1
|
Zhou WJ, Liang W, Hu MX, Ma YK, Yu S, Jin C, Li JQ, Wang C, Wang CZ, Gong P, Wu QQ, Wu CG, Wang YP, Liu TT. Qingshen granules inhibits dendritic cell glycolipid metabolism to alleviate renal fibrosis via PI3K-AKT-mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156148. [PMID: 39426254 DOI: 10.1016/j.phymed.2024.156148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Qingshen exhibits anti-inflammatory and immunoregulation effects to renal damage. Dendritic cells (DCs) play a critical role in regulating the pathologic inflammatory environment in renal fibrosis (RF). PURPOSE To investigate the immune modulation mechanism of qingshen granule (QSG) in RF, particularly focusing on the role of DCs. METHODS/STUDY DESIGN Adenine-induced RF animal models were used to study the pharmacological effects of QSG and the immune cells differentiation and function. Glucose uptake, non-esterified fatty acids secretion, mitochondrial membrane potential (MMP) detection, and qPCR were used to explore the effect of QSG to glucose and lipid metabolism in DCs and T cells. The effect of QSG to PI3K-AKT-mTOR axis and the modulation of mTOR to PD-L1 were explored by co-culture experiments, co-immunoprecipitation and western blot assays. The interaction of DCs/CD8+T cells and renal tubular epithelial cells (RTECs) was investigated to demonstrate the direct action and/or the immune-mediated regulation of QSG to RF. The components of QSG in the serum were determined by HPLC. And the effect of active ingredients and formula to DCs and T cells was analyzed by cell experiments in vitro. RESULTS QSG reduced nephritic histopathological damage and suppressed the release of proinflammatory cytokines in adenine-induced RF mice. Of note, QSG decreased the levels of CD86, MHC-II, and CCR7 on DCs, while, increased PD-L1 expression on DCs in RF. The results demonstrated that QSG promoted the maturation and inhibited the migration of DCs, and QSG decreased the antigen presenting of DCs to T cells. Additionally, QSG reduced the MMP and glucose/lipid utilization ratio in DCs. QSG also down-regulated the level of targeted metabolic genes included glucose transporter 1 (Glut1), sterol-regulatory element-binding protein 1 (Srebp1), acetyl-CoA carboxylase alpha (Acaca), phosphomevalonate kinase (Pmvk), and up-regulated sirtuin2 (Sirt2) in DCs. In terms of mechanism, QSG inhibited the metabolism-related PI3K-AKT-mTOR pathway, followed by regulating the interaction of mTOR with PD-L1 to enhance the membrane stability of PD-L1. Besides, HPLC analysis identified five active ingredients in QSG. The specific anti-inflammatory and immunosuppressive actions of these ingredients were found to be weaker than QSG as a whole. Finally, inhibiting DC function by QSG disrupted the communication among DCs, T cells, and RTECs. This disruption was associated with low expression of α-smooth muscle actin (α-SMA) and collagen type I (Col-I) in the kidney. CONCLUSIONS QSG inhibits DC metabolism and function via the PI3K-AKT-mTOR pathway to alleviate RF. The study highlights the importance of the specific composition of the formula in targeting DC-mediated immune regulation.
Collapse
Affiliation(s)
- Wen-Jing Zhou
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Wei Liang
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Meng-Xue Hu
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Yu-Kun Ma
- Department of Pharmacy, the 902nd Hospital of the PLA Joint Logistics Support Force, Bengbu, China
| | - Shen Yu
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Chao Jin
- Department of Pharmacy, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Qi Li
- School of Pharmacy, South-Central Minzu University, Wuhan, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, the Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Chang-Zhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Peng Gong
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Qian-Qian Wu
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Chen-Gui Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| | - Yi-Ping Wang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Ting-Ting Liu
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China.
| |
Collapse
|
2
|
Garcia-Loza I, Perna-Barrull D, Aguilera E, Almenara-Fuentes L, Gomez-Muñoz L, Greco D, Vila M, Salvado M, Mancera-Arteu M, Olszowy MW, Petriz J, Dalmases M, Rodriguez-Vidal S, Barneda-Zahonero B, Vives-Pi M. Targeting macrophages with phosphatidylserine-rich liposomes as a potential antigen-specific immunotherapy for type 1 diabetes. J Autoimmun 2024; 145:103196. [PMID: 38458075 DOI: 10.1016/j.jaut.2024.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
Type 1 diabetes (T1D) results from a breakdown in immunological tolerance, with pivotal involvement of antigen-presenting cells. In this context, antigen-specific immunotherapies have been developed to arrest autoimmunity, such as phosphatidylserine (PS)-liposomes. However, the role of certain antigen-presenting cells in immunotherapy, particularly human macrophages (Mφ) in T1D remains elusive. The aim of this study was to determine the role of Mφ in antigen-specific immune tolerance and T1D. To that end, we evaluated Mφ ability to capture apoptotic-body mimicking PS-liposomes in mice and conducted a phenotypic and functional characterisation of four human monocyte-derived Mφ (MoMφ) subpopulations (M0, M1, M2a and M2c) after PS-liposomes uptake. Our findings in mice identified Mφ as the most phagocytic cell subset in the spleen and liver. In humans, while phagocytosis rates were comparable between T1D and control individuals, PS-liposome capture dynamics differed among Mφ subtypes, favouring inflammatory (M1) and deactivated (M2c) Mφ. Notably, high nanoparticle concentrations did not affect macrophage viability. PS-liposome uptake by Mφ induced alterations in membrane molecule expression related to immunoregulation, reduced secretion of IL-6 and IL-12, and diminished autologous T-cell proliferation in the context of autoantigen stimulation. These results underscore the tolerogenic effects of PS-liposomes and emphasize their potential to target human Mφ, providing valuable insights into the mechanism of action of this preclinical immunotherapy.
Collapse
Affiliation(s)
- Ivan Garcia-Loza
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain; Neuromuscular Diseases Group, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - David Perna-Barrull
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Eva Aguilera
- Endocrinology Dept, Germans Trias I Pujol University Hospital, Badalona, Spain
| | | | - Laia Gomez-Muñoz
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | | | | | | | | | - Jordi Petriz
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | | | | | - Marta Vives-Pi
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain; Endocrinology Dept, Germans Trias I Pujol University Hospital, Badalona, Spain; Ahead Therapeutics SL, Barcelona, Spain.
| |
Collapse
|
3
|
Gašparini D, Wensveen FM, Turk Wensveen T. Inflammageing mediated by cytotoxic lymphocytes is associated with diabetes duration. Diabetes Res Clin Pract 2024; 207:111056. [PMID: 38104904 DOI: 10.1016/j.diabres.2023.111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
AIMS Inflammageing, the age-related systemic increase of proinflammatory factors, has been linked to the development of cardiovascular disease, chronic kidney disease and cancer in the elderly. Chronic inflammation is believed to be a causative factor in the development of diabetic complications. However, exactly how type 2 diabetes impacts the inflammatory state of the immune system is incompletely characterised. METHODS Blood collection and anthropometric measurements were performed in patients with type 2 diabetes (n = 49) and control subjects (n = 30). The phenotype, proliferation capacity and cytokine production by cytotoxic lymphocytes were analysed using multiparametric flow cytometry. RESULTS Type 2 diabetes did not impact the phenotype or proliferation of the investigated cells. However, we observed a significantly increased production of tumour necrosis factor-α by CD8+ T cells and Granzyme B by natural killer cells and γδ T cells compared to controls. Hyperresponsiveness of cytotoxic blood lymphocytes did not correlate with glycaemia or body mass index, but instead was associated with older age and longer diabetes duration. CONCLUSIONS Type 2 diabetes is associated with an increased pro-inflammatory potential of cytotoxic blood lymphocytes correlating with age and diabetes duration. Further research is necessary to explore potential benefits of diabetes medications in reverting this effect.
Collapse
Affiliation(s)
- Dora Gašparini
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia; Center for Diabetes, Endocrinology and Cardiometabolism, Hospital for Medical Rehabilitation of the Heart and Lung Diseases and Rheumatism Thalassotherapia Opatija, Maršala Tita 188/1, 51410 Opatija, Croatia.
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia.
| | - Tamara Turk Wensveen
- Center for Diabetes, Endocrinology and Cardiometabolism, Hospital for Medical Rehabilitation of the Heart and Lung Diseases and Rheumatism Thalassotherapia Opatija, Maršala Tita 188/1, 51410 Opatija, Croatia; Department of Internal Medicine, Faculty of Medicine, University of Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia; Department of Endocrinology, Diabetes and Metabolic Diseases, Clinic of Internal Medicine, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia.
| |
Collapse
|
4
|
Alluri K, Srinivas B, Belmadani S, Matrougui K. Plasmacytoid dendritic cells contribute to vascular endothelial dysfunction in type 2 diabetes. Front Cardiovasc Med 2023; 10:1222243. [PMID: 38094119 PMCID: PMC10716216 DOI: 10.3389/fcvm.2023.1222243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/09/2023] [Indexed: 02/01/2024] Open
Abstract
Objective Type 2 diabetes (T2D) is associated with an increased risk of cardiovascular disease due to macro- and microvascular dysfunction. This study aimed to investigate the potential involvement of plasmacytoid dendritic cells (pDCs) in T2D-related vascular dysfunction. Approach and results pDCs were isolated from db/db and control mice. It was found that pDCs from db/db mice impaired endothelial cell eNOS phosphorylation in response to ATP and decreased vascular endothelium-dependent relaxation compared to pDCs from control mice. Moreover, isolated CD4+ cells from control mice, when stimulated overnight with high glucose and lipids, and isolated pDCs from db/db mice, display elevated levels of ER stress, inflammation, and apoptosis markers. Flow cytometry revealed that pDC frequency was higher in db/db mice than in controls. In vivo, the reduction of pDCs using anti-PDCA-1 antibodies in male and female db/db mice for 4 weeks significantly improved vascular endothelial function and eNOS phosphorylation. Conclusion pDCs may contribute to vascular dysfunction in T2D by impairing endothelial cell function. Targeting pDCs with anti-PDCA-1 antibodies may represent a promising therapeutic strategy for improving vascular endothelial function in T2D patients. This study provides new insights into the pathogenesis of T2D-related vascular dysfunction and highlights the potential of immunomodulatory therapies for treating this complication. Further studies are warranted to explore the clinical potential of this approach.
Collapse
Affiliation(s)
| | | | | | - K. Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, VA, United States
| |
Collapse
|
5
|
O'Meara TR, Nanishi E, McGrath ME, Barman S, Dong D, Dillen C, Menon M, Seo HS, Dhe-Paganon S, Ernst RK, Levy O, Frieman MB, Dowling DJ. Reduced SARS-CoV-2 mRNA vaccine immunogenicity and protection in mice with diet-induced obesity and insulin resistance. J Allergy Clin Immunol 2023; 152:1107-1120.e6. [PMID: 37595760 PMCID: PMC10841117 DOI: 10.1016/j.jaci.2023.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Obesity and type 2 diabetes mellitus (T2DM) are associated with an increased risk of severe outcomes from infectious diseases, including coronavirus disease 2019. These conditions are also associated with distinct responses to immunization, including an impaired response to widely used severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines. OBJECTIVE We sought to establish a connection between reduced immunization efficacy via modeling the effects of metabolic diseases on vaccine immunogenicity that is essential for the development of more effective vaccines for this distinct vulnerable population. METHODS A murine model of diet-induced obesity and insulin resistance was used to model the effects of comorbid T2DM and obesity on vaccine immunogenicity and protection. RESULTS Mice fed a high-fat diet (HFD) developed obesity, hyperinsulinemia, and glucose intolerance. Relative to mice fed a normal diet, HFD mice vaccinated with a SARS-CoV-2 mRNA vaccine exhibited significantly lower anti-spike IgG titers, predominantly in the IgG2c subclass, associated with a lower type 1 response, along with a 3.83-fold decrease in neutralizing titers. Furthermore, enhanced vaccine-induced spike-specific CD8+ T-cell activation and protection from lung infection against SARS-CoV-2 challenge were seen only in mice fed a normal diet but not in HFD mice. CONCLUSIONS The study demonstrated impaired immunity following SARS-CoV-2 mRNA immunization in a murine model of comorbid T2DM and obesity, supporting the need for further research into the basis for impaired anti-SARS-CoV-2 immunity in T2DM and investigation of novel approaches to enhance vaccine immunogenicity among those with metabolic diseases.
Collapse
Affiliation(s)
- Timothy R O'Meara
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass
| | - Etsuro Nanishi
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Marisa E McGrath
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Md
| | - Soumik Barman
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Danica Dong
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass
| | - Carly Dillen
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Md
| | - Manisha Menon
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Md
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; Broad Institute of MIT and Harvard, Cambridge, Mass
| | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Md
| | - David J Dowling
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
6
|
Hua S, Wang S, Cai J, Wu L, Cao Y. Myeloid-derived suppressor cells: Are they involved in gestational diabetes mellitus? Am J Reprod Immunol 2023:e13711. [PMID: 37157925 DOI: 10.1111/aji.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is currently the most common metabolic complication during pregnancy, with an increasing prevalence worldwide. Maternal immune dysregulation might be partly responsible for the pathophysiology of GDM. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of cells, emerging as a new immune regulator with potent immunosuppressive capacity. Although the fate and function of these cells were primarily described in pathological conditions such as cancer and infection, accumulating evidences have spotlighted their beneficial roles in homeostasis and physiological conditions. Recently, several studies have explored the roles of MDSCs in the diabetic microenvironment. However, the fate and function of these cells in GDM are still unknown. The current review summarized the existing knowledges about MDSCs and their potential roles in diabetes during pregnancy in an attempt to highlight our current understanding of GDM-related immune dysregulation and identify areas where further study is required.
Collapse
Affiliation(s)
- Siyu Hua
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shanshan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyang Cai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lamei Wu
- Department of Perinatal Healthcare, Huai'an District Maternity and Child Health Hospital, Huai'an, Jiangsu, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Gene expression associations with body mass index in the Multi-Ethnic Study of Atherosclerosis. Int J Obes (Lond) 2023; 47:109-116. [PMID: 36463326 PMCID: PMC9990473 DOI: 10.1038/s41366-022-01240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity, defined as excessive fat accumulation that represents a health risk, is increasing in adults and children, reaching global epidemic proportions. Body mass index (BMI) correlates with body fat and future health risk, yet differs in prediction by fat distribution, across populations and by age. Nonetheless, few genetic studies of BMI have been conducted in ancestrally diverse populations. Gene expression association with BMI was assessed in the Multi-Ethnic Study of Atherosclerosis (MESA) in four self-identified race and ethnicity (SIRE) groups to identify genes associated with obesity. SUBJECTS/METHODS RNA-sequencing was performed on 1096 MESA participants (37.8% white, 24.3% Hispanic, 28.4% African American, and 9.5% Chinese American) and linear models were used to assess the association of expression from each gene for its effect on BMI, adjusting for age, sex, sequencing center, study site, five expression and four genetic principal components in each self-identified race group. Sample-size-weighted meta-analysis was performed to identify genes with BMI-associated expression across ancestry groups. RESULTS Within individual SIRE groups, there were zero to three genes whose expression is significantly (p < 1.97 × 10-6) associated with BMI. Across all groups, 45 genes were identified by meta-analysis whose expression was significantly associated with BMI, explaining 29.7% of BMI variation. The 45 genes are expressed in a variety of tissues and cell types and are enriched for obesity-related processes including erythrocyte function, oxygen binding and transport, and JAK-STAT signaling. CONCLUSIONS We have identified genes whose expression is significantly associated with obesity in a multi-ethnic cohort. We have identified novel genes associated with BMI as well as confirmed previously identified genes from earlier genetic analyses. These novel genes and their biological pathways represent new targets for understanding the biology of obesity as well as new therapeutic intervention to reduce obesity and improve global public health.
Collapse
|
8
|
O’Meara TR, Nanishi E, McGrath ME, Barman S, Dong D, Dillen C, Menon M, Seo HS, Dhe-Paganon S, Ernst RK, Levy O, Frieman MB, Dowling DJ. Reduced SARS-CoV-2 mRNA vaccine immunogenicity and protection in mice with diet-induced obesity and insulin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.07.519460. [PMID: 36523401 PMCID: PMC9753785 DOI: 10.1101/2022.12.07.519460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Background Obesity and Type 2 Diabetes Mellitus (T2DM) are associated with an increased risk of severe outcomes from infectious diseases, including COVID-19. These conditions are also associated with distinct responses to immunization, including an impaired response to widely used SARS-CoV-2 mRNA vaccines. Objective To establish a connection between reduced immunization efficacy via modeling the effects of metabolic diseases on vaccine immunogenicity that is essential for the development of more effective vaccines for this distinct vulnerable population. Methods We utilized a murine model of diet-induced obesity and insulin resistance to model the effects of comorbid T2DM and obesity on vaccine immunogenicity and protection. Results Mice fed a high-fat diet (HFD) developed obesity, hyperinsulinemia, and glucose intolerance. Relative to mice fed a normal diet (ND), HFD mice vaccinated with a SARS-CoV-2 mRNA vaccine exhibited significantly lower anti-spike IgG titers, predominantly in the IgG2c subclass, associated with a lower type 1 response, along with a 3.83-fold decrease in neutralizing titers. Furthermore, enhanced vaccine-induced spike-specific CD8 + T cell activation and protection from lung infection against SARS-CoV-2 challenge were seen only in ND mice but not in HFD mice. Conclusion We demonstrate impaired immunity following SARS-CoV-2 mRNA immunization in a murine model of comorbid T2DM and obesity, supporting the need for further research into the basis for impaired anti-SARS-CoV-2 immunity in T2DM and investigation of novel approaches to enhance vaccine immunogenicity among those with metabolic diseases. Capsule summary Obesity and type 2 diabetes impair SARS-CoV-2 mRNA vaccine efficacy in a murine model.
Collapse
Affiliation(s)
- Timothy R. O’Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Marisa E. McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Danica Dong
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Carly Dillen
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Manisha Menon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA 02115
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA 02115
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA 21201
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
- Broad Institute of MIT & Harvard, Cambridge, MA, USA 02142
| | - Matthew B. Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - David J. Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
9
|
Vázquez-Lorente H, Herrera-Quintana L, Molina-López J, Gamarra Y, Planells E. Effect of zinc supplementation on circulating concentrations of homocysteine, vitamin B 12, and folate in a postmenopausal population. J Trace Elem Med Biol 2022; 71:126942. [PMID: 35149326 DOI: 10.1016/j.jtemb.2022.126942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The decrease in estrogen levels associated with menopause increases the risk of deficiencies of key micronutrients such as zinc and of disturbances in methylation cycle-related markers. The present study assesses the effect of 8-week Zn supplementation upon circulating concentrations of Hcy, B12, and Fol levels in a population of postmenopausal women. METHODS Fifty-one postmenopausal women aged between 44 and 76 years took part in the study. Two randomized groups (placebo and zinc [50 mg/day]) were treated during 8 weeks. Nutrient intake was assessed based on the 72-hour recall method. Zinc was analyzed by flame atomic absorption spectrophotometry. Clinical-nutritional parameters were determined by enzyme immunoassay techniques. RESULTS Folate levels increased significantly (p < 0.05) in the zinc group on comparing the baseline versus follow-up values. Homocysteine decreased in the inter-group analysis (p < 0.05) after the intervention. Furthermore, higher folate (r = -0.632; p = 0.005) and vitamin B12 (r = -0.512; p = 0.030) levels were correlated to low homocysteine levels in the zinc group after the intervention, although the zinc intervention had the same effect on B12 levels in both groups. CONCLUSION Zinc supplementation enhanced circulating folate and homocysteine by improving the folate values in the zinc-supplemented group and decreasing homocysteine levels inter-groups. Further studies involving larger samples and optimizing the doses and intervention period are needed to reinforce our main findings.
Collapse
Affiliation(s)
- Héctor Vázquez-Lorente
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071 Granada, Spain.
| | - Lourdes Herrera-Quintana
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071 Granada, Spain.
| | - Jorge Molina-López
- Faculty of Education, Psychology and Sports Sciences, University of Huelva, 21007 Huelva, Spain.
| | - Yenifer Gamarra
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071 Granada, Spain.
| | - Elena Planells
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071 Granada, Spain.
| |
Collapse
|
10
|
Xiang M, Liu T, Tian C, Ma K, Gou J, Huang R, Li S, Li Q, Xu C, Li L, Lee CH, Zhang Y. Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway. Pharmacol Res 2022; 177:106092. [PMID: 35066108 PMCID: PMC8776354 DOI: 10.1016/j.phrs.2022.106092] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
Kinsenoside (KD) exhibits anti-inflammatory and immunosuppressive effects. Dendritic cells (DCs) are critical regulators of the pathologic inflammatory milieu in liver fibrosis (LF). Herein, we explored whether and how KD repressed development of LF via DC regulation and verified the pathway involved in the process. Given our analysis, both KD and adoptive transfer of KD-conditioned DCs conspicuously reduced hepatic histopathological damage, proinflammatory cytokine release and extracellular matrix deposition in CCl4-induced LF mice. Of note, KD restrained the LF-driven rise in CD86, MHC-II, and CCR7 levels and, simultaneously, upregulated PD-L1 expression on DCs specifically, which blocked CD8+T cell activation. Additionally, KD reduced DC glycolysis, maintained DCs immature, accompanied by IL-12 decrease in DCs. Inhibiting DC function by KD disturbed the communication of DCs and HSCs with the expression or secretion of α-SMA and Col-I declined in the liver. Mechanistically, KD suppressed the phosphorylation of PI3K-AKT driven by LF or PI3K agonist, followed by enhanced nuclear transport of FoxO1 and upregulated interaction of FoxO1 with the PD-L1 promoter in DCs. PI3K inhibitor or si-IL-12 acting on DC could relieve LF, HSC activation and diminish the effect of KD. In conclusion, KD suppressed DC maturation with promoted PD-L1 expression via PI3K-AKT-FoxO1 and decreased IL-12 secretion, which blocked activation of CD8+T cells and HSCs, thereby alleviating liver injury and fibro-inflammation in LF.
Collapse
Affiliation(s)
- Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Liu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, the Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Ma
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Gou
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanrui Xu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
van der Zande HJP, Nitsche D, Schlautmann L, Guigas B, Burgdorf S. The Mannose Receptor: From Endocytic Receptor and Biomarker to Regulator of (Meta)Inflammation. Front Immunol 2021; 12:765034. [PMID: 34721436 PMCID: PMC8551360 DOI: 10.3389/fimmu.2021.765034] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 01/27/2023] Open
Abstract
The mannose receptor is a member of the C-type lectin (CLEC) family, which can bind and internalize a variety of endogenous and pathogen-associated ligands. Because of these properties, its role in endocytosis as well as antigen processing and presentation has been studied intensively. Recently, it became clear that the mannose receptor can directly influence the activation of various immune cells. Cell-bound mannose receptor expressed by antigen-presenting cells was indeed shown to drive activated T cells towards a tolerogenic phenotype. On the other hand, serum concentrations of a soluble form of the mannose receptor have been reported to be increased in patients suffering from a variety of inflammatory diseases and to correlate with severity of disease. Interestingly, we recently demonstrated that the soluble mannose receptor directly promotes macrophage proinflammatory activation and trigger metaflammation. In this review, we highlight the role of the mannose receptor and other CLECs in regulating the activation of immune cells and in shaping inflammatory responses.
Collapse
Affiliation(s)
| | - Dominik Nitsche
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Laura Schlautmann
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Sven Burgdorf
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Association between the triglyceride glucose index and coronary collateralization in coronary artery disease patients with chronic total occlusion lesions. Lipids Health Dis 2021; 20:140. [PMID: 34689767 PMCID: PMC8543811 DOI: 10.1186/s12944-021-01574-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
Background Recent studies have substantiated the role of the triglyceride glucose (TyG) index in predicting the prognosis of coronary artery disease (CAD) patients, while no relevant studies have revealed the association between the TyG index and coronary collateralization in the event of coronary chronic total occlusion (CTO). The current study intends to explore whether, or to what extent, the TyG index is associated with impaired collateralization in CAD patients with CTO lesions. Methods The study enrolled 1093 CAD patients undergoing cardiac catheterization for at least one CTO lesion. Data were collected from the Beijing Anzhen Hospital record system. The degree of collaterals was determined according to the Rentrop classification system. The correlation between the TyG index and coronary collateralization was assessed. Results Overall, 318 patients were included in a less developed collateralization (Rentrop classification 0-1) group. The TyG index was significantly higher in patients with impaired collateralization (9.3±0.65 vs. 8.8±0.53, P<0.001). After adjusting for various confounding factors, the TyG index remained correlated with the occurrence of impaired collateralization, with odds ratios (ORs) of 1.59 and 5.72 in the T2 and T3 group compared with the first tertile group (P<0.001). In addition, subgroup analysis showed that higher TyG index values remained strongly associated with increased risk of less developed collateralization. To compare the risk assessment efficacy for the formation of collateralization between the TyG index and other metabolic abnormality indicators, an area under the receiver-operating characteristic (ROC) curve (AUC) was obtained. A significant improvement in the risk assessment performance for impaired collateralization emerged when adding the TyG index into a baseline model. Conclusions The increased TyG index is strongly associated with less developed collateralization in CAD patients with CTO lesions and its risk assessment performance is better than single metabolic abnormality indicators. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01574-x.
Collapse
|
13
|
McElwain CJ, McCarthy FP, McCarthy CM. Gestational Diabetes Mellitus and Maternal Immune Dysregulation: What We Know So Far. Int J Mol Sci 2021; 22:4261. [PMID: 33923959 PMCID: PMC8073796 DOI: 10.3390/ijms22084261] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is an obstetric complication that affects approximately 5-10% of all pregnancies worldwide. GDM is defined as any degree of glucose intolerance with onset or first recognition during pregnancy, and is characterized by exaggerated insulin resistance, a condition which is already pronounced in healthy pregnancies. Maternal hyperglycaemia ensues, instigating a 'glucose stress' response and concurrent systemic inflammation. Previous findings have proposed that both placental and visceral adipose tissue play a part in instigating and mediating this low-grade inflammatory response which involves altered infiltration, differentiation and activation of maternal innate and adaptive immune cells. The resulting maternal immune dysregulation is responsible for exacerbation of the condition and a further reduction in maternal insulin sensitivity. GDM pathology results in maternal and foetal adverse outcomes such as increased susceptibility to diabetes mellitus development and foetal neurological conditions. A clearer understanding of how these pathways originate and evolve will improve therapeutic targeting. In this review, we will explore the existing findings describing maternal immunological adaption in GDM in an attempt to highlight our current understanding of GDM-mediated immune dysregulation and identify areas where further research is required.
Collapse
Affiliation(s)
- Colm J. McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland;
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, T12 YE02 Cork, Ireland;
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland;
| |
Collapse
|