1
|
Hu C, Francisco J, Del Re DP, Sadoshima J. Decoding the Impact of the Hippo Pathway on Different Cell Types in Heart Failure. Circ J 2024; 89:6-15. [PMID: 38644191 DOI: 10.1253/circj.cj-24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The evolutionarily conserved Hippo pathway plays a pivotal role in governing a variety of biological processes. Heart failure (HF) is a major global health problem with a significant risk of mortality. This review provides a contemporary understanding of the Hippo pathway in regulating different cell types during HF. Through a systematic analysis of each component's regulatory mechanisms within the Hippo pathway, we elucidate their specific effects on cardiomyocytes, fibroblasts, endothelial cells, and macrophages in response to various cardiac injuries. Insights gleaned from both in vitro and in vivo studies highlight the therapeutic promise of targeting the Hippo pathway to address cardiovascular diseases, particularly HF.
Collapse
Affiliation(s)
- Chengchen Hu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| |
Collapse
|
2
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Peng Y, Nie H, Kang K, Li X, Tao Y, Zhou Y. The deubiquitinating enzyme ATXN3 promotes hepatocellular carcinoma progression by stabilizing TAZ. Cancer Gene Ther 2024:10.1038/s41417-024-00869-2. [PMID: 39672915 DOI: 10.1038/s41417-024-00869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Hepatocellular carcinoma (HCC) was a primary cause of cancer-related morbidity and mortality in China. ATXN3 was a deubiquitinase (DUB) associated with spinocerebellar ataxia, widely expressed in the cytoplasm and nucleus of cells in the central nervous system and other tissues. The crucial role of the Hippo pathway in tumorigenesis has been established, among which TAZ served as one of the key molecules. However, the mechanisms underlying the deubiquitinase and TAZ in HCC remained largely unknown. In the present study, we explored that ATXN3 was overexpressed in HCC. ATXN3 promoted the proliferation, migration, invasion, and tumorigenic ability of HCC in vitro and in vivo. Besides, we explored that ATXN3 was positively associated with TAZ in HCC. ATXN3 could interact with, stabilize, and deubiquitylate TAZ in a deubiquitylase-dependent manner. Specifically, this interaction was primarily mediated by the C-terminal domain of TAZ and Josephin domain of ATXN3, thereby inhibiting the K48-linked ubiquitin chain on TAZ. Furthermore, we demonstrated that ATXN3 promoted the occurrence and development of HCC by regulating TAZ. Therefore, our study revealed the oncogenic function of ATXN3 and an interesting deubiquitination mechanism of ATXN3 and TAZ in HCC, providing new insights into the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Yuanhao Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Hui Nie
- Department of Pathology, School of Basic Medicine and Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kuo Kang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuanxuan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medicine and Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Wang Y, Chatterjee E, Li G, Xu J, Xiao J. Force-sensing protein expression in response to cardiovascular mechanotransduction. EBioMedicine 2024; 110:105412. [PMID: 39481337 PMCID: PMC11554632 DOI: 10.1016/j.ebiom.2024.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Force-sensing biophysical cues in microenvironment, including extracellular matrix performances, stretch-mediated mechanics, shear stress and flow-induced hemodynamics, have a significant influence in regulating vascular morphogenesis and cardiac remodeling by mechanotransduction. Once cells perceive these extracellular mechanical stimuli, Piezo activation promotes calcium influx by forming integrin-adhesion-coupling receptors. This induces robust contractility of cytoskeleton structures to further transmit biomechanical alternations into nuclei by regulating Hippo-Yes associated protein (YAP) signaling pathway between cytoplasmic and nuclear translocation. Although biomechanical stimuli are widely studied in cardiovascular diseases, the expression of force-sensing proteins in response to cardiovascular mechanotransduction has not been systematically concluded. Therefore, this review will summarize the force-sensing Piezo, cytoskeleton and YAP proteins to mediate extracellular mechanics, and also give the prominent emphasis on intrinsic connection of these mechanical proteins and cardiovascular mechanotransduction. Extensive insights into cardiovascular mechanics may provide some new strategies for cardiovascular clinical therapy.
Collapse
Affiliation(s)
- Yongtao Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jiahong Xu
- Department of Cardiology, Shanghai Gongli Hospital, Shanghai 200135, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Seeler S, Arnarsson K, Dreßen M, Krane M, Doppler SA. Beyond the Heartbeat: Single-Cell Omics Redefining Cardiovascular Research. Curr Cardiol Rep 2024; 26:1183-1196. [PMID: 39158785 DOI: 10.1007/s11886-024-02117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore recent advances in single-cell omics techniques as applied to various regions of the human heart, illuminating cellular diversity, regulatory networks, and disease mechanisms. We examine the contributions of single-cell transcriptomics, genomics, proteomics, epigenomics, and spatial transcriptomics in unraveling the complexity of cardiac tissues. RECENT FINDINGS Recent strides in single-cell omics technologies have revolutionized our understanding of the heart's cellular composition, cell type heterogeneity, and molecular dynamics. These advancements have elucidated pathological conditions as well as the cellular landscape in heart development. We highlight emerging applications of integrated single-cell omics, particularly for cardiac regeneration, disease modeling, and precision medicine, and emphasize the transformative potential of these technologies to advance cardiovascular research and clinical practice.
Collapse
Affiliation(s)
- Sabine Seeler
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
| | - Kristjan Arnarsson
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
| | - Martina Dreßen
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Stefanie A Doppler
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany.
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany.
| |
Collapse
|
6
|
Wang L, Jin B. Single-Cell RNA Sequencing and Combinatorial Approaches for Understanding Heart Biology and Disease. BIOLOGY 2024; 13:783. [PMID: 39452092 PMCID: PMC11504358 DOI: 10.3390/biology13100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
By directly measuring multiple molecular features in hundreds to millions of single cells, single-cell techniques allow for comprehensive characterization of the diversity of cells in the heart. These single-cell transcriptome and multi-omic studies are transforming our understanding of heart development and disease. Compared with single-dimensional inspections, the combination of transcriptomes with spatial dimensions and other omics can provide a comprehensive understanding of single-cell functions, microenvironment, dynamic processes, and their interrelationships. In this review, we will introduce the latest advances in cardiac health and disease at single-cell resolution; single-cell detection methods that can be used for transcriptome, genome, epigenome, and proteome analysis; single-cell multi-omics; as well as their future application prospects.
Collapse
Affiliation(s)
| | - Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing 100034, China;
| |
Collapse
|
7
|
Foglio E, D'Avorio E, Nieri R, Russo MA, Limana F. Epicardial EMT and cardiac repair: an update. Stem Cell Res Ther 2024; 15:219. [PMID: 39026298 PMCID: PMC11264588 DOI: 10.1186/s13287-024-03823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Epicardial epithelial-to-mesenchymal transition (EMT) plays a pivotal role in both heart development and injury response and involves dynamic cellular changes that are essential for cardiogenesis and myocardial repair. Specifically, epicardial EMT is a crucial process in which epicardial cells lose polarity, migrate into the myocardium, and differentiate into various cardiac cell types during development and repair. Importantly, following EMT, the epicardium becomes a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis and contribute to cardiac remodeling after injury. As such, EMT seems to represent a fundamental step in cardiac repair. Nevertheless, endogenous EMT alone is insufficient to stimulate adequate repair. Redirecting and amplifying epicardial EMT pathways offers promising avenues for the development of innovative therapeutic strategies and treatment approaches for heart disease. In this review, we present a synthesis of recent literature highlighting the significance of epicardial EMT reactivation in adult heart disease patients.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, Latina, Italy
| | - Erica D'Avorio
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy
| | - Riccardo Nieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Federica Limana
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy.
- Laboratorio di Patologia Cellulare e Molecolare, IRCCS San Raffaele Roma, Rome, Italy.
| |
Collapse
|
8
|
Song M, Wang H, Liu C, Jin S, Liu B, Sun W. Non-coding RNAs as regulators of the Hippo pathway in cardiac development and cardiovascular disease. Front Pharmacol 2024; 15:1348280. [PMID: 38698813 PMCID: PMC11063341 DOI: 10.3389/fphar.2024.1348280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Cardiovascular diseases pose a serious threat to human health. The onset of cardiovascular diseases involves the comprehensive effects of multiple genes and environmental factors, and multiple signaling pathways are involved in regulating the occurrence and development of cardiovascular diseases. The Hippo pathway is a highly conserved signaling pathway involved in the regulation of cell proliferation, apoptosis, and differentiation. Recently, it has been widely studied in the fields of cardiovascular disease, cancer, and cell regeneration. Non-coding RNA (ncRNAs), which are important small molecules for the regulation of gene expression in cells, can directly target genes and have diverse regulatory functions. Recent studies have found that ncRNAs interact with Hippo pathway components to regulate myocardial fibrosis, cardiomyocyte proliferation, apoptosis, and hypertrophy and play an important role in cardiovascular disease. In this review, we describe the mode of action of ncRNAs in regulating the Hippo pathway, provide new ideas for further research, and identify molecules involved in the mechanism of action of ncRNAs and the Hippo pathway as potential therapeutic targets, with the aim of finding new modes of action for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengyang Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Caixia Liu
- Department of Neurology, The Liaoning Province People’s Hospital, Shenyang, China
| | - Sijie Jin
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Nita A, Moroishi T. Hippo pathway in cell-cell communication: emerging roles in development and regeneration. Inflamm Regen 2024; 44:18. [PMID: 38566194 PMCID: PMC10986044 DOI: 10.1186/s41232-024-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
The Hippo pathway is a central regulator of tissue growth that has been widely studied in mammalian organ development, regeneration, and cancer biology. Although previous studies have convincingly revealed its cell-autonomous functions in controlling cell fate, such as cell proliferation, survival, and differentiation, accumulating evidence in recent years has revealed its non-cell-autonomous functions. This pathway regulates cell-cell communication through direct interactions, soluble factors, extracellular vesicles, and the extracellular matrix, providing a range of options for controlling diverse biological processes. Consequently, the Hippo pathway not only dictates the fate of individual cells but also triggers multicellular responses involving both tissue-resident cells and infiltrating immune cells. Here, we have highlighted the recent understanding of the molecular mechanisms by which the Hippo pathway controls cell-cell communication and discuss its importance in tissue homeostasis, especially in development and regeneration.
Collapse
Affiliation(s)
- Akihiro Nita
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
10
|
Zhong Z, Jiao Z, Yu FX. The Hippo signaling pathway in development and regeneration. Cell Rep 2024; 43:113926. [PMID: 38457338 DOI: 10.1016/j.celrep.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.
Collapse
Affiliation(s)
- Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Rao K, Rochon E, Singh A, Jagannathan R, Peng Z, Mansoor H, Wang B, Moulik M, Zhang M, Saraf A, Corti P, Shiva S. Myoglobin modulates the Hippo pathway to promote cardiomyocyte differentiation. iScience 2024; 27:109146. [PMID: 38414852 PMCID: PMC10897895 DOI: 10.1016/j.isci.2024.109146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
The endogenous mechanisms that propagate cardiomyocyte differentiation and prevent de-differentiation remain unclear. While the expression of the heme protein myoglobin increases by over 50% during cardiomyocyte differentiation, a role for myoglobin in regulating cardiomyocyte differentiation has not been tested. Here, we show that deletion of myoglobin in cardiomyocyte models decreases the gene expression of differentiation markers and stimulates cellular proliferation, consistent with cardiomyocyte de-differentiation. Mechanistically, the heme prosthetic group of myoglobin catalyzes the oxidation of the Hippo pathway kinase LATS1, resulting in phosphorylation and inactivation of yes-associated protein (YAP). In vivo, myoglobin-deficient zebrafish hearts show YAP dephosphorylation and accelerated cardiac regeneration after apical injury. Similarly, myoglobin knockdown in neonatal murine hearts shows increased YAP dephosphorylation and cardiomyocyte cycling. These data demonstrate a novel role for myoglobin as an endogenous driver of cardiomyocyte differentiation and highlight myoglobin as a potential target to enhance cardiac development and improve cardiac repair and regeneration.
Collapse
Affiliation(s)
- Krithika Rao
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Elizabeth Rochon
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anuradha Singh
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rajaganapathi Jagannathan
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zishan Peng
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Haris Mansoor
- Heart and Vascular Institute Division of Cardiology, Department of Medicine and Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bing Wang
- Molecular Therapy Lab, Stem Cell Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mousumi Moulik
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Manling Zhang
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Veteran Affair Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anita Saraf
- Heart and Vascular Institute Division of Cardiology, Department of Medicine and Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Paola Corti
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sruti Shiva
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Chi C, Roland TJ, Song K. Differentiation of Pluripotent Stem Cells for Disease Modeling: Learning from Heart Development. Pharmaceuticals (Basel) 2024; 17:337. [PMID: 38543122 PMCID: PMC10975450 DOI: 10.3390/ph17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Heart disease is a pressing public health problem and the leading cause of death worldwide. The heart is the first organ to gain function during embryogenesis in mammals. Heart development involves cell determination, expansion, migration, and crosstalk, which are orchestrated by numerous signaling pathways, such as the Wnt, TGF-β, IGF, and Retinoic acid signaling pathways. Human-induced pluripotent stem cell-based platforms are emerging as promising approaches for modeling heart disease in vitro. Understanding the signaling pathways that are essential for cardiac development has shed light on the molecular mechanisms of congenital heart defects and postnatal heart diseases, significantly advancing stem cell-based platforms to model heart diseases. This review summarizes signaling pathways that are crucial for heart development and discusses how these findings improve the strategies for modeling human heart disease in vitro.
Collapse
Affiliation(s)
- Congwu Chi
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Truman J. Roland
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kunhua Song
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
13
|
Lana-Elola E, Aoidi R, Llorian M, Gibbins D, Buechsenschuetz C, Bussi C, Flynn H, Gilmore T, Watson-Scales S, Haugsten Hansen M, Hayward D, Song OR, Brault V, Herault Y, Deau E, Meijer L, Snijders AP, Gutierrez MG, Fisher EMC, Tybulewicz VLJ. Increased dosage of DYRK1A leads to congenital heart defects in a mouse model of Down syndrome. Sci Transl Med 2024; 16:eadd6883. [PMID: 38266108 PMCID: PMC7615651 DOI: 10.1126/scitranslmed.add6883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21). DS is a gene dosage disorder that results in multiple phenotypes including congenital heart defects. This clinically important cardiac pathology is the result of a third copy of one or more of the approximately 230 genes on Hsa21, but the identity of the causative dosage-sensitive genes and hence mechanisms underlying this cardiac pathology remain unclear. Here, we show that hearts from human fetuses with DS and embryonic hearts from the Dp1Tyb mouse model of DS show reduced expression of mitochondrial respiration genes and cell proliferation genes. Using systematic genetic mapping, we determined that three copies of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1a) gene, encoding a serine/threonine protein kinase, are associated with congenital heart disease pathology. In embryos from Dp1Tyb mice, reducing Dyrk1a gene copy number from three to two reversed defects in cellular proliferation and mitochondrial respiration in cardiomyocytes and rescued heart septation defects. Increased dosage of DYRK1A protein resulted in impairment of mitochondrial function and congenital heart disease pathology in mice with DS, suggesting that DYRK1A may be a useful therapeutic target for treating this common human condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Véronique Brault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, BP 10142, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Yann Herault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, BP 10142, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Emmanuel Deau
- Perha Pharmaceuticals, Presqu'île de Perharidy, 29680 Roscoff, France
| | - Laurent Meijer
- Perha Pharmaceuticals, Presqu'île de Perharidy, 29680 Roscoff, France
| | | | | | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | | |
Collapse
|
14
|
Leng J, Wang C, Liang Z, Qiu F, Zhang S, Yang Y. An updated review of YAP: A promising therapeutic target against cardiac aging? Int J Biol Macromol 2024; 254:127670. [PMID: 37913886 DOI: 10.1016/j.ijbiomac.2023.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The transcriptional co-activator Yes-associated protein (YAP) functions as a downstream effector of the Hippo signaling pathway and plays a crucial role in cardiomyocyte survival. In its non-phosphorylated activated state, YAP binds to transcription factors, activating the transcription of downstream target genes. It also regulates cell proliferation and survival by selectively binding to enhancers and activating target genes. However, the upregulation of the Hippo pathway in human heart failure inhibits cardiac regeneration and disrupts astrogenesis, thus preventing the nuclear translocation of YAP. Existing literature indicates that the Hippo/YAP axis contributes to inflammation and fibrosis, potentially playing a role in the development of cardiac, vascular and renal injuries. Moreover, it is a key mediator of myofibroblast differentiation and fibrosis in the infarcted heart. Given these insights, can we harness YAP's regenerative potential in a targeted manner? In this review, we provide a detailed discussion of the Hippo signaling pathway and consolidate concepts for the development and intervention of cardiac anti-aging drugs to leverage YAP signaling as a pivotal target.
Collapse
Affiliation(s)
- Jingzhi Leng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China
| | - Chuanzhi Wang
- College of Sports Science, South China Normal University, Guangzhou, China
| | - Zhide Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| | - Yuan Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| |
Collapse
|
15
|
Harvey AB, Wolters RA, Deepe RN, Tarolli HG, Drummond JR, Trouten A, Zandi A, Barth JL, Mukherjee R, Romeo MJ, Vaena SG, Tao G, Muise-Helmericks R, Ramos PS, Norris RA, Wessels A. Epicardial deletion of Sox9 leads to myxomatous valve degeneration and identifies Cd109 as a novel gene associated with valve development. J Mol Cell Cardiol 2024; 186:16-30. [PMID: 37935281 PMCID: PMC10843603 DOI: 10.1016/j.yjmcc.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.
Collapse
Affiliation(s)
- Andrew B Harvey
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Renélyn A Wolters
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Raymond N Deepe
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Hannah G Tarolli
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Jenna R Drummond
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Allison Trouten
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Auva Zandi
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Rupak Mukherjee
- Department of Surgery, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA.
| | - Martin J Romeo
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | - Silvia G Vaena
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Robin Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Paula S Ramos
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
16
|
Carmona R, López-Sánchez C, Garcia-Martinez V, Garcia-López V, Muñoz-Chápuli R, Lozano-Velasco E, Franco D. Novel Insights into the Molecular Mechanisms Governing Embryonic Epicardium Formation. J Cardiovasc Dev Dis 2023; 10:440. [PMID: 37998498 PMCID: PMC10672416 DOI: 10.3390/jcdd10110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023] Open
Abstract
The embryonic epicardium originates from the proepicardium, an extracardiac primordium constituted by a cluster of mesothelial cells. In early embryos, the embryonic epicardium is characterized by a squamous cell epithelium resting on the myocardium surface. Subsequently, it invades the subepicardial space and thereafter the embryonic myocardium by means of an epithelial-mesenchymal transition. Within the myocardium, epicardial-derived cells present multilineage potential, later differentiating into smooth muscle cells and contributing both to coronary vasculature and cardiac fibroblasts in the mature heart. Over the last decades, we have progressively increased our understanding of those cellular and molecular mechanisms driving proepicardial/embryonic epicardium formation. This study provides a state-of-the-art review of the transcriptional and emerging post-transcriptional mechanisms involved in the formation and differentiation of the embryonic epicardium.
Collapse
Affiliation(s)
- Rita Carmona
- Department of Human Anatomy, Legal Medicine and History of Science, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain;
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
| | - Virginio Garcia-Martinez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
| | - Virginio Garcia-López
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain;
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, 29071 Málaga, Spain;
| | - Estefanía Lozano-Velasco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| |
Collapse
|
17
|
Li T, Niu Z, Yu T, Li J, Lu X, Huang M, Wang Q, Yu X, Feng J, Xu B, Bing D, Li X, Lu L, Liang H, Yang R, Wang B, Shan H. Nucleosome assembly protein 1 like 1 (NAP1L1) promotes cardiac fibrosis by inhibiting YAP1 ubiquitination and degradation. MedComm (Beijing) 2023; 4:e348. [PMID: 37593048 PMCID: PMC10427634 DOI: 10.1002/mco2.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
Myocardial fibrosis post myocardial infarction (MI) is characterized by abnormal extracellular matrix (ECM) deposition and cardiac dysfunction could finally develop into serious heart disease, like heart failure. Lots of regulating factors involved in this pathological process have been reported while the specific mediators and underlying mechanisms remain to need to be further investigated. As part of the NAP1 family, Nucleosome assembly protein 1 like 1 (NAP1L1) is expressed in a wide variety of tissues. Here, we report that NAP1L1 is a significant regulator of cardiac fibrosis and is upregulated in ischemic cardiomyopathy patient hearts. Enhanced expression of NAP1L1 can promote cardiac fibroblasts (CFs) proliferation, migration, and differentiation into myofibroblasts. In contrast, loss of NAP1L1 decreased fibrosis-related mRNA and protein levels, inhibited the trans-differentiation, and blunted migration and proliferation of CFs after Transforming Growth Factorβ1(TGF-β1)stimulation. In vivo, NAP1L1 knockout mice enhanced cardiac function and reduced fibrosis area in response to MI stimuli. Mechanically, NAP1L1 binding to Yes-associated protein 1 (YAP1) protein influences its stability, and silencing NAP1L1 can inhibit YAP1 expression by promoting its ubiquitination and degradation in CFs. Collectively, NAP1L1 could potentially be a new therapeutic target for various cardiac disorders, including myocardial fibrosis.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Zhihui Niu
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Tong Yu
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical TechnologyShanghai University of Engineering ScienceShanghaiChina
| | - Jinrui Li
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Xin Lu
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Mengqin Huang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Qianqian Wang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Xiaojiang Yu
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Jiayue Feng
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Bingqian Xu
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Danyang Bing
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Xuelian Li
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Lifang Lu
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Department of Basic Medicine, The Centre of Functional Experiment TeachingHarbin Medical UniversityHarbinChina
| | - Haihai Liang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070)Chinese Academy of Medical SciencesHarbinChina
| | - Rui Yang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Department of Pharmacology, School of Basic MedicineInner Mongolia Medical UniversityHohhotChina
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Hongli Shan
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical TechnologyShanghai University of Engineering ScienceShanghaiChina
- Department of Basic Medicine, The Centre of Functional Experiment TeachingHarbin Medical UniversityHarbinChina
| |
Collapse
|
18
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
19
|
Jiang H, Bai L, Song S, Yin Q, Shi A, Zhou B, Lian H, Chen H, Xu CR, Wang Y, Nie Y, Hu S. EZH2 controls epicardial cell migration during heart development. Life Sci Alliance 2023; 6:e202201765. [PMID: 37037595 PMCID: PMC10087097 DOI: 10.26508/lsa.202201765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is an important transcriptional regulator in development that catalyzes H3K27me3. The role of EZH2 in epicardial development is still unknown. In this study, we show that EZH2 is expressed in epicardial cells during both human and mouse heart development. Ezh2 epicardial deletion resulted in impaired epicardial cell migration, myocardial hypoplasia, and defective coronary plexus development, leading to embryonic lethality. By using RNA sequencing, we identified that EZH2 controls the transcription of tissue inhibitor of metalloproteinase 3 (TIMP3) in epicardial cells during heart development. Loss-of-function studies revealed that EZH2 promotes epicardial cell migration by suppressing TIMP3 expression. We also found that epicardial Ezh2 deficiency-induced TIMP3 up-regulation leads to extracellular matrix reconstruction in the embryonic myocardium by mass spectrometry. In conclusion, our results demonstrate that EZH2 is required for epicardial cell migration because it blocks Timp3 transcription, which is vital for heart development. Our study provides new insight into the function of EZH2 in cell migration and epicardial development.
Collapse
Affiliation(s)
- Haobin Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianqian Yin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anteng Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Houzao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng-Ran Xu
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanchun Wang
- Haidian Maternal & Child Health Hospital, Beijing, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Choi S, Hong SP, Bae JH, Suh SH, Bae H, Kang KP, Lee HJ, Koh GY. Hyperactivation of YAP/TAZ Drives Alterations in Mesangial Cells through Stabilization of N-Myc in Diabetic Nephropathy. J Am Soc Nephrol 2023; 34:809-828. [PMID: 36724799 PMCID: PMC10125647 DOI: 10.1681/asn.0000000000000075] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/18/2022] [Indexed: 01/26/2023] Open
Abstract
SIGNIFICANCE STATEMENT Mesangial cells (MCs) in the kidney are essential to maintaining glomerular integrity, and their impairment leads to major glomerular diseases including diabetic nephropathy (DN). Although high blood glucose elicits abnormal alterations in MCs, the underlying mechanism is poorly understood. We show that YAP/TAZ are increased in MCs of patients with DN and two animal models of DN. High glucose directly induces activation of YAP/TAZ through the canonical Hippo pathway in cultured MCs. Hyperactivation of YAP/TAZ in mouse MCs recapitulates the hallmarks of DN. Activated YAP/TAZ bind and stabilize N-Myc, one of the Myc family. N-Myc stabilization leads to aberrant enhancement of its transcriptional activity and to MC impairments. Our findings shed light on how high blood glucose in diabetes mellitus leads to DN and support a rationale that lowering blood glucose in diabetes mellitus could delay DN pathogenesis. BACKGROUND Mesangial cells (MCs) in the kidney are central to maintaining glomerular integrity, and their impairment leads to major glomerular diseases, including diabetic nephropathy (DN). Although high blood glucose elicits abnormal alterations in MCs, the underlying molecular mechanism is poorly understood. METHODS Immunolocalization of YAP/TAZ and pathological features of PDGFRβ + MCs were analyzed in the glomeruli of patients with DN, in Zucker diabetic fatty rats, and in Lats1/2i ΔPβ mice. RiboTag bulk-RNA sequencing and transcriptomic analysis of gene expression profiles of the isolated MCs from control and Lats1/2iΔPβ mice were performed. Immunoprecipitation analysis and protein stability of N-Myc were performed by the standard protocols. RESULTS YAP and TAZ, the final effectors of the Hippo pathway, are highly increased in MCs of patients with DN and in Zucker diabetic fatty rats. Moreover, high glucose directly induces activation of YAP/TAZ through the canonical Hippo pathway in cultured MCs. Hyperactivation of YAP/TAZ in mouse model MCs recapitulates the hallmarks of DN, including excessive proliferation of MCs and extracellular matrix deposition, endothelial cell impairment, glomerular sclerosis, albuminuria, and reduced glomerular filtration rate. Mechanistically, activated YAP/TAZ bind and stabilize N-Myc protein, one of the Myc family of oncogenes. N-Myc stabilization leads to aberrant enhancement of its transcriptional activity and eventually to MC impairments and DN pathogenesis. CONCLUSIONS Our findings shed light on how high blood glucose in diabetes mellitus leads to DN and support a rationale that lowering blood glucose in diabetes mellitus could delay DN pathogenesis.
Collapse
Affiliation(s)
- Seunghyeok Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jung Hyun Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Sang Heon Suh
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hosung Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Kyung Pyo Kang
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| |
Collapse
|
21
|
Miranda AMA, Janbandhu V, Maatz H, Kanemaru K, Cranley J, Teichmann SA, Hübner N, Schneider MD, Harvey RP, Noseda M. Single-cell transcriptomics for the assessment of cardiac disease. Nat Rev Cardiol 2023; 20:289-308. [PMID: 36539452 DOI: 10.1038/s41569-022-00805-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease is the leading cause of death globally. An advanced understanding of cardiovascular disease mechanisms is required to improve therapeutic strategies and patient risk stratification. State-of-the-art, large-scale, single-cell and single-nucleus transcriptomics facilitate the exploration of the cardiac cellular landscape at an unprecedented level, beyond its descriptive features, and can further our understanding of the mechanisms of disease and guide functional studies. In this Review, we provide an overview of the technical challenges in the experimental design of single-cell and single-nucleus transcriptomics studies, as well as a discussion of the type of inferences that can be made from the data derived from these studies. Furthermore, we describe novel findings derived from transcriptomics studies for each major cardiac cell type in both health and disease, and from development to adulthood. This Review also provides a guide to interpreting the exhaustive list of newly identified cardiac cell types and states, and highlights the consensus and discordances in annotation, indicating an urgent need for standardization. We describe advanced applications such as integration of single-cell data with spatial transcriptomics to map genes and cells on tissue and define cellular microenvironments that regulate homeostasis and disease progression. Finally, we discuss current and future translational and clinical implications of novel transcriptomics approaches, and provide an outlook of how these technologies will change the way we diagnose and treat heart disease.
Collapse
Affiliation(s)
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Henrike Maatz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kazumasa Kanemaru
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - James Cranley
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Deptartment of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | | | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
22
|
Long X, Yuan X, Du J. Single-cell and spatial transcriptomics: Advances in heart development and disease applications. Comput Struct Biotechnol J 2023; 21:2717-2731. [PMID: 37181659 PMCID: PMC10173363 DOI: 10.1016/j.csbj.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Current transcriptomics technologies, including bulk RNA-seq, single-cell RNA sequencing (scRNA-seq), single-nucleus RNA-sequencing (snRNA-seq), and spatial transcriptomics (ST), provide novel insights into the spatial and temporal dynamics of gene expression during cardiac development and disease processes. Cardiac development is a highly sophisticated process involving the regulation of numerous key genes and signaling pathways at specific anatomical sites and developmental stages. Exploring the cell biological mechanisms involved in cardiogenesis also contributes to congenital heart disease research. Meanwhile, the severity of distinct heart diseases, such as coronary heart disease, valvular disease, cardiomyopathy, and heart failure, is associated with cellular transcriptional heterogeneity and phenotypic alteration. Integrating transcriptomic technologies in the clinical diagnosis and treatment of heart diseases will aid in advancing precision medicine. In this review, we summarize applications of scRNA-seq and ST in the cardiac field, including organogenesis and clinical diseases, and provide insights into the promise of single-cell and spatial transcriptomics in translational research and precision medicine.
Collapse
Affiliation(s)
- Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
23
|
Flinn MA, Alvarez-Argote S, Knas MC, Almeida VA, Paddock SJ, Zhou X, Buddell T, Jamal A, Taylor R, Liu P, Drnevich J, Patterson M, Link BA, O’Meara CC. Myofibroblast Ccn3 is regulated by Yap and Wwtr1 and contributes to adverse cardiac outcomes. Front Cardiovasc Med 2023; 10:1142612. [PMID: 36998974 PMCID: PMC10043314 DOI: 10.3389/fcvm.2023.1142612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction While Yap and Wwtr1 regulate resident cardiac fibroblast to myofibroblast differentiation following cardiac injury, their role specifically in activated myofibroblasts remains unexplored. Methods We assessed the pathophysiological and cellular consequence of genetic depletion of Yap alone (Yap fl/fl ;Postn MCM ) or Yap and Wwtr1 (Yap fl/fl ;Wwtr1 fl/+ ;Postn MCM ) in adult mouse myofibroblasts following myocardial infarction and identify and validate novel downstream factors specifically in cardiac myofibroblasts that mediate pathological remodeling. Results Following myocardial infarction, depletion of Yap in myofibroblasts had minimal effect on heart function while depletion of Yap/Wwtr1 resulted in smaller scars, reduced interstitial fibrosis, and improved ejection fraction and fractional shortening. Single cell RNA sequencing of interstitial cardiac cells 7 days post infarction showed suppression of pro-fibrotic genes in fibroblasts derived from Yap fl/fl ,Wwtr1 fl/+ ;Postn MCM hearts. In vivo myofibroblast depletion of Yap/Wwtr1 as well in vitro knockdown of Yap/Wwtr1 dramatically decreased RNA and protein expression of the matricellular factor Ccn3. Administration of recombinant CCN3 to adult mice following myocardial infarction remarkably aggravated cardiac function and scarring. CCN3 administration drove myocardial gene expression of pro-fibrotic genes in infarcted left ventricles implicating CCN3 as a novel driver of cardiac fibrotic processes following myocardial infarction. Discussion Yap/Wwtr1 depletion in myofibroblasts attenuates fibrosis and significantly improves cardiac outcomes after myocardial infarction and we identify Ccn3 as a factor downstream of Yap/Wwtr1 that contributes to adverse cardiac remodeling post MI. Myofibroblast expression of Yap, Wwtr1, and Ccn3 could be further explored as potential therapeutic targets for modulating adverse cardiac remodeling post injury.
Collapse
Affiliation(s)
- Michael A. Flinn
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Santiago Alvarez-Argote
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Makenna C. Knas
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Victor Alencar Almeida
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Samantha J. Paddock
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xiaoxu Zhou
- Institute of Translational Medicine, Zhejiang University School of Medicine,Hangzhou, China
| | - Tyler Buddell
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ayana Jamal
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Reiauna Taylor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Institute of Translational Medicine, Zhejiang University School of Medicine,Hangzhou, China
| | - Jenny Drnevich
- High Performance Computing in Biology (HPCBio) and the Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, Champaign, IL, United States
| | - Michaela Patterson
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian A. Link
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Caitlin C. O’Meara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
24
|
Maejima Y, Zablocki D, Nah J, Sadoshima J. The role of the Hippo pathway in autophagy in the heart. Cardiovasc Res 2023; 118:3320-3330. [PMID: 35150237 DOI: 10.1093/cvr/cvac014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
The Hippo pathway, an evolutionarily conserved signalling mechanism, controls organ size and tumourigenesis. Increasing lines of evidence suggest that autophagy, an important mechanism of lysosome-mediated cellular degradation, is regulated by the Hippo pathway, which thereby profoundly affects cell growth and death responses in various cell types. In the heart, Mst1, an upstream component of the Hippo pathway, not only induces apoptosis but also inhibits autophagy through phosphorylation of Beclin 1. YAP/TAZ, transcription factor co-factors and the terminal effectors of the Hippo pathway, affect autophagy through transcriptional activation of TFEB, a master regulator of autophagy and lysosomal biogenesis. The cellular abundance of YAP is negatively regulated by autophagy and suppression of autophagy induces accumulation of YAP, which, in turn, acts as a feedback mechanism to induce autophagosome formation. Thus, the Hippo pathway and autophagy regulate each other, thereby profoundly affecting cardiomyocyte survival and death. This review discusses the interaction between the Hippo pathway and autophagy and its functional significance during stress conditions in the heart and the cardiomyocytes therein.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA.,Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA
| | - Jihoon Nah
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA
| |
Collapse
|
25
|
Zheng M, Li RG, Song J, Zhao X, Tang L, Erhardt S, Chen W, Nguyen BH, Li X, Li M, Wang J, Evans SM, Christoffels VM, Li N, Wang J. Hippo-Yap Signaling Maintains Sinoatrial Node Homeostasis. Circulation 2022; 146:1694-1711. [PMID: 36317529 PMCID: PMC9897204 DOI: 10.1161/circulationaha.121.058777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The sinoatrial node (SAN) functions as the pacemaker of the heart, initiating rhythmic heartbeats. Despite its importance, the SAN is one of the most poorly understood cardiac entities because of its small size and complex composition and function. The Hippo signaling pathway is a molecular signaling pathway fundamental to heart development and regeneration. Although abnormalities of the Hippo pathway are associated with cardiac arrhythmias in human patients, the role of this pathway in the SAN is unknown. METHODS We investigated key regulators of the Hippo pathway in SAN pacemaker cells by conditionally inactivating the Hippo signaling kinases Lats1 and Lats2 using the tamoxifen-inducible, cardiac conduction system-specific Cre driver Hcn4CreERT2 with Lats1 and Lats2 conditional knockout alleles. In addition, the Hippo-signaling effectors Yap and Taz were conditionally inactivated in the SAN. To determine the function of Hippo signaling in the SAN and other cardiac conduction system components, we conducted a series of physiological and molecular experiments, including telemetry ECG recording, echocardiography, Masson Trichrome staining, calcium imaging, immunostaining, RNAscope, cleavage under targets and tagmentation sequencing using antibodies against Yap1 or H3K4me3, quantitative real-time polymerase chain reaction, and Western blotting. We also performed comprehensive bioinformatics analyses of various datasets. RESULTS We found that Lats1/2 inactivation caused severe sinus node dysfunction. Compared with the controls, Lats1/2 conditional knockout mutants exhibited dysregulated calcium handling and increased fibrosis in the SAN, indicating that Lats1/2 function through both cell-autonomous and non-cell-autonomous mechanisms. It is notable that the Lats1/2 conditional knockout phenotype was rescued by genetic deletion of Yap and Taz in the cardiac conduction system. These rescued mice had normal sinus rhythm and reduced fibrosis of the SAN, indicating that Lats1/2 function through Yap and Taz. Cleavage Under Targets and Tagmentation sequencing data showed that Yap potentially regulates genes critical for calcium homeostasis such as Ryr2 and genes encoding paracrine factors important in intercellular communication and fibrosis induction such as Tgfb1 and Tgfb3. Consistent with this, Lats1/2 conditional knockout mutants had decreased Ryr2 expression and increased Tgfb1 and Tgfb3 expression compared with control mice. CONCLUSIONS We reveal, for the first time to our knowledge, that the canonical Hippo-Yap pathway plays a pivotal role in maintaining SAN homeostasis.
Collapse
Affiliation(s)
- Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (M.Z., X.Z., S.E., W.C., Jun Wang)
| | - Rich G Li
- Texas Heart Institute, Houston (R.G.L., X.L.)
| | - Jia Song
- Department of Medicine (Section of Cardiovascular Research), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (J.S., N.L.)
| | - Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (M.Z., X.Z., S.E., W.C., Jun Wang)
| | - Li Tang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., M.L., Jianxin Wang)
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (M.Z., X.Z., S.E., W.C., Jun Wang)
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston (S.E., Jun Wang)
| | - Wen Chen
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (M.Z., X.Z., S.E., W.C., Jun Wang)
| | - Bao H Nguyen
- Department of Molecular Physiology and Biophysics (B.H.N.)
| | - Xiao Li
- Texas Heart Institute, Houston (R.G.L., X.L.)
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., M.L., Jianxin Wang)
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., M.L., Jianxin Wang)
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Pharmacology and Medicine, University of California at San Diego, La Jolla (S.M.E.)
| | - Vincent M Christoffels
- Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, The Netherlands (V.M.C.)
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (J.S., N.L.)
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (M.Z., X.Z., S.E., W.C., Jun Wang)
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston (S.E., Jun Wang)
| |
Collapse
|
26
|
Lee SG, Kim YJ, Son MY, Oh MS, Kim J, Ryu B, Kang KR, Baek J, Chung G, Woo DH, Kim CY, Chung HM. Generation of human iPSCs derived heart organoids structurally and functionally similar to heart. Biomaterials 2022; 290:121860. [DOI: 10.1016/j.biomaterials.2022.121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/02/2022]
|
27
|
Martínez Traverso IM, Steimle JD, Zhao X, Wang J, Martin JF. LATS1/2 control TGFB-directed epithelial-to-mesenchymal transition in the murine dorsal cranial neuroepithelium through YAP regulation. Development 2022; 149:dev200860. [PMID: 36125128 PMCID: PMC9587805 DOI: 10.1242/dev.200860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Hippo signaling, an evolutionarily conserved kinase cascade involved in organ size control, plays key roles in various tissue developmental processes, but its role in craniofacial development remains poorly understood. Using the transgenic Wnt1-Cre2 driver, we inactivated the Hippo signaling components Lats1 and Lats2 in the cranial neuroepithelium of mouse embryos and found that the double conditional knockout (DCKO) of Lats1/2 resulted in neural tube and craniofacial defects. Lats1/2 DCKO mutant embryos had microcephaly with delayed and defective neural tube closure. Furthermore, neuroepithelial cell shape and architecture were disrupted within the cranial neural tube in Lats1/2 DCKO mutants. RNA sequencing of embryonic neural tubes revealed increased TGFB signaling in Lats1/2 DCKO mutants. Moreover, markers of epithelial-to-mesenchymal transition (EMT) were upregulated in the cranial neural tube. Inactivation of Hippo signaling downstream effectors, Yap and Taz, suppressed neuroepithelial defects, aberrant EMT and TGFB upregulation in Lats1/2 DCKO embryos, indicating that LATS1/2 function via YAP and TAZ. Our findings reveal important roles for Hippo signaling in modulating TGFB signaling during neural crest EMT.
Collapse
Affiliation(s)
- Idaliz M. Martínez Traverso
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey D. Steimle
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - James F. Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030 , USA
| |
Collapse
|
28
|
Abstract
Heart regenerative medicine has been gradually evolving from a view of the heart as a nonregenerative organ with terminally differentiated cardiac muscle cells. Understanding the biology of the heart during homeostasis and in response to injuries has led to the realization that cellular communication between all cardiac cell types holds great promise for treatments. Indeed, recent studies highlight new disease-reversion concepts in addition to cardiomyocyte renewal, such as matrix- and vascular-targeted therapies, and immunotherapy with a focus on inflammation and fibrosis. In this review, we will discuss the cross-talk within the cardiac microenvironment and how specific therapies aim to target the hostile cardiac milieu under pathological conditions.
Collapse
Affiliation(s)
- Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, 60594 Frankfurt, Germany.,Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| |
Collapse
|
29
|
Zhu Y, Chen S, Liu W, Xu F, Lu J, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. IGF-1R/YAP signaling pathway is involved in collagen V-induced insulin biosynthesis and secretion in rat islet INS-1 cells. Connect Tissue Res 2022; 63:498-513. [PMID: 35129018 DOI: 10.1080/03008207.2021.2025225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Type V collagen (collagen V) is one of the important components of extracellular matrix (ECM) in pancreas. We previously reported that pre-coating collagen V on the culture dishes enhanced insulin production in INS-1 rat pancreatic β cells. In this study, we investigate the underlying mechanism. RESULTS Insulin biosynthesis and secretion are both increased in INS-1 cells cultured on collagen V-coated dishes, accompanied by the reduced nuclear translocation of Yes-associated protein (YAP), a transcriptional co-activator. YAP, the downstream effector of Hippo signaling pathway, plays an important role in the development and function of pancreas. Inhibition of YAP activation by verteporfin further up-regulates insulin biosynthesis and secretion. Silencing large tumor suppressor (LATS), a core component of Hippo pathway which inhibits activity of YAP by phosphorylation, by siRNA transfection inhibits both insulin biosynthesis and secretion. In the present study, the protein level of insulin-like growth factor 1 receptor (IGF-1 R), detected as the upstream molecule of YAP, is reduced in the INS-1 cells cultured on the dishes coated with collagen V. The silencing of IGF-1 R by siRNA transfection further enhances insulin biosynthesis and secretion. IGF-1 treatment reduces collagen V-induced up-regulation of insulin biosynthesis and secretion, accompanying the increased nuclear YAP. CONCLUSION Inhibition of IGF-1 R/YAP signal pathway is involved in collagen V-induced insulin biosynthesis and secretion in INS-1 cells.
Collapse
Affiliation(s)
- Yingying Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.,Traditional Chinese Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shuaigao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jingyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.,Department of Chemistry and Life Science, School of Advanced Engineering Kogakuin University, Tokyo, Japan.,Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
30
|
Wang Y, Wei J, Zhang P, Zhang X, Wang Y, Chen W, Zhao Y, Cui X. Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol 2022; 13:945206. [PMID: 36120374 PMCID: PMC9471952 DOI: 10.3389/fphar.2022.945206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
NRG1 (Neuregulin-1) is an effective cardiomyocyte proliferator, secreted and released by endothelial vascular cells, and affects the cardiovascular system. It plays a major role in heart growth, proliferation, differentiation, apoptosis, and other cardiovascular processes. Numerous experiments have shown that NRG1 can repair the heart in the pathophysiology of atherosclerosis, myocardial infarction, ischemia reperfusion, heart failure, cardiomyopathy and other cardiovascular diseases. NRG1 can connect related signaling pathways through the NRG1/ErbB pathway, which form signal cascades to improve the myocardial microenvironment, such as regulating cardiac inflammation, oxidative stress, necrotic apoptosis. Here, we summarize recent research advances on the molecular mechanisms of NRG1, elucidate the contribution of NRG1 to cardiovascular disease, discuss therapeutic approaches targeting NRG1 associated with cardiovascular disease, and highlight areas for future research.
Collapse
Affiliation(s)
- Yan Wang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianliang Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhao
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| |
Collapse
|
31
|
Shen X, Shen H, Wu D, Feng M, Hu J, Liu J, Yang Y, Yang M, Li Y, Shi L, Chen K, Li X. Scalable batch-correction approach for integrating large-scale single-cell transcriptomes. Brief Bioinform 2022; 23:6659742. [PMID: 35947966 DOI: 10.1093/bib/bbac327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Integration of accumulative large-scale single-cell transcriptomes requires scalable batch-correction approaches. Here we propose Fugue, a simple and efficient batch-correction method that is scalable for integrating super large-scale single-cell transcriptomes from diverse sources. The core idea of the method is to encode batch information as trainable parameters and add it to single-cell expression profile; subsequently, a contrastive learning approach is used to learn feature representation of the additive expression profile. We demonstrate the scalability of Fugue by integrating all single cells obtained from the Human Cell Atlas. We benchmark Fugue against current state-of-the-art methods and show that Fugue consistently achieves improved performance in terms of data alignment and clustering preservation. Our study will facilitate the integration of single-cell transcriptomes at increasingly large scale.
Collapse
Affiliation(s)
- Xilin Shen
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Hongru Shen
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Dan Wu
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mengyao Feng
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jiani Hu
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jilei Liu
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yichen Yang
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Meng Yang
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yang Li
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangchun Li
- Tianjin Cancer Institute, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Reichart D, Lindberg EL, Maatz H, Miranda AMA, Viveiros A, Shvetsov N, Gärtner A, Nadelmann ER, Lee M, Kanemaru K, Ruiz-Orera J, Strohmenger V, DeLaughter DM, Patone G, Zhang H, Woehler A, Lippert C, Kim Y, Adami E, Gorham JM, Barnett SN, Brown K, Buchan RJ, Chowdhury RA, Constantinou C, Cranley J, Felkin LE, Fox H, Ghauri A, Gummert J, Kanda M, Li R, Mach L, McDonough B, Samari S, Shahriaran F, Yapp C, Stanasiuk C, Theotokis PI, Theis FJ, van den Bogaerdt A, Wakimoto H, Ware JS, Worth CL, Barton PJR, Lee YA, Teichmann SA, Milting H, Noseda M, Oudit GY, Heinig M, Seidman JG, Hubner N, Seidman CE. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 2022; 377:eabo1984. [PMID: 35926050 PMCID: PMC9528698 DOI: 10.1126/science.abo1984] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.
Collapse
Affiliation(s)
- Daniel Reichart
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Medicine I, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Eric L Lindberg
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Antonio M A Miranda
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London WC2R 2LS, UK
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Nikolay Shvetsov
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Emily R Nadelmann
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kazumasa Kanemaru
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Viktoria Strohmenger
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Daniel M DeLaughter
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Hao Zhang
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Andrew Woehler
- Systems Biology Imaging Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Christoph Lippert
- Digital Health-Machine Learning group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, 14482 Potsdam, Germany.,Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuri Kim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sam N Barnett
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kemar Brown
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiac Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel J Buchan
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Rasheda A Chowdhury
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | - James Cranley
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Henrik Fox
- Heart and Diabetes Center NRW, Clinic for Thoracic and Cardiovascular Surgery, University Hospital of the Ruhr-University, 32545 Bad Oeynhausen, Germany
| | - Ahla Ghauri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Jan Gummert
- Heart and Diabetes Center NRW, Clinic for Thoracic and Cardiovascular Surgery, University Hospital of the Ruhr-University, 32545 Bad Oeynhausen, Germany
| | - Masatoshi Kanda
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ruoyan Li
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Barbara McDonough
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Sara Samari
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Farnoush Shahriaran
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Stanasiuk
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Pantazis I Theotokis
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Fabian J Theis
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Catherine L Worth
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Young-Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.,Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London WC2R 2LS, UK
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Matthias Heinig
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany.,Department of Informatics, Technische Universitaet Muenchen (TUM), 85748 Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner Site Munich, 10785 Berlin, Germany
| | | | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| |
Collapse
|
33
|
Hu Y, Zhang Y, Liu Y, Gao Y, San T, Li X, Song S, Yan B, Zhao Z. Advances in application of single-cell RNA sequencing in cardiovascular research. Front Cardiovasc Med 2022; 9:905151. [PMID: 35958408 PMCID: PMC9360414 DOI: 10.3389/fcvm.2022.905151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) provides high-resolution information on transcriptomic changes at the single-cell level, which is of great significance for distinguishing cell subtypes, identifying stem cell differentiation processes, and identifying targets for disease treatment. In recent years, emerging single-cell RNA sequencing technologies have been used to make breakthroughs regarding decoding developmental trajectories, phenotypic transitions, and cellular interactions in the cardiovascular system, providing new insights into cardiovascular disease. This paper reviews the technical processes of single-cell RNA sequencing and the latest progress based on single-cell RNA sequencing in the field of cardiovascular system research, compares single-cell RNA sequencing with other single-cell technologies, and summarizes the extended applications and advantages and disadvantages of single-cell RNA sequencing. Finally, the prospects for applying single-cell RNA sequencing in the field of cardiovascular research are discussed.
Collapse
Affiliation(s)
- Yue Hu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Ying Zhang
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Yutong Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yan Gao
- Department of Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Tiantian San
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Xiaoying Li
- Department of Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan, China
- Department of Emergency, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Sensen Song
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Binglong Yan
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Zhuo Zhao
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
- *Correspondence: Zhuo Zhao
| |
Collapse
|
34
|
Liu S, Li RG, Martin JF. The cell-autonomous and non–cell-autonomous roles of the Hippo pathway in heart regeneration. J Mol Cell Cardiol 2022; 168:98-106. [PMID: 35526477 DOI: 10.1016/j.yjmcc.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|
35
|
Shang M, Hu Y, Cao H, Lin Q, Yi N, Zhang J, Gu Y, Yang Y, He S, Lu M, Peng L, Li L. Concordant and Heterogeneity of Single-Cell Transcriptome in Cardiac Development of Human and Mouse. Front Genet 2022; 13:892766. [PMID: 35832197 PMCID: PMC9271823 DOI: 10.3389/fgene.2022.892766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
Normal heart development is vital for maintaining its function, and the development process is involved in complex interactions between different cell lineages. How mammalian hearts develop differently is still not fully understood. In this study, we identified several major types of cardiac cells, including cardiomyocytes (CMs), fibroblasts (FBs), endothelial cells (ECs), ECs/FBs, epicardial cells (EPs), and immune cells (macrophage/monocyte cluster, MACs/MONOs), based on single-cell transcriptome data from embryonic hearts of both human and mouse. Then, species-shared and species-specific marker genes were determined in the same cell type between the two species, and the genes with consistent and different expression patterns were also selected by constructing the developmental trajectories. Through a comparison of the development stage similarity of CMs, FBs, and ECs/FBs between humans and mice, it is revealed that CMs at e9.5 and e10.5 of mice are most similar to those of humans at 7 W and 9 W, respectively. Mouse FBs at e10.5, e13.5, and e14.5 are correspondingly more like the same human cells at 6, 7, and 9 W. Moreover, the e9.5-ECs/FBs of mice are most similar to that of humans at 10W. These results provide a resource for understudying cardiac cell types and the crucial markers able to trace developmental trajectories among the species, which is beneficial for finding suitable mouse models to detect human cardiac physiology and related diseases.
Collapse
Affiliation(s)
- Mengyue Shang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yi Hu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Huaming Cao
- Department of Cardiology, Shanghai Shibei Hospital, Shanghai, China
| | - Qin Lin
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Na Yi
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Junfang Zhang
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yanqiong Gu
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yujie Yang
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Siyu He
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Min Lu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
- Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Luying Peng, ; Li Li,
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
- Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Luying Peng, ; Li Li,
| |
Collapse
|
36
|
Uemura S, Yamashita M, Aoyama K, Yokomizo-Nakano T, Oshima M, Nishio M, Masuko M, Takizawa J, Sone H, Yamada Y, Suzuki A, Iwama A. YAP1/TAZ activity maintains vascular integrity and organismal survival. Biochem Biophys Res Commun 2022; 619:117-123. [PMID: 35753219 DOI: 10.1016/j.bbrc.2022.06.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Radiation therapy is one of the major treatment modalities for patients with cancers. However, ionizing radiation (IR) damages not only cancer cells but also the surrounding vascular endothelial cells (ECs). Hippo pathway effector genes Yap1 and Taz are the two transcriptional coactivators that have crucial roles in tissue homeostasis and vascular integrity in various organs. However, their function in adult ECs at the steady state and after IR is poorly understood. Here, we report sex- and context-dependent roles of endothelial YAP1/TAZ in maintaining vascular integrity and organismal survival. EC-specific Yap1/Taz deletion compromised systemic vascular integrity, resulting in lethal circulation failure preferentially in male mice. Furthermore, EC-specific Yap1/Taz deletion induced acute lethality upon sublethal IR that was closely associated with exacerbated systemic vascular dysfunction and circulation failure. Consistent with these findings, RNA-seq analysis revealed downregulation of tight junction genes in Yap1/Taz-deleted ECs. Collectively, our findings highlight the importance of endothelial YAP1/TAZ for maintaining adult vascular function, which may provide clinical implications for preventing organ injury after radiation therapy.
Collapse
Affiliation(s)
- Shun Uemura
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Hematology, Endocrinology, and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazumasa Aoyama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takako Yokomizo-Nakano
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayoshi Masuko
- Department of Hematology, Endocrinology, and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Jun Takizawa
- Department of Hematology, Endocrinology, and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology, and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory of Cellular and Molecular Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
37
|
Eroglu E, Yen CYT, Tsoi YL, Witman N, Elewa A, Joven Araus A, Wang H, Szattler T, Umeano CH, Sohlmér J, Goedel A, Simon A, Chien KR. Epicardium-derived cells organize through tight junctions to replenish cardiac muscle in salamanders. Nat Cell Biol 2022; 24:645-658. [PMID: 35550612 PMCID: PMC9106584 DOI: 10.1038/s41556-022-00902-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
The contribution of the epicardium, the outermost layer of the heart, to cardiac regeneration has remained controversial due to a lack of suitable analytical tools. By combining genetic marker-independent lineage-tracing strategies with transcriptional profiling and loss-of-function methods, we report here that the epicardium of the highly regenerative salamander species Pleurodeles waltl has an intrinsic capacity to differentiate into cardiomyocytes. Following cryoinjury, CLDN6+ epicardium-derived cells appear at the lesion site, organize into honeycomb-like structures connected via focal tight junctions and undergo transcriptional reprogramming that results in concomitant differentiation into de novo cardiomyocytes. Ablation of CLDN6+ differentiation intermediates as well as disruption of their tight junctions impairs cardiac regeneration. Salamanders constitute the evolutionarily closest species to mammals with an extensive ability to regenerate heart muscle and our results highlight the epicardium and tight junctions as key targets in efforts to promote cardiac regeneration.
Collapse
Affiliation(s)
- Elif Eroglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher Y T Yen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yat-Long Tsoi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tamara Szattler
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chimezie H Umeano
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Gene Therapy, Lunds Universitet, Lund, Sweden
| | - Jesper Sohlmér
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Goedel
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
38
|
Del Re DP. Hippo-Yap signaling in cardiac and fibrotic remodeling. CURRENT OPINION IN PHYSIOLOGY 2022; 26:100492. [PMID: 36644337 PMCID: PMC9836231 DOI: 10.1016/j.cophys.2022.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cardiac injury initiates a tissue remodeling process in which aberrant fibrosis plays a significant part, contributing to impaired contractility of the myocardium and the progression to heart failure. Fibrotic remodeling is characterized by the activation, proliferation, and differentiation of quiescent fibroblasts to myofibroblasts, and the resulting effects on the extracellular matrix and inflammatory milieu. Molecular mechanisms underlying fibroblast fate decisions and subsequent cardiac fibrosis are complex and remain incompletely understood. Emerging evidence has implicated the Hippo-Yap signaling pathway, originally discovered as a fundamental regulator of organ size, as an important mechanism that modulates fibroblast activity and adverse remodeling in the heart, while also exerting distinct cell type-specific functions that dictate opposing outcomes on heart failure. This brief review will focus on Hippo-Yap signaling in cardiomyocytes, cardiac fibroblasts, and other non-myocytes, and present mechanisms by which it may influence the course of cardiac fibrosis and dysfunction.
Collapse
|
39
|
Bowers SL, Meng Q, Molkentin JD. Fibroblasts orchestrate cellular crosstalk in the heart through the ECM. NATURE CARDIOVASCULAR RESEARCH 2022; 1:312-321. [PMID: 38765890 PMCID: PMC11101212 DOI: 10.1038/s44161-022-00043-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/02/2022] [Indexed: 05/22/2024]
Abstract
Cell communication is needed for organ function and stress responses, especially in the heart. Cardiac fibroblasts, cardiomyocytes, immune cells, and endothelial cells comprise the major cell types in ventricular myocardium that together coordinate all functional processes. Critical to this cellular network is the non-cellular extracellular matrix (ECM) that provides structure and harbors growth factors and other signaling proteins that affect cell behavior. The ECM is not only produced and modified by cells within the myocardium, largely cardiac fibroblasts, it also acts as an avenue for communication among all myocardial cells. In this Review, we discuss how the development of therapeutics to combat cardiac diseases, specifically fibrosis, relies on a deeper understanding of how the cardiac ECM is intertwined with signaling processes that underlie cellular activation and behavior.
Collapse
Affiliation(s)
| | | | - Jeffery D. Molkentin
- Cincinnati Children’s Hospital, Division of Molecular Cardiovascular Biology; University of Cincinnati, Department of Pediatrics, Cincinnati, OH
| |
Collapse
|
40
|
Tsai CR, Martin JF. Hippo signaling in cardiac fibroblasts during development, tissue repair, and fibrosis. Curr Top Dev Biol 2022; 149:91-121. [PMID: 35606063 PMCID: PMC10898347 DOI: 10.1016/bs.ctdb.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The evolutionarily conserved Hippo signaling pathway plays key roles in regulating the balance between cell proliferation and apoptosis, cell differentiation, organ size control, tissue repair, and regeneration. Recently, the Hippo pathway has been shown to regulate heart fibrosis, defined as excess extracellular matrix (ECM) deposition and increased tissue stiffness. Cardiac fibroblasts (CFs) are the primary cell type that produces, degrades, and remodels the ECM during homeostasis, aging, inflammation, and tissue repair and regeneration. Here, we review the available evidence from the current literature regarding how the Hippo pathway regulates the formation and function of CFs during heart development and tissue repair.
Collapse
Affiliation(s)
- Chang-Ru Tsai
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States; Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, United States.
| |
Collapse
|
41
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:nu14061312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: ; Tel.: +1-705-662-7253
| |
Collapse
|
42
|
Zalesak-Kravec S, Huang W, Jones JW, Yu J, Alloush J, Defnet AE, Moise AR, Kane MA. Role of cellular retinol-binding protein, type 1 and retinoid homeostasis in the adult mouse heart: A multi-omic approach. FASEB J 2022; 36:e22242. [PMID: 35253263 DOI: 10.1096/fj.202100901rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The main active metabolite of Vitamin A, all-trans retinoic acid (RA), is required for proper cellular function and tissue organization. Heart development has a well-defined requirement for RA, but there is limited research on the role of RA in the adult heart. Homeostasis of RA includes regulation of membrane receptors, chaperones, enzymes, and nuclear receptors. Cellular retinol-binding protein, type 1 (CRBP1), encoded by retinol-binding protein, type 1 (Rbp1), regulates RA homeostasis by delivering vitamin A to enzymes for RA synthesis and protecting it from non-specific oxidation. In this work, a multi-omics approach was used to characterize the effect of CRBP1 loss using the Rbp1-/- mouse. Retinoid homeostasis was disrupted in Rbp1-/- mouse heart tissue, as seen by a 33% and 24% decrease in RA levels in the left and right ventricles, respectively, compared to wild-type mice (WT). To further inform on the effect of disrupted RA homeostasis, we conducted high-throughput targeted metabolomics. A total of 222 metabolite and metabolite combinations were analyzed, with 33 having differential abundance between Rbp1-/- and WT hearts. Additionally, we performed global proteome profiling to further characterize the impact of CRBP1 loss in adult mouse hearts. More than 2606 unique proteins were identified, with 340 proteins having differential expression between Rbp1-/- and WT hearts. Pathway analysis performed on metabolomic and proteomic data revealed pathways related to cellular metabolism and cardiac metabolism were the most disrupted in Rbp1-/- mice. Together, these studies characterize the effect of CRBP1 loss and reduced RA in the adult heart.
Collapse
Affiliation(s)
- Stephanie Zalesak-Kravec
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jenna Alloush
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Amy E Defnet
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Zhou J, Sun C, Yang L, Wang J, Jn-Simon N, Zhou C, Bryant A, Cao Q, Li C, Petersen B, Pi L. Liver regeneration and ethanol detoxification: A new link in YAP regulation of ALDH1A1 during alcohol-related hepatocyte damage. FASEB J 2022; 36:e22224. [PMID: 35218575 PMCID: PMC9126254 DOI: 10.1096/fj.202101686r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
Yes-associated protein (YAP), a central effector in the Hippo pathway, is involved in the regulation of organ size, stem cell self-renewal, and tissue regeneration. In this study, we observed YAP activation in patients with alcoholic steatosis, hepatitis, and cirrhosis. Accumulation of this protein in the nucleus was also observed in murine livers that were damaged after chronic-plus-single binge or moderate ethanol ingestion combined with carbon tetrachloride intoxication (ethanol/CCl4 ). To understand the role of this transcriptional coactivator in alcohol-related liver injury, we knocked out the Yap1 gene in hepatocytes of floxed homozygotes through adeno-associated virus (AAV8)-mediated deletion utilizing Cre recombinase. Yap1 hepatocyte-specific knockouts (KO) exhibited hemorrhage, massive hepatic necrosis, enhanced oxidative stress, elevated hypoxia, and extensive infiltration of CD11b+ inflammatory cells into hepatic microenvironments rich for connective tissue growth factor (Ctgf) during ethanol/CCl4 -induced liver damage. Analysis of whole-genome transcriptomics indicated upregulation of genes involved in hypoxia and extracellular matrix (ECM) remodeling, whereas genes related to hepatocyte proliferation, progenitor cell activation, and ethanol detoxification were downregulated in the damaged livers of Yap1 KO. Acetaldehyde dehydrogenase (Aldh)1a1, a gene that encodes a detoxification enzyme for aldehyde substrates, was identified as a potential YAP target because this gene could be transcriptionally activated by a hyperactive YAP mutant. The ectopic expression of the human ALDH1A1 gene caused increase in hepatocyte proliferation and decrease in hepatic necrosis, oxidative stress, ECM remodeling, and inflammation during ethanol/CCl4 -induced liver damage. Taken together, these observations indicated that YAP was crucial for liver repair during alcohol-associated injury. Its regulation of ALDH1A1 represents a new link in liver regeneration and detoxification.
Collapse
Affiliation(s)
- Junmei Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chunbao Sun
- Department of Pathology, Tulane University, New Orleans, Louisiana, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Natacha Jn-Simon
- Department of Pathology, Tulane University, New Orleans, Louisiana, USA
| | - Chen Zhou
- Department of Medical Chemistry, University of Florida, Gainesville, Florida, USA
| | - Andrew Bryant
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chenglong Li
- Department of Medical Chemistry, University of Florida, Gainesville, Florida, USA
| | - Bryon Petersen
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Liya Pi
- Department of Pathology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
44
|
Cao Y, Xia Y, Balowski JJ, Ou J, Song L, Safi A, Curtis T, Crawford GE, Poss KD, Cao J. Identification of enhancer regulatory elements that direct epicardial gene expression during zebrafish heart regeneration. Development 2022; 149:dev200133. [PMID: 35179181 PMCID: PMC8918790 DOI: 10.1242/dev.200133] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
The epicardium is a mesothelial tissue layer that envelops the heart. Cardiac injury activates dynamic gene expression programs in epicardial tissue, which in zebrafish enables subsequent regeneration through paracrine and vascularizing effects. To identify tissue regeneration enhancer elements (TREEs) that control injury-induced epicardial gene expression during heart regeneration, we profiled transcriptomes and chromatin accessibility in epicardial cells purified from regenerating zebrafish hearts. We identified hundreds of candidate TREEs, which are defined by increased chromatin accessibility of non-coding elements near genes with increased expression during regeneration. Several of these candidate TREEs were incorporated into stable transgenic lines, with five out of six elements directing injury-induced epicardial expression but not ontogenetic epicardial expression in larval hearts. Whereas two independent TREEs linked to the gene gnai3 showed similar functional features of gene regulation in transgenic lines, two independent ncam1a-linked TREEs directed distinct spatiotemporal domains of epicardial gene expression. Thus, multiple TREEs linked to a regeneration gene can possess either matching or complementary regulatory controls. Our study provides a new resource and principles for understanding the regulation of epicardial genetic programs during heart regeneration. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Yingxi Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Joseph J. Balowski
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Jianhong Ou
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Curtis
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Gregory E. Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
45
|
Jaslove JM, Goodwin K, Sundarakrishnan A, Spurlin JW, Mao S, Košmrlj A, Nelson CM. Transmural pressure signals through retinoic acid to regulate lung branching. Development 2022; 149:274047. [PMID: 35051272 PMCID: PMC8917413 DOI: 10.1242/dev.199726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/10/2021] [Indexed: 01/22/2023]
Abstract
During development, the mammalian lung undergoes several rounds of branching, the rate of which is tuned by the relative pressure of the fluid within the lumen of the lung. We carried out bioinformatics analysis of RNA-sequencing of embryonic mouse lungs cultured under physiologic or sub-physiologic transmural pressure and identified transcription factor-binding motifs near genes whose expression changes in response to pressure. Surprisingly, we found retinoic acid (RA) receptor binding sites significantly overrepresented in the promoters and enhancers of pressure-responsive genes. Consistently, increasing transmural pressure activates RA signaling, and pharmacologically inhibiting RA signaling decreases airway epithelial branching and smooth muscle wrapping. We found that pressure activates RA signaling through the mechanosensor Yap. A computational model predicts that mechanical signaling through Yap and RA affects lung branching by altering the balance between epithelial proliferation and smooth muscle wrapping, which we test experimentally. Our results reveal that transmural pressure signals through RA to balance the relative rates of epithelial growth and smooth muscle differentiation in the developing mouse lung and identify RA as a previously unreported component in the mechanotransduction machinery of embryonic tissues.
Collapse
Affiliation(s)
- Jacob M. Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Aswin Sundarakrishnan
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - James W. Spurlin
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA,Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sheng Mao
- Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, People's Republic of China,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA,Princeton Institute for the Science & Technology of Materials, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA,Author for correspondence ()
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The pathological remodeling of cardiac tissue after injury or disease leads to scar formation. Our knowledge of the role of nonmyocytes, especially fibroblasts, in cardiac injury and repair continues to increase with technological advances in both experimental and clinical studies. Here, we aim to elaborate on cardiac fibroblasts by describing their origins, dynamic cellular states after injury, and heterogeneity in order to understand their role in cardiac injury and repair. RECENT FINDINGS With the improvement in genetic lineage tracing technologies and the capability to profile gene expression at the single-cell level, we are beginning to learn that manipulating a specific population of fibroblasts could mitigate severe cardiac fibrosis and promote cardiac repair after injury. Cardiac fibroblasts play an indispensable role in tissue homeostasis and in repair after injury. Activated fibroblasts or myofibroblasts have time-dependent impacts on cardiac fibrosis. Multiple signaling pathways are involved in modulating fibroblast states, resulting in the alteration of fibrosis. Modulating a specific population of cardiac fibroblasts may provide new opportunities for identifying novel treatment options for cardiac fibrosis.
Collapse
Affiliation(s)
- Maoying Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
47
|
Hsu Y, Huang K, Cheng K. Resuscitating the Field of Cardiac Regeneration: Seeking Answers from Basic Biology. Adv Biol (Weinh) 2021; 6:e2101133. [PMID: 34939372 DOI: 10.1002/adbi.202101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Heart failure (HF) is one of the leading causes for hospital admissions worldwide. HF patients are classified based on the chronic changes in left ventricular ejection fraction (LVEF) as preserved (LVEF ≥ 50%), reduced (LVEF ≤ 40%), or mid-ranged (40% < LVEF < 50%) HFs. Treatments nowadays can prevent HFrEF progress, whereas only a few of the treatments have been proven to be effective in improving the survival of HFpEF. In this review, numerous mediators involved in the pathogenesis of HF are summarized. The regional upstream signaling and their diagnostic and therapeutic potential are also discussed. Additionally, the recent challenges and development in cardiac regenerative therapy that hold opportunities for future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Yaching Hsu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
48
|
Dai Z, Nomura S. Recent Progress in Cardiovascular Research Involving Single-Cell Omics Approaches. Front Cardiovasc Med 2021; 8:783398. [PMID: 34977189 PMCID: PMC8716466 DOI: 10.3389/fcvm.2021.783398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular diseases are among the leading causes of morbidity and mortality worldwide. Although the spectrum of the heart from development to disease has long been studied, it remains largely enigmatic. The emergence of single-cell omics technologies has provided a powerful toolbox for defining cell heterogeneity, unraveling previously unknown pathways, and revealing intercellular communications, thereby boosting biomedical research and obtaining numerous novel findings over the last 7 years. Not only cell atlases of normal and developing hearts that provided substantial research resources, but also some important findings regarding cell-type-specific disease gene program, could never have been established without single-cell omics technologies. Herein, we briefly describe the latest technological advances in single-cell omics and summarize the major findings achieved by such approaches, with a focus on development and homeostasis of the heart, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Zebrafish foxc1a controls ventricular chamber maturation by directly regulating wwtr1 and nkx2.5 expression. J Genet Genomics 2021; 49:559-568. [PMID: 34923164 DOI: 10.1016/j.jgg.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Chamber maturation is a significant process in cardiac development. Disorders of this crucial process lead to a range of congenital heart defects. Foxc1a is a critical transcription factor reported to regulate the specification of cardiac progenitor cells. However, little is known about the role of Foxc1a in modulating chamber maturation. Previously, we reported that foxc1a-null zebrafish embryos exhibit disrupted heart structures and functions. In this study, we observed that ventricle structure and cardiomyocyte proliferation were abolished during chamber maturation in foxc1a-null zebrafish embryos. To observe the endogenous localization of Foxc1a in the hearts of living embryos, we inserted eyfp at the foxc1a genomic locus using TALEN. Analysis of the knockin zebrafish showed that foxc1a was widely expressed in ventricular cardiomyocytes during chamber development. Cardiac RNA sequencing analysis revealed downregulated expression of the Hippo signaling effector wwtr1. Dual-luciferase and chromatin immunoprecipitation assays revealed that Foxc1a could bind directly to three sites in the wwtr1 promoter region. Furthermore, wwtr1 mRNA overexpression was sufficient to reverse the ventricle defects during chamber maturation. Conditional overexpression of nkx2.5 also partially rescued the ventricular defects during chamber development. These findings demonstrate that wwtr1 and nkx2.5 are direct targets of Foxc1a during ventricular chamber maturation.
Collapse
|
50
|
Wiesinger A, Boink GJJ, Christoffels VM, Devalla HD. Retinoic acid signaling in heart development: Application in the differentiation of cardiovascular lineages from human pluripotent stem cells. Stem Cell Reports 2021; 16:2589-2606. [PMID: 34653403 PMCID: PMC8581056 DOI: 10.1016/j.stemcr.2021.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Retinoic acid (RA) signaling plays an important role during heart development in establishing anteroposterior polarity, formation of inflow and outflow tract progenitors, and growth of the ventricular compact wall. RA is also utilized as a key ingredient in protocols designed for generating cardiac cell types from pluripotent stem cells (PSCs). This review discusses the role of RA in cardiogenesis, currently available protocols that employ RA for differentiation of various cardiovascular lineages, and plausible transcriptional mechanisms underlying this fate specification. These insights will inform further development of desired cardiac cell types from human PSCs and their application in preclinical and clinical research.
Collapse
Affiliation(s)
- Alexandra Wiesinger
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Cardiology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|