1
|
Le Goupil S, Laprade H, Aubry M, Chevet E. Exploring the IRE1 interactome: From canonical signaling functions to unexpected roles. J Biol Chem 2024; 300:107169. [PMID: 38494075 PMCID: PMC11007444 DOI: 10.1016/j.jbc.2024.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
The unfolded protein response is a mechanism aiming at restoring endoplasmic reticulum (ER) homeostasis and is likely involved in other adaptive pathways. The unfolded protein response is transduced by three proteins acting as sensors and triggering downstream signaling pathways. Among them, inositol-requiring enzyme 1 alpha (IRE1α) (referred to as IRE1 hereafter), an endoplasmic reticulum-resident type I transmembrane protein, exerts its function through both kinase and endoribonuclease activities, resulting in both X-box binding protein 1 mRNA splicing and RNA degradation (regulated ire1 dependent decay). An increasing number of studies have reported protein-protein interactions as regulators of these signaling mechanisms, and additionally, driving other noncanonical functions. In this review, we deliver evolutive and structural insights on IRE1 and further describe how this protein interaction network (interactome) regulates IRE1 signaling abilities or mediates other cellular processes through catalytic-independent mechanisms. Moreover, we focus on newly discovered targets of IRE1 kinase activity and discuss potentially novel IRE1 functions based on the nature of the interactome, thereby identifying new fields to explore regarding this protein's biological roles.
Collapse
Affiliation(s)
- Simon Le Goupil
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France.
| | - Hadrien Laprade
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| | - Marc Aubry
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| |
Collapse
|
2
|
Han L, Huang D, Wu S, Liu S, Wang C, Sheng Y, Lu X, Broxmeyer HE, Wan J, Yang L. Lipid droplet-associated lncRNA LIPTER preserves cardiac lipid metabolism. Nat Cell Biol 2023; 25:1033-1046. [PMID: 37264180 PMCID: PMC10344779 DOI: 10.1038/s41556-023-01162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Lipid droplets (LDs) are cellular organelles critical for lipid homeostasis, with intramyocyte LD accumulation implicated in metabolic disorder-associated heart diseases. Here we identify a human long non-coding RNA, Lipid-Droplet Transporter (LIPTER), essential for LD transport in human cardiomyocytes. LIPTER binds phosphatidic acid and phosphatidylinositol 4-phosphate on LD surface membranes and the MYH10 protein, connecting LDs to the MYH10-ACTIN cytoskeleton and facilitating LD transport. LIPTER and MYH10 deficiencies impair LD trafficking, mitochondrial function and survival of human induced pluripotent stem cell-derived cardiomyocytes. Conditional Myh10 deletion in mouse cardiomyocytes leads to LD accumulation, reduced fatty acid oxidation and compromised cardiac function. We identify NKX2.5 as the primary regulator of cardiomyocyte-specific LIPTER transcription. Notably, LIPTER transgenic expression mitigates cardiac lipotoxicity, preserves cardiac function and alleviates cardiomyopathies in high-fat-diet-fed and Leprdb/db mice. Our findings unveil a molecular connector role of LIPTER in intramyocyte LD transport, crucial for lipid metabolism of the human heart, and hold significant clinical implications for treating metabolic syndrome-associated heart diseases.
Collapse
Affiliation(s)
- Lei Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dayang Huang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shiyong Wu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cheng Wang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lei Yang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Enhanced IRE1α Phosphorylation/Oligomerization-Triggered XBP1 Splicing Contributes to Parkin-Mediated Prevention of SH-SY5Y Cell Death under Nitrosative Stress. Int J Mol Sci 2023; 24:ijms24032017. [PMID: 36768338 PMCID: PMC9917145 DOI: 10.3390/ijms24032017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Mutations in parkin, a neuroprotective protein, are the predominant cause of autosomal recessive juvenile Parkinson's disease. Neuroinflammation-derived nitrosative stress has been implicated in the etiology of the chronic neurodegeneration. However, the interactions between genetic predisposition and nitrosative stress contributing to the degeneration of dopaminergic (DA) neurons remain incompletely understood. Here, we used the SH-SY5Y neuroblastoma cells to investigate the function of parkin and its pathogenic mutants in relation to cell survival under nitric oxide (NO) exposure. The results showed that overexpression of wild-type parkin protected SH-SY5Y cells from NO-induced apoptosis in a reactive oxygen species-dependent manner. Under nitrosative stress conditions, parkin selectively upregulated the inositol-requiring enzyme 1α/X-box binding protein 1 (IRE1α/XBP1) signaling axis, an unfolded protein response signal through the sensor IRE1α, which controls the splicing of XBP1 mRNA. Inhibition of XBP1 mRNA splicing either by pharmacologically inhibiting IRE1α endoribonuclease activity or by genetically knocking down XBP1 interfered with the protective activity of parkin. Furthermore, pathogenic parkin mutants with a defective protective capacity showed a lower ability to activate the IRE1α/XBP1 signaling. Finally, we demonstrated that IRE1α activity augmented by parkin was possibly mediated through interacting with IRE1α to regulate its phosphorylation/oligomerization processes, whereas mutant parkin diminished its binding to and activation of IRE1α. Thus, these results support a direct link between the protective activity of parkin and the IRE1α/XBP1 pathway in response to nitrosative stress, and mutant parkin disrupts this function.
Collapse
|
4
|
Chen G, Wei T, Ju F, Li H. Protein quality control and aggregation in the endoplasmic reticulum: From basic to bedside. Front Cell Dev Biol 2023; 11:1156152. [PMID: 37152279 PMCID: PMC10154544 DOI: 10.3389/fcell.2023.1156152] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Endoplasmic reticulum (ER) is the largest membrane-bound compartment in all cells and functions as a key regulator in protein biosynthesis, lipid metabolism, and calcium balance. Mammalian endoplasmic reticulum has evolved with an orchestrated protein quality control system to handle defective proteins and ensure endoplasmic reticulum homeostasis. Nevertheless, the accumulation and aggregation of misfolded proteins in the endoplasmic reticulum may occur during pathological conditions. The inability of endoplasmic reticulum quality control system to clear faulty proteins and aggregates from the endoplasmic reticulum results in the development of many human disorders. The efforts to comprehensively understand endoplasmic reticulum quality control network and protein aggregation will benefit the diagnostics and therapeutics of endoplasmic reticulum storage diseases. Herein, we overview recent advances in mammalian endoplasmic reticulum protein quality control system, describe protein phase transition model, and summarize the approaches to monitor protein aggregation. Moreover, we discuss the therapeutic applications of enhancing endoplasmic reticulum protein quality control pathways in endoplasmic reticulum storage diseases.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingyi Wei
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Furong Ju
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong kong SAR, China
| | - Haisen Li
- School of Life Sciences, Fudan University, Shanghai, China
- AoBio Medical, Shanghai, China
- *Correspondence: Haisen Li,
| |
Collapse
|
5
|
Fu F, Doroudgar S. IRE1/XBP1 and endoplasmic reticulum signaling - from basic to translational research for cardiovascular disease. CURRENT OPINION IN PHYSIOLOGY 2022; 28:100552. [PMID: 37207249 PMCID: PMC10195104 DOI: 10.1016/j.cophys.2022.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Most cellular protein synthesis, including synthesis of membrane-targeted and secreted proteins, which are critical for cellular and organ crosstalk, takes place at the endoplasmic reticulum (ER), placing the ER at the nexus of cellular signaling, growth, metabolism, and stress sensing. Ample evidence has established the dysregulation of protein homeostasis and the ER unfolded protein response (UPR) in cardiovascular disease. However, the mechanisms of stress sensing and signaling in the ER are incompletely defined. Recent studies have defined notable functions for the inositol-requiring kinase 1 (IRE1)/X-box- binding protein-1 (XBP1) branch of the UPR in regulation of cardiac function. This review highlights the mechanisms underlying IRE1 activation and the IRE1 interactome, which reveals unexpected functions for the UPR and summarizes our current understanding of the functions of IRE1 in cardiovascular disease.
Collapse
Affiliation(s)
- Fangyi Fu
- Department of Cardiology, Angiology, and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona - College of Medicine - Phoenix, Phoenix, AZ, United States
| |
Collapse
|
6
|
HBXIP is a novel regulator of the unfolded protein response that sustains tamoxifen resistance in ER+ breast cancer. J Biol Chem 2022; 298:101644. [PMID: 35093383 PMCID: PMC8908272 DOI: 10.1016/j.jbc.2022.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Endocrine-therapy-resistant estrogen receptor–positive (ER+) breast cancer cells often exhibit an augmented capacity to maintain endoplasmic reticulum (EnR) homeostasis under adverse conditions. Oncoprotein hepatitis B X-interacting protein (HBXIP) is a known transcriptional coactivator that promotes cancer development. However, it is unclear whether HBXIP participates in maintaining EnR homeostasis and promoting drug resistance in ER+ breast cancer. Here, we report that tamoxifen-resistant (TmaR) breast cancer cells exhibit increased expression of HBXIP, which acts as an inactivator of the unfolded protein response (UPR) to diminish tamoxifen-induced EnR stress. We show that HBXIP deficiency promotes EnR-associated degradation, enhances UPR-element reporter activity and cellular oxidative stress, and ultimately attenuates the growth of TmaR cells in vitro and in vivo. Mechanistically, we demonstrate that HBXIP acts as a chaperone of UPR transducer inositol-requiring enzyme 1a and diminishes production of reactive oxygen species (ROS) in TamR breast cancer cells. Upon loss of HBXIP expression, tamoxifen treatment hyperactivates IRE1α and its downstream proapoptotic pathways and simultaneously induces accumulation of intracellular ROS. This elevated ROS programmatically activates the other two branches of the UPR, mediated by PKR-like ER kinase and activating transcription factor 6α. Clinical investigations and Kaplan–Meier plotter analysis revealed that HBXIP is highly expressed in TamR breast cancer tissues. Furthermore, reinforced HBXIP expression is associated with a high recurrence and poor relapse-free survival rates in tamoxifen monotherapy ER+ breast cancer patients. These findings indicate that HBXIP is a regulator of EnR homeostasis and a potential target for TamR breast cancer therapy.
Collapse
|
7
|
Zhou Z, Wang Q, Michalak M. Inositol Requiring Enzyme (IRE), a multiplayer in sensing endoplasmic reticulum stress. Anim Cells Syst (Seoul) 2022; 25:347-357. [PMID: 35059134 PMCID: PMC8765250 DOI: 10.1080/19768354.2021.2020901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Zhixin Zhou
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Li M, Huang S, Zhang Y, Song Z, Fu H, Lin Z, Huang X. Regulation of the unfolded protein response transducer IRE1α by SERPINH1 aggravates periodontitis with diabetes mellitus via prolonged ER stress. Cell Signal 2022; 91:110241. [PMID: 34998932 DOI: 10.1016/j.cellsig.2022.110241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022]
Abstract
The hyperglycemic microenvironment induced by diabetes mellitus aggravates the inflammatory response, in which the IRE1α signal transduction pathway of the unfolded protein response (UPR) participates. However, the mechanism by which hyperglycemia regulates the IRE1α signaling pathway and affects endoplasmic reticulum (ER) homeostasis in human gingival epithelium in periodontitis with diabetes mellitus remains unknown. Our current data provide evidence that diabetes mellitus causes a hyperinflammatory response in the gingival epithelium, which accelerates periodontal inflammation. Next, we assessed UPR-IRE1α signaling in periodontitis with diabetes mellitus by examining human clinical gingival epithelium samples from healthy subjects, subjects with periodontitis and subjects with periodontitis with diabetes mellitus and by in vitro challenge of human epithelial cells with a hyperglycemic microenvironment. The results showed that a hyperglycemic microenvironment inhibited the IRE1α/XBP1 axis, decreased the expression of a UPR target gene (GRP78), and ultimately impaired the UPR, causing ER stress to be prolonged or more severe in human gingival epithelium. Subsequently, RNA sequencing (RNA-seq) data was analyzed to investigate the expression of ER-related genes in human gingival epithelium. Experiments verified that the mechanism by which periodontitis is aggravated in individuals with diabetes mellitus may involve decreased SERPINH1 expression. Furthermore, experiments in SERPINH1-knockdown and SERPINH1-overexpression models established in vitro indicated that SERPINH1 might act as an activator of IRE1α, maintaining human gingival epithelium homeostasis and reducing proinflammatory cytokine expression by preventing prolonged ER stress induced by high-glucose conditions. In conclusion, regulation of the UPR transducer IRE1α by SERPINH1 alleviates periodontitis with diabetes mellitus by mitigating prolonged ER stress. This finding provides evidence for the further study of periodontitis with diabetes mellitus.
Collapse
Affiliation(s)
- Mengdi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shuheng Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yong Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhi Song
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Haijun Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Moraga P, Aravena R, Urra H, Hetz C. Assays to Study IRE1 Activation and Signaling. Methods Mol Biol 2022; 2378:141-168. [PMID: 34985699 DOI: 10.1007/978-1-0716-1732-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The endoplasmic reticulum (ER) stress sensor IRE1 is a a major player of the unfolded protein response (UPR), the main pathway driving adaptation processes to restore proteostasis. In addition, overactivation of IRE1 signaling contributes to a variety of pathologies including diabetes, neurodegenerative diseases, and cancer. Under ER stress, IRE1 auto-transphosphorylates and oligomerizes, triggering the activation of its endoribonuclease domain located in the cytosolic region. Active IRE1 catalyzes the splicing of the mRNA encoding for the XBP1 transcription factor, in addition to degrade several RNAs through a process known as regulated IRE1-dependent decay of mRNA (RIDD). Besides its role as an UPR transducer, several posttranslational modifications and protein-protein interactions can regulate IRE1 activity and modulate its signaling in the absence of stress. Thus, investigating the function of IRE1 in physiology and disease requires the use of complementary approaches. Here, we provide detailed protocols to perform four different assays to study IRE1 activation and signaling: (i) Phos-tag gels to evaluate the phosphorylation status of IRE1, (ii) microscopy using TREX-IRE1-GFP cells to measure IRE1 oligomerization, (iii) conventional RT-PCR to assess XBP1 mRNA processing, and (iv) quantitative PCR to determine the levels of canonical UPR target genes and the degradation of several mRNAs that are target of RIDD. We propose to use these experimental strategies as "gold standards" to study IRE1 signaling.
Collapse
Affiliation(s)
- Paloma Moraga
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Raul Aravena
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Hery Urra
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
- The Buck Institute for Research in Aging, Novato, CA, USA.
| |
Collapse
|
10
|
La Montanara P, Hervera A, Baltussen LL, Hutson TH, Palmisano I, De Virgiliis F, Kong G, Chadwick J, Gao Y, Bartus K, Majid QA, Gorgoraptis N, Wong K, Downs J, Pizzorusso T, Ultanir SK, Leonard H, Yu H, Millar DS, Istvan N, Mazarakis ND, Di Giovanni S. Cyclin-dependent-like kinase 5 is required for pain signaling in human sensory neurons and mouse models. Sci Transl Med 2021; 12:12/551/eaax4846. [PMID: 32641489 DOI: 10.1126/scitranslmed.aax4846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 12/10/2019] [Accepted: 04/05/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent-like kinase 5 (CDKL5) gene mutations lead to an X-linked disorder that is characterized by infantile epileptic encephalopathy, developmental delay, and hypotonia. However, we found that a substantial percentage of these patients also report a previously unrecognized anamnestic deficiency in pain perception. Consistent with a role in nociception, we found that CDKL5 is expressed selectively in nociceptive dorsal root ganglia (DRG) neurons in mice and in induced pluripotent stem cell (iPS)-derived human nociceptors. CDKL5-deficient mice display defective epidermal innervation, and conditional deletion of CDKL5 in DRG sensory neurons impairs nociception, phenocopying CDKL5 deficiency disorder in patients. Mechanistically, CDKL5 interacts with calcium/calmodulin-dependent protein kinase II α (CaMKIIα) to control outgrowth and transient receptor potential cation channel subfamily V member 1 (TRPV1)-dependent signaling, which are disrupted in both CDKL5 mutant murine DRG and human iPS-derived nociceptors. Together, these findings unveil a previously unrecognized role for CDKL5 in nociception, proposing an original regulatory mechanism for pain perception with implications for future therapeutics in CDKL5 deficiency disorder.
Collapse
Affiliation(s)
- Paolo La Montanara
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK.
| | - Arnau Hervera
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology & Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lucas L Baltussen
- Kinases and Brain Development Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Thomas H Hutson
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK
| | - Ilaria Palmisano
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK
| | - Francesco De Virgiliis
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK
| | - Guiping Kong
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK
| | - Jessica Chadwick
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK
| | - Yunan Gao
- Gene Therapy, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Katalin Bartus
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Qasim A Majid
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Nikos Gorgoraptis
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK
| | - Kingsley Wong
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Jenny Downs
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, I-50135 Florence, Italy
| | - Sila K Ultanir
- Gene Therapy, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Helen Leonard
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David S Millar
- Institute of Cancer and Genetics, Cardiff University, Cardiff F14 4ED, UK
| | - Nagy Istvan
- Nociception, Section of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Nicholas D Mazarakis
- Gene Therapy, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Simone Di Giovanni
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
11
|
Del Favero G, Zeugswetter M, Kiss E, Marko D. Endoplasmic Reticulum Adaptation and Autophagic Competence Shape Response to Fluid Shear Stress in T24 Bladder Cancer Cells. Front Pharmacol 2021; 12:647350. [PMID: 34012396 PMCID: PMC8126838 DOI: 10.3389/fphar.2021.647350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 12/26/2022] Open
Abstract
Accumulation of xenobiotics and waste metabolites in the urinary bladder is constantly accompanied by shear stress originating from the movement of the luminal fluids. Hence, both chemical and physical cues constantly modulate the cellular response in health and disease. In line, bladder cells have to maintain elevated mechanosensory competence together with chemical stress response adaptation potential. However, much of the molecular mechanisms sustaining this plasticity is currently unknown. Taking this as a starting point, we investigated the response of T24 urinary bladder cancer cells to shear stress comparing morphology to functional performance. T24 cells responded to the shear stress protocol (flow speed of 0.03 ml/min, 3 h) by significantly increasing their surface area. When exposed to deoxynivalenol-3-sulfate (DON-3-Sulf), bladder cells increased this response in a concentration-dependent manner (0.1-1 µM). DON-3-Sulf is a urinary metabolite of a very common food contaminant mycotoxin (deoxynivalenol, DON) and was already described to enhance proliferation of cancer cells. Incubation with DON-3-Sulf also caused the enlargement of the endoplasmic reticulum (ER), decreased the lysosomal movement, and increased the formation of actin stress fibers. Similar remodeling of the endoplasmic reticulum and area spread after shear stress were observed upon incubation with the autophagy activator rapamycin (1-100 nM). Performance of experiments in the presence of chloroquine (chloroquine, 30 μM) further contributed to shed light on the mechanistic link between adaptation to the biomechanical stimulation and ER stress response. At the molecular level, we observed that ER reshaping was linked to actin organization, with the two components mutually regulating each other. Indeed, we identified in the ER stress-cytoskeletal rearrangement an important axis defining the physical/chemical response potential of bladder cells and created a workflow for further investigation of urinary metabolites, food constituents, and contaminants, as well as for pharmacological profiling.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael Zeugswetter
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Marikawa Y, Menor M, Deng Y, Alarcon VB. Regulation of endoplasmic reticulum stress and trophectoderm lineage specification by the mevalonate pathway in the mouse preimplantation embryo. Mol Hum Reprod 2021; 27:6156636. [PMID: 33677573 DOI: 10.1093/molehr/gaab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Early embryos are vulnerable to environmental insults, such as medications taken by the mother. Due to increasing prevalence of hypercholesterolemia, more women of childbearing potential are taking cholesterol-lowering medications called statins. Previously, we showed that inhibition of the mevalonate pathway by statins impaired mouse preimplantation development, by modulating HIPPO signaling, a key regulator for trophectoderm (TE) lineage specification. Here, we further evaluated molecular events that are altered by mevalonate pathway inhibition during the timeframe of morphogenesis and cell lineage specification. Whole transcriptome analysis revealed that statin treatment dysregulated gene expression underlying multiple processes, including cholesterol biosynthesis, HIPPO signaling, cell lineage specification and endoplasmic reticulum (ER) stress response. We explored mechanisms that link the mevalonate pathway to ER stress, because of its potential impact on embryonic health and development. Upregulation of ER stress-responsive genes was inhibited when statin-treated embryos were supplemented with the mevalonate pathway product, geranylgeranyl pyrophosphate (GGPP). Inhibition of geranylgeranylation was sufficient to upregulate ER stress-responsive genes. However, ER stress-responsive genes were not upregulated by inhibition of ras homolog family member A (RHOA), a geranylgeranylation target, although it interfered with TE specification and blastocyst cavity formation. In contrast, inhibition of Rac family small GTPase 1 (RAC1), another geranylgeranylation target, upregulated ER stress-responsive genes, while it did not impair TE specification or cavity formation. Thus, our study suggests that the mevalonate pathway regulates cellular homeostasis (ER stress repression) and differentiation (TE lineage specification) in preimplantation embryos through GGPP-dependent activation of two distinct small GTPases, RAC1 and RHOA, respectively. Translation of the findings to human embryos and clinical settings requires further investigations.
Collapse
Affiliation(s)
- Yusuke Marikawa
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Mark Menor
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Vernadeth B Alarcon
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| |
Collapse
|
13
|
Lee SK. Endoplasmic Reticulum Homeostasis and Stress Responses in Caenorhabditis elegans. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:279-303. [PMID: 34050871 DOI: 10.1007/978-3-030-67696-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive regulatory pathway that alleviates protein-folding defects in the endoplasmic reticulum (ER). Physiological demands, environmental perturbations and pathological conditions can cause accumulation of unfolded proteins in the ER and the stress signal is transmitted to the nucleus to turn on a series of genes to respond the challenge. In metazoan, the UPR pathways consisted of IRE1/XBP1, PEK-1 and ATF6, which function in parallel and downstream transcriptional activation triggers the proteostasis networks consisting of molecular chaperones, protein degradation machinery and other stress response pathways ((Labbadia J, Morimoto RI, F1000Prime Rep 6:7, 2014); (Shen X, Ellis RE, Lee K, Annu Rev Biochem 28:893-903, 2014)). The integrated responses act on to resolve the ER stress by increasing protein folding capacity, attenuating ER-loading translation, activating ER-associated proteasomal degradation (ERAD), and regulating IRE1-dependent decay of mRNA (RIDD). Therefore, the effective UPR to internal and external causes is linked to the multiple pathophysiological conditions such as aging, immunity, and neurodegenerative diseases. Recent development in the research of the UPR includes cell-nonautonomous features of the UPR, interplay between the UPR and other stress response pathways, unconventional UPR inducers, and noncanonical UPR independent of the three major branches, originated from multiple cellular and molecular machineries in addition to ER. Caenorhabditis elegans model system has critically contributed to these unprecedented aspects of the ER UPR and broadens the possible therapeutic targets to treat the ER-stress associated human disorders and time-dependent physiological deterioration of aging.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Science, Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Bashir S, Banday M, Qadri O, Bashir A, Hilal N, Nida-I-Fatima, Rader S, Fazili KM. The molecular mechanism and functional diversity of UPR signaling sensor IRE1. Life Sci 2020; 265:118740. [PMID: 33188833 DOI: 10.1016/j.lfs.2020.118740] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time to time, which lead to the activation of a signaling program known as the Unfolded Protein Response (UPR) pathway. This pathway, upon sensing any disturbance in the protein-folding milieu sends signals to the nucleus and cytoplasm in order to restore homeostasis. One of the prime UPR signaling sensors is Inositol-requiring enzyme 1 (IRE1); an ER membrane embedded protein with dual enzyme activities, kinase and endoribonuclease. The ribonuclease activity of IRE1 results in Xbp1 splicing in mammals or Hac1 splicing in yeast. However, IRE1 can switch its substrate specificity to the mRNAs that are co-transnationally transported to the ER, a phenomenon known as Regulated IRE1 Dependent Decay (RIDD). IRE1 is also reported to act as a principal molecule that coordinates with other proteins and signaling pathways, which in turn might be responsible for its regulation. The current review highlights studies on IRE1 explaining the structural features and molecular mechanism behind its ribonuclease outputs. The emphasis is also laid on the molecular effectors, which directly or indirectly interact with IRE1 to either modulate its function or connect it to other pathways. This is important in understanding the functional pleiotropy of IRE1, by which it can switch its activity from pro-survival to pro-apoptotic, thus determining the fate of cells.
Collapse
Affiliation(s)
- Samirul Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mariam Banday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ozaira Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Arif Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nazia Hilal
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nida-I-Fatima
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Stephen Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
15
|
Urra H, Pihán P, Hetz C. The UPRosome - decoding novel biological outputs of IRE1α function. J Cell Sci 2020; 133:133/15/jcs218107. [PMID: 32788208 DOI: 10.1242/jcs.218107] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Different perturbations alter the function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins in its lumen, a condition termed ER stress. To restore ER proteostasis, a highly conserved pathway is engaged, known as the unfolded protein response (UPR), triggering adaptive programs or apoptosis of terminally damaged cells. IRE1α (also known as ERN1), the most conserved UPR sensor, mediates the activation of responses to determine cell fate under ER stress. The complexity of IRE1α regulation and its signaling outputs is mediated in part by the assembly of a dynamic multi-protein complex, named the UPRosome, that regulates IRE1α activity and the crosstalk with other pathways. We discuss several studies identifying components of the UPRosome that have illuminated novel functions in cell death, autophagy, DNA damage, energy metabolism and cytoskeleton dynamics. Here, we provide a theoretical analysis to assess the biological significance of the UPRosome and present the results of a systematic bioinformatics analysis of the available IRE1α interactome data sets followed by functional enrichment clustering. This in silico approach decoded that IRE1α also interacts with proteins involved in the cell cycle, transport, differentiation, response to viral infection and immune response. Thus, defining the spectrum of IRE1α-binding partners will reveal novel signaling outputs and the relevance of the pathway to human diseases.
Collapse
Affiliation(s)
- Hery Urra
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile .,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile
| | - Philippe Pihán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile .,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile.,The Buck Institute for Research in Aging, Novato, CA 94945, USA
| |
Collapse
|
16
|
Ishibashi T, Morita S, Kishimoto S, Uraki S, Takeshima K, Furukawa Y, Inaba H, Ariyasu H, Iwakura H, Furuta H, Nishi M, Papa FR, Akamizu T. Nicotinic acetylcholine receptor signaling regulates inositol-requiring enzyme 1α activation to protect β-cells against terminal unfolded protein response under irremediable endoplasmic reticulum stress. J Diabetes Investig 2020; 11:801-813. [PMID: 31925927 PMCID: PMC7378412 DOI: 10.1111/jdi.13211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/22/2019] [Accepted: 01/05/2020] [Indexed: 01/09/2023] Open
Abstract
AIMS/INTRODUCTION Under irremediable endoplasmic reticulum (ER) stress, hyperactivated inositol-requiring enzyme 1α (IRE1α) triggers the terminal unfolded protein response (T-UPR), causing crucial cell dysfunction and apoptosis. We hypothesized that nicotinic acetylcholine receptor (nAChR) signaling regulates IRE1α activation to protect β-cells from the T-UPR under ER stress. MATERIALS AND METHODS The effects of nicotine on IRE1α activation and key T-UPR markers, thioredoxin-interacting protein and insulin/proinsulin, were analyzed by real-time polymerase chain reaction and western blotting in rat INS-1 and human EndoC-βH1 β-cell lines. Doxycycline-inducible IRE1α overexpression or ER stress agents were used to induce IRE1α activation. An α7 subunit-specific nAChR agonist (PNU-282987) and small interfering ribonucleic acid for α7 subunit-specific nAChR were used to modulate nAChR signaling. RESULTS Nicotine inhibits the increase in thioredoxin-interacting protein and the decrease in insulin 1/proinsulin expression levels induced by either forced IRE1α hyperactivation or ER stress agents. Nicotine attenuated X-box-binding protein-1 messenger ribonucleic acid site-specific splicing and IRE1α autophosphorylation induced by ER stress. Furthermore, PNU-282987 attenuated T-UPR induction by either forced IRE1α activation or ER stress agents. The effects of nicotine on attenuating thioredoxin-interacting protein and preserving insulin 1 expression levels were attenuated by pharmacological and genetic inhibition of α7 nAChR. Finally, nicotine suppressed apoptosis induced by either forced IRE1α activation or ER stress agents. CONCLUSIONS Our findings suggest that nAChR signaling regulates IRE1α activation to protect β-cells from the T-UPR and apoptosis under ER stress partly through α7 nAChR. Targeting nAChR signaling to inhibit the T-UPR cascade may therefore hold therapeutic promise by thwarting β-cell death in diabetes.
Collapse
Affiliation(s)
- Tatsuya Ishibashi
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shuhei Morita
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shohei Kishimoto
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinsuke Uraki
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Ken Takeshima
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yasushi Furukawa
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hidefumi Inaba
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroyuki Ariyasu
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroshi Iwakura
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroto Furuta
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Masahiro Nishi
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Feroz R Papa
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Diabetes CenterUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Quantitative Biosciences InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Takashi Akamizu
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
17
|
Endoplasmic reticulum stress, degeneration of pancreatic islet β-cells, and therapeutic modulation of the unfolded protein response in diabetes. Mol Metab 2020; 27S:S60-S68. [PMID: 31500832 PMCID: PMC6768499 DOI: 10.1016/j.molmet.2019.06.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Myriad challenges to the proper folding and structural maturation of secretory pathway client proteins in the endoplasmic reticulum (ER) — a condition referred to as “ER stress” — activate intracellular signaling pathways termed the unfolded protein response (UPR). Scope of review Through executing transcriptional and translational programs the UPR restores homeostasis in those cells experiencing manageable levels of ER stress. But the UPR also actively triggers cell degeneration and apoptosis in those cells that are encountering ER stress levels that exceed irremediable thresholds. Thus, UPR outputs are “double-edged”. In pancreatic islet β-cells, numerous genetic mutations affecting the balance between these opposing UPR functions cause diabetes mellitus in both rodents and humans, amply demonstrating the principle that the UPR is critical for the proper functioning and survival of the cell. Major conclusions Specifically, we have found that the UPR master regulator IRE1α kinase/endoribonuclease (RNase) triggers apoptosis, β-cell degeneration, and diabetes, when ER stress reaches critical levels. Based on these mechanistic findings, we find that novel small molecule compounds that inhibit IRE1α during such “terminal” UPR signaling can spare ER stressed β-cells from death, perhaps affording future opportunities to test new drug candidates for disease modification in patients suffering from diabetes.
Collapse
|
18
|
Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 2020; 21:421-438. [PMID: 32457508 DOI: 10.1038/s41580-020-0250-z] [Citation(s) in RCA: 1256] [Impact Index Per Article: 314.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
Cellular stress induced by the abnormal accumulation of unfolded or misfolded proteins at the endoplasmic reticulum (ER) is emerging as a possible driver of human diseases, including cancer, diabetes, obesity and neurodegeneration. ER proteostasis surveillance is mediated by the unfolded protein response (UPR), a signal transduction pathway that senses the fidelity of protein folding in the ER lumen. The UPR transmits information about protein folding status to the nucleus and cytosol to adjust the protein folding capacity of the cell or, in the event of chronic damage, induce apoptotic cell death. Recent advances in the understanding of the regulation of UPR signalling and its implications in the pathophysiology of disease might open new therapeutic avenues.
Collapse
Affiliation(s)
- Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,FONDAP Center for Geroscience Brain Health and Metabolism (GERO), Santiago, Chile. .,Program of Cellular and Molecular Biology, Institute of Biomedical Science, University of Chile, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
19
|
Riaz TA, Junjappa RP, Handigund M, Ferdous J, Kim HR, Chae HJ. Role of Endoplasmic Reticulum Stress Sensor IRE1α in Cellular Physiology, Calcium, ROS Signaling, and Metaflammation. Cells 2020; 9:E1160. [PMID: 32397116 PMCID: PMC7290600 DOI: 10.3390/cells9051160] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) is the most prominent and evolutionarily conserved unfolded protein response (UPR) signal transducer during endoplasmic reticulum functional upset (ER stress). A IRE1α signal pathway arbitrates yin and yang of cellular fate in objectionable conditions. It plays several roles in fundamental cellular physiology as well as in several pathological conditions such as diabetes, obesity, inflammation, cancer, neurodegeneration, and in many other diseases. Thus, further understanding of its molecular structure and mechanism of action during different cell insults helps in designing and developing better therapeutic strategies for the above-mentioned chronic diseases. In this review, recent insights into structure and mechanism of activation of IRE1α along with its complex regulating network were discussed in relation to their basic cellular physiological function. Addressing different binding partners that can modulate IRE1α function, UPRosome triggers different downstream pathways depending on the cellular backdrop. Furthermore, IRE1α are in normal cell activities outside the dominion of ER stress and activities under the weather of inflammation, diabetes, and obesity-related metaflammation. Thus, IRE1 as an ER stress sensor needs to be understood from a wider perspective for comprehensive functional meaning, which facilitates us with assembling future needs and therapeutic benefits.
Collapse
Affiliation(s)
- Thoufiqul Alam Riaz
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju 54907, Korea; (T.A.R.); (R.P.J.)
| | - Raghu Patil Junjappa
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju 54907, Korea; (T.A.R.); (R.P.J.)
| | - Mallikarjun Handigund
- Department of Laboratory Medicine, Jeonbuk National University, Medical School, Jeonju 54907, Korea;
| | - Jannatul Ferdous
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Han-Jung Chae
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju 54907, Korea; (T.A.R.); (R.P.J.)
| |
Collapse
|
20
|
Yoneda A, Minomi K, Tamura Y. HSP47 promotes metastasis of breast cancer by interacting with myosin IIA via the unfolded protein response transducer IRE1α. Oncogene 2020; 39:4519-4537. [PMID: 32366908 DOI: 10.1038/s41388-020-1311-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) is an aggressive cancer that is a leading cause of cancer-associated death in women worldwide. Although increased expression of heat shock protein 47 (HSP47), a collagen-specific chaperone, is associated with the high malignancy of BC, its role in BC remains largely unclear. Here we show that a small population of high-invasive BC cells expresses HSP47 and that HSP47-positive high-invasive BC cells have a high metastatic potential that is completely abolished by disruption of HSP47. HSP47 interacts with non-muscle myosin IIA (NMIIA) via the unfolded protein response transducer IRE1α, resulting in enhancement of the metastatic potential of high-invasive BC cells by augmenting the contractile force of actin filaments. Ablation of NMIIA abrogates the metastatic potential of HSP47-positive high-invasive BC cells. We further show that forced expression of NMIIA confers a high metastatic potential on low-invasive BC cells in which HSP47 but not NMIIA is expressed. Overall, our study indicates that HSP47 acts as a stimulator for metastasis of BC cells and suggest that HSP47 may be a candidate for a therapeutic target against BC.
Collapse
Affiliation(s)
- Akihiro Yoneda
- Department of Molecular Therapeutics, Center for Food & Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, 001-0021, Japan.
| | - Kenjiro Minomi
- Department of Molecular Therapeutics, Center for Food & Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, 001-0021, Japan.,Research & Development Department, Nucleic Acid Medicine Business Division, Nitto Denko Corporation, Sapporo, 001-0021, Japan
| | - Yasuaki Tamura
- Department of Molecular Therapeutics, Center for Food & Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
21
|
Bhattacharya A, Qi L. ER-associated degradation in health and disease - from substrate to organism. J Cell Sci 2019; 132:132/23/jcs232850. [PMID: 31792042 DOI: 10.1242/jcs.232850] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recent literature has revolutionized our view on the vital importance of endoplasmic reticulum (ER)-associated degradation (ERAD) in health and disease. Suppressor/enhancer of Lin-12-like (Sel1L)-HMG-coA reductase degradation protein 1 (Hrd1)-mediated ERAD has emerged as a crucial determinant of normal physiology and as a sentinel against disease pathogenesis in the body, in a largely substrate- and cell type-specific manner. In this Review, we highlight three features of ERAD, constitutive versus inducible ERAD, quality versus quantity control of ERAD and ERAD-mediated regulation of nuclear gene transcription, through which ERAD exerts a profound impact on a number of physiological processes.
Collapse
Affiliation(s)
- Asmita Bhattacharya
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA.,Graduate Program of Genetics, Genomics and Development, Cornell University, Ithaca, NY 14853, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA .,Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
22
|
RhoA regulates translation of the Nogo-A decoy SPARC in white matter-invading glioblastomas. Acta Neuropathol 2019; 138:275-293. [PMID: 31062076 PMCID: PMC6660512 DOI: 10.1007/s00401-019-02021-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/09/2023]
Abstract
Glioblastomas strongly invade the brain by infiltrating into the white matter along myelinated nerve fiber tracts even though the myelin protein Nogo-A prevents cell migration by activating inhibitory RhoA signaling. The mechanisms behind this long-known phenomenon remained elusive so far, precluding a targeted therapeutic intervention. This study demonstrates that the prevalent activation of AKT in gliomas increases the ER protein-folding capacity and enables tumor cells to utilize a side effect of RhoA activation: the perturbation of the IRE1α-mediated decay of SPARC mRNA. Once translation is initiated, glioblastoma cells rapidly secrete SPARC to block Nogo-A from inhibiting migration via RhoA. By advanced ultramicroscopy for studying single-cell invasion in whole, undissected mouse brains, we show that gliomas require SPARC for invading into white matter structures. SPARC depletion reduces tumor dissemination that significantly prolongs survival and improves response to cytostatic therapy. Our finding of a novel RhoA-IRE1 axis provides a druggable target for interfering with SPARC production and underscores its therapeutic value.
Collapse
|
23
|
PRKCSH contributes to tumorigenesis by selective boosting of IRE1 signaling pathway. Nat Commun 2019; 10:3185. [PMID: 31320625 PMCID: PMC6639383 DOI: 10.1038/s41467-019-11019-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Unfolded protein response (UPR) is an adaptive mechanism that aims at restoring ER homeostasis under severe environmental stress. Malignant cells are resistant to environmental stress, which is largely due to an activated UPR. However, the molecular mechanisms by which different UPR branches are selectively controlled in tumor cells are not clearly understood. Here, we provide evidence that PRKCSH, previously known as glucosidase II beta subunit, functions as a regulator for selective activation of the IRE1α branch of UPR. PRKCSH boosts ER stress–mediated autophosphorylation and oligomerization of IRE1α through mutual interaction. PRKCSH contributes to the induction of tumor-promoting factors and to tumor resistance to ER stress. Increased levels of PRKCSH in various tumor tissues are positively correlated with the expression of XBP1-target genes. Taken together, our data provide a molecular rationale for selective activation of the IRE1α branch in tumors and adaptation of tumor cells to severe environmental stress. Cancer cells utilise the unfolded protein response (UPR) to adapt to environmental and ER stress. Here, the authors show that the glycosidase II beta subunit, PRKSCH, protects cancer cells from ER stress, by interacting with IRE1α and activating the IRE1α-XBP1 branch of the UPR.
Collapse
|
24
|
Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU. Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. Front Mol Biosci 2019; 6:11. [PMID: 30931312 PMCID: PMC6423427 DOI: 10.3389/fmolb.2019.00011] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as "ER stress." The unfolded protein response (UPR) is a cell-signaling system that readjusts ER folding capacity to restore protein homeostasis. The key UPR signal activator, IRE1, responds to stress by propagating the UPR signal from the ER to the cytosol. Here, we discuss the structural and molecular basis of IRE1 stress signaling, with particular focus on novel mechanistic advances. We draw a comparison between the recently proposed allosteric model for UPR induction and the role of Hsp70 during polypeptide import to the mitochondrial matrix.
Collapse
Affiliation(s)
| | | | | | | | - Maruf M. U. Ali
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
George Z, Omosun Y, Azenabor AA, Goldstein J, Partin J, Joseph K, Ellerson D, He Q, Eko F, McDonald MA, Reed M, Svoboda P, Stuchlik O, Pohl J, Lutter E, Bandea C, Black CM, Igietseme JU. The molecular mechanism of induction of unfolded protein response by Chlamydia. Biochem Biophys Res Commun 2019; 508:421-429. [PMID: 30503337 PMCID: PMC6343654 DOI: 10.1016/j.bbrc.2018.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022]
Abstract
The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.
Collapse
Affiliation(s)
- Zenas George
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Yusuf Omosun
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Jason Goldstein
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - James Partin
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Kahaliah Joseph
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Debra Ellerson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Qing He
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA
| | - Francis Eko
- Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Matthew Reed
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pavel Svoboda
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Olga Stuchlik
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Jan Pohl
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | | | - Claudiu Bandea
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Carolyn M Black
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Joseph U Igietseme
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
26
|
Moon HW, Han HG, Jeon YJ. Protein Quality Control in the Endoplasmic Reticulum and Cancer. Int J Mol Sci 2018; 19:E3020. [PMID: 30282948 PMCID: PMC6213883 DOI: 10.3390/ijms19103020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is an essential compartment of the biosynthesis, folding, assembly, and trafficking of secretory and transmembrane proteins, and consequently, eukaryotic cells possess specialized machineries to ensure that the ER enables the proteins to acquire adequate folding and maturation for maintaining protein homeostasis, a process which is termed proteostasis. However, a large variety of physiological and pathological perturbations lead to the accumulation of misfolded proteins in the ER, which is referred to as ER stress. To resolve ER stress and restore proteostasis, cells have evolutionary conserved protein quality-control machineries of the ER, consisting of the unfolded protein response (UPR) of the ER, ER-associated degradation (ERAD), and autophagy. Furthermore, protein quality-control machineries of the ER play pivotal roles in the control of differentiation, progression of cell cycle, inflammation, immunity, and aging. Therefore, severe and non-resolvable ER stress is closely associated with tumor development, aggressiveness, and response to therapies for cancer. In this review, we highlight current knowledge in the molecular understanding and physiological relevance of protein quality control of the ER and discuss new insights into how protein quality control of the ER is implicated in the pathogenesis of cancer, which could contribute to therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Hye Won Moon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
27
|
Ishiwata-Kimata Y, Le GQ, Kimata Y. Stress-sensing and regulatory mechanism of the endoplasmic-stress sensors Ire1 and PERK. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2018. [DOI: 10.1515/ersc-2018-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Ire1 and its family protein PERK are endoplasmic reticulum (ER)-stress sensors that initiate cellular responses against ER accumulation of unfolded proteins. As reviewed in this article, many publications describe molecular mechanisms by which yeast Ire1 senses ER conditions and gets regulated. We also cover recent studies which reveal that mammalian Ire1 (IRE1α) and PERK are controlled in a similar but not exactly the same manner. ER-located molecular chaperone BiP captures these ER-stress sensors and suppresses their activity. Intriguingly, Ire1 is associated with BiP not as a chaperone substrate, but as a unique ligand. Unfolded proteins accumulated in the ER promote dissociation of the Ire1-BiP complex. Moreover, Ire1 is directly bound with unfolded proteins, leading to its cluster formation and potent activation. PERK also captures unfolded proteins and then forms self-oligomers. Meanwhile, membrane-lipid aberrancy is likely to activate these ER-stress sensors independently of ER accumulation of unfolded proteins. In addition, there exist a number of reports that touch on other factors that control activity of these ER-stress sensors. Such a multiplicity of regulatory mechanisms for these ER-stress sensors is likely to contribute to fine tuning of their activity.
Collapse
|
28
|
Tavernier Q, Bennana E, Poindessous V, Schaeffer C, Rampoldi L, Pietrancosta N, Pallet N. Regulation of IRE1 RNase activity by the Ribonuclease inhibitor 1 (RNH1). Cell Cycle 2018; 17:1901-1916. [PMID: 30109813 DOI: 10.1080/15384101.2018.1506655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Adaptation to endoplasmic reticulum (ER) stress depends on the activation of the sensor inositol-requiring enzyme 1α (IRE1), an endoribonuclease that splices the mRNA of the transcription factor XBP1 (X-box-binding protein 1). To better understand the protein network that regulates the activity of the IRE1 pathway, we systematically screened the proteins that interact with IRE1 and identified a ribonuclease inhibitor called ribonuclease/angiogenin inhibitor 1 (RNH1). RNH1 is a leucine-rich repeat domains-containing protein that binds to and inhibits ribonucleases. Immunoprecipitation experiments confirmed this interaction. Docking experiments indicated that RNH1 physically interacts with IRE1 through its cytosolic RNase domain. Upon ER stress, the interaction of RNH1 with IRE1 in the ER increased at the expense of the nuclear pool of RNH1. Inhibition of RNH1 expression using siRNA mediated RNA interference upon ER stress led to an increased splicing activity of XBP1. Modulation of IRE1 RNase activity by RNH1 was recapitulated in a cell-free system, suggesting direct regulation of IRE1 by RNH. We conclude that RNH1 attenuates the activity of IRE1 by interacting with its ribonuclease domain. These findings have implications for understanding the molecular mechanism by which IRE1 signaling is attenuated upon ER stress.
Collapse
Affiliation(s)
- Quentin Tavernier
- a Institut National de la Santé et de la Recherche Médicale (INSERM) U1147 , Paris , France.,b Paris Descartes University , Paris , France
| | - Evangeline Bennana
- b Paris Descartes University , Paris , France.,c 3P5 Proteomic facility, COMUE Sorbonne Paris Cité , Université Paris Descartes , Paris , France
| | - Virginie Poindessous
- a Institut National de la Santé et de la Recherche Médicale (INSERM) U1147 , Paris , France.,b Paris Descartes University , Paris , France
| | - Celine Schaeffer
- d Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology , IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Luca Rampoldi
- d Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology , IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Nicolas Pietrancosta
- b Paris Descartes University , Paris , France.,e Centre National pour la Recherche Scientifique (CNRS) U8601 , Paris , France.,f Team Chemistry and Biology, Modeling & Immunology for Therapy , CBMIT, 2MI Platform , Paris , France
| | - Nicolas Pallet
- a Institut National de la Santé et de la Recherche Médicale (INSERM) U1147 , Paris , France.,b Paris Descartes University , Paris , France.,g Clinical Chemistry Department , Hôpital Européen Gorges Pompidou, APHP , Paris , France.,h Plate-forme Proteomique 3P5 , Universite Paris Descartes, Sorbonne Paris Cite , Paris , France
| |
Collapse
|
29
|
Bright MD, Clarke PA, Workman P, Davies FE. Oncogenic RAC1 and NRAS drive resistance to endoplasmic reticulum stress through MEK/ERK signalling. Cell Signal 2018; 44:127-137. [PMID: 29329780 PMCID: PMC6562199 DOI: 10.1016/j.cellsig.2018.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 12/16/2022]
Abstract
Cancer cells are able to survive under conditions that cause endoplasmic reticulum stress (ER-stress), and can adapt to this stress by upregulating cell-survival signalling pathways and down-regulating apoptotic pathways. The cellular response to ER-stress is controlled by the unfolded protein response (UPR). Small Rho family GTPases are linked to many cell responses including cell growth and apoptosis. In this study, we investigate the function of small GTPases in cell survival under ER-stress. Using siRNA screening we identify that RAC1 promotes cell survival under ER-stress in cells with an oncogenic N92I RAC1 mutation. We uncover a novel connection between the UPR and N92I RAC1, whereby RAC1 attenuates phosphorylation of EIF2S1 under ER-stress and drives over-expression of ATF4 in basal conditions. Interestingly, the UPR connection does not drive resistance to ER-stress, as knockdown of ATF4 did not affect this. We further investigate cancer-associated kinase signalling pathways and show that RAC1 knockdown reduces the activity of AKT and ERK, and using a panel of clinically important kinase inhibitors, we uncover a role for MEK/ERK, but not AKT, in cell viability under ER-stress. A known major activator of ERK phosphorylation in cancer is oncogenic NRAS and we show that knockdown of NRAS in cells, which bear a Q61 NRAS mutation, sensitises to ER-stress. These findings highlight a novel mechanism for resistance to ER-stress through oncogenic activation of MEK/ERK signalling by small GTPases.
Collapse
Affiliation(s)
- Michael D Bright
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK.
| | - Paul A Clarke
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Paul Workman
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Faith E Davies
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| |
Collapse
|
30
|
Sepulveda D, Rojas-Rivera D, Rodríguez DA, Groenendyk J, Köhler A, Lebeaupin C, Ito S, Urra H, Carreras-Sureda A, Hazari Y, Vasseur-Cognet M, Ali MMU, Chevet E, Campos G, Godoy P, Vaisar T, Bailly-Maitre B, Nagata K, Michalak M, Sierralta J, Hetz C. Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α. Mol Cell 2018; 69:238-252.e7. [PMID: 29351844 DOI: 10.1016/j.molcel.2017.12.028] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/05/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023]
Abstract
Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR.
Collapse
Affiliation(s)
- Denisse Sepulveda
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Diego Rojas-Rivera
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Diego A Rodríguez
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Andres Köhler
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Program of Physiology and Biophysics, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | | | - Shinya Ito
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto and Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Hery Urra
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Amado Carreras-Sureda
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Mireille Vasseur-Cognet
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Bondy; Sorbonne Universités, and Institut National de la Santé et de la Recherche Médicale, Paris 7 113, France
| | - Maruf M U Ali
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Eric Chevet
- Inserm U1242, Chemistry, Oncogenesis, Stress, & Signaling, University of Rennes 1, F-35000 Rennes, France; Centre de Lutte le Cancer Eugène Marquis, F-35000 Rennes, France
| | - Gisela Campos
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund 44139, Germany
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund 44139, Germany
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Kazuhiro Nagata
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto and Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Jimena Sierralta
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Program of Physiology and Biophysics, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA.
| |
Collapse
|
31
|
Hetz C, Papa FR. The Unfolded Protein Response and Cell Fate Control. Mol Cell 2018; 69:169-181. [DOI: 10.1016/j.molcel.2017.06.017] [Citation(s) in RCA: 744] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
|
32
|
Zhang M, Liu X, Wang Q, Ru Y, Xiong X, Wu K, Yao L, Li X. NDRG2 acts as a PERK co-factor to facilitate PERK branch and ERS-induced cell death. FEBS Lett 2017; 591:3670-3681. [DOI: 10.1002/1873-3468.12861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Xiping Liu
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
- Department of Biochemistry and Molecular Biology; Zunyi Medical College; China
| | - Qinhao Wang
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Yi Ru
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Xin Xiong
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology; Department of Gastroenterology; Xijing Hospital; The Fourth Military Medical University; Xi'an China
| | - Libo Yao
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Xia Li
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| |
Collapse
|
33
|
Morita S, Villalta SA, Feldman HC, Register AC, Rosenthal W, Hoffmann-Petersen IT, Mehdizadeh M, Ghosh R, Wang L, Colon-Negron K, Meza-Acevedo R, Backes BJ, Maly DJ, Bluestone JA, Papa FR. Targeting ABL-IRE1α Signaling Spares ER-Stressed Pancreatic β Cells to Reverse Autoimmune Diabetes. Cell Metab 2017; 25:883-897.e8. [PMID: 28380378 PMCID: PMC5497784 DOI: 10.1016/j.cmet.2017.03.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/10/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
In cells experiencing unrelieved endoplasmic reticulum (ER) stress, the ER transmembrane kinase/endoribonuclease (RNase)-IRE1α-endonucleolytically degrades ER-localized mRNAs to promote apoptosis. Here we find that the ABL family of tyrosine kinases rheostatically enhances IRE1α's enzymatic activities, thereby potentiating ER stress-induced apoptosis. During ER stress, cytosolic ABL kinases localize to the ER membrane, where they bind, scaffold, and hyperactivate IRE1α's RNase. Imatinib-an anti-cancer tyrosine kinase inhibitor-antagonizes the ABL-IRE1α interaction, blunts IRE1α RNase hyperactivity, reduces pancreatic β cell apoptosis, and reverses type 1 diabetes (T1D) in the non-obese diabetic (NOD) mouse model. A mono-selective kinase inhibitor that allosterically attenuates IRE1α's RNase-KIRA8-also efficaciously reverses established diabetes in NOD mice by sparing β cells and preserving their physiological function. Our data support a model wherein ER-stressed β cells contribute to their own demise during T1D pathogenesis and implicate the ABL-IRE1α axis as a drug target for the treatment of an autoimmune disease.
Collapse
Affiliation(s)
- Shuhei Morita
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - S Armando Villalta
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA
| | - Hannah C Feldman
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Ames C Register
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Wendy Rosenthal
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ingeborg T Hoffmann-Petersen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Morvarid Mehdizadeh
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rajarshi Ghosh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Likun Wang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin Colon-Negron
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rosa Meza-Acevedo
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bradley J Backes
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Jeffrey A Bluestone
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Feroz R Papa
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
King YA, Chiu YJ, Chen HP, Kuo DH, Lu CC, Yang JS. Endoplasmic reticulum stress contributes to arsenic trioxide-induced intrinsic apoptosis in human umbilical and bone marrow mesenchymal stem cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:314-328. [PMID: 25258189 DOI: 10.1002/tox.22046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Arsenic trioxide is an old drug and has been used for a long time in traditional Chinese and Western medicines. However, the cancer treatment of arsenic trioxide has heart and vascular toxicity. The cytotoxic effects of arsenic trioxide and its molecular mechanism in human umbilical mesenchymal stem cells (HUMSC) and human bone marrow-derived mesenchymal stem cells (HMSC-bm) were investigated in this study. Our results showed that arsenic trioxide significantly reduced the viability of HUMSC and HMSC-bm in a concentration- and time-dependent manner. Arsenic trioxide is able to induce apoptotic cell death in HUMSC and HMSC-bm, as shown from the results of morphological examination, flow cytometric analyses, DAPI staining and comet assay. The appearance of arsenic trioxide also led to an increase of intracellular free calcium (Ca(2+) ) concentration and the disruption of mitochondrial membrane potential (ΔΨm). The caspase-9 and caspase-3 activities were time-dependently increased in arsenic trioxide-treated HUMSC and HMSC-bm. In addition, the proteomic analysis and DNA microarray were carried out to investigate the expression level changes of genes and proteins affected by arsenic trioxide treatment in HUMSC. Our results suggest that arsenic trioxide induces a prompt induction of ER stress and mitochondria-modulated apoptosis in HUMSC and HMSC-bm. A framework was proposed for the effect of arsenic trioxide cytotoxicity by targeting ER stress.
Collapse
Affiliation(s)
- Yih-An King
- Department of Dermatology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Jen Chiu
- Division of Reconstructive and Plastic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hao-Ping Chen
- Department of Biochemistry, Tzu Chi University, Hualien, Taiwan
| | - Daih-Huang Kuo
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung, Taiwan
| | - Chi-Cheng Lu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | |
Collapse
|
35
|
Sun S, Shi G, Sha H, Ji Y, Han X, Shu X, Ma H, Inoue T, Gao B, Kim H, Bu P, Guber RD, Shen X, Lee AH, Iwawaki T, Paton AW, Paton JC, Fang D, Tsai B, Yates JR, Wu H, Kersten S, Long Q, Duhamel GE, Simpson KW, Qi L. IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nat Cell Biol 2015; 17:1546-55. [PMID: 26551274 PMCID: PMC4670240 DOI: 10.1038/ncb3266] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) represents a principle quality control mechanism to clear misfolded proteins in the ER; however its physiological significance and the nature of endogenous ERAD substrates remain largely unexplored. Here we discover that IRE1α, the sensor of unfolded protein response (UPR), is a bona fide substrate of the Sel1L-Hrd1 ERAD complex. ERAD-mediated IRE1α degradation occurs under basal conditions in a BiP-dependent manner, requires both intramembrane hydrophilic residues of IRE1α and lectin protein OS9, and is attenuated by ER stress. ERAD deficiency causes IRE1α protein stabilization, accumulation and mild activation both in vitro and in vivo. Although enterocyte-specific Sel1L-knockout mice (Sel1LΔIEC) are viable and appear normal, they are highly susceptible to experimental colitis and inflammation-associated dysbiosis, in an IRE1α-dependent but CHOP-independent manner. Hence, Sel1L-Hrd1 ERAD serves a distinct, essential function in restraint of IRE1α signaling in vivo by managing its protein turnover.
Collapse
Affiliation(s)
- Shengyi Sun
- Graduate Program in Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | - Guojun Shi
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Haibo Sha
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Yewei Ji
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Xin Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Hongming Ma
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA
| | - Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | - Hana Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Pengcheng Bu
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Robert D Guber
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Xiling Shen
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10021, USA
| | - Takao Iwawaki
- Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Deyu Fang
- Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Haoquan Wu
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA
| | - Sander Kersten
- Nutrition Metabolism and Genomics group, Wageningen University, Bomenweg 2, 6703HD Wageningen, The Netherlands
| | - Qiaoming Long
- Laboratory Animal Research Center, Medical College of Soochow University, Suzhou 215006, Jiangsu, China
| | - Gerald E Duhamel
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Kenneth W Simpson
- Department of Clinical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Ling Qi
- Graduate Program in Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA.,Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
36
|
|
37
|
Abstract
Stress induced by accumulation of misfolded proteins in the endoplasmic reticulum is observed in many physiological and pathological conditions. To cope with endoplasmic reticulum stress, cells activate the unfolded protein response, a dynamic signalling network that orchestrates the recovery of homeostasis or triggers apoptosis, depending on the level of damage. Here we provide an overview of recent insights into the mechanisms that cells employ to maintain proteostasis and how the unfolded protein response determines cell fate under endoplasmic reticulum stress.
Collapse
|
38
|
Hiramatsu N, Chiang WC, Kurt TD, Sigurdson CJ, Lin JH. Multiple Mechanisms of Unfolded Protein Response-Induced Cell Death. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1800-8. [PMID: 25956028 PMCID: PMC4484218 DOI: 10.1016/j.ajpath.2015.03.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/09/2015] [Accepted: 03/26/2015] [Indexed: 12/12/2022]
Abstract
Eukaryotic cells fold and assemble membrane and secreted proteins in the endoplasmic reticulum (ER), before delivery to other cellular compartments or the extracellular environment. Correctly folded proteins are released from the ER, and poorly folded proteins are retained until they achieve stable conformations; irreparably misfolded proteins are targeted for degradation. Diverse pathological insults, such as amino acid mutations, hypoxia, or infection, can overwhelm ER protein quality control, leading to misfolded protein buildup, causing ER stress. To cope with ER stress, eukaryotic cells activate the unfolded protein response (UPR) by increasing levels of ER protein-folding enzymes and chaperones, enhancing the degradation of misfolded proteins, and reducing protein translation. In mammalian cells, three ER transmembrane proteins, inositol-requiring enzyme-1 (IRE1; official name ERN1), PKR-like ER kinase (PERK; official name EIF2AK3), and activating transcription factor-6, control the UPR. The UPR signaling triggers a set of prodeath programs when the cells fail to successfully adapt to ER stress or restore homeostasis. ER stress and UPR signaling are implicated in the pathogenesis of diverse diseases, including neurodegeneration, cancer, diabetes, and inflammation. This review discusses the current understanding in both adaptive and apoptotic responses as well as the molecular mechanisms instigating apoptosis via IRE1 and PERK signaling. We also examine how IRE1 and PERK signaling may be differentially used during neurodegeneration arising in retinitis pigmentosa and prion infection.
Collapse
Affiliation(s)
- Nobuhiko Hiramatsu
- Department of Pathology, University of California-San Diego, La Jolla, California
| | - Wei-Chieh Chiang
- Department of Pathology, University of California-San Diego, La Jolla, California
| | - Timothy D Kurt
- Department of Pathology, University of California-San Diego, La Jolla, California
| | | | - Jonathan H Lin
- Department of Pathology, University of California-San Diego, La Jolla, California.
| |
Collapse
|
39
|
Dufey E, Urra H, Hetz C. ER proteostasis addiction in cancer biology: Novel concepts. Semin Cancer Biol 2015; 33:40-7. [PMID: 25931388 DOI: 10.1016/j.semcancer.2015.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 01/22/2023]
Abstract
Endoplasmic reticulum (ER) stress is generated by various physiological and pathological conditions that induce an accumulation of misfolded proteins in its lumen. ER stress activates the unfolded protein response (UPR), an adaptive reaction to cope with protein misfolding to and restore proteostasis. However, chronic ER stress results in apoptosis. In solid tumors, the UPR mediates adaptation to various environmental stressors, including hypoxia, low in pH and low nutrients availability, driving positive selection. Recent findings support the concept that UPR signaling also contributes to other relevant cancer-related event that may not be related to ER stress, including angiogenesis, genomic instability, metastasis and immunomodulation. In this article, we overview novel discoveries highlighting the impact of the UPR to different aspects of cancer biology beyond its known role as a survival factor to the hypoxic environment observed in solid tumors.
Collapse
Affiliation(s)
- Estefanie Dufey
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Kim H, Bhattacharya A, Qi L. Endoplasmic reticulum quality control in cancer: Friend or foe. Semin Cancer Biol 2015; 33:25-33. [PMID: 25794824 DOI: 10.1016/j.semcancer.2015.02.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022]
Abstract
Quality control systems in the endoplasmic reticulum (ER) mediated by unfolded protein response (UPR) and endoplasmic reticulum associated degradation (ERAD) ensure cellular function and organismal survival. Recent studies have suggested that ER quality-control systems in cancer cells may serve as a double-edged sword that aids progression as well as prevention of tumor growth in a context-dependent manner. Here we review recent advances in our understanding of the complex relationship between ER proteostasis and cancer pathology, with a focus on the two most conserved ER quality-control mechanisms--the IRE1α-XBP1 pathway of the UPR and SEL1L-HRD1 complex of the ERAD.
Collapse
Affiliation(s)
- Hana Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Asmita Bhattacharya
- Graduate Program in Genetics Genomics and Development, Cornell University, Ithaca, NY 14853, United States
| | - Ling Qi
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, United States; Graduate Program in Genetics Genomics and Development, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
41
|
Wang F, Wu Y, Gu H, Reece EA, Fang S, Gabbay-Benziv R, Aberdeen G, Yang P. Ask1 gene deletion blocks maternal diabetes-induced endoplasmic reticulum stress in the developing embryo by disrupting the unfolded protein response signalosome. Diabetes 2015; 64:973-88. [PMID: 25249581 PMCID: PMC4338585 DOI: 10.2337/db14-0409] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is activated by various stresses. The link between ASK1 activation and endoplasmic reticulum (ER) stress, two causal events in diabetic embryopathy, has not been determined. We sought to investigate whether ASK1 is involved in the unfolded protein response (UPR) that leads to ER stress. Deleting Ask1 abrogated diabetes-induced UPR by suppressing phosphorylation of inositol-requiring enzyme 1α (IRE1α), and double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK) blocked the mitochondrial translocation of proapoptotic Bcl-2 members and ER stress. ASK1 participated in the IRE1α signalosome, and removing ASK1 abrogated the proapoptotic kinase activity of IRE1α. Ask1 deletion suppressed diabetes-induced IRE1α endoriboneclease activities, which led to X-box binding protein 1 mRNA cleavage, an ER stress marker, decreased expression of microRNAs, and increased expression of a miR-17 target, thioredoxin-interacting protein (Txnip), a thioredoxin binding protein, which enhanced ASK1 activation by disrupting the thioredoxin-ASK1 complexes. ASK1 is essential for the assembly and function of the IRE1α signalosome, which forms a positive feedback loop with ASK1 through Txnip. ASK1 knockdown in C17.2 neural stem cells diminished high glucose- or tunicamycin-induced IRE1α activation, which further supports our hypothesis that ASK1 plays a causal role in diabetes-induced ER stress and apoptosis.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Yanqing Wu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Hui Gu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Shengyun Fang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Rinat Gabbay-Benziv
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Graham Aberdeen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
42
|
Naphthoquinone derivative PPE8 induces endoplasmic reticulum stress in p53 null H1299 cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:453679. [PMID: 25685256 PMCID: PMC4313521 DOI: 10.1155/2015/453679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 11/17/2022]
Abstract
Endoplasmic reticulum (ER) plays a key role in synthesizing secretory proteins and sensing signal function in eukaryotic cells. Responding to calcium disturbance, oxidation state change, or pharmacological agents, ER transmembrane protein, inositol-regulating enzyme 1 (IRE1), senses the stress and triggers downstream signals. Glucose-regulated protein 78 (GRP78) dissociates from IRE1 to assist protein folding and guard against cell death. In prolonged ER stress, IRE1 recruits and activates apoptosis signal-regulating kinase 1 (ASK1) as well as downstream JNK for cell death. Naphthoquinones are widespread natural phenolic compounds. Vitamin K3, a derivative of naphthoquinone, inhibits variant tumor cell growth via oxygen uptake and oxygen stress. We synthesized a novel naphthoquinone derivative PPE8 and evaluated capacity to induce ER stress in p53 null H1299 and p53 wild-type A549 cells. In H1299 cells, PPE8 induced ER enlargement, GRP78 expression, and transient IER1 activation. Activated IRE1 recruited ASK1 for downstream JNK phosphorylation. IRE1 knockdown by siRNA attenuated PPE8-induced JNK phosphorylation and cytotoxicity. Prolonged JNK phosphorylation may be involved in PPE8-induced cytotoxicity. Such results did not arise in A549 cells, but p53 knockdown by siRNA restored PPE8-induced GRP78 expression and JNK phosphorylation. We offer a novel compound to induce ER stress and cytotoxicity in p53-deficient cancer cells, presenting an opportunity for treatment.
Collapse
|
43
|
Dufey E, Sepúlveda D, Rojas-Rivera D, Hetz C. Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. 1. An overview. Am J Physiol Cell Physiol 2014; 307:C582-94. [DOI: 10.1152/ajpcell.00258.2014] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increased demand on the protein folding capacity of the endoplasmic reticulum (ER) engages an adaptive reaction known as the unfolded protein response (UPR). The UPR regulates protein translation and the expression of numerous target genes that contribute to restore ER homeostasis or induce apoptosis of irreversibly damaged cells. UPR signaling is highly regulated and dynamic and integrates information about the type, intensity, and duration of the stress stimuli, thereby determining cell fate. Recent advances highlight novel physiological outcomes of the UPR beyond specialized secretory cells, particularly in innate immunity, metabolism, and cell differentiation. Here we discuss studies on the fine-tuning of the UPR and its physiological role in diverse organs and diseases.
Collapse
Affiliation(s)
- Estefanie Dufey
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Denisse Sepúlveda
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; and
- Neurounion Biomedical Foundation, CENPAR, Santiago, Chile
| |
Collapse
|
44
|
Coelho DS, Domingos PM. Physiological roles of regulated Ire1 dependent decay. Front Genet 2014; 5:76. [PMID: 24795742 PMCID: PMC3997004 DOI: 10.3389/fgene.2014.00076] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/24/2014] [Indexed: 12/17/2022] Open
Abstract
Inositol-requiring enzyme 1 (Ire1) is an important transducer of the unfolded protein response (UPR) that is activated by the accumulation of misfolded proteins in the endoplamic reticulum (ER stress). Activated Ire1 mediates the splicing of an intron from the mRNA of Xbp1, causing a frame-shift during translation and introducing a new carboxyl domain in the Xbp1 protein, which only then becomes a fully functional transcription factor. Studies using cell culture systems demonstrated that Ire1 also promotes the degradation of mRNAs encoding mostly ER-targeted proteins, to reduce the load of incoming ER “client” proteins during ER stress. This process was called RIDD (regulated Ire1-dependent decay), but its physiological significance remained poorly characterized beyond cell culture systems. Here we review several recent studies that have highlighted the physiological roles of RIDD in specific biological paradigms, such as photoreceptor differentiation in Drosophila or mammalian liver and endocrine pancreas function. These studies demonstrate the importance of RIDD in tissues undergoing intense secretory function and highlight the physiologic role of RIDD during UPR activation in cells and organisms.
Collapse
Affiliation(s)
- Dina S Coelho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| |
Collapse
|
45
|
Natarajan P, Crothers JM, Rosen JE, Nakada SL, Rakholia M, Okamoto CT, Forte JG, Machen TE. Myosin IIB and F-actin control apical vacuolar morphology and histamine-induced trafficking of H-K-ATPase-containing tubulovesicles in gastric parietal cells. Am J Physiol Gastrointest Liver Physiol 2014; 306:G699-710. [PMID: 24578340 PMCID: PMC3989701 DOI: 10.1152/ajpgi.00316.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Selective inhibitors of myosin or actin function and confocal microscopy were used to test the role of an actomyosin complex in controlling morphology, trafficking, and fusion of tubulovesicles (TV) containing H-K-ATPase with the apical secretory canaliculus (ASC) of primary-cultured rabbit gastric parietal cells. In resting cells, myosin IIB and IIC, ezrin, and F-actin were associated with ASC, whereas H-K-ATPase localized to intracellular TV. Histamine caused fusion of TV with ASC and subsequent expansion resulting from HCl and water secretion; F-actin and ezrin remained associated with ASC whereas myosin IIB and IIC appeared to dissociate from ASC and relocalize to the cytoplasm. ML-7 (inhibits myosin light chain kinase) caused ASC of resting cells to collapse and most myosin IIB, F-actin, and ezrin to dissociate from ASC. TV were unaffected by ML-7. Jasplakinolide (stabilizes F-actin) caused ASC to develop large blebs to which actin, myosin II, and ezrin, as well as tubulin, were prominently localized. When added prior to stimulation, ML-7 and jasplakinolide prevented normal histamine-stimulated transformations of ASC/TV and the cytoskeleton, but they did not affect cells that had been previously stimulated with histamine. These results indicate that dynamic pools of actomyosin are required for maintenance of ASC structure in resting cells and for trafficking of TV to ASC during histamine stimulation. However, the dynamic pools of actomyosin are not required once the histamine-stimulated transformation of TV/ASC and cytoskeleton has occurred. These results also show that vesicle trafficking in parietal cells shares mechanisms with similar processes in renal collecting duct cells, neuronal synapses, and skeletal muscle.
Collapse
Affiliation(s)
- Paramasivam Natarajan
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | - James M. Crothers
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | - Jared E. Rosen
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | - Stephanie L. Nakada
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | - Milap Rakholia
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | - Curtis T. Okamoto
- 2Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - John G. Forte
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | - Terry E. Machen
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| |
Collapse
|
46
|
Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival. Proc Natl Acad Sci U S A 2014; 111:E582-91. [PMID: 24453213 DOI: 10.1073/pnas.1318114111] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Suppressor/Enhancer of Lin-12-like (Sel1L) is an adaptor protein for the E3 ligase hydroxymethylglutaryl reductase degradation protein 1 (Hrd1) involved in endoplasmic reticulum-associated degradation (ERAD). Sel1L's physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we show that Sel1L is indispensable for Hrd1 stability, ER homeostasis, and survival. Acute loss of Sel1L leads to premature death in adult mice within 3 wk with profound pancreatic atrophy. Contrary to current belief, our data show that mammalian Sel1L is required for Hrd1 stability and ERAD function both in vitro and in vivo. Sel1L deficiency disturbs ER homeostasis, activates ER stress, attenuates translation, and promotes cell death. Serendipitously, using a biochemical approach coupled with mass spectrometry, we found that Sel1L deficiency causes the aggregation of both small and large ribosomal subunits. Thus, Sel1L is an indispensable component of the mammalian Hrd1 ERAD complex and ER homeostasis, which is essential for protein translation, pancreatic function, and cellular and organismal survival.
Collapse
|
47
|
Pan TL, Wang PW, Hung YC, Huang CH, Rau KM. Proteomic analysis reveals tanshinone IIA enhances apoptosis of advanced cervix carcinoma CaSki cells through mitochondria intrinsic and endoplasmic reticulum stress pathways. Proteomics 2013; 13:3411-23. [PMID: 24167031 DOI: 10.1002/pmic.201300274] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 12/17/2022]
Abstract
Cervix cancer is the second most common cancer among women worldwide, whereas paclitaxel, the first line chemotherapeutic drug used to treat cervical cancer, shows low chemosensitivity on the advanced cervical cancer cell line. Tanshinone IIA (Tan IIA) exhibited strong growth inhibitory effect on CaSki cells (IC50 = 5.51 μM) through promoting caspase cascades with concomitant upregulating the phosphorylation of p38 and JNK signaling. Comprehensive proteomics revealed the global protein changes and the network analysis implied that Tan IIA treatment would activate ER stress pathways that finally lead to apoptotic cell death. Moreover, ER stress inhibitor could alleviate Tan IIA caused cell growth inhibition and ameliorate C/EBP-homologous protein as well as apoptosis signal-regulating kinase 1 mediated cell death. The therapeutic interventions targeting the mitochondrial-related apoptosis and ER stress responses might be promising strategies to conquer paclitaxel resistance.
Collapse
Affiliation(s)
- Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
48
|
IRE1: ER stress sensor and cell fate executor. Trends Cell Biol 2013; 23:547-55. [PMID: 23880584 DOI: 10.1016/j.tcb.2013.06.005] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/31/2013] [Accepted: 06/19/2013] [Indexed: 12/20/2022]
Abstract
Cells operate a signaling network termed the unfolded protein response (UPR) to monitor protein-folding capacity in the endoplasmic reticulum (ER). Inositol-requiring enzyme 1 (IRE1) is an ER transmembrane sensor that activates the UPR to maintain the ER and cellular function. Although mammalian IRE1 promotes cell survival, it can initiate apoptosis via decay of antiapoptotic miRNAs. Convergent and divergent IRE1 characteristics between plants and animals underscore its significance in cellular homeostasis. This review provides an updated scenario of the IRE1 signaling model, discusses emerging IRE1 sensing mechanisms, compares IRE1 features among species, and outlines exciting future directions in UPR research.
Collapse
|
49
|
Kitai Y, Ariyama H, Kono N, Oikawa D, Iwawaki T, Arai H. Membrane lipid saturation activates IRE1α without inducing clustering. Genes Cells 2013; 18:798-809. [PMID: 23803178 DOI: 10.1111/gtc.12074] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/19/2013] [Indexed: 12/18/2022]
Abstract
The unfolded protein response (UPR) is an adaptive stress response that responds to the accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER) and that adjusts the protein-folding capacity to the needs of the cell. Perturbation of cellular lipids also activates the UPR. Lipid-induced UPR has attracted much attention because it is associated with the pathology of some metabolic diseases. However, how the lipid-induced UPR is activated remains unclear. We previously showed that palmitic acid treatment or knockdown of stearoyl-CoA desaturase in HeLa cells promotes membrane lipid saturation and activates the UPR. In this study, we compared UPR activation by membrane lipid saturation with UPR activation by conventional ER stressors that cause the accumulation of unfolded proteins such as tunicamycin and thapsigargin. Membrane lipid saturation induced autophosphorylation of inositol-requiring 1α (IRE1α) and protein kinase RNA-like ER kinase, but not the conversion of activating transcription factor-6α to the active form. A conventional ER stressor induced clustering of fluorescently tagged IRE1α fusion protein, but palmitic acid treatment did not, suggesting that IRE1α was activated without large cluster formation by membrane lipid saturation. Together, these results suggest membrane lipid saturation, and unfolded proteins activate the UPR through different mechanisms.
Collapse
Affiliation(s)
- Yuto Kitai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Yang L, Sha H, Davisson RL, Qi L. Phenformin activates the unfolded protein response in an AMP-activated protein kinase (AMPK)-dependent manner. J Biol Chem 2013; 288:13631-8. [PMID: 23548904 PMCID: PMC3650398 DOI: 10.1074/jbc.m113.462762] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/30/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cross-talk between UPR activation and metabolic stress remains largely unclear. RESULTS Phenformin treatment activates the IRE1α and PERK pathways in an AMPK-dependent manner. CONCLUSION AMPK is required for phenformin-mediated IRE1α and PERK activation. SIGNIFICANCE Our findings demonstrate the cross-talk between UPR and metabolic signals. Activation of the unfolded protein response (UPR) is associated with the disruption of endoplasmic reticulum (ER) homeostasis and has been implicated in the pathogenesis of many human metabolic diseases, including obesity and type 2 diabetes. However, the nature of the signals activating UPR under these conditions remains largely unknown. Using a method that we recently optimized to directly measure UPR sensor activation, we screened the effect of various metabolic drugs on UPR activation and show that the anti-diabetic drug phenformin activates UPR sensors IRE1α and pancreatic endoplasmic reticulum kinase (PERK) in both an ER-dependent and ER-independent manner. Mechanistically, AMP-activated protein kinase (AMPK) activation is required but not sufficient to initiate phenformin-mediated IRE1α and PERK activation, suggesting the involvement of additional factor(s). Interestingly, activation of the IRE1α (but not PERK) pathway is partially responsible for the cytotoxic effect of phenformin. Together, our data show the existence of a non-canonical UPR whose activation requires the cytosolic kinase AMPK, adding another layer of complexity to UPR activation upon metabolic stress.
Collapse
Affiliation(s)
- Liu Yang
- From the Graduate Program in Biochemistry, Molecular and Cell Biology
| | - Haibo Sha
- Division of Nutritional Sciences, and
| | - Robin L. Davisson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Ling Qi
- From the Graduate Program in Biochemistry, Molecular and Cell Biology
- Division of Nutritional Sciences, and
| |
Collapse
|