1
|
White MA, Cohen R, Travis AJ. Real-Time Imaging of Calcium Dynamics in Human Sperm After Precise Single-Cell Stimulation. Methods Mol Biol 2025; 2861:247-256. [PMID: 39395110 DOI: 10.1007/978-1-0716-4164-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Calcium signaling is a critical regulator of sperm activation and function during the processes of capacitation and fertilization. Here, we describe a combined method for calcium imaging of single, live human sperm in response to stimuli administered with a precisely targeted delivery technique. This protocol is an adaptation of techniques developed for studies of murine sperm [1, 2], and enables real-time monitoring of human sperm calcium dynamics with high spatiotemporal resolution and concurrent detection of acrosome exocytosis (AE), a functional endpoint of sperm capacitation and requirement for physiological fertilization.The described imaging technique provides a valuable tool for exploration of calcium regulation in human sperm, which is essential to answer important questions and knowledge gaps regarding the link between calcium dynamics, AE, and fertilization. The versatility of this technique can be amplified through use of various indicator dyes or integration with pharmacological strategies such as pre-treating sperm with inhibitors or activators targeting specific receptors, channels, or intracellular signaling pathways of interest. Beyond fundamental inquiries into sperm physiology, this method can also be applied to assess the impact of potential contraceptive compounds on calcium signaling, AE, and membrane integrity.
Collapse
Affiliation(s)
- Melissa A White
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Roy Cohen
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| | - Alexander J Travis
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| |
Collapse
|
2
|
Suhaiman L, Belmonte SA. Lipid remodeling in acrosome exocytosis: unraveling key players in the human sperm. Front Cell Dev Biol 2024; 12:1457638. [PMID: 39376630 PMCID: PMC11456524 DOI: 10.3389/fcell.2024.1457638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
It has long been thought that exocytosis was driven exclusively by well-studied fusion proteins. Some decades ago, the role of lipids became evident and escalated interest in the field. Our laboratory chose a particular cell to face this issue: the human sperm. What makes this cell special? Sperm, as terminal cells, are characterized by their scarcity of organelles and the complete absence of transcriptional and translational activities. They are specialized for a singular membrane fusion occurrence: the exocytosis of the acrosome. This unique trait makes them invaluable for the study of exocytosis in isolation. We will discuss the lipids' role in human sperm acrosome exocytosis from various perspectives, with a primary emphasis on our contributions to the field. Sperm cells have a unique lipid composition, very rare and not observed in many cell types, comprising a high content of plasmalogens, long-chain, and very-long-chain polyunsaturated fatty acids that are particular constituents of some sphingolipids. This review endeavors to unravel the impact of membrane lipid composition on the proper functioning of the exocytic pathway in human sperm and how this lipid dynamic influences its fertilizing capability. Evidence from our and other laboratories allowed unveiling the role and importance of multiple lipids that drive exocytosis. This review highlights the role of cholesterol, diacylglycerol, and particular phospholipids like phosphatidic acid, phosphatidylinositol 4,5-bisphosphate, and sphingolipids in driving sperm acrosome exocytosis. Furthermore, we provide a comprehensive overview of the factors and enzymes that regulate lipid turnover during the exocytic course. A more thorough grasp of the role played by lipids transferred from sperm can provide insights into certain causes of male infertility. It may lead to enhancements in diagnosing infertility and techniques like assisted reproductive technology (ART).
Collapse
Affiliation(s)
- Laila Suhaiman
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Graziani A, Rocca MS, Vinanzi C, Masi G, Grande G, De Toni L, Ferlin A. Genetic Causes of Qualitative Sperm Defects: A Narrative Review of Clinical Evidence. Genes (Basel) 2024; 15:600. [PMID: 38790229 PMCID: PMC11120687 DOI: 10.3390/genes15050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Several genes are implicated in spermatogenesis and fertility regulation, and these genes are presently being analysed in clinical practice due to their involvement in male factor infertility (MFI). However, there are still few genetic analyses that are currently recommended for use in clinical practice. In this manuscript, we reviewed the genetic causes of qualitative sperm defects. We distinguished between alterations causing reduced sperm motility (asthenozoospermia) and alterations causing changes in the typical morphology of sperm (teratozoospermia). In detail, the genetic causes of reduced sperm motility may be found in the alteration of genes associated with sperm mitochondrial DNA, mitochondrial proteins, ion transport and channels, and flagellar proteins. On the other hand, the genetic causes of changes in typical sperm morphology are related to conditions with a strong genetic basis, such as macrozoospermia, globozoospermia, and acephalic spermatozoa syndrome. We tried to distinguish alterations approved for routine clinical application from those still unsupported by adequate clinical studies. The most important aspect of the study was related to the correct identification of subjects to be tested and the correct application of genetic tests based on clear clinical data. The correct application of available genetic tests in a scenario where reduced sperm motility and changes in sperm morphology have been observed enables the delivery of a defined diagnosis and plays an important role in clinical decision-making. Finally, clarifying the genetic causes of MFI might, in future, contribute to reducing the proportion of so-called idiopathic MFI, which might indeed be defined as a subtype of MFI whose cause has not yet been revealed.
Collapse
Affiliation(s)
- Andrea Graziani
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
| | - Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| | - Cinzia Vinanzi
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| | - Giulia Masi
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
| | - Giuseppe Grande
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| | - Luca De Toni
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
| | - Alberto Ferlin
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| |
Collapse
|
4
|
Cao H, Li L, Liu S, Wang Y, Liu X, Yang F, Dong W. The multifaceted role of extracellular ATP in sperm function: From spermatogenesis to fertilization. Theriogenology 2024; 214:98-106. [PMID: 37865020 DOI: 10.1016/j.theriogenology.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) is a vital signaling molecule involved in various physiological processes within the body. In recent years, studies have revealed its significant role in male reproduction, particularly in sperm function. This review explores the multifaceted role of extracellular ATP in sperm function, from spermatogenesis to fertilization. We discuss the impact of extracellular ATP on spermatogenesis, sperm maturation and sperm-egg fusion, highlighting the complex regulatory mechanisms and potential clinical applications in the context of male infertility. By examining the latest research, we emphasize the crucial role of extracellular ATP in sperm function and propose future research directions to further.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianglin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Takei GL. Molecular mechanisms of mammalian sperm capacitation, and its regulation by sodium-dependent secondary active transporters. Reprod Med Biol 2024; 23:e12614. [PMID: 39416520 PMCID: PMC11480905 DOI: 10.1002/rmb2.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mammalian spermatozoa have to be "capacitated" to be fertilization-competent. Capacitation is a collective term for the physiological and biochemical changes in spermatozoa that occur within the female body. However, the regulatory mechanisms underlying capacitation have not been fully elucidated. Methods Previously published papers on capacitation, especially from the perspective of ions/channels/transporters, were extracted and summarized. Results Capacitation can be divided into two processes: earlier events (membrane potential hyperpolarization, intracellular pH rise, intracellular Ca2+ rise, etc.) and two major later events: hyperactivation and the acrosome reaction. Earlier events are closely interconnected with each other. Various channels/transporters are involved in the regulation of them, which ultimately lead to the later events. Manipulating the extracellular K+ concentration based on the oviductal concentration modifies membrane potential; however, the later events and fertilization are not affected, suggesting the uninvolvement of membrane potential in capacitation. Hyperpolarization is a highly conserved phenomenon among mammalian species, indicating its importance in capacitation. Therefore, the physiological importance of hyperpolarization apart from membrane potential is suggested. Conclusion The hypotheses are (1) hyperpolarizing Na+ dynamics (decrease in intracellular Na+) and Na+-driven secondary active transporters play a vital role in capacitation and (2) the sperm-specific potassium channel Slo3 is involved in volume and/or morphological regulation.
Collapse
Affiliation(s)
- Gen L. Takei
- Department of Pharmacology and ToxicologyDokkyo Medical UniversityTochigiJapan
| |
Collapse
|
6
|
Sosnicki DM, Cohen R, Asano A, Nelson JL, Mukai C, Comizzoli P, Travis AJ. Segmental differentiation of the murine epididymis: identification of segment-specific, GM1-enriched vesicles and regulation by luminal fluid factors†. Biol Reprod 2023; 109:864-877. [PMID: 37694824 PMCID: PMC10724454 DOI: 10.1093/biolre/ioad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 09/09/2023] [Indexed: 09/12/2023] Open
Abstract
The murine epididymis has 10 distinct segments that provide the opportunity to identify compartmentalized cell physiological mechanisms underlying sperm maturation. However, despite the essential role of the epididymis in reproduction, remarkably little is known about segment-specific functions of this organ. Here, we investigate the dramatic segmental localization of the ganglioside GM1, a glycosphingolipid already known to play key roles in sperm capacitation and acrosome exocytosis. Frozen tissue sections of epididymides from adult mice were treated with the binding subunit of cholera toxin conjugated to AlexaFluor 488 to label GM1. We report that GM1-enriched vesicles were found exclusively in principal and clear cells of segment 2. These vesicles were also restricted to the lumen of segment 2 and did not appear to flow with the sperm into segment 3, within the limits of detection by confocal microscopy. Interestingly, this segment-specific presence was altered in several azoospermic mouse models and in wild-type mice after efferent duct ligation. These findings indicate that a lumicrine factor, itself dependent on spermatogenesis, controls this segmental differentiation. The RNA sequencing results confirmed global de-differentiation of the proximal epididymal segments in response to efferent duct ligation. Additionally, GM1 localization on the surface of the sperm head increased as sperm transit through segment 2 and have contact with the GM1-enriched vesicles. This is the first report of segment-specific vesicles and their role in enriching sperm with GM1, a glycosphingolipid known to be critical for sperm function, providing key insights into the segment-specific physiology and function of the epididymis.
Collapse
Affiliation(s)
- Danielle M Sosnicki
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
- Smithsonian's National Zoo and Conservation Biology Institute, Department of Reproductive Sciences, Washington, DC, USA
| | - Roy Cohen
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
- Cornell University, Department of Public and Ecosystem Health, Ithaca, NY, USA
| | - Atsushi Asano
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | | | - Chinatsu Mukai
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Department of Reproductive Sciences, Washington, DC, USA
| | - Alexander J Travis
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
- Cornell University, Department of Public and Ecosystem Health, Ithaca, NY, USA
| |
Collapse
|
7
|
López-González I, Sánchez-Cárdenas C, De la Vega-Beltrán JL, Alvarado-Quevedo B, Ocelotl-Oviedo JP, González-Cota AL, Aldana A, Orta G, Darszon A. ATP increases head volume in capacitated human sperm via a purinergic channel. Biochem Biophys Res Commun 2023; 671:318-326. [PMID: 37327703 DOI: 10.1016/j.bbrc.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
Scanning ion-conductance microscopy allowed us to document an external Ca2+ dependent ATP driven volume increase (ATPVI) in capacitated human sperm heads. We examined the involvement of purinergic receptors (PRs) P2X2R and P2X4R in ATPVI using their co-agonists progesterone and Ivermectin (Iver), and Cu2+, which co-activates P2X2Rs and inhibits P2X4Rs. Iver enhanced ATPVI and Cu2+ and 5BDBD inhibited it, indicating P2X4Rs contributed to this response. Moreover, Cu2+ and 5BDBD inhibited the ATP-induced acrosome reaction (AR) which was enhanced by Iver. ATP increased the concentration of intracellular Ca2+ ([Ca2+]i) in >45% of individual sperm, most of which underwent AR monitored using FM4-64. Our findings suggest that human sperm P2X4R activation by ATP increases [Ca2+]i mainly due to Ca2+ influx which leads to a sperm head volume increase, likely involving acrosomal swelling, and resulting in AR.
Collapse
Affiliation(s)
- I López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico.
| | - C Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - J L De la Vega-Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - B Alvarado-Quevedo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - J P Ocelotl-Oviedo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - A L González-Cota
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - A Aldana
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - G Orta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - A Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
8
|
Hwang JY, Chung JJ. CatSper Calcium Channels: 20 Years On. Physiology (Bethesda) 2023; 38:0. [PMID: 36512352 PMCID: PMC10085559 DOI: 10.1152/physiol.00028.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The flagellar-specific Ca2+ channel CatSper is the predominant Ca2+ entry site in mammalian sperm. CatSper-mediated Ca2+ signaling affects nearly every event that regulates sperm to acquire fertilizing capability. In this review, we summarize some of the main findings from 20 years of CatSper research and highlight recent progress and prospects.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
- Department of Gynecology and Obstetrics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Bollwein H, Malama E. Review: Evaluation of bull fertility. Functional and molecular approaches. Animal 2023; 17 Suppl 1:100795. [PMID: 37567681 DOI: 10.1016/j.animal.2023.100795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 08/13/2023] Open
Abstract
With the term "assisted reproduction technologies" in modern cattle farming, one could imply the collection of techniques that aim at the optimal use of bovine gametes to produce animals of high genetic value in a time- and cost-efficient manner. The accurate characterisation of sperm quality plays a critical role for the efficiency of several assisted reproduction-related procedures, such as sperm processing, in vitro embryo production and artificial insemination. Bull fertility is ultimately a collective projection of the ability of a series of ejaculates to endure sperm processing stress, and achieve fertilisation of the oocyte and production of a viable and well-developing embryo. In this concept, the assessment of sperm functional and molecular characteristics is key to bull fertility diagnostics and prognostics. Among others, functional features linked to sperm plasma membrane, acrosome and DNA integrity are usually assessed as a measure of the ability of sperm to express the phenotypes that will allow them to maintain their homeostasis and orchestrate-in a strict temporal manner-the course of events that will enable the delivery of their genetic content to the oocyte upon fertilisation. Nevertheless, measures of sperm functionality are not always adequate indicators of bull fertility. Nowadays, advancements in the field of molecular biology have facilitated the profiling of several biomolecules in male gametes. The molecular profiling of bovine sperm offers a deeper insight into the mechanisms underlying sperm physiology and, thus, can reveal novel candidate markers for bull fertility prognosis. In this review, the importance of three organelles (the nucleus, the plasma membrane and the acrosome) for the characterisation of sperm fertilising capacity and bull fertility is discussed at functional and molecular levels. In particular, information about sperm head morphometry, chromatin structure, viability as well as the ability of sperm to capacitate and undergo the acrosome reaction are presented in relation to the cryotolerance of male gametes and bull fertility. Finally, major spermatozoal coding and non-coding RNAs, and proteins that are involved in the above-mentioned aspects of sperm functionality are also summarised.
Collapse
Affiliation(s)
- H Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - E Malama
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
10
|
Morohoshi A, Miyata H, Tokuhiro K, Iida-Norita R, Noda T, Fujihara Y, Ikawa M. Testis-enriched ferlin, FER1L5, is required for Ca 2+-activated acrosome reaction and male fertility. SCIENCE ADVANCES 2023; 9:eade7607. [PMID: 36696506 PMCID: PMC9876558 DOI: 10.1126/sciadv.ade7607] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Spermatozoa need to undergo an exocytotic event called the acrosome reaction before fusing with eggs. Although calcium ion (Ca2+) is essential for the acrosome reaction, its molecular mechanism remains unknown. Ferlin is a single transmembrane protein with multiple Ca2+-binding C2 domains, and there are six ferlins, dysferlin (DYSF), otoferlin (OTOF), myoferlin (MYOF), fer-1-like 4 (FER1L4), FER1L5, and FER1L6, in mammals. Dysf, Otof, and Myof knockout mice have been generated, and each knockout mouse line exhibited membrane fusion disorders such as muscular dystrophy in Dysf, deafness in Otof, and abnormal myogenesis in Myof. Here, by generating mutant mice of Fer1l4, Fer1l5, and Fer1l6, we found that only Fer1l5 is required for male fertility. Fer1l5 mutant spermatozoa could migrate in the female reproductive tract and reach eggs, but no acrosome reaction took place. Even a Ca2+ ionophore cannot induce the acrosome reaction in Fer1l5 mutant spermatozoa. These results suggest that FER1L5 is the missing link between Ca2+ and the acrosome reaction.
Collapse
Affiliation(s)
- Akane Morohoshi
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka 5650871 Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
| | - Keizo Tokuhiro
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 5731191 Japan
| | - Rie Iida-Norita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Kumamoto 8600811 Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Kumamoto 8608555 Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka 5648565, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka 5650871 Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 1088639 Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 5650871 Japan
| |
Collapse
|
11
|
Cohen R, Mukai C, Nelson JL, Zenilman SS, Sosnicki DM, Travis AJ. A genetically targeted sensor reveals spatial and temporal dynamics of acrosomal calcium and sperm acrosome exocytosis. J Biol Chem 2022; 298:101868. [PMID: 35346690 PMCID: PMC9046242 DOI: 10.1016/j.jbc.2022.101868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023] Open
Abstract
Secretion of the acrosome, a single vesicle located rostrally in the head of a mammalian sperm, through a process known as "acrosome exocytosis" (AE), is essential for fertilization. However, the mechanisms leading to and regulating this complex process are controversial. In particular, poor understanding of Ca2+ dynamics between sperm subcellular compartments and regulation of membrane fusion mechanisms have led to competing models of AE. Here, we developed a transgenic mouse expressing an Acrosome-targeted Sensor for Exocytosis (AcroSensE) to investigate the spatial and temporal Ca2+ dynamics in AE in live sperm. AcroSensE combines a genetically encoded Ca2+ indicator (GCaMP) fused with an mCherry indicator to spatiotemporally resolve acrosomal Ca2+ rise (ACR) and membrane fusion events, enabling real-time study of AE. We found that ACR is dependent on extracellular Ca2+ and that ACR precedes AE. In addition, we show that there are intermediate steps in ACR and that AE correlates better with the ACR rate rather than absolute Ca2+ amount. Finally, we demonstrate that ACR and membrane fusion progression kinetics and spatial patterns differ with different stimuli and that sites of initiation of ACR and sites of membrane fusion do not always correspond. These findings support a model involving functionally redundant pathways that enable a highly regulated, multistep AE in heterogeneous sperm populations, unlike the previously proposed "acrosome reaction" model.
Collapse
Affiliation(s)
- Roy Cohen
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jacquelyn L Nelson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Shoshana S Zenilman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Danielle M Sosnicki
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Dallai R, Mercati D, Cucini C, Fanciulli PP, Lupetti P. The sperm structure and the spermiogenesis of the drugstore beetle Stegobium paniceum (L.) (Coleoptera-Ptinidae-Anobinae). ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Mata-Martínez E, Sánchez-Cárdenas C, Chávez JC, Guerrero A, Treviño CL, Corkidi G, Montoya F, Hernandez-Herrera P, Buffone MG, Balestrini PA, Darszon A. Role of calcium oscillations in sperm physiology. Biosystems 2021; 209:104524. [PMID: 34453988 DOI: 10.1016/j.biosystems.2021.104524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Intracellular Ca2+ is a key regulator of cell signaling and sperm are not the exception. Cells often use cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations as a means to decodify external and internal information. [Ca2+]i oscillations faster than those usually found in other cells and correlated with flagellar beat were the first to be described in sperm in 1993 by Susan Suarez, in the boar. More than 20 years passed before similar [Ca2+]i oscillations were documented in human sperm, simultaneously examining their flagellar beat in three dimensions by Corkidi et al. 2017. On the other hand, 10 years after the discovery of the fast boar [Ca2+]i oscillations, slower ones triggered by compounds from the egg external envelope were found to regulate cell motility and chemotaxis in sperm from marine organisms. Today it is known that sperm display fast and slow spontaneous and agonist triggered [Ca2+]i oscillations. In mammalian sperm these Ca2+ transients may act like a multifaceted tool that regulates fundamental functions such as motility and acrosome reaction. This review covers the main sperm species and experimental conditions where [Ca2+]i oscillations have been described and discusses what is known about the transporters involved, their regulation and the physiological purpose of these oscillations. There is a lot to be learned regarding the origin, regulation and physiological relevance of these Ca2+ oscillations.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM) Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, IBT, UNAM, Mexico.
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Gabriel Corkidi
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Fernando Montoya
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Paul Hernandez-Herrera
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
14
|
Balestrini PA, Sanchez-Cardenas C, Luque GM, Baro Graf C, Sierra JM, Hernández-Cruz A, Visconti PE, Krapf D, Darszon A, Buffone MG. Membrane hyperpolarization abolishes calcium oscillations that prevent induced acrosomal exocytosis in human sperm. FASEB J 2021; 35:e21478. [PMID: 33991146 DOI: 10.1096/fj.202002333rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Sperm capacitation is essential to gain fertilizing capacity. During this process, a series of biochemical and physiological modifications occur that allow sperm to undergo acrosomal exocytosis (AE). At the molecular level, hyperpolarization of the sperm membrane potential (Em) takes place during capacitation. This study shows that human sperm incubated under conditions that do not support capacitation (NC) can become ready for an agonist stimulated AE by pharmacologically inducing Em hyperpolarization with Valinomycin or Amiloride. To investigate how Em hyperpolarization promotes human sperm's ability to undergo AE, live single-cell imaging experiments were performed to simultaneously monitor changes in [Ca2+ ]i and the occurrence of AE. Em hyperpolarization turned [Ca2+ ]i dynamics in NC sperm from spontaneously oscillating into a sustained slow [Ca2+ ]i increase. The addition of progesterone (P4) or K+ to Valinomycin-treated sperm promoted that a significant number of cells displayed a transitory rise in [Ca2+ ]i which then underwent AE. Altogether, our results demonstrate that Em hyperpolarization is necessary and sufficient to prepare human sperm for the AE. Furthermore, this Em change decreased Ca2+ oscillations that block the occurrence of AE, providing strong experimental evidence of the molecular mechanism that drives the acquisition of acrosomal responsiveness.
Collapse
Affiliation(s)
- Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia Sanchez-Cardenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Baro Graf
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM) Ciudad Universitaria, Ciudad de México, México
| | - Jessica M Sierra
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Arturo Hernández-Cruz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM) Ciudad Universitaria, Ciudad de México, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, MA, USA
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Argentina
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
15
|
Papazoglou A, Henseler C, Broich K, Daubner J, Weiergräber M. Breeding of Ca v2.3 deficient mice reveals Mendelian inheritance in contrast to complex inheritance in Ca v3.2 null mutant breeding. Sci Rep 2021; 11:13972. [PMID: 34234221 PMCID: PMC8263769 DOI: 10.1038/s41598-021-93391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
High voltage-activated Cav2.3 R-type Ca2+ channels and low voltage-activated Cav3.2 T-type Ca2+ channels were reported to be involved in numerous physiological and pathophysiological processes. Many of these findings are based on studies in Cav2.3 and Cav3.2 deficient mice. Recently, it has been proposed that inbreeding of Cav2.3 and Cav3.2 deficient mice exhibits significant deviation from Mendelian inheritance and might be an indication for potential prenatal lethality in these lines. In our study, we analyzed 926 offspring from Cav3.2 breedings and 1142 offspring from Cav2.3 breedings. Our results demonstrate that breeding of Cav2.3 deficient mice shows typical Mendelian inheritance and that there is no indication of prenatal lethality. In contrast, Cav3.2 breeding exhibits a complex inheritance pattern. It might be speculated that the differences in inheritance, particularly for Cav2.3 breeding, are related to other factors, such as genetic specificities of the mutant lines, compensatory mechanisms and altered sperm activity.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| |
Collapse
|
16
|
Chen S, Wang M, Li L, Wang J, Ma X, Zhang H, Cai Y, Kang B, Huang J, Li B. High-coverage targeted lipidomics revealed dramatic lipid compositional changes in asthenozoospermic spermatozoa and inverse correlation of ganglioside GM3 with sperm motility. Reprod Biol Endocrinol 2021; 19:105. [PMID: 34233713 PMCID: PMC8262046 DOI: 10.1186/s12958-021-00792-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It has been previously demonstrated that cholesterol content and cholesterol/phospholipid ratio were significantly higher in asthenozoospermia and oligoasthenoteratozoospermia. The majority of published studies have investigated the fatty acid composition of phospholipids rather than lipids themselves. This study evaluated the lipid composition of asthenozoospermic and normozoospermic spermatozoa, and identified the exact lipid species that correlated with sperm motility. METHODS A total of 12 infertile asthenozoospermia patients and 12 normozoospermia subjects with normal sperm motility values were tested for semen volume, sperm concentration, count, motility, vitality and morphology. High-coverage targeted lipidomics with 25 individual lipid classes was performed to analyze the sperm lipid components and establish the exact lipid species that correlated with sperm motility. RESULTS A total of 25 individual lipid classes and 479 lipid molecular species were identified and quantified. Asthenozoospermic spermatozoa showed an increase in the level of four lipid classes, including Cho, PE, LPI and GM3. A total of 48 lipid molecular species were significantly altered between normozoospermic and asthenozoospermic spermatozoa. Furthermore, the levels of total GM3 and six GM3 molecular species, which were altered in normozoospermic spermatozoa versus asthenozoospermic spermatozoa, were inversely correlated with sperm progressive and total motility. CONCLUSIONS Several unique lipid classes and lipid molecular species were significantly altered between asthenozoospermic and normozoospermic spermatozoa, revealing new possibilities for further mechanistic pursuits and highlighting the development needs of culture medium formulations to improve sperm motility.
Collapse
Affiliation(s)
- Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Ming Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Li Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Xuhui Ma
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Hengde Zhang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Yang Cai
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Bin Kang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Jianlei Huang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China.
| |
Collapse
|
17
|
Sperm ion channels and transporters in male fertility and infertility. Nat Rev Urol 2020; 18:46-66. [PMID: 33214707 DOI: 10.1038/s41585-020-00390-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Mammalian sperm cells must respond to cues originating from along the female reproductive tract and from the layers of the egg in order to complete their fertilization journey. Dynamic regulation of ion signalling is, therefore, essential for sperm cells to adapt to their constantly changing environment. Over the past 15 years, direct electrophysiological recordings together with genetically modified mouse models and human genetics have confirmed the importance of ion channels, including the principal Ca2+-selective plasma membrane ion channel CatSper, for sperm activity. Sperm ion channels and membrane receptors are attractive targets for both the development of contraceptives and infertility treatment drugs. Furthermore, in this era of assisted reproductive technologies, understanding the signalling processes implicated in defective sperm function, particularly those arising from genetic abnormalities, is of the utmost importance not only for the development of infertility treatments but also to assess the overall health of a patient and his children. Future studies to improve reproductive health care and overall health care as a function of the ability to reproduce should include identification and analyses of gene variants that underlie human infertility and research into fertility-related molecules.
Collapse
|
18
|
Neumaier F, Schneider T, Albanna W. Ca v2.3 channel function and Zn 2+-induced modulation: potential mechanisms and (patho)physiological relevance. Channels (Austin) 2020; 14:362-379. [PMID: 33079629 PMCID: PMC7583514 DOI: 10.1080/19336950.2020.1829842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are critical for Ca2+ influx into all types of excitable cells, but their exact function is still poorly understood. Recent reconstruction of homology models for all human VGCCs at atomic resolution provides the opportunity for a structure-based discussion of VGCC function and novel insights into the mechanisms underlying Ca2+ selective flux through these channels. In the present review, we use these data as a basis to examine the structure, function, and Zn2+-induced modulation of Cav2.3 VGCCs, which mediate native R-type currents and belong to the most enigmatic members of the family. Their unique sensitivity to Zn2+ and the existence of multiple mechanisms of Zn2+ action strongly argue for a role of these channels in the modulatory action of endogenous loosely bound Zn2+, pools of which have been detected in a number of neuronal, endocrine, and reproductive tissues. Following a description of the different mechanisms by which Zn2+ has been shown or is thought to alter the function of these channels, we discuss their potential (patho)physiological relevance, taking into account what is known about the magnitude and function of extracellular Zn2+ signals in different tissues. While still far from complete, the picture that emerges is one where Cav2.3 channel expression parallels the occurrence of loosely bound Zn2+ pools in different tissues and where these channels may serve to translate physiological Zn2+ signals into changes of electrical activity and/or intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5) , Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging , Cologne, Germany
| | - Toni Schneider
- Institute of Neurophysiology , Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University , Aachen, Germany
| |
Collapse
|
19
|
Non-Mendelian inheritance during inbreeding of Ca v3.2 and Ca v2.3 deficient mice. Sci Rep 2020; 10:15993. [PMID: 33009476 PMCID: PMC7532468 DOI: 10.1038/s41598-020-72912-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/03/2020] [Indexed: 11/08/2022] Open
Abstract
The mating of 77 heterozygous pairs (Cav3.2[+|-] x Cav3.2[+|-]) revealed a significant deviation of genotype distribution from Mendelian inheritance in weaned pups. The mating of 14 pairs (Cav3.2[-|-] female x Cav3.2[+|-] male) and 8 pairs (Cav3.2[+|-] female x Cav3.2[-|-] male) confirmed the significant reduction of deficient homozygous Cav3.2[-|-] pups, leading to the conclusion that prenatal lethality may occur, when one or both alleles, encoding the Cav3.2T-type Ca2+ channel, are missing. Also, the mating of 63 heterozygous pairs (Cav2.3[+|-] x Cav2.3[+|-]) revealed a significant deviation of genotype distribution from Mendelian inheritance in weaned pups, but only for heterozygous male mice, leading to the conclusion that compensation may only occur for Cav2.3[-|-] male mice lacking both alleles of the R-type Ca2+ channel. During the mating of heterozygous parents, the number of female mice within the weaned population does not deviate from the expected Mendelian inheritance. During prenatal development, both, T- and R-type Ca2+ currents are higher expressed in some tissues than postnatally. It will be discussed that the function of voltage-gated Ca2+ channels during prenatal development must be investigated in more detail, not least to understand devastative diseases like developmental epileptic encephalopathies (DEE).
Collapse
|
20
|
Finkelstein M, Etkovitz N, Breitbart H. Ca 2+ signaling in mammalian spermatozoa. Mol Cell Endocrinol 2020; 516:110953. [PMID: 32712383 DOI: 10.1016/j.mce.2020.110953] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Calcium is an essential ion which regulates sperm motility, capacitation and the acrosome reaction (AR), three processes necessary for successful fertilization. The AR enables the spermatozoon to penetrate into the egg. In order to undergo the AR, the spermatozoon must reside in the female reproductive tract for several hours, during which a series of biochemical transformations takes place, collectively called capacitation. An early event in capacitation is relatively small elevation of intracellular Ca2+ (in the nM range) and bicarbonate, which collectively activate the soluble adenylyl cyclase to produce cyclic-AMP; c-AMP activates protein kinase A (PKA), leading to indirect tyrosine phosphorylation of proteins. During capacitation, there is an increase in the membrane-bound phospholipase C (PLC) which is activated prior to the AR by relatively high increase in intracellular Ca2+ (in the μM range). PLC catalyzes the hydrolysis of phosphatidyl-inositol-4,5-bisphosphate (PIP2) to diacylglycerol and inositol-trisphosphate (IP3), leading to activation of protein kinase C (PKC) and the IP3-receptor. PKC activates a Ca2+- channel in the plasma membrane, and IP3 activates the Ca2+- channel in the outer acrosomal membrane, leading to Ca2+ depletion from the acrosome. As a result, the plasma-membrane store-operated Ca2+ channel (SOCC) is activated to increase cytosolic Ca2+ concentration, enabling completion of the acrosome reaction. The hydrolysis of PIP2 by PLC results in the release and activation of PIP2-bound gelsolin, leading to F-actin dispersion, an essential step prior to the AR. Ca2+ is also involved in the regulation of sperm motility. During capacitation, the sperm develops a unique motility pattern called hyper-activated motility (HAM) which is essential for successful fertilization. The main Ca2+-channel that mediates HAM is the sperm-specific CatSper located in the sperm tail.
Collapse
Affiliation(s)
| | - Nir Etkovitz
- Sperm Bank, Sheba Hospital, Tel-Hashomer, Israel
| | - Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
21
|
Itzhakov D, Nitzan Y, Breitbart H. Protein kinase A inhibition induces EPAC-dependent acrosomal exocytosis in human sperm. Asian J Androl 2020; 21:337-344. [PMID: 30632486 PMCID: PMC6628745 DOI: 10.4103/aja.aja_99_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To interact with the egg, the spermatozoon must undergo several biochemical and motility modifications in the female reproductive tract, collectively called capacitation. Only capacitated sperm can undergo acrosomal exocytosis, near or on the egg, a process that allows the sperm to penetrate and fertilize the egg. In the present study, we investigated the involvement of cyclic adenosine monophosphate (cAMP)-dependent processes on acrosomal exocytosis. Inhibition of protein kinase A (PKA) at the end of capacitation induced acrosomal exocytosis. This process is cAMP-dependent; however, the addition of relatively high concentration of the membrane-permeable 8-bromo-cAMP (8Br-cAMP, 0.1 mmol l−1) analog induced significant inhibition of the acrosomal exocytosis. The induction of acrosomal exocytosis by PKA inhibition was significantly inhibited by an exchange protein directly activated by cAMP (EPAC) ESI09 inhibitor. The EPAC selective substrate activated AE at relatively low concentrations (0.02–0.1 μmol l−1), whereas higher concentrations (>5 μmol l−1) were inhibitory to the AE induced by PKA inhibition. Inhibition of PKA revealed about 50% increase in intracellular cAMP levels, conditions under which EPAC can be activated to induce the AE. Induction of AE by activating the actin severing-protein, gelsolin, which causes F-actin dispersion, was inhibited by the EPAC inhibitor. The AE induced by PKA inhibition was mediated by phospholipase C activity but not by the Ca2+-channel, CatSper. Thus, inhibition of PKA at the end of the capacitation process induced EPAC/phospholipase C-dependent acrosomal exocytosis. EPAC mediates F-actin depolymerization and/or activation of effectors downstream to F-actin breakdown that lead to acrosomal exocytosis.
Collapse
Affiliation(s)
- Diana Itzhakov
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yeshayahu Nitzan
- Department of Clinical Laboratory Science, Zefat Academic College, Zefat 1320611, Israel
| | - Haim Breitbart
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
22
|
Yeste M, Llavanera M, Mateo-Otero Y, Catalán J, Bonet S, Pinart E. HVCN1 Channels Are Relevant for the Maintenance of Sperm Motility During In Vitro Capacitation of Pig Spermatozoa. Int J Mol Sci 2020; 21:ijms21093255. [PMID: 32375375 PMCID: PMC7246839 DOI: 10.3390/ijms21093255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
The objective of the present study was to determine the physiological role of voltage-gated hydrogen channels 1 (HVCN1 channels) during in vitro capacitation of pig spermatozoa. Sperm samples from 20 boars were incubated in capacitating medium for 300 minutes (min) in the presence of 2-guanidino benzimidazole (2-GBI), a specific HVCN1-channel blocker, added either at 0 min or after 240 min of incubation. Control samples were incubated in capacitating medium without the inhibitor. In all samples, acrosomal exocytosis was triggered with progesterone after 240 min of incubation. Sperm viability, sperm motility and kinematics, acrosomal exocytosis, membrane lipid disorder, intracellular calcium levels and mitochondrial membrane potential were evaluated after 0, 60, 120, 180, 240, 250, 270 and 300 min of incubation. While HVCN1-blockage resulted in altered sperm viability, sperm motility and kinematics and reduced mitochondrial membrane potential as compared to control samples, at any blocker concentration and incubation time, it had a non-significant effect on intracellular Ca2+ levels determined through Fluo3-staining. The effects on acrosomal exocytosis were only significant in blocked samples at 0 min, and were associated with increased membrane lipid disorder and Ca2+ levels of the sperm head determined through Rhod5-staining. In conclusion, HVCN1 channels play a crucial role in the modulation of sperm motility and kinematics, and in Ca2+ entrance to the sperm head.
Collapse
Affiliation(s)
- Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Jaime Catalán
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain;
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
23
|
Sharara F, Seaman E, Morris R, Schinfeld J, Nichols J, Sobel M, Lee A, Somkuti S, Hirshberg S, Budinetz T, Barmat L, Palermo G, Rosenwaks Z, Bar-Chama N, Bodie J, Nichols J, Payne J, McCoy T, Tarnawa E, Whitman-Elia G, Weissmann L, Doukakis M, Hurwitz J, Leondires M, Murdock C, Ressler I, Richlin S, Williams S, Wosnitzer M, Butcher M, Kashanian J, Ahlering P, Aubuchon M, Ostermeier GC, Travis AJ. Multicentric, prospective observational data show sperm capacitation predicts male fertility, and cohort comparison reveals a high prevalence of impaired capacitation in men questioning their fertility. Reprod Biomed Online 2020; 41:69-79. [PMID: 32505543 DOI: 10.1016/j.rbmo.2020.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
RESEARCH QUESTIONS Can a previously defined relationship between sperm capacitation and the probability of a man generating pregnancy within three cycles, prospectively predict male fertility in diverse clinical settings? A second study asked, what is the prevalence of impaired sperm fertilizing ability in men questioning their fertility (MQF), and does this relate to traditional semen analysis metrics? DESIGN In the multicentric, prospective observational study, data (n = 128; six clinics) were analysed to test a published relationship between the percentage of fertilization-competent, capacitated spermatozoa (Cap-Score) and probability of generating pregnancy (PGP) within three cycles of intrauterine insemination. Logistic regression of total pregnancy outcomes (n = 252) assessed fit. In the cohort comparison, Cap-Scores of MQF (n = 2155; 22 clinics) were compared with those of 76 fertile men. RESULTS New outcomes (n = 128) were rank-ordered by Cap-Score and divided into quintiles (25-26 per group); chi-squared testing revealed no difference between predicted and observed pregnancies (P = 0.809). Total outcomes (n = 252; 128 new + 124 previous) were pooled and the model recalculated, yielding an improved fit (P < 0.001). Applying the Akaike information criterion found that the optimal model used Cap-Score alone. Cap-Scores were performed on 2155 men (with semen analysis data available for 1948). To compare fertilizing ability, men were binned by PGP (≤19%, 20-29%, 30-39%, 40-49%, 50-59%, ≥60%). Distributions of PGP and the corresponding Cap-Scores were significantly lower in MQF versus fertile men (P < 0.001). Notably, 64% of MQF with normal volume, concentration and motility (757/1183) had PGP of 39% or less (Cap-Scores ≤31), versus 25% of fertile men. CONCLUSIONS Sperm capacitation prospectively predicted male fertility. Impaired capacitation affects many MQF with normal semen analysis results, informing diagnosis versus idiopathic infertility.
Collapse
Affiliation(s)
- Fady Sharara
- Virginia Center for Reproductive Medicine, Reston VA, USA
| | | | | | | | | | | | - Annette Lee
- Abington Reproductive Medicine, Abington PA, USA
| | | | | | | | - Larry Barmat
- Abington Reproductive Medicine, Abington PA, USA
| | - Gianpiero Palermo
- Weill Cornell Medicine, Ronald O. Perelman & Claudia Cohen Center for Reproductive Medicine, New York NY, USA
| | - Zev Rosenwaks
- Weill Cornell Medicine, Ronald O. Perelman & Claudia Cohen Center for Reproductive Medicine, New York NY, USA
| | | | - Joshua Bodie
- Department of Urology, University of Minnesota, Minneapolis MN, USA
| | - John Nichols
- Piedmont Reproductive Endocrinology Group, Greenville SC, USA
| | - John Payne
- Piedmont Reproductive Endocrinology Group, Greenville SC, USA
| | - Travis McCoy
- Piedmont Reproductive Endocrinology Group, Greenville SC, USA
| | - Edward Tarnawa
- Piedmont Reproductive Endocrinology Group, Greenville SC, USA
| | | | | | | | | | | | | | | | | | | | | | - Michael Butcher
- Park Nicollet Sexual Medicine & Male Infertility Clinic, St Louis Park MN, USA
| | | | | | | | | | | |
Collapse
|
24
|
Machado SA, Sharif M, Wang H, Bovin N, Miller DJ. Release of Porcine Sperm from Oviduct Cells is Stimulated by Progesterone and Requires CatSper. Sci Rep 2019; 9:19546. [PMID: 31862909 PMCID: PMC6925244 DOI: 10.1038/s41598-019-55834-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Sperm storage in the female reproductive tract after mating and before ovulation is a reproductive strategy used by many species. When insemination and ovulation are poorly synchronized, the formation and maintenance of a functional sperm reservoir improves the possibility of fertilization. In mammals, the oviduct regulates sperm functions, such as Ca2+ influx and processes associated with sperm maturation, collectively known as capacitation. A fraction of the stored sperm is released by unknown mechanisms and moves to the site of fertilization. There is an empirical association between the hormonal milieu in the oviduct and sperm detachment; therefore, we tested directly the ability of progesterone to induce sperm release from oviduct cell aggregates. Sperm were allowed to bind to oviduct cells or an immobilized oviduct glycan and then challenged with progesterone, which stimulated the release of 48% of sperm from oviduct cells or 68% of sperm from an immobilized oviduct glycan. The effect of progesterone on sperm release was specific; pregnenolone and 17α-OH-progesterone did not affect sperm release. Ca2+ influx into sperm is associated with capacitation and development of hyperactivated motility. Progesterone increased sperm intracellular Ca2+, which was abrogated by blocking the sperm–specific Ca2+ channel CatSper with NNC 055-0396. NNC 055-0396 also blocked the progesterone-induced sperm release from oviduct cells or immobilized glycan. An inhibitor of the non-genomic progesterone receptor that activates CatSper similarly blocked sperm release. This is the first report indicating that release of sperm from the sperm reservoir is induced by progesterone action through CatSper channels.
Collapse
Affiliation(s)
- Sergio A Machado
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.,Department of Veterinary Medicine, Western Santa Catarina University, Xanxere, Brazil
| | - Momal Sharif
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.,Department of Obstetrics and Gynecology and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Huijing Wang
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry, Moscow, Russia
| | - David J Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
25
|
Cryo-Electron Microscopy Reveals That Sperm Modification Coincides with Female Fertility in the Mosquito Aedes aegypti. Sci Rep 2019; 9:18537. [PMID: 31811199 PMCID: PMC6898104 DOI: 10.1038/s41598-019-54920-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Manipulating mosquito reproduction is a promising approach to reducing mosquito populations and the burden of diseases they carry. A thorough understanding of reproductive processes is necessary to develop such strategies, but little is known about how sperm are processed and prepared for fertilization within female mosquitoes. By employing cryo-electron microscopy for the first time to study sperm of the mosquito Aedes aegypti, we reveal that sperm shed their entire outer coat, the glycocalyx, within 24 hours of being stored in the female. Motility assays demonstrate that as their glycocalyx is shed in the female’s sperm storage organs, sperm transition from a period of dormancy to rapid motility—a critical prerequisite for sperm to reach the egg. We also show that females gradually become fertile as sperm become motile, and that oviposition behavior increases sharply after females reach peak fertility. Together, these experiments demonstrate a striking coincidence of the timelines of several reproductive events in Ae. aegypti, suggesting a direct relationship between sperm modification and female reproductive capacity.
Collapse
|
26
|
Modulation of Ca v2.3 channels by unconjugated bilirubin (UCB) - Candidate mechanism for UCB-induced neuromodulation and neurotoxicity. Mol Cell Neurosci 2019; 96:35-46. [PMID: 30877033 DOI: 10.1016/j.mcn.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 12/15/2018] [Accepted: 03/10/2019] [Indexed: 11/23/2022] Open
Abstract
Elevated levels of unbound unconjugated bilirubin (UCB) can lead to bilirubin encephalopathy and kernicterus. In spite of a large number of studies demonstrating UCB-induced changes in central neurotransmission, it is still unclear whether these effects involve alterations in the function of specific ion channels. To assess how different UCB concentrations and UCB:albumin (U/A) molar ratios affect neuronal R-type voltage-gated Ca2+ channels, we evaluated their effects on whole-cell currents through recombinant Cav2.3 + β3 channel complexes and ex-vivo electroretinograms (ERGs) from wildtype and Cav2.3-deficient mice. Our findings show that modestly elevated levels of unbound UCB (U/A = 0.5) produce subtle but significant changes in the voltage-dependence of activation and prepulse inactivation, resulting in a stimulation of currents activated by weak depolarization and inhibition at potentials on the plateau of the activation curve. Saturation of the albumin binding capacity (U/A = 1) produced additional suppression that became significant when albumin was omitted completely and might involve a complete loss of channel function. Acutely administered UCB (U/A = 0.5) has recently been shown to affect transsynaptic signaling in the isolated vertebrate retina. The present report reveals that sustained exposure of the murine retina to UCB significantly suppresses also late responses of the inner retina (b-wave) from wildtype compared to Cav2.3-deficient mice. In addition, recovery during washout was significantly more complete and faster in retinae lacking Cav2.3 channels. Together, these findings show that UCB affects cloned and native Cav2.3 channels at clinically relevant U/A molar ratios and indicate that supersaturation of albumin is not required for modulation but associated with a loss of channel functional that could contribute to chronic neuronal dysfunction.
Collapse
|
27
|
Orta G, de la Vega-Beltran JL, Martín-Hidalgo D, Santi CM, Visconti PE, Darszon A. CatSper channels are regulated by protein kinase A. J Biol Chem 2018; 293:16830-16841. [PMID: 30213858 DOI: 10.1074/jbc.ra117.001566] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/05/2018] [Indexed: 11/06/2022] Open
Abstract
Mammalian sperm must undergo capacitation as a preparation for entering into hyperactivated motility, undergoing the acrosome reaction, and acquiring fertilizing ability. One of the initial capacitation events occurs when sperm encounter an elevated HCO3 - concentration. This anion activates the atypical adenylyl cyclase Adcy10, increases intracellular cAMP, and stimulates protein kinase A (PKA). Moreover, an increase in intracellular Ca2+ concentration ([Ca2+] i ) is essential for sperm capacitation. Although a cross-talk between cAMP-dependent pathways and Ca2+ clearly plays an essential role in sperm capacitation, the connection between these signaling events is incompletely understood. Here, using three different approaches, we found that CatSper, the main sperm Ca2+ channel characterized to date, is up-regulated by a cAMP-dependent activation of PKA in mouse sperm. First, HCO3 - and the PKA-activating permeable compound 8-Br-cAMP induced an increase in [Ca2+] i , which was blocked by the PKA peptide inhibitor PKI, and H89, another PKA inhibitor, also abrogated the 8-Br-cAMP response. Second, HCO3 - increased the membrane depolarization induced upon divalent cation removal by promoting influx of monovalent cations through CatSper channels, which was inhibited by PKI, H89, and the CatSper blocker HC-056456. Third, electrophysiological patch clamp, whole-cell recordings revealed that CatSper activity is up-regulated by HCO3 - and by direct cAMP injection through the patch-clamp pipette. The activation by HCO3 - and cAMP was also blocked by PKI, H89, Rp-cAMPS, and HC-056456, and electrophysiological recordings in sperm from CatSper-KO mice confirmed CatSper's role in these activation modes. Our results strongly suggest that PKA-dependent phosphorylation regulates [Ca2+] i homeostasis by activating CatSper channel complexes.
Collapse
Affiliation(s)
- Gerardo Orta
- From the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | - José Luis de la Vega-Beltran
- From the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | - David Martín-Hidalgo
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts 01003, and
| | - Celia M Santi
- Department of Obstetrics and Gynecology and.,Department of Neurosciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts 01003, and
| | - Alberto Darszon
- From the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México,
| |
Collapse
|
28
|
Simons J, Fauci L. A Model for the Acrosome Reaction in Mammalian Sperm. Bull Math Biol 2018; 80:2481-2501. [PMID: 30094771 DOI: 10.1007/s11538-018-0478-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 07/23/2018] [Indexed: 12/31/2022]
Abstract
The acrosome reaction is a complex, calcium-dependent reaction that results in an exocytotic event required for successful fertilization of the egg. It has long been thought that the acrosome reaction occurs upon sperm binding to the zona pellucida, a viscoelastic layer surrounding the oocyte. Recent studies have suggested that the reaction may even occur before the sperm encounters the zona, perhaps mediated by progesterone or some other agonist. It has been particularly difficult to understand differences between progesterone-induced and zona-induced reactions experimentally and whether one substance is the more biologically relevant trigger. Until this present work, there has been little effort to mathematically model the acrosome reaction in sperm as a whole. Instead, attention has been paid to modeling portions of the pathways involved in other cell types. Here we present a base model for the acrosome reaction which characterizes the known biochemical reactions and behaviors of the system. Our model allows us to analyze several pathways that may act as a stabilizing mechanism for avoiding sustained oscillatory calcium responses often observed in other cell types. Such an oscillatory regime might otherwise prevent acrosomal exocytosis and therefore inhibit fertilization. Results indicate that the acrosome reaction may rely upon multiple redundant mechanisms to avoid entering an oscillatory state and instead maintain a high resting level of calcium, known to be required for successful acrosomal exocytosis and, ultimately, fertilization of the oocyte.
Collapse
Affiliation(s)
- Julie Simons
- Department of Sciences and Mathematics, California Maritime Academy, 200 Maritime Academy Dr., Vallejo, CA, 95490-8181, USA.
| | - Lisa Fauci
- Department of Mathematics and Center for Computational Science, Tulane University, 6823 St. Charles Ave., New Orleans, LA, 70118, USA
| |
Collapse
|
29
|
Puga Molina LC, Luque GM, Balestrini PA, Marín-Briggiler CI, Romarowski A, Buffone MG. Molecular Basis of Human Sperm Capacitation. Front Cell Dev Biol 2018; 6:72. [PMID: 30105226 PMCID: PMC6078053 DOI: 10.3389/fcell.2018.00072] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
In the early 1950s, Austin and Chang independently described the changes that are required for the sperm to fertilize oocytes in vivo. These changes were originally grouped under name of “capacitation” and were the first step in the development of in vitro fertilization (IVF) in humans. Following these initial and fundamental findings, a remarkable number of observations led to characterization of the molecular steps behind this process. The discovery of certain sperm-specific molecules and the possibility to record ion currents through patch-clamp approaches helped to integrate the initial biochemical observation with the activity of ion channels. This is of particular importance in the male gamete due to the fact that sperm are transcriptionally inactive. Therefore, sperm must control all these changes that occur during their transit through the male and female reproductive tracts by complex signaling cascades that include post-translational modifications. This review is focused on the principal molecular mechanisms that govern human sperm capacitation with particular emphasis on comparing all the reported pieces of evidence with the mouse model.
Collapse
Affiliation(s)
- Lis C Puga Molina
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Clara I Marín-Briggiler
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
30
|
Luque GM, Dalotto-Moreno T, Martín-Hidalgo D, Ritagliati C, Puga Molina LC, Romarowski A, Balestrini PA, Schiavi-Ehrenhaus LJ, Gilio N, Krapf D, Visconti PE, Buffone MG. Only a subpopulation of mouse sperm displays a rapid increase in intracellular calcium during capacitation. J Cell Physiol 2018; 233:9685-9700. [PMID: 29953592 DOI: 10.1002/jcp.26883] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
Mammalian sperm must undergo a functionally defined process called capacitation to be able to fertilize oocytes. They become capacitated in vivo by interacting with the female reproductive tract or in vitro in a defined capacitation medium that contains bovine serum albumin, calcium (Ca2+ ), and bicarbonate (HCO3 - ). In this work, sperm were double stained with propidium iodide and the Ca2+ dye Fluo-4 AM and analyzed by flow cytometry to determine changes in intracellular Ca2+ concentration ([Ca2+ ]i ) in individual live sperm. An increase in [Ca2+ ]i was observed in a subpopulation of capacitated live sperm when compared with noncapacitated ones. Sperm exposed to the capacitating medium displayed a rapid increase in [Ca2+ ]i within 1 min of incubation, which remained sustained for 90 min. These rise in [Ca2+ ]i after 90 min of incubation in the capacitating medium was evidenced by an increase in the normalized median fluorescence intensity. This increase was dependent on the presence of extracellular Ca2+ and, at least in part, reflected the contribution of a new subpopulation of sperm with higher [Ca2+ ]i . In addition, it was determined that the capacitation-associated [Ca2+ ]i increase was dependent of CatSper channels, as sperm derived from CatSper knockout (CatSper KO) or incubated in the presence of CatSper inhibitors failed to increase [Ca2+ ]i . Surprisingly, a minimum increase in [Ca2+ ]i was also observed in CatSper KO sperm suggesting the existence of other Ca2+ transport systems. Altogether, these results indicate that a subpopulation of sperm increases [Ca2+ ]i very rapidly during capacitation mainly due to a CatSper-mediated influx of extracellular Ca2+ .
Collapse
Affiliation(s)
- Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tomas Dalotto-Moreno
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - David Martín-Hidalgo
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA
| | - Carla Ritagliati
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Lis C Puga Molina
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Liza J Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolas Gilio
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
31
|
Stival C, Ritagliati C, Xu X, Gervasi MG, Luque GM, Baró Graf C, De la Vega-Beltrán JL, Torres N, Darszon A, Krapf D, Buffone MG, Visconti PE, Krapf D. Disruption of protein kinase A localization induces acrosomal exocytosis in capacitated mouse sperm. J Biol Chem 2018; 293:9435-9447. [PMID: 29700114 DOI: 10.1074/jbc.ra118.002286] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/19/2018] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A (PKA) is a broad-spectrum Ser/Thr kinase involved in the regulation of several cellular activities. Thus, its precise activation relies on being localized at specific subcellular places known as discrete PKA signalosomes. A-Kinase anchoring proteins (AKAPs) form scaffolding assemblies that play a pivotal role in PKA regulation by restricting its activity to specific microdomains. Because one of the first signaling events observed during mammalian sperm capacitation is PKA activation, understanding how PKA activity is restricted in space and time is crucial to decipher the critical steps of sperm capacitation. Here, we demonstrate that the anchoring of PKA to AKAP is not only necessary but also actively regulated during sperm capacitation. However, we find that once capacitated, the release of PKA from AKAP promotes a sudden Ca2+ influx through the sperm-specific Ca2+ channel CatSper, starting a tail-to-head Ca2+ propagation that triggers the acrosome reaction. Three-dimensional super-resolution imaging confirmed a redistribution of PKA within the flagellar structure throughout the capacitation process, which depends on anchoring to AKAP. These results represent a new signaling event that involves CatSper Ca2+ channels in the acrosome reaction, sensitive to PKA stimulation upon release from AKAP.
Collapse
Affiliation(s)
- Cintia Stival
- From the Laboratoty of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina
| | - Carla Ritagliati
- From the Laboratoty of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina
| | - Xinran Xu
- the Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523
| | - Maria G Gervasi
- the Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Guillermina M Luque
- the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Carolina Baró Graf
- From the Laboratoty of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina
| | - José Luis De la Vega-Beltrán
- the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México, and
| | - Nicolas Torres
- the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Alberto Darszon
- the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México, and
| | - Diego Krapf
- the Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523.,the School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523
| | - Mariano G Buffone
- the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Pablo E Visconti
- the Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Dario Krapf
- From the Laboratoty of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina,
| |
Collapse
|
32
|
Ritagliati C, Baro Graf C, Stival C, Krapf D. Regulation mechanisms and implications of sperm membrane hyperpolarization. Mech Dev 2018; 154:33-43. [PMID: 29694849 DOI: 10.1016/j.mod.2018.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Mammalian sperm are unable to fertilize the egg immediately after ejaculation. In order to gain fertilization competence, they need to undergo a series of biochemical and physiological modifications inside the female reproductive tract, known as capacitation. Capacitation correlates with two essential events for fertilization: hyperactivation, an asymmetric and vigorous flagellar motility, and the ability to undergo the acrosome reaction. At a molecular level, capacitation is associated to: phosphorylation cascades, modification of membrane lipids, alkalinization of the intracellular pH, increase in the intracellular Ca2+ concentration and hyperpolarization of the sperm plasma membrane potential. Hyperpolarization is a crucial event in capacitation since it primes the sperm to undergo the exocytosis of the acrosome content, essential to achieve fertilization of the oocyte.
Collapse
Affiliation(s)
- Carla Ritagliati
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina.
| | - Carolina Baro Graf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina; Laboratorio de Especialidades Reproductivas, Facultad de Ciencias Bioquimicas y Farmacéuticas, UNR, Rosario 2000, Argentina.
| |
Collapse
|
33
|
Ostermeier GC, Cardona C, Moody MA, Simpson AJ, Mendoza R, Seaman E, Travis AJ. Timing of sperm capacitation varies reproducibly among men. Mol Reprod Dev 2018. [PMID: 29521463 PMCID: PMC6001750 DOI: 10.1002/mrd.22972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sperm must mature functionally in the process of capacitation to become able to fertilize. Capacitation depends on membrane lipid changes, and can be quantitatively assessed by redistribution of the ganglioside GM1, the basis of the Cap‐Score™ sperm function test. Here, differences in Cap‐Score were compared among and within men at two time points. Ejaculates were liquefied, washed, and incubated for 3 hr under capacitating (Cap) conditions, then fixed and analyzed immediately (Day0); after being incubated 3 hr under Cap conditions then maintained 22–24 hr in fix (Day1‐fix); or after 22–24 hr incubation under Cap conditions prior to fixation (Day1). In all cases, a light fixative previously shown to allow membrane lipid movements was used. Day1‐fix and Day1 Cap‐Scores were greater than Day0 (p < 0.001; n = 25), whereas Day1‐fix and Day1 Cap‐Scores were equivalent (p = 0.43; n = 25). In 123 samples from 52 fertile men, Cap‐Score increased more than 1SD (7.7; calculated previously from a fertile cohort) from Day0 to Day1‐fix in 44% (54/123) of the samples. To test whether timing of capacitation was consistent within an individual, 52 samples from 11 fertile men were classified into either “early” or “late” capacitation groups. The average capacitation group concordance within a donor was 81%. Median absolute deviation (MAD; in Cap‐Score units) was used to assess the tightness of clustering of the difference from Day0 to Day1‐fix within individuals. The average (2.21) and median (1.98) MAD confirmed consistency within individuals. Together, these data show that the timing of capacitation differed among men and was consistent within men.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexander J. Travis
- Androvia LifeSciencesMountainsideNew Jersey
- Baker Institute for Animal Health, College of Veterinary MedicineCornell UniversityIthacaNew York
| |
Collapse
|
34
|
Chávez JC, De la Vega-Beltrán JL, José O, Torres P, Nishigaki T, Treviño CL, Darszon A. Acrosomal alkalization triggers Ca 2+ release and acrosome reaction in mammalian spermatozoa. J Cell Physiol 2018; 233:4735-4747. [PMID: 29135027 DOI: 10.1002/jcp.26262] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
The sperm acrosome reaction (AR), an essential event for mammalian fertilization, involves Ca2+ permeability changes leading to exocytosis of the acrosomal vesicle. The acrosome, an intracellular Ca2+ store whose luminal pH is acidic, contains hydrolytic enzymes. It is known that acrosomal pH (pHacr ) increases during capacitation and this correlates with spontaneous AR. Some AR inducers increase intracellular Ca2+ concentration ([Ca2+ ]i ) through Ca2+ release from internal stores, mainly the acrosome. Catsper, a sperm specific Ca2+ channel, has been suggested to participate in the AR. Curiously, Mibefradil and NNC55-0396, two CatSper blockers, themselves elevate [Ca2+ ]i by unknown mechanisms. Here we show that these compounds, as other weak bases, can elevate pHacr , trigger Ca2+ release from the acrosome, and induce the AR in both mouse and human sperm. To our surprise, μM concentrations of NNC55-0396 induced AR even in nominally Ca2+ free media. Our findings suggest that alkalization of the acrosome is critical step for Ca2+ release from the acrosome that leads to the acrosome reaction.
Collapse
Affiliation(s)
- Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - José L De la Vega-Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Omar José
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Paulina Torres
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| |
Collapse
|
35
|
Torday JS. From cholesterol to consciousness. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 132:52-56. [PMID: 28830682 DOI: 10.1016/j.pbiomolbio.2017.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/29/2022]
Abstract
The nature of consciousness has been debated for centuries. It can be understood as part and parcel of the natural progression of life from unicellular to multicellular, calcium fluxes mediating communication within and between cells. Consciousness is the vertical integration of calcium fluxes, mediated by the Target of Rapamycin gene integrated with the cytoskeleton. The premise of this paper is that there is a fundamental physiologic integration of the organism with the environment that constitutes consciousness.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, 1124 W.Carson Street, Torrance, CA 90502-2006, United States.
| |
Collapse
|
36
|
Moody MA, Cardona C, Simpson AJ, Smith TT, Travis AJ, Ostermeier GC. Validation of a laboratory-developed test of human sperm capacitation. Mol Reprod Dev 2017; 84:408-422. [PMID: 28418600 PMCID: PMC5485017 DOI: 10.1002/mrd.22801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 11/10/2022]
Abstract
Sperm must undergo capacitation to become fertilization competent. Here we validated that monosialotetrahexosylganglioside (GM1 ) localization patterns, which were assessed in the Cap-Score™ Sperm Function Test, reflect a capacitated state in human sperm. First, we defined patterns representing sperm that do or do not respond to stimuli for capacitation. Sperm with "capacitated" patterns had exposed acrosomal carbohydrates and underwent acrosome exocytosis in response to calcium ionophore (A23187). Precision was evaluated by percent change of the Cap-Score measured for 50, 100, 150, and 200 sperm. Changes of 11%, 6%, and 5% were observed (n ≥ 23); therefore, we counted ≥150 sperm per condition. Variance within and between readers was evaluated using 20 stitched image files generated from unique ejaculates. Two trained readers randomly resampled each image 20 times, reporting an average standard deviation of 3 Cap-Score units and coefficient of variation of 13% when rescoring samples, with no difference between readers. Semen liquefaction times ≤2 hr and mechanical liquefaction with Pasteur or wide-orifice transfer pipettes did not alter Cap-Score values. However, liquefaction with chymotrypsin (p = 0.002) and bromelain (p = 0.049) reduced response to capacitating stimuli and induced membrane damage, while counterintuitively improving sperm motility. Together, these data validate the Cap-Score assay for the intended purpose of providing information on sperm capacitation and male fertility. In addition to its clinical utility as a diagnostic tool, this test of sperm function can reveal the impact of common practices of semen handling on the ability of sperm to respond to capacitation stimuli.
Collapse
Affiliation(s)
| | | | | | | | - Alexander J. Travis
- Androvia LifeSciencesMountainsideNew Jersey
- Baker Institute for Animal Health, College of Veterinary MedicineCornell UniversityIthacaNew York
| | | |
Collapse
|
37
|
Cardona C, Neri QV, Simpson AJ, Moody MA, Ostermeier GC, Seaman EK, Paniza T, Rosenwaks Z, Palermo GD, Travis AJ. Localization patterns of the ganglioside G M1 in human sperm are indicative of male fertility and independent of traditional semen measures. Mol Reprod Dev 2017; 84:423-435. [PMID: 28418610 PMCID: PMC5485082 DOI: 10.1002/mrd.22803] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/23/2017] [Indexed: 11/17/2022]
Abstract
Semen analysis lacks a functional component and best identifies extreme cases of infertility. The ganglioside GM1 is known to have functional roles during capacitation and acrosome exocytosis. Here, we assessed whether GM1 localization patterns (Cap‐Score™) correspond with male fertility in different settings: Study 1 involved couples pursuing assisted reproduction in a tertiary care fertility clinic, while Study 2 involved men with known fertility versus those questioning their fertility at a local urology center. In Study 1, we examined various thresholds versus clinical history for 42 patients; 13 had Cap‐Scores ≥39.5%, with 12 of these (92.3%) achieving clinical pregnancy by natural conception or ≤3 intrauterine insemination cycles. Of the 29 patients scoring <39.5%, only six (20.7%) attained clinical pregnancy by natural conception or ≤3 intrauterine insemination cycles. In Study 2, Cap‐Scores were obtained from 76 fertile men (Cohort 1, pregnant partner or recent father) and compared to 122 men seeking fertility assessment (Cohort 2). Cap‐Score values were normally distributed in Cohort 1, with 13.2% having Cap‐Scores more than one standard deviation below the mean (35.3 ± 7.7%). Significantly, more men in Cohort 2 had Cap‐Scores greater than one standard deviation below the normal mean (33.6%; p = 0.001). Minimal/no relationship was found between Cap‐Score and sperm concentration, morphology, or motility. Together, these data demonstrate that Cap‐Score provides novel, clinically relevant insights into sperm function and male fertility that complement traditional semen analysis. Furthermore, the data provide normal reference ranges for fertile men that can help clinicians counsel couples toward the most appropriate fertility treatment.
Collapse
Affiliation(s)
| | - Queenie V Neri
- The Ronald O. Perelman & Claudia Cohen Center for Reproductive Medicine & Infertility, Weill Cornell Medical College, New York, New York
| | | | | | | | | | - Theodore Paniza
- The Ronald O. Perelman & Claudia Cohen Center for Reproductive Medicine & Infertility, Weill Cornell Medical College, New York, New York
| | - Zev Rosenwaks
- The Ronald O. Perelman & Claudia Cohen Center for Reproductive Medicine & Infertility, Weill Cornell Medical College, New York, New York
| | - Gianpiero D Palermo
- The Ronald O. Perelman & Claudia Cohen Center for Reproductive Medicine & Infertility, Weill Cornell Medical College, New York, New York
| | - Alexander J Travis
- Androvia LifeSciences, Mountainside, New Jersey.,Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
38
|
Malama E, Zeron Y, Janett F, Siuda M, Roth Z, Bollwein H. Use of computer-assisted sperm analysis and flow cytometry to detect seasonal variations of bovine semen quality. Theriogenology 2017; 87:79-90. [DOI: 10.1016/j.theriogenology.2016.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/26/2016] [Accepted: 08/04/2016] [Indexed: 01/26/2023]
|
39
|
Gervasi MG, Visconti PE. Chang's meaning of capacitation: A molecular perspective. Mol Reprod Dev 2016; 83:860-874. [PMID: 27256723 DOI: 10.1002/mrd.22663] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 05/31/2016] [Indexed: 02/04/2023]
Abstract
Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization-competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860-874, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts.
| |
Collapse
|
40
|
Wormuth C, Lundt A, Henseler C, Müller R, Broich K, Papazoglou A, Weiergräber M. Review: Ca v2.3 R-type Voltage-Gated Ca 2+ Channels - Functional Implications in Convulsive and Non-convulsive Seizure Activity. Open Neurol J 2016; 10:99-126. [PMID: 27843503 PMCID: PMC5080872 DOI: 10.2174/1874205x01610010099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/16/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022] Open
Abstract
Background: Researchers have gained substantial insight into mechanisms of synaptic transmission, hyperexcitability, excitotoxicity and neurodegeneration within the last decades. Voltage-gated Ca2+ channels are of central relevance in these processes. In particular, they are key elements in the etiopathogenesis of numerous seizure types and epilepsies. Earlier studies predominantly targeted on Cav2.1 P/Q-type and Cav3.2 T-type Ca2+ channels relevant for absence epileptogenesis. Recent findings bring other channels entities more into focus such as the Cav2.3 R-type Ca2+ channel which exhibits an intriguing role in ictogenesis and seizure propagation. Cav2.3 R-type voltage gated Ca2+ channels (VGCC) emerged to be important factors in the pathogenesis of absence epilepsy, human juvenile myoclonic epilepsy (JME), and cellular epileptiform activity, e.g. in CA1 neurons. They also serve as potential target for various antiepileptic drugs, such as lamotrigine and topiramate. Objective: This review provides a summary of structure, function and pharmacology of VGCCs and their fundamental role in cellular Ca2+ homeostasis. We elaborate the unique modulatory properties of Cav2.3 R-type Ca2+ channels and point to recent findings in the proictogenic and proneuroapoptotic role of Cav2.3 R-type VGCCs in generalized convulsive tonic–clonic and complex-partial hippocampal seizures and its role in non-convulsive absence like seizure activity. Conclusion: Development of novel Cav2.3 specific modulators can be effective in the pharmacological treatment of epilepsies and other neurological disorders.
Collapse
Affiliation(s)
- Carola Wormuth
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Andreas Lundt
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Christina Henseler
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Karl Broich
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Anna Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Marco Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| |
Collapse
|
41
|
López-González I, Treviño CL, Darszon A. Regulation of Spermatogenic Cell T-Type Ca(2+) Currents by Zn(2+): Implications in Male Reproductive Physiology. J Cell Physiol 2016. [PMID: 26222306 DOI: 10.1002/jcp.25112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Zn(2+) is a trace metal which is important for spermatogenesis progression; its deficiency causes atrophy or malignant growth of the testis. Although testis, epididymis, and prostate contain high Zn(2+) concentrations, the molecular entities which are modulated by this metal are still under study. Interestingly, spermatogenic cells mainly express CaV 3.2-encoded T-type Ca(2+) currents (ICaT) which are positively or negatively modulated by Zn(2+) in other tissues. To explore whether ICaT could be regulated by Zn(2+) and albumin, its main physiological carrier, we performed whole cell electrophysiological recordings of spermatogenic cell ICaT in the absence or presence of different Zn(2+) concentrations. Zn(2+) decreased ICaT in a concentration-dependent manner (IC50 = 2 μM) and this inhibition could only be completely removed in presence of albumin. Differently to previous reports, ICaT did not show a tonic inhibition by Zn(2+) . Further analysis showed that Zn(2+) did not affect the voltage dependency or the kinetics of current activation, but right shifted the steady-state inactivation curve and slowed inactivation and deactivation kinetics. Recovery from inactivation was also altered. However, these apparent alterations in gating properties are not enough to explain the strong ICaT reduction. Using non-stationary fluctuation analysis, we found that Zn(2+) mainly reduced the number of available Ca(2+) channels without changing the single channel current amplitude. ICaT modulation by Zn(2+) could be relevant for spontaneous Ca(2+) oscillations during spermatogenesis and in pathophysiological conditions such as diabetes.
Collapse
Affiliation(s)
- Ignacio López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| |
Collapse
|
42
|
Cohen R, Mukai C, Travis AJ. Lipid Regulation of Acrosome Exocytosis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 220:107-27. [PMID: 27194352 DOI: 10.1007/978-3-319-30567-7_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipids are critical regulators of mammalian sperm function, first helping prevent premature acrosome exocytosis, then enabling sperm to become competent to fertilize at the right place/time through the process of capacitation, and ultimately triggering acrosome exocytosis. Yet because they do not fit neatly into the "DNA--RNA-protein" synthetic pathway, they are understudied and poorly understood. Here, we focus on three lipids or lipid classes-cholesterol, phospholipids, and the ganglioside G(M1)--in context of the modern paradigm of acrosome exocytosis. We describe how these various- species are precisely segregated into membrane macrodomains and microdomains, simultaneously preventing premature exocytosis while acting as foci for organizing regulatory and effector molecules that will enable exocytosis. Although the mechanisms responsible for these domains are poorly defined, there is substantial evidence for their composition and functions. We present diverse ways that lipids and lipid modifications regulate capacitation and acrosome exocytosis, describing in more detail how removal of cholesterol plays a master regulatory role in enabling exocytosis through at least two complementary pathways. First, cholesterol efflux leads to proteolytic activation of phospholipase B, which cleaves both phospholipid tails. The resultant changes in membrane curvature provide a mechanism for the point fusions now known to occur far before a sperm physically interacts with the zona pellucida. Cholesterol efflux also enables G(M1) to regulate the voltage-dependent cation channel, Ca(V)2.3, triggering focal calcium transients required for acrosome exocytosis in response to subsequent whole-cell calcium rises. We close with a model integrating functions for lipids in regulating acrosome exocytosis.
Collapse
Affiliation(s)
- Roy Cohen
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Chinatsu Mukai
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA. .,Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
43
|
Beltrán C, Treviño CL, Mata-Martínez E, Chávez JC, Sánchez-Cárdenas C, Baker M, Darszon A. Role of Ion Channels in the Sperm Acrosome Reaction. SPERM ACROSOME BIOGENESIS AND FUNCTION DURING FERTILIZATION 2016; 220:35-69. [DOI: 10.1007/978-3-319-30567-7_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Abi Nahed R, Martinez G, Escoffier J, Yassine S, Karaouzène T, Hograindleur JP, Turk J, Kokotos G, Ray PF, Bottari S, Lambeau G, Hennebicq S, Arnoult C. Progesterone-induced Acrosome Exocytosis Requires Sequential Involvement of Calcium-independent Phospholipase A2β (iPLA2β) and Group X Secreted Phospholipase A2 (sPLA2). J Biol Chem 2015; 291:3076-89. [PMID: 26655718 DOI: 10.1074/jbc.m115.677799] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 11/06/2022] Open
Abstract
Phospholipase A2 (PLA2) activity has been shown to be involved in the sperm acrosome reaction (AR), but the molecular identity of PLA2 isoforms has remained elusive. Here, we have tested the role of two intracellular (iPLA2β and cytosolic PLA2α) and one secreted (group X) PLA2s in spontaneous and progesterone (P4)-induced AR by using a set of specific inhibitors and knock-out mice. iPLA2β is critical for spontaneous AR, whereas both iPLA2β and group X secreted PLA2 are involved in P4-induced AR. Cytosolic PLA2α is dispensable in both types of AR. P4-induced AR spreads over 30 min in the mouse, and kinetic analyses suggest the presence of different sperm subpopulations, using distinct PLA2 pathways to achieve AR. At low P4 concentration (2 μm), sperm undergoing early AR (0-5 min post-P4) rely on iPLA2β, whereas sperm undergoing late AR (20-30 min post-P4) rely on group X secreted PLA2. Moreover, the role of PLA2s in AR depends on P4 concentration, with the PLA2s being key actors at low physiological P4 concentrations (≤2 μm) but not at higher P4 concentrations (~10 μm).
Collapse
Affiliation(s)
- Roland Abi Nahed
- From the Université Grenoble Alpes, F-38000 Grenoble, France, the Institut Albert Bonniot, INSERM U823, La Tronche F-38700, France
| | - Guillaume Martinez
- From the Université Grenoble Alpes, F-38000 Grenoble, France, the Institut Albert Bonniot, INSERM U823, La Tronche F-38700, France
| | - Jessica Escoffier
- From the Université Grenoble Alpes, F-38000 Grenoble, France, the Institut Albert Bonniot, INSERM U823, La Tronche F-38700, France
| | - Sandra Yassine
- From the Université Grenoble Alpes, F-38000 Grenoble, France, the Institut Albert Bonniot, INSERM U823, La Tronche F-38700, France
| | - Thomas Karaouzène
- From the Université Grenoble Alpes, F-38000 Grenoble, France, the Institut Albert Bonniot, INSERM U823, La Tronche F-38700, France
| | - Jean-Pascal Hograindleur
- From the Université Grenoble Alpes, F-38000 Grenoble, France, the Institut Albert Bonniot, INSERM U823, La Tronche F-38700, France
| | - John Turk
- the Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | - George Kokotos
- the Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Pierre F Ray
- From the Université Grenoble Alpes, F-38000 Grenoble, France, the Institut Albert Bonniot, INSERM U823, La Tronche F-38700, France, the Centre Hospitalier Universitaire de Grenoble, Unité Fonctionnelle de Biochimie et Génétique Moléculaire, Grenoble F-38000, France
| | - Serge Bottari
- From the Université Grenoble Alpes, F-38000 Grenoble, France, the Institut Albert Bonniot, INSERM U823, La Tronche F-38700, France, the Centre Hospitalier Universitaire de Grenoble, Plate-forme de Radioanalyse, IBP, CS10217, Grenoble F-38000, France
| | - Gérard Lambeau
- the Université de Nice-Sophia Antipolis, Valbonne 06560, France, the Centre Hospitalier Universitaire de Grenoble, Centre d'AMP-CECOS, CS1021, Grenoble F-38000, France
| | - Sylviane Hennebicq
- From the Université Grenoble Alpes, F-38000 Grenoble, France, the Institut Albert Bonniot, INSERM U823, La Tronche F-38700, France, the Centre Hospitalier Universitaire de Grenoble, Centre d'AMP-CECOS, CS1021, Grenoble F-38000, France
| | - Christophe Arnoult
- From the Université Grenoble Alpes, F-38000 Grenoble, France, the Institut Albert Bonniot, INSERM U823, La Tronche F-38700, France,
| |
Collapse
|
45
|
Nagashima JB, Sylvester SR, Nelson JL, Cheong SH, Mukai C, Lambo C, Flanders JA, Meyers-Wallen VN, Songsasen N, Travis AJ. Live Births from Domestic Dog (Canis familiaris) Embryos Produced by In Vitro Fertilization. PLoS One 2015; 10:e0143930. [PMID: 26650234 PMCID: PMC4674105 DOI: 10.1371/journal.pone.0143930] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022] Open
Abstract
Development of assisted reproductive technologies (ART) in the dog has resisted progress for decades, due to their unique reproductive physiology. This lack of progress is remarkable given the critical role ART could play in conserving endangered canid species or eradicating heritable disease through gene-editing technologies—an approach that would also advance the dog as a biomedical model. Over 350 heritable disorders/traits in dogs are homologous with human conditions, almost twice the number of any other species. Here we report the first live births from in vitro fertilized embryos in the dog. Adding to the practical significance, these embryos had also been cryopreserved. Changes in handling of both gametes enabled this progress. The medium previously used to capacitate sperm excluded magnesium because it delayed spontaneous acrosome exocytosis. We found that magnesium significantly enhanced sperm hyperactivation and ability to undergo physiologically-induced acrosome exocytosis, two functions essential to fertilize an egg. Unlike other mammals, dogs ovulate a primary oocyte, which reaches metaphase II on Days 4–5 after the luteinizing hormone (LH) surge. We found that only on Day 6 are oocytes consistently able to be fertilized. In vitro fertilization of Day 6 oocytes with sperm capacitated in medium supplemented with magnesium resulted in high rates of embryo development (78.8%, n = 146). Intra-oviductal transfer of nineteen cryopreserved, in vitro fertilization (IVF)-derived embryos resulted in seven live, healthy puppies. Development of IVF enables modern genetic approaches to be applied more efficiently in dogs, and for gamete rescue to conserve endangered canid species.
Collapse
Affiliation(s)
- Jennifer B. Nagashima
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Atkinson Center for a Sustainable Future, Cornell University, Ithaca, New York, United States of America
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - Skylar R. Sylvester
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Jacquelyn L. Nelson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Colleen Lambo
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - James A. Flanders
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Vicki N. Meyers-Wallen
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Nucharin Songsasen
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - Alexander J. Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Atkinson Center for a Sustainable Future, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
Vasen G, Battistone MA, Croci DO, Brukman NG, Weigel Muñoz M, Stupirski JC, Rabinovich GA, Cuasnicú PS. The galectin-1-glycan axis controls sperm fertilizing capacity by regulating sperm motility and membrane hyperpolarization. FASEB J 2015; 29:4189-200. [PMID: 26136479 DOI: 10.1096/fj.15-270975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022]
Abstract
Lectin-glycan recognition systems play central roles in many physiologic and pathologic processes. We identified a role for galectin-1 (Gal-1), a highly conserved glycan-binding protein, in the control of sperm function. We found that Gal-1 is expressed in the epididymis and associates with sperm during epididymal maturation. Exposure of sperm to Gal-1 resulted in glycan-dependent modulation of the acrosome reaction (AR), a key event in the fertilization process. Gal-1-deficient (Lgals1(-/-)) mice revealed the essential contribution of this lectin for full sperm fertilizing ability both in vitro and in vivo. Mechanistically, Lgals1(-/-) sperm exhibited defects in their ability to develop hyperactivation, a vigorous motility required for penetration of the egg vestments. Moreover, Lgals1(-/-) sperm showed a decreased ability to control cell volume and to undergo progesterone-induced AR, phenotypes that were rescued by exposure of the cells to recombinant Gal-1. Interestingly, the AR defect was associated with a deficiency in sperm membrane potential hyperpolarization. Our study highlights the relevance of the Gal-1-glycan axis in sperm function with critical implications in mammalian reproductive biology.
Collapse
Affiliation(s)
- Gustavo Vasen
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Agustina Battistone
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego O Croci
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás G Brukman
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Weigel Muñoz
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan C Stupirski
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia S Cuasnicú
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
47
|
Correia J, Michelangeli F, Publicover S. Regulation and roles of Ca2+ stores in human sperm. Reproduction 2015; 150:R65-76. [PMID: 25964382 PMCID: PMC4497595 DOI: 10.1530/rep-15-0102] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022]
Abstract
[Ca(2)(+)]i signalling is a key regulatory mechanism in sperm function. In mammalian sperm the Ca(2)(+)-permeable plasma membrane ion channel CatSper is central to [Ca(2)(+)]i signalling, but there is good evidence that Ca(2)(+) stored in intracellular organelles is also functionally important. Here we briefly review the current understanding of the diversity of Ca(2)(+) stores and the mechanisms for the regulation of their activity. We then consider the evidence for the involvement of these stores in [Ca(2)(+)]i signalling in mammalian (primarily human) sperm, the agonists that may activate these stores and their role in control of sperm function. Finally we consider the evidence that membrane Ca(2)(+) channels and stored Ca(2)(+) may play discrete roles in the regulation of sperm activities and propose a mechanism by which these different components of the sperm Ca(2)(+)-signalling apparatus may interact to generate complex and spatially diverse [Ca(2)(+)]i signals.
Collapse
Affiliation(s)
- Joao Correia
- School of BiosciencesUniversity of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Stephen Publicover
- School of BiosciencesUniversity of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
48
|
Escoffier J, Navarrete F, Haddad D, Santi CM, Darszon A, Visconti PE. Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation. Biol Reprod 2015; 92:121. [PMID: 25855261 DOI: 10.1095/biolreprod.114.127266] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/16/2015] [Indexed: 01/04/2023] Open
Abstract
To gain fertilizing capacity, mammalian sperm should reside in the female tract for a period of time. The physiological changes that render the sperm able to fertilize are known as capacitation. Capacitation is associated with an increase in intracellular pH, an increase in intracellular calcium, and phosphorylation of different proteins. This process is also accompanied by the hyperpolarization of the sperm plasma membrane potential (Em). In the present work, we used flow cytometry to analyze changes in sperm Em during capacitation in individual cells. Our results indicate that a subpopulation of hyperpolarized mouse sperm can be clearly distinguished by sperm flow cytometry analysis. Using sperm bearing green fluorescent protein in their acrosomes, we found that this hyperpolarized subpopulation is composed of sperm with intact acrosomes. In addition, we show that the capacitation-associated hyperpolarization is blocked by high extracellular K(+), by PKA inhibitors, and by SLO3 inhibitors in CD1 mouse sperm, and undetectable in Slo3 knockout mouse sperm. On the other hand, in sperm incubated in conditions that do not support capacitation, sperm membrane hyperpolarization can be induced by amiloride, high extracellular NaHCO3, and cAMP agonists. Altogether, our observations are consistent with a model in which sperm Em hyperpolarization is downstream of a cAMP-dependent pathway and is mediated by the activation of SLO3 K(+) channels.
Collapse
Affiliation(s)
- Jessica Escoffier
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts
| | - Felipe Navarrete
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts
| | - Doug Haddad
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts
| | - Celia M Santi
- Department of Anatomy and Neurobiology. Washington University School of Medicine, St. Louis, Missouri
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnologia-Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
49
|
Araki N, Trencsényi G, Krasznai ZT, Nizsalóczki E, Sakamoto A, Kawano N, Miyado K, Yoshida K, Yoshida M. Seminal vesicle secretion 2 acts as a protectant of sperm sterols and prevents ectopic sperm capacitation in mice. Biol Reprod 2014; 92:8. [PMID: 25395676 DOI: 10.1095/biolreprod.114.120642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Seminal vesicle secretion 2 (SVS2) is a protein secreted by the mouse seminal vesicle. We previously demonstrated that SVS2 regulates fertilization in mice; SVS2 is attached to a ganglioside GM1 on the plasma membrane of the sperm head and inhibits sperm capacitation in in vitro fertilization as a decapacitation factor. Furthermore, male mice lacking SVS2 display prominently reduced fertility in vivo, which indicates that SVS2 protects spermatozoa from some spermicidal attack in the uterus. In this study, we tried to investigate the mechanisms by which SVS2 controls in vivo sperm capacitation. SVS2-deficient males that mated with wild-type partners resulted in decreased cholesterol levels on ejaculated sperm in the uterine cavity. SVS2 prevented cholesterol efflux from the sperm plasma membrane and incorporated liberated cholesterol in the sperm plasma membrane, thereby reversibly preventing the induction of sperm capacitation by bovine serum albumin and methyl-beta-cyclodextrin in vitro. SVS2 enters the uterus and the uterotubal junction, arresting sperm capacitation in this area. Therefore, our results show that SVS2 keeps sterols on the sperm plasma membrane and plays a key role in unlocking sperm capacitation in vivo.
Collapse
Affiliation(s)
- Naoya Araki
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Japan
| | - György Trencsényi
- Department of Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoárd T Krasznai
- Department of Obstetrics and Gynecology, University of Debrecen, Debrecen, Hungary
| | - Enikő Nizsalóczki
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - Ayako Sakamoto
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Japan
| | - Natsuko Kawano
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Kaoru Yoshida
- Biomedical Engineering Center, Toin University of Yokohama, Yokohama, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Japan Center for Marine Biology, University of Tokyo, Miura, Japan
| |
Collapse
|
50
|
Iwao Y, Shiga K, Shiroshita A, Yoshikawa T, Sakiie M, Ueno T, Ueno S, Ijiri TW, Sato KI. The need of MMP-2 on the sperm surface for Xenopus fertilization: Its role in a fast electrical block to polyspermy. Mech Dev 2014; 134:80-95. [DOI: 10.1016/j.mod.2014.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 01/31/2023]
|