1
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Arner A, Ettinger A, Blaser BW, Schmid B, Jeremias I, Rostam N, Binder-Blaser V. In vivo monitoring of leukemia-niche interactions in a zebrafish xenograft model. PLoS One 2024; 19:e0309415. [PMID: 39213296 PMCID: PMC11364250 DOI: 10.1371/journal.pone.0309415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of malignancy in children. ALL prognosis after initial diagnosis is generally good; however, patients suffering from relapse have a poor outcome. The tumor microenvironment is recognized as an important contributor to relapse, yet the cell-cell interactions involved are complex and difficult to study in traditional experimental models. In the present study, we established an innovative larval zebrafish xenotransplantation model, that allows the analysis of leukemic cells (LCs) within an orthotopic niche using time-lapse microscopic and flow cytometric approaches. LCs homed, engrafted and proliferated within the hematopoietic niche at the time of transplant, the caudal hematopoietic tissue (CHT). A specific dissemination pattern of LCs within the CHT was recorded, as they extravasated over time and formed clusters close to the dorsal aorta. Interactions of LCs with macrophages and endothelial cells could be quantitatively characterized. This zebrafish model will allow the quantitative analysis of LCs in a functional and complex microenvironment, to study mechanisms of niche mediated leukemogenesis, leukemia maintenance and relapse development.
Collapse
Affiliation(s)
- Anja Arner
- Department of Pediatric Hematology/Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University (LMU), Munich, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Bradley Wayne Blaser
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Irmela Jeremias
- Department of Pediatric Hematology/Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University (LMU), Munich, Germany
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Nadia Rostam
- Department of Pediatric Hematology/Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University (LMU), Munich, Germany
- Department of Biology, University of Sulaimani, Sulaymaniyah, Iraq
| | - Vera Binder-Blaser
- Department of Pediatric Hematology/Oncology, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University (LMU), Munich, Germany
| |
Collapse
|
3
|
Agrawal H, Mehatre SH, Khurana S. The hematopoietic stem cell expansion niche in fetal liver: Current state of the art and the way forward. Exp Hematol 2024; 136:104585. [PMID: 39068980 DOI: 10.1016/j.exphem.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Hematopoietic development goes through a number of embryonic sites that host hematopoietic progenitor and stem cells with function required at specific developmental stages. Among embryonic sites, the fetal liver (FL) hosts definitive hematopoietic stem cells (HSCs) capable of engrafting adult hematopoietic system and supports their rapid expansion. Hence, this site provides an excellent model to understand the cellular and molecular components of the machinery involved in HSC-proliferative events, leading to their overall expansion. It has been unequivocally established that extrinsic regulators orchestrate events that maintain HSC function. Although most studies on extrinsic regulation of HSC function are targeted at adult bone marrow (BM) hematopoiesis, little is known about how FL HSC function is regulated by their microniche. This review provides the current state of our understanding on molecular and cellular niche factors that support FL hematopoiesis.
Collapse
Affiliation(s)
- Harsh Agrawal
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India
| | - Shubham Haribhau Mehatre
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India..
| |
Collapse
|
4
|
Weijts B, Robin C. Capturing embryonic hematopoiesis in temporal and spatial dimensions. Exp Hematol 2024; 136:104257. [PMID: 38897373 DOI: 10.1016/j.exphem.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) possess the ability to sustain the continuous production of all blood cell types throughout an organism's lifespan. Although primarily located in the bone marrow of adults, HSCs originate during embryonic development. Visualization of the birth of HSCs, their developmental trajectory, and the specific interactions with their successive niches have significantly contributed to our understanding of the biology and mechanics governing HSC formation and expansion. Intravital techniques applied to live embryos or non-fixed samples have remarkably provided invaluable insights into the cellular and anatomical origins of HSCs. These imaging technologies have also shed light on the dynamic interactions between HSCs and neighboring cell types within the surrounding microenvironment or niche, such as endothelial cells or macrophages. This review delves into the advancements made in understanding the origin, production, and cellular interactions of HSCs, particularly during the embryonic development of mice and zebrafish, focusing on studies employing (live) imaging analysis.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Clements WK, Khoury H. The molecular and cellular hematopoietic stem cell specification niche. Exp Hematol 2024; 136:104280. [PMID: 39009276 PMCID: PMC11338702 DOI: 10.1016/j.exphem.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Hematopoietic stem cells (HSCs) are a population of tissue-specific stem cells that reside in the bone marrow of adult mammals, where they self-renew and continuously regenerate the adult hematopoietic lineages over the life of the individual. Prominence as a stem cell model and clinical usefulness have driven interest in understanding the physiologic processes that lead to the specification of HSCs during embryonic development. High-efficiency directed differentiation of HSCs by the instruction of defined progenitor cells using sequentially defined instructive molecules and conditions remains impossible, indicating that comprehensive knowledge of the complete set of precursor intermediate identities and required inductive inputs remains incompletely understood. Recently, interest in the molecular and cellular microenvironment where HSCs are specified from endothelial precursors-the "specification niche"-has increased. Here we review recent progress in understanding these niche spaces across vertebrate phyla, as well as how a better characterization of the origin and molecular phenotypes of the niche cell populations has helped inform and complicate previous understanding of signaling required for HSC emergence and maturation.
Collapse
Affiliation(s)
- Wilson K Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
| | - Hanane Khoury
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
6
|
Huang J, Li J, Li S, Yang X, Huo N, Chen Q, Wang W, Yang N, Wang Y, Zhou N. Netrin-1-engineered endothelial cell exosomes induce the formation of pre-regenerative niche to accelerate peripheral nerve repair. SCIENCE ADVANCES 2024; 10:eadm8454. [PMID: 38941462 PMCID: PMC11212737 DOI: 10.1126/sciadv.adm8454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
The formation of vascular niche is pivotal during the early stage of peripheral nerve regeneration. Nevertheless, the mechanisms of vascular niche in the regulation of peripheral nerve repair remain unclear. Netrin-1 (NTN1) was found up-regulated in nerve stump after peripheral nerve injury (PNI). Herein, we demonstrated that NTN1-high endothelial cells (NTN1+ECs) were the critical component of vascular niche, fostering angiogenesis, axon regeneration, and repair-related phenotypes. We also found that NTN1+EC-derived exosomes (NTN1 EC-EXO) were involved in the formation of vascular niche as a critical role. Multi-omics analysis further verified that NTN1 EC-EXO carried a low-level expression of let7a-5p and activated key pathways associated with niche formation including focal adhesion, axon guidance, phosphatidylinositol 3-kinase-AKT, and mammalian target of rapamycin signaling pathway. Together, our study suggested that the construction of a pre-regenerative niche induced by NTN1 EC-EXO could establish a beneficial microenvironment for nerve repair and facilitate functional recovery after PNI.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Senrui Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Nianci Huo
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Qiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Wengang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Ningning Yang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Orthopedics Center, Jilin University, Changchun 130021, China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
7
|
Xia J, Wang H, Zhong Z, Jiang J. Inhibition of PIKfyve Leads to Lysosomal Disorders via Dysregulation of mTOR Signaling. Cells 2024; 13:953. [PMID: 38891085 PMCID: PMC11171791 DOI: 10.3390/cells13110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
PIKfyve is an endosomal lipid kinase that synthesizes phosphatidylinositol 3,5-biphosphate from phosphatidylinositol 3-phsphate. Inhibition of PIKfyve activity leads to lysosomal enlargement and cytoplasmic vacuolation, attributed to impaired lysosomal fission processes and homeostasis. However, the precise molecular mechanisms underlying these effects remain a topic of debate. In this study, we present findings from PIKfyve-deficient zebrafish embryos, revealing enlarged macrophages with giant vacuoles reminiscent of lysosomal storage disorders. Treatment with mTOR inhibitors or effective knockout of mTOR partially reverses these abnormalities and extend the lifespan of mutant larvae. Further in vivo and in vitro mechanistic investigations provide evidence that PIKfyve activity is essential for mTOR shutdown during early zebrafish development and in cells cultured under serum-deprived conditions. These findings underscore the critical role of PIKfyve activity in regulating mTOR signaling and suggest potential therapeutic applications of PIKfyve inhibitors for the treatment of lysosomal storage disorders.
Collapse
Affiliation(s)
- Jianhong Xia
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (J.X.); (H.W.)
| | - Haiyun Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (J.X.); (H.W.)
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Zhihang Zhong
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Brix A, Belleri L, Pezzotta A, Pettinato E, Mazzola M, Zoccolillo M, Marozzi A, Monteiro R, Del Bene F, Mortellaro A, Pistocchi A. ADA2 regulates inflammation and hematopoietic stem cell emergence via the A 2bR pathway in zebrafish. Commun Biol 2024; 7:615. [PMID: 38777862 PMCID: PMC11111730 DOI: 10.1038/s42003-024-06286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.
Collapse
Affiliation(s)
- Alessia Brix
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, L.I.T.A., via Fratelli Cervi 93, Segrate, 20054, Milan, Italy
| | - Laura Belleri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, L.I.T.A., via Fratelli Cervi 93, Segrate, 20054, Milan, Italy
- Department of Development, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
| | - Alex Pezzotta
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, L.I.T.A., via Fratelli Cervi 93, Segrate, 20054, Milan, Italy
| | - Emanuela Pettinato
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Mara Mazzola
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, L.I.T.A., via Fratelli Cervi 93, Segrate, 20054, Milan, Italy
| | - Matteo Zoccolillo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Anna Marozzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, L.I.T.A., via Fratelli Cervi 93, Segrate, 20054, Milan, Italy
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, Edgbaston, B15 2TTB, UK
| | - Filippo Del Bene
- Department of Development, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, L.I.T.A., via Fratelli Cervi 93, Segrate, 20054, Milan, Italy.
| |
Collapse
|
9
|
Han Y, Sun K, Yu S, Qin Y, Zhang Z, Luo J, Hu H, Dai L, Cui M, Jiang C, Liu F, Huang Y, Gao P, Chen X, Xin T, Ren X, Wu X, Song J, Wang Q, Tang Z, Chen J, Zhang H, Zhang X, Liu M, Luo D. A Mettl16/m 6A/mybl2b/Igf2bp1 axis ensures cell cycle progression of embryonic hematopoietic stem and progenitor cells. EMBO J 2024; 43:1990-2014. [PMID: 38605226 PMCID: PMC11099167 DOI: 10.1038/s44318-024-00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.
Collapse
Affiliation(s)
- Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shanshan Yu
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China
| | - Yayun Qin
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Zuxiao Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Liyan Dai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Manman Cui
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430071, China
| | - Chaolin Jiang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fei Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tianqing Xin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jieping Song
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430071, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Daji Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
10
|
Zhang Y, Liu F. The evolving views of hematopoiesis: from embryo to adulthood and from in vivo to in vitro. J Genet Genomics 2024; 51:3-15. [PMID: 37734711 DOI: 10.1016/j.jgg.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
The hematopoietic system composed of hematopoietic stem and progenitor cells (HSPCs) and their differentiated lineages serves as an ideal model to uncover generic principles of cell fate transitions. From gastrulation onwards, there successively emerge primitive hematopoiesis (that produces specialized hematopoietic cells), pro-definitive hematopoiesis (that produces lineage-restricted progenitor cells), and definitive hematopoiesis (that produces multipotent HSPCs). These nascent lineages develop in several transient hematopoietic sites and finally colonize into lifelong hematopoietic sites. The development and maintenance of hematopoietic lineages are orchestrated by cell-intrinsic gene regulatory networks and cell-extrinsic microenvironmental cues. Owing to the progressive methodology (e.g., high-throughput lineage tracing and single-cell functional and omics analyses), our understanding of the developmental origin of hematopoietic lineages and functional properties of certain hematopoietic organs has been updated; meanwhile, new paradigms to characterize rare cell types, cell heterogeneity and its causes, and comprehensive regulatory landscapes have been provided. Here, we review the evolving views of HSPC biology during developmental and postnatal hematopoiesis. Moreover, we discuss recent advances in the in vitro induction and expansion of HSPCs, with a focus on the implications for clinical applications.
Collapse
Affiliation(s)
- Yifan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Feng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Li Y, Li C, Liu M, Liu S, Liu F, Wang L. The RNA-binding protein CSDE1 promotes hematopoietic stem and progenitor cell generation via translational control of Wnt signaling. Development 2023; 150:dev201890. [PMID: 37874038 PMCID: PMC10652045 DOI: 10.1242/dev.201890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
In vertebrates, the earliest hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of specialized endothelial cells, hemogenic endothelial cells, in the aorta-gonad-mesonephros region through endothelial-to-hematopoietic transition. HSPC generation is efficiently and accurately regulated by a variety of factors and signals; however, the precise control of these signals remains incompletely understood. Post-transcriptional regulation is crucial for gene expression, as the transcripts are usually bound by RNA-binding proteins (RBPs) to regulate RNA metabolism. Here, we report that the RBP protein Csde1-mediated translational control is essential for HSPC generation during zebrafish early development. Genetic mutants and morphants demonstrated that depletion of csde1 impaired HSPC production in zebrafish embryos. Mechanistically, Csde1 regulates HSPC generation through modulating Wnt/β-catenin signaling activity. We demonstrate that Csde1 binds to ctnnb1 mRNAs (encoding β-catenin, an effector of Wnt signaling) and regulates translation but not stability of ctnnb1 mRNA, which further enhances β-catenin protein level and Wnt signal transduction activities. Together, we identify Csde1 as an important post-transcriptional regulator and provide new insights into how Wnt/β-catenin signaling is precisely regulated at the post-transcriptional level.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Can Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shicheng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
12
|
Hagedorn EJ, Perlin JR, Freeman RJ, Wattrus SJ, Han T, Mao C, Kim JW, Fernández-Maestre I, Daily ML, D'Amato C, Fairchild MJ, Riquelme R, Li B, Ragoonanan DAVE, Enkhbayar K, Henault EL, Wang HG, Redfield SE, Collins SH, Lichtig A, Yang S, Zhou Y, Kunar B, Gomez-Salinero JM, Dinh TT, Pan J, Holler K, Feldman HA, Butcher EC, van Oudenaarden A, Rafii S, Junker JP, Zon LI. Transcription factor induction of vascular blood stem cell niches in vivo. Dev Cell 2023; 58:1037-1051.e4. [PMID: 37119815 PMCID: PMC10330626 DOI: 10.1016/j.devcel.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche.
Collapse
Affiliation(s)
- Elliott J Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA; Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Julie R Perlin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Rebecca J Freeman
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Samuel J Wattrus
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Tianxiao Han
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Clara Mao
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Ji Wook Kim
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Inés Fernández-Maestre
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Madeleine L Daily
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Christopher D'Amato
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Michael J Fairchild
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Raquel Riquelme
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Brian Li
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Dana A V E Ragoonanan
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Khaliun Enkhbayar
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Emily L Henault
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Helen G Wang
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Shelby E Redfield
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Samantha H Collins
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Asher Lichtig
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Balvir Kunar
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jesus Maria Gomez-Salinero
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Thanh T Dinh
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Junliang Pan
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Karoline Holler
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Henry A Feldman
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Eugene C Butcher
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - J Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA.
| |
Collapse
|
13
|
Nakajima H, Ishikawa H, Yamamoto T, Chiba A, Fukui H, Sako K, Fukumoto M, Mattonet K, Kwon HB, Hui SP, Dobreva GD, Kikuchi K, Helker CSM, Stainier DYR, Mochizuki N. Endoderm-derived islet1-expressing cells differentiate into endothelial cells to function as the vascular HSPC niche in zebrafish. Dev Cell 2023; 58:224-238.e7. [PMID: 36693371 DOI: 10.1016/j.devcel.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
Endothelial cells (ECs) line blood vessels and serve as a niche for hematopoietic stem and progenitor cells (HSPCs). Recent data point to tissue-specific EC specialization as well as heterogeneity; however, it remains unclear how ECs acquire these properties. Here, by combining live-imaging-based lineage-tracing and single-cell transcriptomics in zebrafish embryos, we identify an unexpected origin for part of the vascular HSPC niche. We find that islet1 (isl1)-expressing cells are the progenitors of the venous ECs that constitute the majority of the HSPC niche. These isl1-expressing cells surprisingly originate from the endoderm and differentiate into ECs in a process dependent on Bmp-Smad signaling and subsequently requiring npas4l (cloche) function. Single-cell RNA sequencing analyses show that isl1-derived ECs express a set of genes that reflect their distinct origin. This study demonstrates that endothelial specialization in the HSPC niche is determined at least in part by the origin of the ECs.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan.
| | - Hiroyuki Ishikawa
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; AMED-CREST, AMED, Tokyo 100-0004, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Keisuke Sako
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Moe Fukumoto
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Hyouk-Bum Kwon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Subhra P Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata 700019, India
| | - Gergana D Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Kazu Kikuchi
- Department of Cardiac Regeneration Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany; Philipps-University Marburg, Faculty of Biology, Cell Signaling and Dynamics, Marburg 35043, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan.
| |
Collapse
|
14
|
Wu M, Xu J, Zhang Y, Wen Z. Learning from Zebrafish Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:137-157. [PMID: 38228963 DOI: 10.1007/978-981-99-7471-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoiesis is a complex process that tightly regulates the generation, proliferation, differentiation, and maintenance of hematopoietic cells. Disruptions in hematopoiesis can lead to various diseases affecting both hematopoietic and non-hematopoietic systems, such as leukemia, anemia, thrombocytopenia, rheumatoid arthritis, and chronic granuloma. The zebrafish serves as a powerful vertebrate model for studying hematopoiesis, offering valuable insights into both hematopoietic regulation and hematopoietic diseases. In this chapter, we present a comprehensive overview of zebrafish hematopoiesis, highlighting its distinctive characteristics in hematopoietic processes. We discuss the ontogeny and modulation of both primitive and definitive hematopoiesis, as well as the microenvironment that supports hematopoietic stem/progenitor cells. Additionally, we explore the utility of zebrafish as a disease model and its potential in drug discovery, which not only advances our understanding of the regulatory mechanisms underlying hematopoiesis but also facilitates the exploration of novel therapeutic strategies for hematopoietic diseases.
Collapse
Affiliation(s)
- Mei Wu
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jin Xu
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Yiyue Zhang
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Zilong Wen
- Southern University of Science and Technology, School of Life Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
15
|
Segal D, Mazloom-Farsibaf H, Chang BJ, Roudot P, Rajendran D, Daetwyler S, Fiolka R, Warren M, Amatruda JF, Danuser G. In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish. J Cell Biol 2022; 221:213501. [PMID: 36155740 PMCID: PMC9516844 DOI: 10.1083/jcb.202109100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/11/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022] Open
Abstract
Tissue microenvironments affect the functional states of cancer cells, but determining these influences in vivo has remained a challenge. We present a quantitative high-resolution imaging assay of single cancer cells in zebrafish xenografts to probe functional adaptation to variable cell-extrinsic cues and molecular interventions. Using cell morphology as a surrogate readout of cell functional states, we examine environmental influences on the morphotype distribution of Ewing Sarcoma, a pediatric cancer associated with the oncogene EWSR1-FLI1 and whose plasticity is thought to determine disease outcome through non-genomic mechanisms. Computer vision analysis reveals systematic shifts in the distribution of 3D morphotypes as a function of cell type and seeding site, as well as tissue-specific cellular organizations that recapitulate those observed in human tumors. Reduced expression of the EWSR1-FLI1 protein product causes a shift to more protrusive cells and decreased tissue specificity of the morphotype distribution. Overall, this work establishes a framework for a statistically robust study of cancer cell plasticity in diverse tissue microenvironments.
Collapse
Affiliation(s)
- Dagan Segal
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Hanieh Mazloom-Farsibaf
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Mikako Warren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - James F Amatruda
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
16
|
Qiao D, Zhao Y, Pei C, Zhao X, Jiang X, Zhu L, Zhang J, Li L, Kong X. Genome-wide identification, evolutionary analysis, and antimicrobial activity prediction of CC chemokines in allotetraploid common carp, Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2022; 130:114-131. [PMID: 36084887 DOI: 10.1016/j.fsi.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Chemokines are a group of secreted small molecules which are essential for cell migration in physiological and pathological conditions by binding to specific chemokine receptors. They are structurally classified into five groups, namely CXC, CC, CX3C, XC and CX. CC chemokine group is the largest one among them. In this study, we identified and characterized 61 CC chemokines from allotetraploid common carp (Cyprinus carpio). The sequence analyses showed that the majority of CC chemokines had an N-terminal signal peptide, and an SCY domain, and all CC chemokines were located in the extracellular region. Phylogenetic, evolutionary and syntenic analyses confirmed that CC chemokines were annotated as 11 different types (CCL19, CCL20, CCL25, CCL27, CCL32, CCL33, CCL34, CCL35, CCL36, CCL39, and CCL44), which exhibited unique gene arrangement pattern and chromosomal location respectively. Furthermore, genome synteny analyses between common carp and four representative teleost species indicated expansion of common carp CC chemokines resulted from the whole genome duplication (WGD) event. Additionally, the continuous evolution of gene CCL25s in teleost afforded a novel viewpoint to explain the WGD event in teleost. Then, we predicted the three-dimensional structures and probable function regions of common carp CC chemokines. All the CC chemokines core structures were constituted of an N-loop, a three-stranded β-sheet, and a C-terminal helix. Finally, 43 CC chemokines were predicted to have probable general antimicrobial activity. Their tertiary structures, cationic and amphiphilic physicochemical property supported the viewpoint. To verify the prediction, six recombinant CCL19s proteins were prepared and the antibacterial activity against Escherichia coli and Aeromonas hydrophila were verified. The results supported our prediction that rCCL19a.1s (rCCL19a.1_a, rCCL19a.1_b) and rCCL19bs (rCCL19b_a, rCCL19b_b), especially rCCL19bs, exhibited extremely significant inhibition to the growth of both E. coli and A. hydrophila. On the contrary, two rCCL19a.2s had no significant inhibitory effect. These studies suggested that CC chemokines were essential in immune system evolution and not monofunctional during pathogen infection.
Collapse
Affiliation(s)
- Dan Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|
17
|
Brain milieu induces early microglial maturation through the BAX-Notch axis. Nat Commun 2022; 13:6117. [PMID: 36253375 PMCID: PMC9576735 DOI: 10.1038/s41467-022-33836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Microglia are derived from primitive myeloid cells and gain their early identity in the embryonic brains. However, the mechanism by which the brain milieu confers microglial maturation signature remains elusive. Here, we demonstrate that the baxcq55 zebrafish and Baxtm1Sjk mouse embryos exhibit similarly defective early microglial maturation. BAX, a typical pro-apoptotic factor, is highly enriched in neuronal cells and regulates microglial maturation through both pro-apoptotic and non-apoptotic mechanisms. BAX regulates dlb via the CaMKII-CREB axis calcium-dependently in living neurons while ensuring the efficient Notch activation in the immigrated pre-microglia by apoptotic neurons. Notch signaling is conserved in supporting embryonic microglia maturation. Compromised microglial development occurred in the Cx3cr1Cre/+Rbpjfl/fl embryonic mice; however, microglia acquire their appropriate signature when incubated with DLL3 in vitro. Thus, our findings elucidate a BAX-CaMKII-CREB-Notch network triggered by the neuronal milieu in microglial development, which may provide innovative insights for targeting microglia in neuronal disorder treatment.
Collapse
|
18
|
Thomas H, McCloskey E, Rider V. Pregnancy preparation: redistribution of CCR7-positive cells in the rat uterus. Reproduction 2022; 164:183-193. [PMID: 35960551 PMCID: PMC10531295 DOI: 10.1530/rep-22-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
In brief Changes in the endometrium prior to implantation may be critical in predicting pregnancy outcomes. This study shows that the endocrine system directs positional changes in CCR7+ cells before implantation, which may be critical for developing maternal tolerance. Abstract Suppression of the maternal immune system is vital for the implantation of the semi-allogeneic embryo. Although progress in understanding the dialogue between mother and embryo has been made, key interactions between maternal immune cells, hormones, and chemokines remain elusive. Uterine expression of the C-C chemokine receptor type 7 (CCR7) could recruit T regulatory cells and facilitate localized immune suppression. To test this concept, Ccr7 mRNA and protein were assessed in uterine tissue. Ccr7 mRNA expression peaked at day 4 in pregnant rat uteri and then declined at days 5 and 6. CCR7 protein showed similar quantitative changes. To test if female sex steroids affected the spatial distribution of CCR7-expressing cells, uteri from ovariectomized rats, progesterone-pretreated rats (2 mg daily), and progesterone-pretreated rats injected with estradiol (0.2 µg) were analyzed. Progesterone increased CCR7-positive (+) cells in the antimesometrial stroma. Progesterone and estradiol increased CCR7+ cells in the mesometrial stroma. Estradiol increased the density of cluster of differentiation 4 (CD4) positive cells in the mesometrial stromal region over progesterone alone. The density of cells expressing the T regulatory cell marker, forkhead box protein 3 (FOXP3), increased in the antimesometrial stroma in response to progesterone alone. Progesterone and estradiol increased FOXP3+ cells in the antimesometrial region of the stroma. Co-localization of CCR7, CD4, and FOXP3 in the stroma suggests CCR7+ cells are T regulatory cells. Polarization of CCR7+ cells in the endometrial stroma was an intrinsic response regulated by sex steroids and did not require the presence of an embryo.
Collapse
Affiliation(s)
- Hannah Thomas
- 1Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA
| | - Erick McCloskey
- 1Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA
| | - Virginia Rider
- 1Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA
| |
Collapse
|
19
|
Dai Y, Wu S, Cao C, Xue R, Luo X, Wen Z, Xu J. Csf1rb regulates definitive hematopoiesis in zebrafish. Development 2022; 149:276084. [DOI: 10.1242/dev.200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In vertebrates, hematopoietic stem and progenitor cells (HSPCs) are capable of self-renewal and continuously replenishing all mature blood lineages throughout life. However, the molecular signaling regulating the maintenance and expansion of HSPCs remains incompletely understood. Colony-stimulating factor 1 receptor (CSF1R) is believed to be the primary regulator for the myeloid lineage but not HSPC development. Here, we show a surprising role of Csf1rb, a zebrafish homolog of mammalian CSF1R, in preserving the HSPC pool by maintaining the proliferation of HSPCs. Deficiency of csf1rb leads to a reduction in both HSPCs and their differentiated progenies, including myeloid, lymphoid and erythroid cells at early developmental stages. Likewise, the absence of csf1rb conferred similar defects upon HSPCs and leukocytes in adulthood. Furthermore, adult hematopoietic cells from csf1rb mutants failed to repopulate immunodeficient zebrafish. Interestingly, loss-of-function and gain-of-function assays suggested that the canonical ligands for Csf1r in zebrafish, including Csf1a, Csf1b and Il34, were unlikely to be ligands of Csf1rb. Thus, our data indicate a previously unappreciated role of Csf1r in maintaining HSPCs, independently of known ligands.
Collapse
Affiliation(s)
- Yimei Dai
- School of Medicine, South China University of Technology 1 Laboratory of Immunology & Regeneration , , Guangzhou 510006, China
| | - Shuting Wu
- State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology 2 Division of Life Science , , Clear Water Bay, Kowloon, Hong Kong , People's Republic of China
| | - Canran Cao
- School of Medicine, South China University of Technology 1 Laboratory of Immunology & Regeneration , , Guangzhou 510006, China
| | - Rongtao Xue
- Nanfang Hospital, Southern Medical University 3 Department of Hematology , , Guangzhou, Guangdong 510515 , China
| | - Xuefen Luo
- State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology 2 Division of Life Science , , Clear Water Bay, Kowloon, Hong Kong , People's Republic of China
| | - Zilong Wen
- State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology 2 Division of Life Science , , Clear Water Bay, Kowloon, Hong Kong , People's Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University−Hong Kong University of Science and Technology Medical Center 4 , Shenzhen 518055 , China
| | - Jin Xu
- School of Medicine, South China University of Technology 1 Laboratory of Immunology & Regeneration , , Guangzhou 510006, China
| |
Collapse
|
20
|
Faisal M, Hassan M, Kumar A, Zubair M, Jamal M, Menghwar H, Saad M, Kloczkowski A. Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. Int J Mol Sci 2022; 23:7285. [PMID: 35806290 PMCID: PMC9266955 DOI: 10.3390/ijms23137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized microenvironment in a peculiar anatomic location which regulates the maintenance of stem cells and controls its functions. Recent scientific progress in experimental technologies have enabled the specific detection of epigenetic factors responsible for the maintenance and quiescence of the hematopoietic niche, which has improved our knowledge of regulatory mechanisms. The aberrant role of RNA-binding proteins and their impact on the disruption of stem cell biology have been reported by a number of recent studies. Despite recent modernization in hematopoietic microenvironment research avenues, our comprehension of the signaling mechanisms and interactive pathways responsible for integration of the hematopoietic niche is still limited. In the past few decades, zebrafish usage with regards to exploratory studies of the hematopoietic niche has expanded our knowledge for deeper understanding of novel cellular interactions. This review provides an update on the functional roles of different genetic and epigenetic factors and molecular signaling events at different sections of the hematopoietic microenvironment. The explorations of different molecular approaches and interventions of latest web-based tools being used are also outlined. This will help us to get more mechanistic insights and develop therapeutic options for the malignancies.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Aman Kumar
- Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Muhammad Zubair
- Department of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan 430072, China;
| | - Harish Menghwar
- Axe Molecular Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), Laval University, Quebec City, QC G1V 4G2, Canada;
| | - Muhammad Saad
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43205, USA;
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
21
|
Klaus A, Clapes T, Yvernogeau L, Basu S, Weijts B, Maas J, Smal I, Galjart N, Robin C. CLASP2 safeguards hematopoietic stem cell properties during mouse and fish development. Cell Rep 2022; 39:110957. [PMID: 35705037 DOI: 10.1016/j.celrep.2022.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/28/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
Hematopoietic stem cells (HSCs) express a large variety of cell surface receptors that are associated with acquisition of self-renewal and multipotent properties. Correct expression of these receptors depends on a delicate balance between cell surface trafficking, recycling, and degradation and is controlled by the microtubule network and Golgi apparatus, whose roles have hardly been explored during embryonic/fetal hematopoiesis. Here we show that, in the absence of CLASP2, a microtubule-associated protein, the overall production of HSCs is reduced, and the produced HSCs fail to self-renew and maintain their stemness throughout mouse and zebrafish development. This phenotype can be attributed to decreased cell surface expression of the hematopoietic receptor c-Kit, which originates from increased lysosomal degradation in combination with a reduction in trafficking to the plasma membrane. A dysfunctional Golgi apparatus in CLASP2-deficient HSCs seems to be the underlying cause of the c-Kit expression and signaling imbalance.
Collapse
Affiliation(s)
- Anna Klaus
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Thomas Clapes
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Sreya Basu
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Bart Weijts
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Joris Maas
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Ihor Smal
- Theme Biomedical Sciences and Departments of Cell Biology and Molecular Genetics, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands.
| |
Collapse
|
22
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Haematopoiesis in Zebrafish (Danio Rerio). Front Immunol 2022; 13:902941. [PMID: 35720291 PMCID: PMC9201100 DOI: 10.3389/fimmu.2022.902941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Haematopoiesis in fish and mammals is a complex process, and many aspects regarding its model and the differentiation of haematopoietic stem cells (HSCs) still remain enigmatic despite advanced studies. The effects of microenvironmental factors or HSCs niche and signalling pathways on haematopoiesis are also unclear. This review presents Danio rerio as a model organism for studies on haematopoiesis in vertebrates and discusses the development of this process during the embryonic period and in adult fish. It describes the role of the microenvironment of the haematopoietic process in regulating the formation and function of HSCs/HSPCs (hematopoietic stem/progenitor cells) and highlights facts and research areas important for haematopoiesis in fish and mammals.
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Science, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
23
|
Kandarakov O, Belyavsky A, Semenova E. Bone Marrow Niches of Hematopoietic Stem and Progenitor Cells. Int J Mol Sci 2022; 23:ijms23084462. [PMID: 35457280 PMCID: PMC9032554 DOI: 10.3390/ijms23084462] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian hematopoietic system is remarkably efficient in meeting an organism’s vital needs, yet is highly sensitive and exquisitely regulated. Much of the organismal control over hematopoiesis comes from the regulation of hematopoietic stem cells (HSCs) by specific microenvironments called niches in bone marrow (BM), where HSCs reside. The experimental studies of the last two decades using the most sophisticated and advanced techniques have provided important data on the identity of the niche cells controlling HSCs functions and some mechanisms underlying niche-HSC interactions. In this review we discuss various aspects of organization and functioning of the HSC cell niche in bone marrow. In particular, we review the anatomy of BM niches, various cell types composing the niche, niches for more differentiated cells, metabolism of HSCs in relation to the niche, niche aging, leukemic transformation of the niche, and the current state of HSC niche modeling in vitro.
Collapse
|
24
|
Georgievski A, Michel A, Thomas C, Mlamla Z, Pais de Barros JP, Lemaire-Ewing S, Garrido C, Quéré R. Acute lymphoblastic leukemia-derived extracellular vesicles affect quiescence of hematopoietic stem and progenitor cells. Cell Death Dis 2022; 13:337. [PMID: 35414137 PMCID: PMC9005650 DOI: 10.1038/s41419-022-04761-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/05/2023]
Abstract
Patient-derived xenografted (PDX) models were generated through the transplantation of primary acute lymphoblastic leukemia (ALL) cells into immunodeficient NSG mice. We observed that ALL cells from mouse bone marrow (BM) produced extracellular vesicles (EVs) with specific expression of inducible heat shock protein HSP70, which is commonly activated in cancer cells. Taking advantage of this specific expression, we designed a strategy to generate fluorescent HSP70-labeled ALL EVs and monitor the impact of these EVs on endogenous murine BM cells ex vivo and in vivo. We discovered that hematopoietic stem and progenitor cells (HSPC) were mainly targeted by ALL EVs, affecting their quiescence and maintenance in the murine BM environment. Investigations revealed that ALL EVs were enriched in cholesterol and other metabolites that contribute to promote the mitochondrial function in targeted HSPC. Furthermore, using CD34+ cells isolated from cord blood, we confirmed that ALL EVs can modify quiescence of human HSPC. In conclusion, we have discovered a new oncogenic mechanism illustrating how EVs produced by proliferative ALL cells can target and compromise a healthy hematopoiesis system during leukemia development.
Collapse
Affiliation(s)
- Aleksandra Georgievski
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Anaïs Michel
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France
| | - Charles Thomas
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Zandile Mlamla
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,Plateforme de Lipidomique Analytique, Université Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Plateforme de Lipidomique Analytique, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphanie Lemaire-Ewing
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,Laboratoire de Biochimie Spécialisée, Hôpital Universitaire François Mitterrand, Dijon, France
| | - Carmen Garrido
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Ronan Quéré
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France. .,LipSTIC Labex, Dijon, France.
| |
Collapse
|
25
|
Owen-Woods C, Kusumbe A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin Cell Dev Biol 2022; 123:36-47. [PMID: 34281770 DOI: 10.1016/j.semcdb.2021.06.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis, hematopoiesis and osteogenesis are fundamental processes mediating complex and essential biological functions. In the bone marrow, endothelial cells (ECs) are a principal mediator of regulatory signals that govern hematopoietic and mesenchymal stem cells. EC and osteoblast interactions and niche functions of ECs are fundamental in maintaining bone health and coordinating repair and regeneration following injury. These cellular interactions are subject to dysregulation and deterioration under stress, aging, chronic disease states and malignancy. Thus, the prospect of manipulating the bone vasculature has tremendous potential to advance therapeutic interventions for the management of bone diseases. This review discusses the current state of vascular-skeletal tissue interactions focusing on osteoblast and hematopoietic stem cells interaction with ECs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
26
|
Gao S, Shi Q, Zhang Y, Liang G, Kang Z, Huang B, Ma D, Wang L, Jiao J, Fang X, Xu CR, Liu L, Xu X, Göttgens B, Li C, Liu F. Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Res 2022; 32:38-53. [PMID: 34341490 PMCID: PMC8724330 DOI: 10.1038/s41422-021-00540-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Limited knowledge of cellular and molecular mechanisms underlying hematopoietic stem cell and multipotent progenitor (HSC/MPP) expansion within their native niche has impeded the application of stem cell-based therapies for hematological malignancies. Here, we constructed a spatiotemporal transcriptome map of mouse fetal liver (FL) as a platform for hypothesis generation and subsequent experimental validation of novel regulatory mechanisms. Single-cell transcriptomics revealed three transcriptionally heterogeneous HSC/MPP subsets, among which a CD93-enriched subset exhibited enhanced stem cell properties. Moreover, by employing integrative analysis of single-cell and spatial transcriptomics, we identified novel HSC/MPP 'pocket-like' units (HSC PLUS), composed of niche cells (hepatoblasts, stromal cells, endothelial cells, and macrophages) and enriched with growth factors. Unexpectedly, macrophages showed an 11-fold enrichment in the HSC PLUS. Functionally, macrophage-HSC/MPP co-culture assay and candidate molecule testing, respectively, validated the supportive role of macrophages and growth factors (MDK, PTN, and IGFBP5) in HSC/MPP expansion. Finally, cross-species analysis and functional validation showed conserved cell-cell interactions and expansion mechanisms but divergent transcriptome signatures between mouse and human FL HSCs/MPPs. Taken together, these results provide an essential resource for understanding HSC/MPP development in FL, and novel insight into functional HSC/MPP expansion ex vivo.
Collapse
Affiliation(s)
- Suwei Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Shi
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Yifan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guixian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Kang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baofeng Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianwei Jiao
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Science & Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| | - Cheng-Ran Xu
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Longqi Liu
- BGI-ShenZhen, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xun Xu
- BGI-ShenZhen, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong, China
| | - Berthold Göttgens
- Department of Haematology, Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Molecular and Cellular Mechanisms of Vascular Development in Zebrafish. Life (Basel) 2021; 11:life11101088. [PMID: 34685459 PMCID: PMC8539546 DOI: 10.3390/life11101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
The establishment of a functional cardiovascular system is crucial for the development of all vertebrates. Defects in the development of the cardiovascular system lead to cardiovascular diseases, which are among the top 10 causes of death worldwide. However, we are just beginning to understand which signaling pathways guide blood vessel growth in different tissues and organs. The advantages of the model organism zebrafish (Danio rerio) helped to identify novel cellular and molecular mechanisms of vascular growth. In this review we will discuss the current knowledge of vasculogenesis and angiogenesis in the zebrafish embryo. In particular, we describe the molecular mechanisms that contribute to the formation of blood vessels in different vascular beds within the embryo.
Collapse
|
28
|
Sugden WW, North TE. Making Blood from the Vessel: Extrinsic and Environmental Cues Guiding the Endothelial-to-Hematopoietic Transition. Life (Basel) 2021; 11:life11101027. [PMID: 34685398 PMCID: PMC8539454 DOI: 10.3390/life11101027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
It is increasingly recognized that specialized subsets of endothelial cells carry out unique functions in specific organs and regions of the vascular tree. Perhaps the most striking example of this specialization is the ability to contribute to the generation of the blood system, in which a distinct population of “hemogenic” endothelial cells in the embryo transforms irreversibly into hematopoietic stem and progenitor cells that produce circulating erythroid, myeloid and lymphoid cells for the lifetime of an animal. This review will focus on recent advances made in the zebrafish model organism uncovering the extrinsic and environmental factors that facilitate hemogenic commitment and the process of endothelial-to-hematopoietic transition that produces blood stem cells. We highlight in particular biomechanical influences of hemodynamic forces and the extracellular matrix, metabolic and sterile inflammatory cues present during this developmental stage, and outline new avenues opened by transcriptomic-based approaches to decipher cell–cell communication mechanisms as examples of key signals in the embryonic niche that regulate hematopoiesis.
Collapse
Affiliation(s)
- Wade W. Sugden
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E. North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
29
|
The blood flow-klf6a-tagln2 axis drives vessel pruning in zebrafish by regulating endothelial cell rearrangement and actin cytoskeleton dynamics. PLoS Genet 2021; 17:e1009690. [PMID: 34319989 PMCID: PMC8318303 DOI: 10.1371/journal.pgen.1009690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies have focused on capillary pruning in various organs and species. However, the way in which large-diameter vessels are pruned remains unclear. Here we show that pruning of the zebrafish caudal vein (CV) from ventral capillaries of the CV plexus in different transgenic embryos is driven by endothelial cell (EC) rearrangement, which involves EC nucleus migration, junction remodeling, and actin cytoskeleton remodeling. Further observation reveals a growing difference in blood flow velocity between the two vessels in CV pruning in zebrafish embryos. With this model, we identify the critical role of Kruppel-like factor 6a (klf6a) in CV pruning. Disruption of klf6a functioning impairs CV pruning in zebrafish. klf6a is required for EC nucleus migration, junction remodeling, and actin cytoskeleton dynamics in zebrafish embryos. Moreover, actin-related protein transgelin 2 (tagln2) is a direct downstream target of klf6a in CV pruning in zebrafish embryos. Together these results demonstrate that the klf6a-tagln2 axis regulates CV pruning by promoting EC rearrangement. Vascular remodeling is critical for vascular physiology and pathology. The primitive vascular plexus formed by angiogenesis, subsequently undergoes extensive vascular remodeling to establish a functionally and hierarchically branched network of blood vessels. Vascular remodeling mainly consists of vessel pruning and fusion. Endothelial cell rearrangement plays an essential role in vessel pruning, which involves endothelial cell migration and polarity. Dysfunction of flow-induced vascular remodeling will cause arteriovenous malformation and impair reperfusion of ischemia stroke. In this study, we show that the large-diameter vessel of the caudal vein is pruned from ventral capillaries of the caudal vein plexus in zebrafish embryos. With this model, we observe a growing difference in blood flow velocity between two branches in vessel pruning. We identify that the klf6a-tagln2 axis regulates CV pruning by promoting endothelial cell rearrangement and junction remodeling. Our results suggest that the caudal vein formation is an ideal model for screening the potential genes involved in vascular remodeling-related disease.
Collapse
|
30
|
Smarca5-mediated epigenetic programming facilitates fetal HSPC development in vertebrates. Blood 2021; 137:190-202. [PMID: 32756943 DOI: 10.1182/blood.2020005219] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Nascent hematopoietic stem and progenitor cells (HSPCs) acquire definitive hematopoietic characteristics only when they develop into fetal HSPCs; however, the mechanisms underlying fetal HSPC development are poorly understood. Here, we profiled the chromatin accessibility and transcriptional features of zebrafish nascent and fetal HSPCs using ATAC-seq and RNA-seq and revealed dynamic changes during HSPC transition. Functional assays demonstrated that chromatin remodeler-mediated epigenetic programming facilitates fetal HSPC development in vertebrates. Systematical screening of chromatin remodeler-related genes identified that smarca5 is responsible for the maintenance of chromatin accessibility at promoters of hematopoiesis-related genes in fetal HSPCs. Mechanistically, Smarca5 interacts with nucleolin to promote chromatin remodeling, thereby facilitating genomic binding of transcription factors to regulate expression of hematopoietic regulators such as bcl11ab. Our results unravel a new role of epigenetic regulation and reveal that Smarca5-mediated epigenetic programming is responsible for fetal HSPC development, which will provide new insights into the generation of functional HSPCs both in vivo and in vitro.
Collapse
|
31
|
A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish. Proc Natl Acad Sci U S A 2021; 118:2015748118. [PMID: 33785593 PMCID: PMC8040670 DOI: 10.1073/pnas.2015748118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The caudal hematopoietic tissue (CHT) is characterized as a hematopoietic organ for fetal hematopoietic stem and progenitor cell (HSPC) expansion in zebrafish. In this study, we used scRNA-seq combined with functional assays to decode the developing CHT. First, we resolved fetal HSPC heterogeneity, manifested as lineage priming and metabolic gene signatures. We further analyzed the cellular interactions among nonhematopoietic niche components and HSPCs and identified an endothelial cell-specific factor, Gpr182, followed by experimental validation of its role in promoting HSPC expansion. Finally, we uncovered the conservation and divergence of developmental hematopoiesis between human fetal liver and zebrafish CHT. Our study provides a valuable resource for fetal HSPC development and clues to establish a supportive niche for HSPC expansion in vitro. During vertebrate embryogenesis, fetal hematopoietic stem and progenitor cells (HSPCs) exhibit expansion and differentiation properties in a supportive hematopoietic niche. To profile the developmental landscape of fetal HSPCs and their local niche, here, using single-cell RNA-sequencing, we deciphered a dynamic atlas covering 28,777 cells and 9 major cell types (23 clusters) of zebrafish caudal hematopoietic tissue (CHT). We characterized four heterogeneous HSPCs with distinct lineage priming and metabolic gene signatures. Furthermore, we investigated the regulatory mechanism of CHT niche components for HSPC development, with a focus on the transcription factors and ligand–receptor networks involved in HSPC expansion. Importantly, we identified an endothelial cell-specific G protein–coupled receptor 182, followed by in vivo and in vitro functional validation of its evolutionally conserved role in supporting HSPC expansion in zebrafish and mice. Finally, comparison between zebrafish CHT and human fetal liver highlighted the conservation and divergence across evolution. These findings enhance our understanding of the regulatory mechanism underlying hematopoietic niche for HSPC expansion in vivo and provide insights into improving protocols for HSPC expansion in vitro.
Collapse
|
32
|
Transcriptional and epigenetic control of hematopoietic stem cell fate decisions in vertebrates. Dev Biol 2021; 475:156-164. [PMID: 33689804 DOI: 10.1016/j.ydbio.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) are the foundation of adult hematopoiesis that produce all types of mature blood lineages. In vertebrates, HSC development is a stepwise process, coordinately regulated by chromatin architectures and a group of transcriptional and epigenetic regulators. A deeper understanding of the molecular mechanisms governing the generation, expansion, and function of HSCs holds great promise in the generation and expansion of engraftable HSCs in vitro for clinical applications. This study reviewed recent advances in transcriptional and epigenetic control of hematopoietic stem cell fate decisions in vertebrates.
Collapse
|
33
|
Dietrich K, Fiedler IA, Kurzyukova A, López-Delgado AC, McGowan LM, Geurtzen K, Hammond CL, Busse B, Knopf F. Skeletal Biology and Disease Modeling in Zebrafish. J Bone Miner Res 2021; 36:436-458. [PMID: 33484578 DOI: 10.1002/jbmr.4256] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Zebrafish are teleosts (bony fish) that share with mammals a common ancestor belonging to the phylum Osteichthyes, from which their endoskeletal systems have been inherited. Indeed, teleosts and mammals have numerous genetically conserved features in terms of skeletal elements, ossification mechanisms, and bone matrix components in common. Yet differences related to bone morphology and function need to be considered when investigating zebrafish in skeletal research. In this review, we focus on zebrafish skeletal architecture with emphasis on the morphology of the vertebral column and associated anatomical structures. We provide an overview of the different ossification types and osseous cells in zebrafish and describe bone matrix composition at the microscopic tissue level with a focus on assessing mineralization. Processes of bone formation also strongly depend on loading in zebrafish, as we elaborate here. Furthermore, we illustrate the high regenerative capacity of zebrafish bones and present some of the technological advantages of using zebrafish as a model. We highlight zebrafish axial and fin skeleton patterning mechanisms, metabolic bone disease such as after immunosuppressive glucocorticoid treatment, as well as osteogenesis imperfecta (OI) and osteopetrosis research in zebrafish. We conclude with a view of why larval zebrafish xenografts are a powerful tool to study bone metastasis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kristin Dietrich
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Imke Ak Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Kurzyukova
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Alejandra C López-Delgado
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Lucy M McGowan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Karina Geurtzen
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
34
|
Bergo V, Trompouki E. New tools for 'ZEBRA-FISHING'. Brief Funct Genomics 2021:elab001. [PMID: 33605988 DOI: 10.1093/bfgp/elab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
Zebrafish has been established as a classical model for developmental studies, yet in the past years, with the explosion of novel technological methods, the use of zebrafish as a model has expanded. One of the prominent fields that took advantage of zebrafish as a model organism early on is hematopoiesis, the process of blood cell generation from hematopoietic stem and progenitor cells (HSPCs). In zebrafish, HSPCs are born early during development in the aorta-gonad-mesonephros region and then translocate to the caudal hematopoietic tissue, where they expand and finally take residence in the kidney marrow. This journey is tightly regulated at multiple levels from extracellular signals to chromatin. In order to delineate the mechanistic underpinnings of this process, next-generation sequencing techniques could be an important ally. Here, we describe genome-wide approaches that have been undertaken to delineate zebrafish hematopoiesis.
Collapse
|
35
|
Man Y, Yao X, Yang T, Wang Y. Hematopoietic Stem Cell Niche During Homeostasis, Malignancy, and Bone Marrow Transplantation. Front Cell Dev Biol 2021; 9:621214. [PMID: 33553181 PMCID: PMC7862549 DOI: 10.3389/fcell.2021.621214] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Self-renewal and multidirectional differentiation of hematopoietic stem cells (HSCs) are strictly regulated by numerous cellular components and cytokines in the bone marrow (BM) microenvironment. Several cell types that regulate HSC niche have been identified, including both non-hematopoietic cells and HSC-derived cells. Specific changes in the niche composition can result in hematological malignancies. Furthermore, processes such as homing, proliferation, and differentiation of HSCs are strongly controlled by the BM niche and have been reported to be related to the success of hematopoietic stem cell transplantation (HSCT). Single-cell sequencing and in vivo imaging are powerful techniques to study BM microenvironment in hematological malignancies and after HSCT. In this review, we discuss how different components of the BM niche, particularly non-hematopoietic and hematopoietic cells, regulate normal hematopoiesis, and changes in the BM niche in leukemia and after HSCT. We believe that this comprehensive review will provide clues for further research on improving HSCT efficiency and exploring potential therapeutic targets for leukemia.
Collapse
Affiliation(s)
- Yan Man
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Xiangmei Yao
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Tonghua Yang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Yajie Wang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
36
|
Matsuo T, Tashiro H, Sumiyoshi R, Saito S, Shirasaki R, Shirafuji N. Functional expression cloning of molecules inducing CD34 expression in bone marrow-derived stromal myofibroblasts. Biochem Biophys Res Commun 2020; 533:1283-1289. [PMID: 33066959 DOI: 10.1016/j.bbrc.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 01/01/2023]
Abstract
We have previously shown a fraction of stromal fibroblasts/myofibroblasts (Fibs) from leukemic bone marrow cells expresses leukemia-specific transcripts along with hematopoietic and Fib-related markers. Normal bone marrow-derived Fibs (nFibs) do not express CD34 or CD45; however, nFibs may express hematopoietic markers with some specific stimulations. CD34 expression was detected in nFib cultures following the addition of a culture supernatant of blood mononuclear cells stimulated with phytohemagglutinin (PHA)-P. To identify the molecules responsible for inducing CD34 expression in nFibs, cDNA clones were isolated using functional expression cloning with a library constructed from PHA-P-stimulated human blood mononuclear cells. Positive clones inducing CD34 transcription in nFibs were selected. We confirmed that an isolated positive cDNA clone encoded human interleukin (IL)-1 beta (β). CD34 expression was observed in the nFib cultures with recombinant human (rh) IL-1β protein. And CD34 transcription was suppressed when a rhIL-1β neutralizing antibody was added to the IL-1β-stimulated nFib cultures. nFibs expressed gp130 and IL-6 receptors, and CD45 expression was detected in nFibs cultured with rhIL-1β and rhIL-6. Chronic myelogenous leukemia (CML) cells reportedly respond well to IL-1β. When CML-derived Fibs were cultured with rhIL-1β and rhIL-6, CD45-positive cells increased in number. Cell fate may be influenced by an external specific stimulation without gene introduction.
Collapse
Affiliation(s)
- Takuji Matsuo
- Department of Hematology/Oncology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Haruko Tashiro
- Department of Hematology/Oncology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Ritsu Sumiyoshi
- Department of Hematology/Oncology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Sumiko Saito
- Department of Hematology/Oncology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Ryosuke Shirasaki
- Department of Hematology/Oncology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Naoki Shirafuji
- Department of Hematology/Oncology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8606, Japan.
| |
Collapse
|
37
|
Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice. Stem Cells Int 2020; 2020:8885154. [PMID: 33381191 PMCID: PMC7755487 DOI: 10.1155/2020/8885154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 11/24/2022] Open
Abstract
Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.
Collapse
|
38
|
Heck AM, Ishida T, Hadland B. Location, Location, Location: How Vascular Specialization Influences Hematopoietic Fates During Development. Front Cell Dev Biol 2020; 8:602617. [PMID: 33282876 PMCID: PMC7691428 DOI: 10.3389/fcell.2020.602617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 01/22/2023] Open
Abstract
During embryonic development, sequential waves of hematopoiesis give rise to blood-forming cells with diverse lineage potentials and self-renewal properties. This process must accomplish two important yet divergent goals: the rapid generation of differentiated blood cells to meet the needs of the developing embryo and the production of a reservoir of hematopoietic stem cells to provide for life-long hematopoiesis in the adult. Vascular beds in distinct anatomical sites of extraembryonic tissues and the embryo proper provide the necessary conditions to support these divergent objectives, suggesting a critical role for specialized vascular niche cells in regulating disparate blood cell fates during development. In this review, we will examine the current understanding of how organ- and stage-specific vascular niche specialization contributes to the development of the hematopoietic system.
Collapse
Affiliation(s)
- Adam M. Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Takashi Ishida
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
39
|
Syafruddin SE, Mohtar MA, Wan Mohamad Nazarie WF, Low TY. Two Sides of the Same Coin: The Roles of KLF6 in Physiology and Pathophysiology. Biomolecules 2020; 10:biom10101378. [PMID: 32998281 PMCID: PMC7601070 DOI: 10.3390/biom10101378] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-like factors (KLFs) family of proteins control several key biological processes that include proliferation, differentiation, metabolism, apoptosis and inflammation. Dysregulation of KLF functions have been shown to disrupt cellular homeostasis and contribute to disease development. KLF6 is a relevant example; a range of functional and expression assays suggested that the dysregulation of KLF6 contributes to the onset of cancer, inflammation-associated diseases as well as cardiovascular diseases. KLF6 expression is either suppressed or elevated depending on the disease, and this is largely due to alternative splicing events producing KLF6 isoforms with specialised functions. Hence, the aim of this review is to discuss the known aspects of KLF6 biology that covers the gene and protein architecture, gene regulation, post-translational modifications and functions of KLF6 in health and diseases. We put special emphasis on the equivocal roles of its full-length and spliced variants. We also deliberate on the therapeutic strategies of KLF6 and its associated signalling pathways. Finally, we provide compelling basic and clinical questions to enhance the knowledge and research on elucidating the roles of KLF6 in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Saiful E. Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
- Correspondence: ; Tel.: +60-3-9145-9040
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
| | - Wan Fahmi Wan Mohamad Nazarie
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
| |
Collapse
|
40
|
Li H, Pei H, Wang S, Zhang B, Fan Z, Liu Y, Xie X, Yang Z, Xu L, Jia Y, Bai Y, Han Y, Chen L, He L, Nan X, Yue W, Pei X. Arterial endothelium creates a permissive niche for expansion of human cord blood hematopoietic stem and progenitor cells. Stem Cell Res Ther 2020; 11:358. [PMID: 32799928 PMCID: PMC7429738 DOI: 10.1186/s13287-020-01880-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 12/03/2022] Open
Abstract
Background Although cord blood (CB) offers promise for treatment of patients with high-risk hematological malignancies and immune disorders, the limited numbers of hematopoietic stem cell (HSC)/progenitor cell in a CB unit and straitened circumstances in expanding ex vivo make it quite challenging to develop the successful cell therapies. Methods In this study, a novel strategy has been developed to support ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) by coculture with engineered human umbilical arterial endothelial cells (HuAECs-E4orf1-GFP), which expresses E4ORF1 stably by using a retroviral system. Results Coculture of CD34+ hCB cells with HuAECs-E4orf1-GFP resulted in generation of considerably more total nucleated cells, CD34+CD38−, and CD34+CD38−CD90+ HSPCs in comparison with that of cytokines alone or that of coculture with human umbilical vein endothelial cells (HuVECs) after 14-day amplification. The in vitro multilineage differentiation potential and in vivo repopulating capacity of the expanded hematopoietic cells cocultured with HuAECs-E4orf1-GFP were also markedly enhanced compared with the other two control groups. DLL4, a major determinant of arterial endothelial cell (EC) identity, was associated with CD34+ hCB cells amplified on HuAECs-E4orf1-GFP. Conclusions Collectively, we demonstrated that HuAECs acted as a permissive niche in facilitating expansion of HSPCs. Our study further implicated that the crucial factors and related pathways presented in HuAECs may give a hint to maintain self-renewal of bona fide HSCs.
Collapse
Affiliation(s)
- Huilin Li
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Haiyun Pei
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| | - Sihan Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Bowen Zhang
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Zeng Fan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yiming Liu
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Xiaoyan Xie
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Zhou Yang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Lei Xu
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yali Jia
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Yun Bai
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yi Han
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Lin Chen
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Lijuan He
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| |
Collapse
|
41
|
Tu J, Liu X, Jia H, Reilly J, Yu S, Cai C, Liu F, Lv Y, Huang Y, Lu Z, Han S, Jiang T, Shu X, Wu X, Tang Z, Lu Q, Liu M. The chromatin remodeler Brg1 is required for formation and maintenance of hematopoietic stem cells. FASEB J 2020; 34:11997-12008. [PMID: 32738093 DOI: 10.1096/fj.201903168rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 11/11/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) have the ability to self-renew and differentiate into various blood cells, thus playing an important role in maintenance of lifelong hematopoiesis. Brahma-related gene 1 (BRG1), which acts as the ATP subunit of mammalian SWI-SNF-related chromatin remodeling complexes, is involved in human acute myeloid leukemia and highly expresses in short-term HSPCs. But its role and regulatory mechanism for HSPC development have not yet been well established. Here, we generated a brg1 knockout zebrafish model using TALEN technology. We found that in brg1-/- embryo, the primitive hematopoiesis remained well, while definitive hematopoiesis formation was significantly impaired. The number of hemogenic endothelial cells was decreased, further affecting definitive hematopoiesis with reduced myeloid and lymphoid cells. During embryogenesis, the nitric oxide (NO) microenvironment in brg1-/- embryo was seriously damaged and the reduction of HSPCs could be partially rescued by a NO donor. Chromatin immunoprecipitation (ChIP) assays showed that BRG1 could bind to the promoter of KLF2 and trigger its transcriptional activity of NO synthase. Our findings show that Brg1 promotes klf2a expression in hemogenic endothelium and highlight a novel mechanism for HSPC formation and maintenance.
Collapse
Affiliation(s)
- Jiayi Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chen Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhaojing Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shanshan Han
- Medical College, China Three Gorges University, Yichang, China
| | - Tao Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
42
|
Xue Y, Liu D, Cui G, Ding Y, Ai D, Gao S, Zhang Y, Suo S, Wang X, Lv P, Zhou C, Li Y, Chen X, Peng G, Jing N, Han JDJ, Liu F. A 3D Atlas of Hematopoietic Stem and Progenitor Cell Expansion by Multi-dimensional RNA-Seq Analysis. Cell Rep 2020; 27:1567-1578.e5. [PMID: 31042481 DOI: 10.1016/j.celrep.2019.04.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/30/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
In vertebrates, hematopoiesis occurring in different niches is orchestrated by intrinsic and extrinsic regulators. Previous studies have revealed numerous linear and planar regulatory mechanisms. However, a multi-dimensional transcriptomic atlas of any given hematopoietic organ has not yet been established. Here, we use multiple RNA sequencing (RNA-seq) approaches, including cell type-specific, temporal bulk RNA-seq, in vivo GEO-seq, and single-cell RNA-seq (scRNA-seq), to characterize the detailed spatiotemporal transcriptome during hematopoietic stem and progenitor cell (HSPC) expansion in the caudal hematopoietic tissue (CHT) of zebrafish. Combinatorial expression profiling reveals that, in the CHT niche, HSPCs and their neighboring supporting cells are co-regulated by shared signaling pathways and intrinsic factors, such as integrin signaling and Smchd1. Moreover, scRNA-seq analysis unveils the strong association between cell cycle status and HSPC differentiation. Taken together, we report a global transcriptome landscape that provides valuable insights and a rich resource to understand HSPC expansion in an intact vertebrate hematopoietic organ.
Collapse
Affiliation(s)
- Yuanyuan Xue
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Denghui Liu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guizhong Cui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Ding
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daosheng Ai
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Suwei Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengbao Suo
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyu Zhou
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhou Li
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xingwei Chen
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
43
|
Role of microvascular endothelial cells on proliferation, migration and adhesion of hematopoietic stem cells. Biosci Rep 2020; 40:222324. [PMID: 32154555 PMCID: PMC7087325 DOI: 10.1042/bsr20192104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
Background: The present study investigated the effects of microvascular endothelial cells (MECs) on the chemotaxis, adhesion and proliferation of bone marrow hematopoietic stem cells (HSCs) ex vivo. Methods and Results: MECs were collected from the lung tissue of C57BL/6 mice, and HSCs were isolated with immunomagnetic beads from bone marrow of GFP mice. MECs and HSCs were co-cultured with or without having direct cell–cell contact in Transwell device for the measurement of chemotaxis and adhesion of MECs to HSCs. Experimental results indicate that the penetration rate of HSCs from the Transwell upper chamber to lower chamber in ‘co-culture’ group was significantly higher than that of ‘HSC single culture’ group. Also, the HSCs in co-culture group were all adherent at 24 h, and the co-culture group with direct cell–cell contact had highest proliferation rate. The HSC number was positively correlated with vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1) levels in supernatants of the culture. Conclusions: Our study reports that MECs enhance the chemotaxis, adhesion and proliferation of HSCs, which might be related to cytokines SDF-1 and VEGF secreted by MECs, and thus MECs enhance the HSC proliferation through cell–cell contact. The present study revealed the effect of MECs on HSCs, and provided a basis and direction for effective expansion of HSCs ex vivo.
Collapse
|
44
|
Stem cell safe harbor: the hematopoietic stem cell niche in zebrafish. Blood Adv 2019; 2:3063-3069. [PMID: 30425071 DOI: 10.1182/bloodadvances.2018021725] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
Each stem cell resides in a highly specialized anatomic location known as the niche that protects and regulates stem cell function. The importance of the niche in hematopoiesis has long been appreciated in transplantation, but without methods to observe activity in vivo, the components and mechanisms of the hematopoietic niche have remained incompletely understood. Zebrafish have emerged over the past few decades as an answer to this. Use of zebrafish to study the hematopoietic niche has enabled discovery of novel cell-cell interactions, as well as chemical and genetic regulators of hematopoietic stem cells. Mastery of niche components may improve therapeutic efforts to direct differentiation of hematopoietic stem cells from pluripotent cells, sustain stem cells in culture, or improve stem cell transplant.
Collapse
|
45
|
Wysoczynski M, Moore JB, Uchida S. A novel macrophage subtype directs hematopoietic stem cell homing and retention. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S79. [PMID: 31576288 PMCID: PMC6685852 DOI: 10.21037/atm.2019.04.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/31/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Marcin Wysoczynski
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Joseph B. Moore
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Shizuka Uchida
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY, USA
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| |
Collapse
|
46
|
Bae H, Lim W, Bazer FW, Whang KY, Song G. Mitigation of ER-stress and inflammation by chemokine (C-C motif) ligand 21 during early pregnancy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:73-84. [PMID: 30711450 DOI: 10.1016/j.dci.2019.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The immune system plays an important role in pregnancy. Chemokines recruit leukocytes at the maternal-fetal interface during early pregnancy. However, the role of the chemokine, C-C motif chemokine ligand 21 (CCL21), is less known. The aim of this study was to identify the expression of CCL21 and its receptor, CCR7, in the endometrium during estrous cycle and early pregnancy, and to investigate the functional effects of CCL21 on porcine trophectoderm (pTr) and porcine uterine luminal epithelial (pLE) cells. Our results indicated that CCL21 and CCR7 are increased in the glandular (GE) and luminal epithelium (LE) of the endometrium during early pregnancy, compared to estrous pigs. Recombinant CCL21 improved pTr and pLE cell proliferation through activation of the PI3K and MAPK pathways and suppression of tunicamycin-induced endoplasmic reticulum (ER) stress or LPS-induced inflammation. Collectively, these results provide novel insights into CCL21-mediated signaling mechanisms at the maternal-fetal interface during early pregnancy.
Collapse
Affiliation(s)
- Hyocheol Bae
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, 77843-2471, Texas, USA
| | - Kwang-Youn Whang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
47
|
Hayashi Y, Sezaki M, Takizawa H. Development of the hematopoietic system: Role of inflammatory factors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e341. [PMID: 30916895 DOI: 10.1002/wdev.341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cells (HSCs) have two defining features, multipotency and self-renewal, both of which are tightly controlled by cell autonomous programs and environmental factors throughout the lifetime of an organism. During development, HSCs are born in the aorta-gonad-mesonephros region, and migrate to distinct hematopoietic organs such as the placenta, fetal liver and spleen, continuously self-renewing and expanding to reach a homeostatic number. HSCs ultimately seed the bone marrow around the time of birth and become dormant to sustain lifelong hematopoiesis. In this review, we will summarize the recent findings on the role of inflammatory factors regulating HSC development, that is, emergence, trafficking and differentiation. An understanding of HSC kinetics during developmental processes will provide useful knowledge on HSC behavior under physiological and pathophysiological conditions. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells.
Collapse
Affiliation(s)
- Yoshikazu Hayashi
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Maiko Sezaki
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
48
|
Zhang Y, Liu F. Multidimensional Single-Cell Analyses in Organ Development and Maintenance. Trends Cell Biol 2019; 29:477-486. [PMID: 30928527 DOI: 10.1016/j.tcb.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022]
Abstract
The revolution of single-cell analysis tools in epigenomics, transcriptomics, lineage tracing, and transcriptome-scale RNA imaging, has boosted our understanding of the underlying molecular mechanisms during organ development and maintenance. Application of these tools enables the multidimensional study of organs, from cell atlas profiling, spatial organization, to cell-cell interaction. Here, we discuss recent progress in employing multidimensional single-cell analyses to address fundamental questions related to the development and maintenance of hematopoietic organs, brain and lung, which will also help provide insights into a better understanding of relevant diseases.
Collapse
Affiliation(s)
- Yifan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
49
|
Mahony CB, Bertrand JY. How HSCs Colonize and Expand in the Fetal Niche of the Vertebrate Embryo: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:34. [PMID: 30915333 PMCID: PMC6422921 DOI: 10.3389/fcell.2019.00034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Rare hematopoietic stem cells (HSCs) can self-renew, establish the entire blood system and represent the basis of regenerative medicine applied to hematological disorders. Clinical use of HSCs is however limited by their inefficient expansion ex vivo, creating a need to further understand HSC expansion in vivo. After embryonic HSCs are born from the hemogenic endothelium, they migrate to the embryonic/fetal niche, where the future adult HSC pool is established by considerable expansion. This takes place at different anatomical sites and is controlled by numerous signals. HSCs then migrate to their adult niche, where they are maintained throughout adulthood. Exactly how HSC expansion is controlled during embryogenesis remains to be characterized and is an important step to improve the therapeutic use of HSCs. We will review the current knowledge of HSC expansion in the different fetal niches across several model organisms and highlight possible clinical applications.
Collapse
Affiliation(s)
- Christopher B Mahony
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Julien Y Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
50
|
Abstract
Humoral regulation by ligand/receptor interactions is a fundamental feature of vertebrate hematopoiesis. Zebrafish are an established vertebrate animal model of hematopoiesis, sharing with mammals conserved genetic, molecular and cell biological regulatory mechanisms. This comprehensive review considers zebrafish hematopoiesis from the perspective of the hematopoietic growth factors (HGFs), their receptors and their actions. Zebrafish possess multiple HGFs: CSF1 (M-CSF) and CSF3 (G-CSF), kit ligand (KL, SCF), erythropoietin (EPO), thrombopoietin (THPO/TPO), and the interleukins IL6, IL11, and IL34. Some ligands and/or receptor components have been duplicated by various mechanisms including the teleost whole genome duplication, adding complexity to the ligand/receptor interactions possible, but also providing examples of several different outcomes of ligand and receptor subfunctionalization or neofunctionalization. CSF2 (GM-CSF), IL3 and IL5 and their receptors are absent from zebrafish. Overall the humoral regulation of hematopoiesis in zebrafish displays considerable similarity with mammals, which can be applied in biological and disease modelling research.
Collapse
Affiliation(s)
- Vahid Pazhakh
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| | - Graham J Lieschke
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| |
Collapse
|