the metabolic processes in the cells by an underlying mechanism whose intricacies need to be thoroughly investigated. Nevertheless, Nrf2 has been identified as an essential bridge between the circadian clock and cellular metabolism and is activated by the by-product of cellular metabolism like hydrogen peroxide. Once activated it binds to the specific DNA segments and increases the transcription of several genes that play a crucial role in the normal functioning of the cell. The central clock located in the suprachiasmatic nucleus of the anterior hypothalamus synchronizes the timekeeping in the peripheral tissues by integrating the light-dark input from the environment. Several studies have demonstrated the role of circadian rhythm as an effective tumor suppressor. Tumor development is triggered by the stimulation or disruption of signaling pathways at the cellular level as a result of the interaction between cells and environmental stimuli. Oxidative stress is one such external stimulus that disturbs the prooxidant/antioxidant equilibrium due to the loss of control over signaling pathways which destroy the bio-molecules. Altered Nrf2 expression and impaired redox balance are associated with various cancers suggesting that Nrf2 targeting may be used as a novel therapeutic approach for treating cancers. On the other hand, Nrf2 has also been shown to enhance the resistance of cancer cells to chemotherapeutic agents. We believe that maximum efficacy with minimum side effects for any particular therapy can be achieved if the treatment strategy regulates the circadian rhythm. In this review, we discuss the various molecular mechanisms interlinking the circadian rhythm with the Nrf2 pathway and contributing to breast cancer pathogenesis, we also talk about how these two pathways work in close association with the cell cycle which is another oscillatory system, and whether this interplay can be exploited to overcome drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Supriya Bevinakoppamath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Shobha Chikkavaddaragudi Ramachandra
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Anshu Kumar Yadav
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Vijaya Basavaraj
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Prashant Vishwanath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Akila Prashant
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
- Special Interest Group-Human Genomics and Rare Disorders, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Akila Prashant,
| |
Collapse
|
19
|
Yang F, Jia G, Guo J, Liu Y, Wang C. Quantitative Chemoproteomic Profiling with Data-Independent Acquisition-Based Mass Spectrometry. J Am Chem Soc 2022; 144:901-911. [PMID: 34986311 DOI: 10.1021/jacs.1c11053] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activity-based protein profiling (ABPP) has emerged as a powerful and versatile tool to enable annotation of protein functions and discovery of targets of bioactive ligands in complex biological systems. It utilizes chemical probes to covalently label functional sites in proteins so that they can be enriched for mass spectrometry (MS)-based quantitative proteomics analysis. However, the semistochastic nature of data-dependent acquisition and high cost associated with isotopically encoded quantification reagents compromise the power of ABPP in multidimensional analysis and high-throughput screening, when a large number of samples need to be quantified in parallel. Here, we combine the data-independent acquisition (DIA) MS with ABPP to develop an efficient label-free quantitative chemical proteomic method, DIA-ABPP, with good reproducibility and high accuracy for high-throughput quantification. We demonstrated the power of DIA-ABPP for comprehensive profiling of functional cysteineome in three distinct applications, including dose-dependent quantification of cysteines' sensitivity toward a reactive metabolite, screening of ligandable cysteines with a covalent fragment library, and profiling of cysteinome fluctuation in circadian clock cycles. DIA-ABPP will open new opportunities for in-depth and multidimensional profiling of functional proteomes and interactions with bioactive small molecules in complex biological systems.
Collapse
Affiliation(s)
- Fan Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guogeng Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiuzhou Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Gabryelska A, Turkiewicz S, Karuga FF, Sochal M, Strzelecki D, Białasiewicz P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients-Possible Mechanisms Involved and Clinical Implication. Int J Mol Sci 2022; 23:ijms23020709. [PMID: 35054894 PMCID: PMC8775490 DOI: 10.3390/ijms23020709] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic condition characterized by recurrent pauses in breathing caused by the collapse of the upper airways, which results in intermittent hypoxia and arousals during the night. The disorder is associated with a vast number of comorbidities affecting different systems, including cardiovascular, metabolic, psychiatric, and neurological complications. Due to abnormal sleep architecture, OSA patients are at high risk of circadian clock disruption, as has been reported in several recent studies. The circadian clock affects almost all daily behavioral patterns, as well as a plethora of physiological processes, and might be one of the key factors contributing to OSA complications. An intricate interaction between the circadian clock and hypoxia may further affect these processes, which has a strong foundation on the molecular level. Recent studies revealed an interaction between hypoxia-inducible factor 1 (HIF-1), a key regulator of oxygen metabolism, and elements of circadian clocks. This relationship has a strong base in the structure of involved elements, as HIF-1 as well as PER, CLOCK, and BMAL, belong to the same Per-Arnt-Sim domain family. Therefore, this review summarizes the available knowledge on the molecular mechanism of circadian clock disruption and its influence on the development and progression of OSA comorbidities.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
- Correspondence: ; Tel.: +48-660796004
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| |
Collapse
|
21
|
Jiang C, Liu P, La CM, Guan D. In silico integrative analysis of multi-omics reveals regulatory layers for diurnal gene expression in mouse liver. Front Endocrinol (Lausanne) 2022; 13:955070. [PMID: 35937828 PMCID: PMC9353712 DOI: 10.3389/fendo.2022.955070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Diurnal oscillation persists throughout the body and plays an essential role in maintaining physiological homeostasis. Disruption of diurnal rhythm contributes to many diseases including type 2 diabetes. The regulatory mechanism of the transcription-translation feedback loop (TTFL) of core clock genes is well-established, while a systematic study across all regulatory layers of gene expression, including gene transcription, RNA translation, and DNA binding protein (DBP) activities, is still lacking. We comprehensively bioinformatics analyzed the rhythmicity of gene transcription, mature RNA abundance, protein abundance and DBP activity using publicly available omic-datasets from mouse livers. We found that the core clock genes, Bmal1 and Rev-erbα, persistently retained rhythmicity in all stages, which supported the essential rhythmic function along with the TTFL. Interestingly, there were many layer-specific rhythmic genes playing layer-specific rhythmic functions. The systematic analysis of gene transcription rate, RNA translation efficiency, and post-translation modification of DBP were incorporated to determine the potential mechanisms for layer-specific rhythmic genes. We observed the gene with rhythmic expression in both mature RNA and protein layers were largely due to relatively consistent translation rate. In addition, rhythmic translation rate induced the rhythms of protein whose mature RNA levels were not rhythmic. Further analysis revealed a phosphorylation-mediated and an enhancer RNA-mediated cycling regulation between the corresponding layers. This study presents a global view of the oscillating genes in multiple layers via a systematical analysis and indicates the complexity of regulatory mechanisms across different layers for further functional study.
Collapse
|
22
|
Aviram R, Dandavate V, Manella G, Golik M, Asher G. Ultradian rhythms of AKT phosphorylation and gene expression emerge in the absence of the circadian clock components Per1 and Per2. PLoS Biol 2021; 19:e3001492. [PMID: 34968386 PMCID: PMC8718012 DOI: 10.1371/journal.pbio.3001492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Rhythmicity of biological processes can be elicited either in response to environmental cycles or driven by endogenous oscillators. In mammals, the circadian clock drives about 24-hour rhythms of multitude metabolic and physiological processes in anticipation to environmental daily oscillations. Also at the intersection of environment and metabolism is the protein kinase—AKT. It conveys extracellular signals, primarily feeding-related signals, to regulate various key cellular functions. Previous studies in mice identified rhythmicity in AKT activation (pAKT) with elevated levels in the fed state. However, it is still unknown whether rhythmic AKT activation can be driven through intrinsic mechanisms. Here, we inspected temporal changes in pAKT levels both in cultured cells and animal models. In cultured cells, pAKT levels showed circadian oscillations similar to those observed in livers of wild-type mice under free-running conditions. Unexpectedly, in livers of Per1,2−/− but not of Bmal1−/− mice we detected ultradian (about 16 hours) oscillations of pAKT levels. Importantly, the liver transcriptome of Per1,2−/− mice also showed ultradian rhythms, corresponding to pAKT rhythmicity and consisting of AKT-related genes and regulators. Overall, our findings reveal ultradian rhythms in liver gene expression and AKT phosphorylation that emerge in the absence of environmental rhythms and Per1,2−/− genes. This study reveals ultradian (16-hour) rhythms in the activation of the protein kinase AKT in the livers of mice, accompanied by corresponding downstream changes in gene expression. Intriguingly, these oscillations emerge in the absence of rhythmic environmental cues and in mice lacking the circadian clock proteins Per1 and Per2.
Collapse
Affiliation(s)
- Rona Aviram
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Vaishnavi Dandavate
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gal Manella
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
23
|
Juste YR, Kaushik S, Bourdenx M, Aflakpui R, Bandyopadhyay S, Garcia F, Diaz A, Lindenau K, Tu V, Krause GJ, Jafari M, Singh R, Muñoz J, Macian F, Cuervo AM. Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. Nat Cell Biol 2021; 23:1255-1270. [PMID: 34876687 PMCID: PMC8688252 DOI: 10.1038/s41556-021-00800-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2021] [Indexed: 01/02/2023]
Abstract
Circadian rhythms align physiological functions with the light-dark cycle through oscillatory changes in the abundance of proteins in the clock transcriptional programme. Timely removal of these proteins by different proteolytic systems is essential to circadian strength and adaptability. Here we show a functional interplay between the circadian clock and chaperone-mediated autophagy (CMA), whereby CMA contributes to the rhythmic removal of clock machinery proteins (selective chronophagy) and to the circadian remodelling of a subset of the cellular proteome. Disruption of this autophagic pathway in vivo leads to temporal shifts and amplitude changes of the clock-dependent transcriptional waves and fragmented circadian patterns, resembling those in sleep disorders and ageing. Conversely, loss of the circadian clock abolishes the rhythmicity of CMA, leading to pronounced changes in the CMA-dependent cellular proteome. Disruption of this circadian clock/CMA axis may be responsible for both pathways malfunctioning in ageing and for the subsequently pronounced proteostasis defect.
Collapse
Affiliation(s)
- Yves R Juste
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mathieu Bourdenx
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranee Aflakpui
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Fernando Garcia
- Proteomic Unit, Spanish National Cancer Research Center (CNIO) Proteored-ISCIII, Madrid, Spain
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maryam Jafari
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Javier Muñoz
- Proteomic Unit, Spanish National Cancer Research Center (CNIO) Proteored-ISCIII, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Fernando Macian
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
24
|
Lin J, Yu Z, Ye C, Hong L, Chu Y, Shen Y, Li QQ. Alternative polyadenylated mRNAs behave as asynchronous rhythmic transcription in Arabidopsis. RNA Biol 2021; 18:2594-2604. [PMID: 34036876 PMCID: PMC8632115 DOI: 10.1080/15476286.2021.1933732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022] Open
Abstract
Alternative polyadenylation (APA) is a widespread post-transcriptional modification method that changes the 3' ends of transcripts by altering poly(A) site usage. However, the longitudinal transcriptomic 3' end profile and its mechanism of action are poorly understood. We applied diurnal time-course poly(A) tag sequencing (PAT-seq) for Arabidopsis and identified 3284 genes that generated both rhythmic and arrhythmic transcripts. These two classes of transcripts appear to exhibit dramatic differences in expression and translation activisty. The asynchronized transcripts derived by APA are embedded with different poly(A) signals, especially for rhythmic transcripts, which contain higher AAUAAA and UGUA signal proportions. The Pol II occupancy maximum is reached upstream of rhythmic poly(A) sites, while it is present directly at arrhythmic poly(A) sites. Integrating H3K9ac and H3K4me3 time-course data analyses revealed that transcriptional activation of histone markers may be involved in the differentiation of rhythmic and arrhythmic APA transcripts. These results implicate an interplay between histone modification and RNA 3'-end processing, shedding light on the mechanism of transcription rhythm and alternative polyadenylation.
Collapse
Affiliation(s)
- Juncheng Lin
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, USA
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhibo Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Liwei Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yiru Chu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qingshun Q. Li
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, USA
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Han Q, He X, Di R, Chu M. Comparison of expression patterns of six canonical clock genes of follicular phase and luteal phase in Small-tailed Han sheep. Arch Anim Breed 2021; 64:457-466. [PMID: 34746369 PMCID: PMC8567854 DOI: 10.5194/aab-64-457-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
The circadian rhythm is a biological rhythm that is closely related to
the rhythmic expression of a series of clock genes. Results from several
studies have indicated that clock genes are associated with the estrous cycle in
female animals. Until now, the relationship between estrus cycle transition
and clock gene expression in reproductive-axis-related tissues has remained
unknown in Small-tailed Han (STH) sheep. This study was conducted to analyze
the expression patterns of six canonical clock genes (Clock, BMAL1, Per1, Per2, Cry1, and Cry2) in the follicle
phase and luteal phase of STH sheep. We found that all six genes were
expressed in the brain, cerebellum, hypothalamus, pituitary, ovary, uterus,
and oviduct in follicle and luteal phases. The results indicated that Clock expression
was significantly higher in the cerebellum, hypothalamus, and uterus of
the luteal phase than that of the follicle phase, whereas BMAL1 expression was
significantly higher in the hypothalamus of the luteal phase than that of
the follicle phase. Per1 expression was significantly higher in the brain,
cerebellum, hypothalamus, and pituitary of the luteal phase than that of the follicle
phase, and Per2 expression was significantly higher in the hypothalamus,
pituitary, and uterus of the luteal phase than that of the follicle phase. Cry1
expression was significantly higher in the brain, cerebellum, and
hypothalamus of the luteal phase than that of the follicle phase, whereas Cry2 expression
was significantly higher in the pituitary of the luteal phase than that of the
follicle phase. The clock gene expression in all tissues was different
between follicle and luteal phases, but all clock gene mRNA levels were
found to exhibit higher expression among seven tissues in the luteal
phase. Our results suggest that estrous cycles may be associated
with clock gene expression in the STH sheep. This is the first study to
systematically analyze the expression patterns of clock genes of different
estrous cycle in ewes, which could form a basis for further studies to
develop the relationship between clock genes and the estrous cycle.
Collapse
Affiliation(s)
- Qi Han
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
26
|
Aviram R, Adamovich Y, Asher G. Circadian Organelles: Rhythms at All Scales. Cells 2021; 10:2447. [PMID: 34572096 PMCID: PMC8469338 DOI: 10.3390/cells10092447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circadian clocks have evolved in most light-sensitive organisms, from unicellular organisms to mammals. Consequently, a myriad of biological functions exhibits circadian rhythmicity, from behavior to physiology, through tissue and cellular functions to subcellular processes. Circadian rhythms in intracellular organelles are an emerging and exciting research arena. We summarize herein the current literature for rhythmicity in major intracellular organelles in mammals. These include changes in the morphology, content, and functions of different intracellular organelles. While these data highlight the presence of rhythmicity in these organelles, a gap remains in our knowledge regarding the underlying molecular mechanisms and their functional significance. Finally, we discuss the importance and challenges faced by spatio-temporal studies on these organelles and speculate on the presence of oscillators in organelles and their potential mode of communication. As circadian biology has been and continues to be studied throughout temporal and spatial axes, circadian organelles appear to be the next frontier.
Collapse
Affiliation(s)
| | | | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (R.A.); (Y.A.)
| |
Collapse
|
27
|
Alterations in the activity and sleep of Drosophila melanogaster under simulated microgravity. NPJ Microgravity 2021; 7:27. [PMID: 34294729 PMCID: PMC8298474 DOI: 10.1038/s41526-021-00157-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate alterations in the activity and sleep of Drosophila melanogaster under simulated microgravity, which was implemented through the random positioning machine, while different light conditions (normal photoperiod and constant dark) were set. Fruit flies of different strains and sexes were treated for 3 days, and activity and sleep were monitored using the Drosophila Activity Monitoring System. After 3 days of treatment, fruit flies were sampled to detect the relative expression levels of the major clock genes and some neurotransmitter-related genes. The results showed that for the normal photoperiod (LD) condition, the activity increased and sleep decreased under simulated microgravity, while for the constant dark (DD) condition, the activity and sleep rhythms appeared disordered and the activity increased, thus decreasing the likelihood of waking up during the day. Light conditions, strains, and sexes, individually or in combination, had impacts on the simulated microgravity effects on behaviors. The clock genes and neurotransmitter-related genes had different degrees of response among sexes and strains, although the overall changes were slight. The results indicated that the normal photoperiod could ease the effects of simulated microgravity on fruit flies' activity and sleep and possible unidentified pathways involved in the regulatory mechanism need further exploration. This study is expected to provide ideas and references for studying the effects of microgravity on space life science.
Collapse
|
28
|
Muñoz-Guzmán F, Caballero V, Larrondo LF. A global search for novel transcription factors impacting the Neurospora crassa circadian clock. G3 (BETHESDA, MD.) 2021; 11:jkab100. [PMID: 33792687 PMCID: PMC8495738 DOI: 10.1093/g3journal/jkab100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/16/2021] [Indexed: 01/15/2023]
Abstract
Eukaryotic circadian oscillators share a common circuit architecture, a negative feedback loop in which a positive element activates the transcription of a negative one that then represses the action of the former, inhibiting its own expression. While studies in mammals and insects have revealed additional transcriptional inputs modulating the expression of core clock components, this has been less characterized in the model Neurospora crassa, where the participation of other transcriptional components impacting circadian clock dynamics remains rather unexplored. Thus, we sought to identify additional transcriptional regulators modulating the N. crassa clock, following a reverse genetic screen based on luminescent circadian reporters and a collection of transcription factors (TFs) knockouts, successfully covering close to 60% of them. Besides the canonical core clock components WC-1 and -2, none of the tested transcriptional regulators proved to be essential for rhythmicity. Nevertheless, we identified a set of 23 TFs that when absent lead to discrete, but significant, changes in circadian period. While the current level of analysis does not provide mechanistic information about how these new players modulate circadian parameters, the results of this screen reveal that an important number of light and clock-regulated TFs, involved in a plethora of processes, are capable of modulating the clockworks. This partial reverse genetic clock screen also exemplifies how the N. crassa knockout collection continues to serve as an expedite platform to address broad biological questions.
Collapse
Affiliation(s)
- Felipe Muñoz-Guzmán
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Valeria Caballero
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Luis F Larrondo
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
29
|
Garikipati VNS, Arakelyan A, Blakely EA, Chang PY, Truongcao MM, Cimini M, Malaredy V, Bajpai A, Addya S, Bisserier M, Brojakowska A, Eskandari A, Khlgatian MK, Hadri L, Fish KM, Kishore R, Goukassian DA. Long-Term Effects of Very Low Dose Particle Radiation on Gene Expression in the Heart: Degenerative Disease Risks. Cells 2021; 10:cells10020387. [PMID: 33668521 PMCID: PMC7917872 DOI: 10.3390/cells10020387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Compared to low doses of gamma irradiation (γ-IR), high-charge-and-energy (HZE) particle IR may have different biological response thresholds in cardiac tissue at lower doses, and these effects may be IR type and dose dependent. Three- to four-month-old female CB6F1/Hsd mice were exposed once to one of four different doses of the following types of radiation: γ-IR 137Cs (40-160 cGy, 0.662 MeV), 14Si-IR (4-32 cGy, 260 MeV/n), or 22Ti-IR (3-26 cGy, 1 GeV/n). At 16 months post-exposure, animals were sacrificed and hearts were harvested and archived as part of the NASA Space Radiation Tissue Sharing Forum. These heart tissue samples were used in our study for RNA isolation and microarray hybridization. Functional annotation of twofold up/down differentially expressed genes (DEGs) and bioinformatics analyses revealed the following: (i) there were no clear lower IR thresholds for HZE- or γ-IR; (ii) there were 12 common DEGs across all 3 IR types; (iii) these 12 overlapping genes predicted various degrees of cardiovascular, pulmonary, and metabolic diseases, cancer, and aging; and (iv) these 12 genes revealed an exclusive non-linear DEG pattern in 14Si- and 22Ti-IR-exposed hearts, whereas two-thirds of γ-IR-exposed hearts revealed a linear pattern of DEGs. Thus, our study may provide experimental evidence of excess relative risk (ERR) quantification of low/very low doses of full-body space-type IR-associated degenerative disease development.
Collapse
Affiliation(s)
- Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, Dorothy M Davis Heart and Lung Research Institute, Wexner Medical School, The Ohio State University, Columbus, OH 43210, USA;
| | - Arsen Arakelyan
- Bioinformatics Group, The Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia;
- PathVerse, Yerevan 0014, Armenia
| | | | | | - May M. Truongcao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Vandana Malaredy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Anamika Bajpai
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Sankar Addya
- Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Agnieszka Brojakowska
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Abrisham Eskandari
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Mary K. Khlgatian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Kenneth M. Fish
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - David. A. Goukassian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
- Correspondence: ; Tel.: +1-212-824-8917
| |
Collapse
|
30
|
Cox KH, Takahashi JS. Introduction to the Clock System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:3-20. [PMID: 34773223 DOI: 10.1007/978-3-030-81147-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Circadian (24-h) rhythms dictate almost everything we do, setting our clocks for specific times of sleeping and eating, as well as optimal times for many other basic functions. The physiological systems that coordinate circadian rhythms are intricate, but at their core, they all can be distilled down to cell-autonomous rhythms that are then synchronized within and among tissues. At first glance, these cell-autonomous rhythms may seem rather straight-forward, but years of research in the field has shown that they are strikingly complex, responding to many different external signals, often with remarkable tissue-specificity. To understand the cellular clock system, it is important to be familiar with the major players, which consist of pairs of proteins in a triad of transcriptional/translational feedback loops. In this chapter, we will go through each of the core protein pairs one-by-one, summarizing the literature as to their regulation and their broader impacts on circadian gene expression. We will conclude by briefly examining the human genetics literature, as well as providing perspectives on the future of the study of the molecular clock.
Collapse
Affiliation(s)
- Kimberly H Cox
- Department of Neuroscience and Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience and Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Abstract
Daily rhythms of behaviors and physiologies are driven by transcriptional-translational negative feedback loops of clock genes and encoded clock proteins (Bass and Takahashi Science 330:1349-1354, 2010; Brown et al. Dev Cell 22:477-487, 2012). Posttranslational modifications of clock proteins, including protein phosphorylation, play an essential role for normal oscillation of the circadian clock through regulation of their activities, stabilities, interactions, and intracellular localization (Gallego and Virshup Nat Rev Mol Cell Biol 8:139-148, 2007; Hirano et al. Nat Struct Mol Biol 23:1053-1060, 2016). In this chapter, we describe detailed methods for quantitative analysis of phosphorylation levels of clock proteins, particularly focusing on circadian phosphorylation of CLOCK, BMAL1, and their complex (Yoshitane et al. Mol Cell Biol 29:3675-3686, 2009).
Collapse
Affiliation(s)
- Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
32
|
Gopalakrishnan S, Kannan NN. Only time will tell: the interplay between circadian clock and metabolism. Chronobiol Int 2020; 38:149-167. [PMID: 33345624 DOI: 10.1080/07420528.2020.1842436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most organisms ranging from cyanobacteria to humans, the endogenous timekeeping system temporally coordinates the behavioral, physiological, and metabolic processes with a periodicity close to 24 h. The timing of these daily rhythms is orchestrated by the synchronized oscillations of both the central pacemaker in the brain and the peripheral clocks located across multiple organs and tissues. A growing body of evidence suggests that the central circadian clock and peripheral clocks residing in the metabolically active tissues are incredibly well coordinated to confer coherent metabolic homeostasis. The interplay between nutrient metabolism and circadian rhythms can occur at various levels supported by the molecular clock network, multiple systemic mechanisms, and the neuroendocrine signaling pathways. While studies suggest the reciprocal regulation between circadian clock and metabolism, it is important to understand the precise mechanisms and the underlying pathways involved in the cross-talk among circadian oscillators and diverse metabolic networks. In addition to the internal synchronization of the metabolic rhythms, feeding time is considered as a potential external synchronization cue that fine tunes the timing of the circadian rhythms in metabolic peripheral clocks. A deeper understanding of how the timing of food intake and the diet composition drive the tissue-specific metabolic rhythms across the body is concomitantly important to develop novel therapeutic strategies for the metabolic disorders arising from circadian misalignment. This review summarizes the recent advancements in the circadian clock regulation of nutrient metabolism and discusses the current understanding of the metabolic feedback signals that link energy metabolism with the circadian clock.
Collapse
Affiliation(s)
- Swetha Gopalakrishnan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| |
Collapse
|
33
|
Upadhyay A, Marzoll D, Diernfellner A, Brunner M, Herzel H. Multiple random phosphorylations in clock proteins provide long delays and switches. Sci Rep 2020; 10:22224. [PMID: 33335302 PMCID: PMC7746754 DOI: 10.1038/s41598-020-79277-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/25/2020] [Indexed: 12/27/2022] Open
Abstract
Theory predicts that self-sustained oscillations require robust delays and nonlinearities (ultrasensitivity). Delayed negative feedback loops with switch-like inhibition of transcription constitute the core of eukaryotic circadian clocks. The kinetics of core clock proteins such as PER2 in mammals and FRQ in Neurospora crassa is governed by multiple phosphorylations. We investigate how multiple, slow and random phosphorylations control delay and molecular switches. We model phosphorylations of intrinsically disordered clock proteins (IDPs) using conceptual models of sequential and distributive phosphorylations. Our models help to understand the underlying mechanisms leading to delays and ultrasensitivity. The model shows temporal and steady state switches for the free kinase and the phosphoprotein. We show that random phosphorylations and sequestration mechanisms allow high Hill coefficients required for self-sustained oscillations.
Collapse
Affiliation(s)
- Abhishek Upadhyay
- Institute for Theoretical Biology, Charité, Universitätsmedizin Berlin, Humboldt University of Berlin, Philippstr. 13, 10115, Berlin, Germany.
| | - Daniela Marzoll
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Axel Diernfellner
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Michael Brunner
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité, Universitätsmedizin Berlin, Humboldt University of Berlin, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
34
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
35
|
Lee T, Cho CH, Kim WR, Moon JH, Kim S, Geum D, In HP, Lee HJ. Development of model based on clock gene expression of human hair follicle cells to estimate circadian time. Chronobiol Int 2020; 37:993-1001. [PMID: 32654537 DOI: 10.1080/07420528.2020.1777150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Considering the effects of circadian misalignment on human pathophysiology and behavior, it is important to be able to detect an individual's endogenous circadian time. We developed an endogenous Clock Estimation Model (eCEM) based on a machine learning process using the expression of 10 circadian genes. Hair follicle cells were collected from 18 healthy subjects at 08:00, 11:00, 15:00, 19:00, and 23:00 h for two consecutive days, and the expression patterns of 10 circadian genes were obtained. The eCEM was designed using the inverse form of the circadian gene rhythm function (i.e., Circadian Time = F(gene)), and the accuracy of eCEM was evaluated by leave-one-out cross-validation (LOOCV). As a result, six genes (PER1, PER3, CLOCK, CRY2, NPAS2, and NR1D2) were selected as the best model, and the error range between actual and predicted time was 3.24 h. The eCEM is simple and applicable in that a single time-point sampling of hair follicle cells at any time of the day is sufficient to estimate the endogenous circadian time.
Collapse
Affiliation(s)
- Taek Lee
- Department of Convergence Security Engineering, Sungshin University , Seoul, Republic of Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Chungnam National University , Daejeon, Republic of Korea
| | | | - Joung Ho Moon
- Department of Psychiatry.,Chronobiology Institute, Korea University College of Medicine
| | | | | | - Hoh Peter In
- Department of Computer Science, Korea University College of Information , Seoul, Republic of Korea
| | - Heon-Jeong Lee
- Department of Biomedical Sciences.,Department of Psychiatry.,Chronobiology Institute, Korea University College of Medicine
| |
Collapse
|
36
|
Rajendran S, Barbon S, Pucciarelli S. Spotlight on Circadian Genes and Colorectal Cancer Crosstalk. Endocr Metab Immune Disord Drug Targets 2020; 21:4-11. [PMID: 32579510 DOI: 10.2174/1871530320666200624192517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/19/2020] [Accepted: 04/22/2020] [Indexed: 11/22/2022]
Abstract
Mammalian physiology is regulated by circadian clock through oscillating feedback loops controlling cellular processes and behaviors. Recent findings have led to an interesting connection between circadian disruption and colorectal cancer progression and incidence through controlling the hallmarks of cancer, namely cell cycle, cell metabolism and cell death. Deeper understanding of the circadian mechanisms that define the colorectal cancer pathophysiology is the need of the hour to define a chronotherapy for improving colorectal cancer patient survival. This review identifies the key areas in which circadian genes interact with cellular pathways to modify the outcome with respect to colorectal cancer incidence and progression.
Collapse
Affiliation(s)
| | - Silvia Barbon
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Salvatore Pucciarelli
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy
| |
Collapse
|
37
|
Hong L, Lavrentovich DO, Chavan A, Leypunskiy E, Li E, Matthews C, LiWang A, Rust MJ, Dinner AR. Bayesian modeling reveals metabolite-dependent ultrasensitivity in the cyanobacterial circadian clock. Mol Syst Biol 2020; 16:e9355. [PMID: 32496641 PMCID: PMC7271899 DOI: 10.15252/msb.20199355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Mathematical models can enable a predictive understanding of mechanism in cell biology by quantitatively describing complex networks of interactions, but such models are often poorly constrained by available data. Owing to its relative biochemical simplicity, the core circadian oscillator in Synechococcus elongatus has become a prototypical system for studying how collective dynamics emerge from molecular interactions. The oscillator consists of only three proteins, KaiA, KaiB, and KaiC, and near-24-h cycles of KaiC phosphorylation can be reconstituted in vitro. Here, we formulate a molecularly detailed but mechanistically naive model of the KaiA-KaiC subsystem and fit it directly to experimental data within a Bayesian parameter estimation framework. Analysis of the fits consistently reveals an ultrasensitive response for KaiC phosphorylation as a function of KaiA concentration, which we confirm experimentally. This ultrasensitivity primarily results from the differential affinity of KaiA for competing nucleotide-bound states of KaiC. We argue that the ultrasensitive stimulus-response relation likely plays an important role in metabolic compensation by suppressing premature phosphorylation at nighttime.
Collapse
Affiliation(s)
- Lu Hong
- Graduate Program in Biophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Danylo O Lavrentovich
- Department of ChemistryUniversity of ChicagoChicagoILUSA
- Present address:
Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Archana Chavan
- School of Natural SciencesUniversity of CaliforniaMercedCAUSA
| | - Eugene Leypunskiy
- Graduate Program in Biophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Eileen Li
- Department of StatisticsUniversity of ChicagoChicagoILUSA
| | - Charles Matthews
- Department of StatisticsUniversity of ChicagoChicagoILUSA
- Present address:
School of MathematicsUniversity of EdinburghEdinburghUK
| | - Andy LiWang
- School of Natural SciencesUniversity of CaliforniaMercedCAUSA
- Quantitative and Systems BiologyUniversity of CaliforniaMercedCAUSA
- Center for Circadian BiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
- Chemistry and Chemical BiologyUniversity of CaliforniaMercedCAUSA
- Health Sciences Research InstituteUniversity of CaliforniaMercedCAUSA
- Center for Cellular and Biomolecular MachinesUniversity of CaliforniaMercedCAUSA
| | - Michael J Rust
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
- Institute for Genomics and Systems BiologyUniversity of ChicagoChicagoILUSA
| | - Aaron R Dinner
- Department of ChemistryUniversity of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
- James Franck InstituteUniversity of ChicagoChicagoILUSA
| |
Collapse
|
38
|
Castelo-Szekely V, Gatfield D. Emerging Roles of Translational Control in Circadian Timekeeping. J Mol Biol 2020; 432:3483-3497. [PMID: 32246961 DOI: 10.1016/j.jmb.2020.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/07/2023]
Abstract
A large part of mammalian physiology and behaviour shows regular daily variations. This temporal organisation is driven by the activity of an endogenous circadian clock, whose molecular basis consists of diurnal waves in gene expression. Circadian transcription is the major driver of these rhythms, yet post-transcriptional mechanisms, some of which occur in response to systemic cues and in a tissue-specific fashion, have central roles in ultimately establishing the oscillatory gene expression programme as well. Regulatory control that occurs at the level of translation is emerging as an important player in the generation and modulation of protein accumulation rhythms. As a mechanism, translation lies at a privileged position to integrate genetically encoded rhythmic signals with other, external and internal stimuli, including nutrient-derived cues. In this review, we summarise our current knowledge of how diurnal control of translation affects both bulk protein levels and gene-specific protein biosynthesis. We discuss mechanisms of regulation, in particular with regard to the complex interplay between circadian cycles and feeding/fasting cycles, as well as emerging roles for upstream open reading frames in clock control.
Collapse
Affiliation(s)
- Violeta Castelo-Szekely
- Center for Integrative Genomics, University of Lausanne, Genopode, 1015 Lausanne, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Genopode, 1015 Lausanne, Switzerland.
| |
Collapse
|
39
|
Partch CL. Orchestration of Circadian Timing by Macromolecular Protein Assemblies. J Mol Biol 2020; 432:3426-3448. [DOI: 10.1016/j.jmb.2019.12.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
|
40
|
Okawa H, Egusa H, Nishimura I. Implications of the circadian clock in implant dentistry. Dent Mater J 2020; 39:173-180. [PMID: 32115492 DOI: 10.4012/dmj.2019-291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Circadian rhythms are approximately 24-h cell-autonomous cycles driven by transcription and translation feedback loops of a set of core circadian clock genes, such as circadian locomoter output cycles kaput (Clock), brain and muscle arnt-like protein-1 (Bmal1), period (Per), and cryptochrome (Cry). The genetic clockwork of these genes produces circadian rhythms in cells throughout the body, including the craniofacial region. During development, dento-alveolar bone tissue formation could be regulated by site-specific circadian patterns. Studies using knockout mice and mesenchymal stem cells (MSCs) to evaluate clock genes revealed regulatory effects of clock function on bone remodeling, suggesting involvement of the circadian clockwork in osseointegration of titanium implants. Indeed, rough surface titanium modulates specific clock genes, Neuronal PAS domain protein-2 (Npas2) and Per, in MSCs to facilitate osseointegration. Further understanding of the bone clock machinery associated with biomaterial surface properties might improve preoperative diagnosis for dental implant treatments.
Collapse
Affiliation(s)
- Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry.,Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry
| |
Collapse
|
41
|
Affiliation(s)
- Steven A. Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Switzerland
| | - Miho Sato
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Switzerland
| |
Collapse
|
42
|
Tarrant AM, Helm RR, Levy O, Rivera HE. Environmental entrainment demonstrates natural circadian rhythmicity in the cnidarian Nematostella vectensis. ACTA ACUST UNITED AC 2019; 222:jeb.205393. [PMID: 31611292 DOI: 10.1242/jeb.205393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
Abstract
Considerable advances in chronobiology have been made through controlled laboratory studies, but distinct temporal rhythms can emerge under natural environmental conditions. Lab-reared Nematostella vectensis sea anemones exhibit circadian behavioral and physiological rhythms. Given that these anemones inhabit shallow estuarine environments subject to tidal inputs, it was unclear whether circadian rhythmicity would persist following entrainment in natural conditions, or whether circatidal periodicity would predominate. Nematostella were conditioned within a marsh environment, where they experienced strong daily temperature cycles as well as brief tidal flooding around the full and new moons. Upon retrieval, anemones exhibited strong circadian (∼24 h) activity rhythms under a light-dark cycle or continuous darkness, but reduced circadian rhythmicity under continuous light. However, some individuals in each light condition showed circadian rhythmicity, and a few individuals showed circatidal rhythmicity. Consistent with the behavioral studies, a large number of transcripts (1640) exhibited diurnal rhythmicity compared with very few (64) with semidiurnal rhythmicity. Diurnal transcripts included core circadian regulators, and 101 of 434 (23%) genes that were previously found to be upregulated by exposure to ultraviolet radiation. Together, these behavioral and transcriptional studies show that circadian rhythmicity predominates and suggest that solar radiation drives physiological cycles in this sediment-dwelling subtidal animal.
Collapse
Affiliation(s)
- Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA
| | - Rebecca R Helm
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA.,Biology Department, University of North Carolina Asheville, Asheville NC 28804, USA
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Hanny E Rivera
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA.,Biology Department, Boston University, Boston MA 02215, USA
| |
Collapse
|
43
|
Ji Y, Elkin K, Yip J, Guan L, Han W, Ding Y. From circadian clocks to non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2019; 13:1107-1112. [PMID: 31645151 DOI: 10.1080/17474124.2019.1684899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The circadian rhythm is an integral regulator of various endocrine processes in the body, including sleep-wake cycles, hormonal regulation, and metabolism. In addition to metabolic, genetic, and environmental factors, a dysregulated circadian rhythm resulting from lifestyle changes has been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). An accumulating body of evidence also supports strong association between NAFLD and metabolic disorder, the pathogenesis of which is related to periodic fluctuations in hormonal homeostasis. It is clear that endocrine and circadian rhythms are tightly interconnected. Generally, the circadian rhythm regulates flux patterns of physiological functions. The present review will discuss the modulation of bodily processes by the circadian rhythm with specific attention to the regulation of NAFLD by leptin and related hormones.Areas covered: PubMed/MEDLINE was searched for articles related to concomitant occurrence of NAFLD and T2DM between January 1995 and September 2019. Areas covered included epidemiological, physiology and pathophysiology aspects.Expert opinion: NAFLD and NASH are increasingly prevalent and may be largely mitigated with effective lifestyle modification and, potentially, circadian rhythm stabilization. Improved knowledge of the specific pathogenesis of NAFLD in addition to enhanced diagnostic screening tools and prediction of future disease burden is imperative.
Collapse
Affiliation(s)
- Yu Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - James Yip
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Longfei Guan
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA.,China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wei Han
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
44
|
Hinterdobler W, Schuster A, Tisch D, Özkan E, Bazafkan H, Schinnerl J, Brecker L, Böhmdorfer S, Schmoll M. The role of PKAc1 in gene regulation and trichodimerol production in Trichoderma reesei. Fungal Biol Biotechnol 2019; 6:12. [PMID: 31528353 PMCID: PMC6734591 DOI: 10.1186/s40694-019-0075-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichoderma reesei represents a model system for investigation of plant cell wall degradation and its connection to light response. The cyclic adenosine monophosphate pathway (cAMP pathway) plays an important role in both physiological outputs, being crucial for regulation of photoreceptor function as well as for cellulase regulation on different carbon sources. Phosphorylation of photoreceptors and of the carbon catabolite repressor CRE1 was shown in ascomycetes, indicating a relevance of protein kinase A in regulation of the target genes of these transcription factors as well as an impact on regulation of induction specific genes. Moreover, the cAMP pathway impacts growth and development. RESULTS Here, we investigated gene regulation by the catalytic subunit of protein kinase A (PKAc1) upon growth on cellulose. We found distinct gene sets for regulation upon growth in light and darkness with an overlap of only 13 genes. PKAc1 regulates metabolic genes as well as transport and defense functions. The overlap of gene regulation by PKAc1 with the genes representing the cAMP dependent regulatory output of the photoreceptor ENV1 indicates an involvement of PKA in this pathway, which counteracts its effects by contrasting regulation. Moreover, we found considerable overlap with the gene sets regulated under cellulase inducing conditions and by the carbon catabolite repressor CRE1. Our analysis also showed that PKAc1 regulates the genes of the SOR cluster associated with the biosynthesis of sorbicillinoids. The homologue of gin4, encoding a CAMK type kinase, which is regulated by PKAc1, CRE1 and YPR2 showed a moderate impact on trichodimerol production. We isolated trichodimerol as representative sorbicillin compound and established a method for its quantification in large sample sets using high performance thin layer chromatography (HPTLC), which can be broadly applied for secondary metabolite screening of mutants or different growth conditions. Due to the high expression levels of the SOR cluster under conditions of sexual development we crosschecked the relevance of PKAc1 under these conditions. We could show that PKAc1 impacts biosynthesis of trichodimerol in axenic growth and upon mating. CONCLUSIONS We conclude that PKAc1 is involved in light dependent regulation of plant cell wall degradation, including carbon catabolite repression as well as secondary metabolism and development in T. reesei.
Collapse
Affiliation(s)
- Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - André Schuster
- Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Doris Tisch
- Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Ezgi Özkan
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Hoda Bazafkan
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - Johann Schinnerl
- Chemodiversity Research Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Stefan Böhmdorfer
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| |
Collapse
|
45
|
Nieto PS, Condat CA. Translational thresholds in a core circadian clock model. Phys Rev E 2019; 100:022409. [PMID: 31574627 DOI: 10.1103/physreve.100.022409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 06/10/2023]
Abstract
Organisms have evolved in a daily cyclic environment, developing circadian cell-autonomous clocks that temporally organize a wide range of biological processes. Translation is a highly regulated process mainly associated with the activity of microRNAs (miRNAs) at the translation initiation step that impacts on the molecular circadian clock dynamics. Recently, a molecular titration mechanism was proposed to explain the interactions between some miRNAs and their target mRNAs; new evidence also indicates that regulation by miRNA is a nonlinear process such that there is a threshold level of target mRNA below which protein production is drastically repressed. These observations led us to use a theoretical model of the circadian molecular clock to study the effect of miRNA-mediated translational thresholds on the molecular clock dynamics. We model the translational threshold by introducing a phenomenological Hill equation for the kinetics of PER translation and show how the parameters associated with translation kinetics affect the period, amplitude, and time delays between clock mRNA and clock protein expression. We show that our results are useful for analyzing experiments related to the translational regulation of negative elements of transcriptional-translational feedback loops. We also provide new elements for thinking about the translational threshold as a mechanism that favors the emergence of circadian rhythmicity, the tuning of the period-delay relationship and the cell capacity to control the protein oscillation amplitude with almost negligible changes in the mRNA amplitudes.
Collapse
Affiliation(s)
- Paula S Nieto
- Instituto de Física Enrique Gaviola (IFEG)-CONICET and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Ciudad Universitaria, CP:X5000HUA Córdoba, Argentina
| | - C A Condat
- Instituto de Física Enrique Gaviola (IFEG)-CONICET and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Ciudad Universitaria, CP:X5000HUA Córdoba, Argentina
| |
Collapse
|
46
|
Petkau N, Budak H, Zhou X, Oster H, Eichele G. Acetylation of BMAL1 by TIP60 controls BRD4-P-TEFb recruitment to circadian promoters. eLife 2019; 8:e43235. [PMID: 31294688 PMCID: PMC6650244 DOI: 10.7554/elife.43235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Many physiological processes exhibit circadian rhythms driven by cellular clocks composed of interlinked activating and repressing elements. To investigate temporal regulation in this molecular oscillator, we combined mouse genetic approaches and analyses of interactions of key circadian proteins with each other and with clock gene promoters. We show that transcriptional activators control BRD4-PTEFb recruitment to E-box-containing circadian promoters. During the activating phase of the circadian cycle, the lysine acetyltransferase TIP60 acetylates the transcriptional activator BMAL1 leading to recruitment of BRD4 and the pause release factor P-TEFb, followed by productive elongation of circadian transcripts. We propose that the control of BRD4-P-TEFb recruitment is a novel temporal checkpoint in the circadian clock cycle.
Collapse
Affiliation(s)
- Nikolai Petkau
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Harun Budak
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Xunlei Zhou
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Henrik Oster
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Gregor Eichele
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
47
|
Laine VN, Atema E, Vlaming P, Verhagen I, Mateman C, Ramakers JJC, van Oers K, Spoelstra K, Visser ME. The Genomics of Circadian Timing in a Wild Bird, the Great Tit (Parus major). Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Adeola HA, Papagerakis S, Papagerakis P. Systems Biology Approaches and Precision Oral Health: A Circadian Clock Perspective. Front Physiol 2019; 10:399. [PMID: 31040792 PMCID: PMC6476986 DOI: 10.3389/fphys.2019.00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
A vast majority of the pathophysiological and metabolic processes in humans are temporally controlled by a master circadian clock located centrally in the hypothalamic suprachiasmatic nucleus of the brain, as well as by specialized peripheral oscillators located in other body tissues. This circadian clock system generates a rhythmical diurnal transcriptional-translational cycle in clock genes and protein expression and activities regulating numerous downstream target genes. Clock genes as key regulators of physiological function and dysfunction of the circadian clock have been linked to various diseases and multiple morbidities. Emerging omics technologies permits largescale multi-dimensional investigations of the molecular landscape of a given disease and the comprehensive characterization of its underlying cellular components (e.g., proteins, genes, lipids, metabolites), their mechanism of actions, functional networks and regulatory systems. Ultimately, they can be used to better understand disease and interpatient heterogeneity, individual profile, identify personalized targetable key molecules and pathways, discover novel biomarkers and genetic alterations, which collectively can allow for a better patient stratification into clinically relevant subgroups to improve disease prediction and prevention, early diagnostic, clinical outcomes, therapeutic benefits, patient's quality of life and survival. The use of “omics” technologies has allowed for recent breakthroughs in several scientific domains, including in the field of circadian clock biology. Although studies have explored the role of clock genes using circadiOmics (which integrates circadian omics, such as genomics, transcriptomics, proteomics and metabolomics) in human disease, no such studies have investigated the implications of circadian disruption in oral, head and neck pathologies using multi-omics approaches and linking the omics data to patient-specific circadian profiles. There is a burgeoning body of evidence that circadian clock controls the development and homeostasis of oral and maxillofacial structures, such as salivary glands, teeth and oral epithelium. Hence, in the current era of precision medicine and dentistry and patient-centered health care, it is becoming evident that a multi-omics approach is needed to improve our understanding of the role of circadian clock-controlled key players in the regulation of head and neck pathologies. This review discusses current knowledge on the role of the circadian clock and the contribution of omics-based approaches toward a novel precision health era for diagnosing and treating head and neck pathologies, with an emphasis on oral, head and neck cancer and Sjögren's syndrome.
Collapse
Affiliation(s)
- Henry A Adeola
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town, South Africa
| | - Silvana Papagerakis
- Laboratory of Oral, Head & Neck Cancer-Personalized Diagnostics and Therapeutics, Division of Head and Neck Surgery, Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
49
|
Millius A, Ode KL, Ueda HR. A period without PER: understanding 24-hour rhythms without classic transcription and translation feedback loops. F1000Res 2019; 8. [PMID: 31031966 PMCID: PMC6468715 DOI: 10.12688/f1000research.18158.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 01/08/2023] Open
Abstract
Since Ronald Konopka and Seymour Benzer's discovery of the gene Period in the 1970s, the circadian rhythm field has diligently investigated regulatory mechanisms and intracellular transcriptional and translation feedback loops involving Period, and these investigations culminated in a 2017 Nobel Prize in Physiology or Medicine for Michael W. Young, Michael Rosbash, and Jeffrey C. Hall. Although research on 24-hour behavior rhythms started with Period, a series of discoveries in the past decade have shown us that post-transcriptional regulation and protein modification, such as phosphorylation and oxidation, are alternatives ways to building a ticking clock.
Collapse
Affiliation(s)
- Arthur Millius
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Systems Immunology and Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
50
|
Nobs SP, Tuganbaev T, Elinav E. Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Rep 2019; 20:embr.201847129. [PMID: 30877136 DOI: 10.15252/embr.201847129] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/29/2018] [Accepted: 02/22/2019] [Indexed: 12/29/2022] Open
Abstract
Host-microbiome interactions constitute key determinants of host physiology, while their dysregulation is implicated in a wide range of human diseases. The microbiome undergoes diurnal variation in composition and function, and this in turn drives oscillations in host gene expression and functions. In this review, we discuss the newest developments in understanding circadian host-microbiome interplays, and how they may be relevant in health and disease contexts. We summarize the molecular mechanisms by which the microbiome influences host function in a diurnal manner, and inversely describe how the host orchestrates circadian rhythmicity of the microbiome. Furthermore, we highlight the future perspectives and challenges in studying this new and exciting facet of host-microbiome interactions. Finally, we illustrate how the elucidation of the microbiome chronobiology may pave the way for novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Timur Tuganbaev
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel .,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|