1
|
Brinkman P, Wilde M, Ahmed W, Wang R, van der Schee M, Abuhelal S, Schaber C, Cunoosamy D, Clarke GW, Maitland-van der Zee AH, Dahlén SE, Siddiqui S, Fowler SJ. Fulfilling the Promise of Breathomics: Considerations for the Discovery and Validation of Exhaled Volatile Biomarkers. Am J Respir Crit Care Med 2024; 210:1079-1090. [PMID: 38889337 PMCID: PMC11544359 DOI: 10.1164/rccm.202305-0868tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
The exhaled breath represents an ideal matrix for noninvasive biomarker discovery, and exhaled metabolomics have the potential to be clinically useful in the era of precision medicine. In this concise translational review, we specifically address volatile organic compounds in the breath, with a view toward fulfilling the promise of these as actionable biomarkers, in particular, for lung diseases. We review the literature paying attention to seminal work linked to key milestones in breath research; discuss potential applications for breath biomarkers across disease areas and healthcare systems, including the perspectives of industry; and outline critical aspects of study design that will need to be considered for any pivotal research going forward if breath analysis is to provide robust validated biomarkers that meet the requirements for future clinical implementation.
Collapse
Affiliation(s)
- Paul Brinkman
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Michael Wilde
- School of Geography, Earth and Environmental Sciences, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Waqar Ahmed
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Ran Wang
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Shahd Abuhelal
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Chad Schaber
- Owlstone Medical Ltd., Cambridge, United Kingdom
| | | | - Graham W. Clarke
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Anke-Hilse Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Sven-Erik Dahlén
- The Department of Medicine Huddinge and the Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; and
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen J. Fowler
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
2
|
Sanmark E, Marjanen P, Virtanen J, Aaltonen K, Tauriainen S, Österlund P, Mäkelä M, Saari S, Roine A, Rönkkö T, Vartiainen VA. Identifying viral infections through analysis of head space volatile organic compounds. J Breath Res 2024; 19:016004. [PMID: 39437816 DOI: 10.1088/1752-7163/ad89f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Volatile organic compounds (VOCs) produced by human respiratory cells reflect metabolic and pathophysiological processes which can be detected with the use of modern technology. Analysis of exhaled breath or indoor air may potentially play an important role in screening of upper respiratory tract infections such as COVID-19 or influenza in the future. In this experimental study, air samples were collected and analyzed from the headspace of anin vitrocell culture infected by selected pathogens (influenza A H1N1 and seasonal coronaviruses OC43 and NL63). VOCs were measured with a real-time proton-transfer-reaction time-of-flight mass spectrometer and a differential mobility spectrometer. Measurements were performed every 12 h for 7 d. Non-infected cells and cell culture media served as references. In H1N1 and OC43 we observed four different VOCs which peaked during the infection. Different, individual VOCs were also observed in both infections. Activity began to clearly increase after 2 d in all analyses. We did not see increased VOC production in cells infected with NL63. VOC analysis seems to be suitable to differentiate the infected cells from those which are not infected as well as different viruses, from another. In the future, this could have practical value in both individual diagnostics and indoor environment screening.
Collapse
Affiliation(s)
- E Sanmark
- Department of Otorhinolaryngology and Phoniatrics-Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - P Marjanen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - J Virtanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine And Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - K Aaltonen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine And Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Tauriainen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - P Österlund
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - M Mäkelä
- Olfactomics Oy, Tampere, Finland
| | - S Saari
- Tampere University of Applied Sciences, Tampere, Finland
| | - A Roine
- Olfactomics Oy, Tampere, Finland
| | - T Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - V A Vartiainen
- Heart and Lung center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
3
|
Long GA, Xu Q, Sunkara J, Woodbury R, Brown K, Huang JJ, Xie Z, Chen X, Fu XA, Huang J. A comprehensive meta-analysis and systematic review of breath analysis in detection of COVID-19 through Volatile organic compounds. Diagn Microbiol Infect Dis 2024; 109:116309. [PMID: 38692202 PMCID: PMC11405072 DOI: 10.1016/j.diagmicrobio.2024.116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The COVID-19 pandemic had profound global impacts on daily lives, economic stability, and healthcare systems. Diagnosis of COVID-19 infection via RT-PCR was crucial in reducing spread of disease and informing treatment management. While RT-PCR is a key diagnostic test, there is room for improvement in the development of diagnostic criteria. Identification of volatile organic compounds (VOCs) in exhaled breath provides a fast, reliable, and economically favorable alternative for disease detection. METHODS This meta-analysis analyzed the diagnostic performance of VOC-based breath analysis in detection of COVID-19 infection. A systematic review of twenty-nine papers using the grading criteria from Newcastle-Ottawa Scale (NOS) and PRISMA guidelines was conducted. RESULTS The cumulative results showed a sensitivity of 0.92 (95 % CI, 90 %-95 %) and a specificity of 0.90 (95 % CI 87 %-93 %). Subgroup analysis by variant demonstrated strong sensitivity to the original strain compared to the Omicron and Delta variant in detection of SARS-CoV-2 infection. An additional subgroup analysis of detection methods showed eNose technology had the highest sensitivity when compared to GC-MS, GC-IMS, and high sensitivity-MS. CONCLUSION Overall, these results support the use of breath analysis as a new detection method of COVID-19 infection.
Collapse
Affiliation(s)
- Grace A Long
- Department of Anesthesiology & Perioperative Medicine, University of Louisville, Louisville, KY, USA
| | - Qian Xu
- Biometrics and Data Science, Fosun Pharma, Beijing, PR China
| | - Jahnavi Sunkara
- Department of Anesthesiology & Perioperative Medicine, University of Louisville, Louisville, KY, USA
| | - Reagan Woodbury
- Department of Anesthesiology & Perioperative Medicine, University of Louisville, Louisville, KY, USA
| | - Katherine Brown
- Department of Anesthesiology & Perioperative Medicine, University of Louisville, Louisville, KY, USA
| | | | - Zhenzhen Xie
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA
| | - Xiaoyu Chen
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY, USA.
| | - Xiao-An Fu
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA.
| | - Jiapeng Huang
- Department of Anesthesiology & Perioperative Medicine, University of Louisville, Louisville, KY, USA..
| |
Collapse
|
4
|
Boeselt T, Terhorst P, Kroenig J, Nell C, Spielmanns M, Boas U, Veith M, Vogelmeier C, Greulich T, Koczulla AR, Beutel B, Huber J, Heers H. Specific molecular peak analysis by ion mobility spectrometry of volatile organic compounds in urine of COVID-19 patients: A novel diagnostic approach. J Virol Methods 2024; 326:114910. [PMID: 38452823 DOI: 10.1016/j.jviromet.2024.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/08/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION SARS-CoV-2 is usually diagnosed from naso-/oropharyngeal swabs which are uncomfortable and prone to false results. This study investigated a novel diagnostic approach to Covid-19 measuring volatile organic compounds (VOC) from patients' urine. METHODS Between June 2020 and February 2021, 84 patients with positive RT-PCR for SARS-CoV-2 were recruited as well as 54 symptomatic individuals with negative RT-PCR. Midstream urine samples were obtained for VOC analysis using ion mobility spectrometry (IMS) which detects individual molecular components of a gas sample based on their size, configuration, and charge after ionization. RESULTS Peak analysis of the 84 Covid and 54 control samples showed good group separation. In total, 37 individual specific peaks were identified, 5 of which (P134, 198, 135, 75, 136) accounted for significant differences between groups, resulting in sensitivities of 89-94% and specificities of 82-94%. A decision tree was generated from the relevant peaks, leading to a combined sensitivity and specificity of 98% each. DISCUSSION VOC-based diagnosis can establish a reliable separation between urine samples of Covid-19 patients and negative controls. Molecular peaks which apparently are disease-specific were identified. IMS is an additional non-invasive and cheap device for the diagnosis of this ongoing endemic infection. Further studies are needed to validate sensitivity and specificity.
Collapse
Affiliation(s)
- T Boeselt
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Germany
| | - P Terhorst
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Germany
| | - J Kroenig
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Germany
| | - C Nell
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Germany
| | - M Spielmanns
- Pulmonary Rehabilitation, Zuercher Reha Zentren Klinik Wald, Switzerland; Faculty of Health, Department of Pneumology, University of Witten, Herdecke, Germany
| | - U Boas
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Germany
| | - M Veith
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Germany
| | - C Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Germany
| | - T Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Germany
| | - A R Koczulla
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Germany; Department of Pulmonology, Schoen-Kliniken Berchtesgaden, Philipps-University Marburg, Germany
| | - B Beutel
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Germany
| | - J Huber
- Department of Urology, University Medical Center Giessen and Marburg, Philipps-University Marburg, Germany
| | - H Heers
- Department of Urology, University Medical Center Giessen and Marburg, Philipps-University Marburg, Germany.
| |
Collapse
|
5
|
Wang R, Davis MD. A Concise Review of Exhaled Breath Testing for Respiratory Clinicians and Researchers. Respir Care 2024; 69:613-620. [PMID: 38199760 PMCID: PMC11147617 DOI: 10.4187/respcare.11651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Exhaled breath contains an extensive reservoir of biomolecules. The collection of exhaled breath is noninvasive and low risk. Therefore, its testing is an appealing strategy for the discovery of biomarkers of respiratory diseases. In this concise review, we summarize the evidence of exhaled breath tests for airways diseases and respiratory infections. An overview of breath collection methods in both individuals who are spontaneously breathing and those receiving mechanical ventilation is outlined. We also highlight the challenges in exhaled breath testing and areas for future research.
Collapse
Affiliation(s)
- Ran Wang
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Immunology, Immunity to Infection and Respiratory Medicine at the University of Manchester, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Michael D Davis
- Wells Center for Pediatric Research/Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children at Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
6
|
Armani Khatibi E, Farshbaf Moghimi N, Rahimpour E. COVID-19: An overview on possible transmission ways, sampling matrices and diagnosis. BIOIMPACTS : BI 2024; 14:29968. [PMID: 39493896 PMCID: PMC11530968 DOI: 10.34172/bi.2024.29968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/17/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
COVID-19 is an RNA virus belonging to the SARS family of viruses and includes a wide range of symptoms along with effects on other body organs in addition to the respiratory system. The high speed of transmission, severe complications, and high death rate caused scientists to focus on this disease. Today, many different investigation types are performed on COVID-19 from various points of view in the literature. This review summarizes most of them to provide a useful guideline for researchers in this field. After a general introduction, this review is divided into three parts. In the first one, various transmission ways COVID-19 are classified and explained in detail. The second part reviews the used biological samples for the detection of virus and the final section describes the various methods reported for the diagnosis of COVID-19 in various biological matrices.
Collapse
Affiliation(s)
- Elina Armani Khatibi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Nastaran Farshbaf Moghimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Moura PC, Raposo M, Vassilenko V. Breath biomarkers in Non-Carcinogenic diseases. Clin Chim Acta 2024; 552:117692. [PMID: 38065379 DOI: 10.1016/j.cca.2023.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
The analysis of volatile organic compounds (VOCs) from human matrices like breath, perspiration, and urine has received increasing attention from academic and medical researchers worldwide. These biological-borne VOCs molecules have characteristics that can be directly related to physiologic and pathophysiologic metabolic processes. In this work, gathers a total of 292 analytes that have been identified as potential biomarkers for the diagnosis of various non-carcinogenic diseases. Herein we review the advances in VOCs with a focus on breath biomarkers and their potential role as minimally invasive tools to improve diagnosis prognosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Maria Raposo
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| |
Collapse
|
8
|
Habibzadeh A, Ostovan VR, Keshavarzian O, Kardeh S, Mahmoudi SS, Zakeri MR, Tabrizi R. Volatile organic compounds analysis as promising biomarkers for Parkinson's disease diagnosis: A systematic review and meta-analysis. Clin Neurol Neurosurg 2023; 235:108022. [PMID: 37939618 DOI: 10.1016/j.clineuro.2023.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE Researchers are investigating the potential of volatile organic compounds (VOCs) obtained from exhaled breath and sebum as non-invasive tools for early Parkinson's disease (PD) diagnosis. The present study aims to assess the feasibility of using VOC analysis for PD diagnosis and determine the overall diagnostic accuracy of the proposed tests. METHODS We performed systematic searches based on the PRISMA guidelines to identify relevant studies on VOCs in PD diagnosis using exhaled breath or sebum samples. The selected articles were described, and meta-analysis was conducted on those that provided the sensitivity and specificity data. RESULTS Out of 1268 articles initially identified, 8 met the inclusion criteria and provided specific sensitivity and specificity data for PD, which were included in the current meta-analysis. The pooled analysis of these findings showed a mean area under the receiver operating characteristic curve of 0.85, a sensitivity of 0.81 (95% confidence interval (CI): 0.72, 0.88), and a specificity of 0.76 (95% CI: 0.66, 0.84). CONCLUSION The analysis of VOCs in exhaled breath and sebum has shown promise as a new avenue for non-invasive diagnosis of PD. VOCs' ability to distinguish PD from healthy controls suggests their potential clinical application in screening for the disease. Consequently, VOCs hold significant potential as biomarkers for PD diagnosis and offer a promising novel approach to identifying and diagnosing the condition.
Collapse
Affiliation(s)
- Adrina Habibzadeh
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Vahid Reza Ostovan
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Keshavarzian
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Kardeh
- Central Clinical School, Monash University, Melbourne, Australia
| | - Seyed Sasan Mahmoudi
- Student Research Committee, Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad-Reza Zakeri
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
9
|
Voit F, Erber J, Feuerherd M, Fries H, Bitterlich N, Diehl-Wiesenecker E, Gladis S, Lieb J, Protzer U, Schneider J, Geisler F, Somasundaram R, Schmid RM, Bauer W, Spinner CD. Rapid point-of-care detection of SARS-CoV-2 infection in exhaled breath using ion mobility spectrometry: a pilot study. Eur J Med Res 2023; 28:318. [PMID: 37660038 PMCID: PMC10474630 DOI: 10.1186/s40001-023-01284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/12/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND An effective testing strategy is essential for pandemic control of the novel Coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Breath gas analysis can expand the available toolbox for diagnostic tests by using a rapid, cost-beneficial, high-throughput point-of-care test. We conducted a bi-center clinical pilot study in Germany to evaluate breath gas analysis using multi-capillary column ion mobility spectrometry (MCC-IMS) to detect SARS-CoV-2 infection. METHODS Between September 23, 2020, and June 11, 2021, breath gas measurements were performed on 380 patients (SARS-CoV-2 real-time polymerase chain reaction (PCR) positive: 186; PCR negative: 194) presenting to the emergency department (ED) with respiratory symptoms. RESULTS Breath gas analysis using MCC-IMS identified 110 peaks; 54 showed statistically significant differences in peak intensity between the SARS-CoV-2 PCR-negative and PCR-positive groups. A decision tree analysis classification resulted in a sensitivity of 83% and specificity of 86%, but limited robustness to dataset changes. Modest values for the sensitivity (74%) and specificity (52%) were obtained using linear discriminant analysis. A systematic search for peaks led to a sensitivity of 77% and specificity of 67%; however, validation by transferability to other data is questionable. CONCLUSIONS Despite identifying several peaks by MCC-IMS with significant differences in peak intensity between PCR-negative and PCR-positive samples, finding a classification system that allows reliable differentiation between the two groups proved to be difficult. However, with some modifications to the setup, breath gas analysis using MCC-IMS may be a useful diagnostic toolbox for SARS-CoV-2 infection. TRIAL REGISTRATION This study was registered at ClinicalTrials.gov on September 21, 2020 (NCT04556318; Study-ID: HC-N-H-2004).
Collapse
Affiliation(s)
- Florian Voit
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - J Erber
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - M Feuerherd
- Institute of Virology, Helmholtz Center Munich, TUM, School of Medicine, Munich, Germany
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - H Fries
- B. Braun Melsungen AG, Melsungen, Germany
| | - N Bitterlich
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft mbH, Dresden, Germany
| | - E Diehl-Wiesenecker
- Department of Emergency Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - S Gladis
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - J Lieb
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - U Protzer
- Institute of Virology, Helmholtz Center Munich, TUM, School of Medicine, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - J Schneider
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - F Geisler
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - R Somasundaram
- Department of Emergency Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - R M Schmid
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - W Bauer
- Department of Emergency Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - C D Spinner
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| |
Collapse
|
10
|
Lee S, Kim M, Ahn BJ, Jang Y. Odorant-responsive biological receptors and electronic noses for volatile organic compounds with aldehyde for human health and diseases: A perspective review. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131555. [PMID: 37156042 DOI: 10.1016/j.jhazmat.2023.131555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Volatile organic compounds (VOCs) are gaseous chemicals found in ambient air and exhaled breath. In particular, highly reactive aldehydes are frequently found in polluted air and have been linked to various diseases. Thus, extensive studies have been carried out to elucidate disease-specific aldehydes released from the body to develop potential biomarkers for diagnostic purposes. Mammals possess innate sensory systems, such as receptors and ion channels, to detect these VOCs and maintain physiological homeostasis. Recently, electronic biosensors such as the electronic nose have been developed for disease diagnosis. This review aims to present an overview of natural sensory receptors that can detect reactive aldehydes, as well as electronic noses that have the potential to diagnose certain diseases. In this regard, this review focuses on eight aldehydes that are well-defined as biomarkers in human health and disease. It offers insights into the biological aspects and technological advances in detecting aldehyde-containing VOCs. Therefore, this review will aid in understanding the role of aldehyde-containing VOCs in human health and disease and the technological advances for improved diagnosis.
Collapse
Affiliation(s)
- Solpa Lee
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Bum Ju Ahn
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea; Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea.
| |
Collapse
|
11
|
Zamora-Mendoza BN, Sandoval-Flores H, Rodríguez-Aguilar M, Jiménez-González C, Alcántara-Quintana LE, Berumen-Rodríguez AA, Flores-Ramírez R. Determination of global chemical patterns in exhaled breath for the discrimination of lung damage in postCOVID patients using olfactory technology. Talanta 2023; 256:124299. [PMID: 36696734 DOI: 10.1016/j.talanta.2023.124299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/21/2023]
Abstract
The objective of this work was to evaluate the use of an electronic nose and chemometric analysis to discriminate global patterns of volatile organic compounds (VOCs) in breath of postCOVID syndrome patients with pulmonary sequelae. A cross-sectional study was performed in two groups, the group 1 were subjects recovered from COVID-19 without lung damage and the group 2 were subjects recovered from COVID-19 with impaired lung function. The VOCs analysis was executed using a Cyranose 320 electronic nose with 32 sensors, applying principal component analysis (PCA), Partial Least Square-Discriminant Analysis, random forest, canonical discriminant analysis (CAP) and the diagnostic power of the test was evaluated using the ROC (Receiver Operating Characteristic) curve. A total of 228 participants were obtained, for the postCOVID group there are 157 and 71 for the control group, the chemometric analysis results indicate in the PCA an 84% explanation of the variability between the groups, the PLS-DA indicates an observable separation between the groups and 10 sensors related to this separation, by random forest, a classification error was obtained for the control group of 0.090 and for the postCOVID group of 0.088 correct classification. The CAP model showed 83.8% of correct classification and the external validation of the model showed 80.1% of correct classification. Sensitivity and specificity reached 88.9% (73.9%-96.9%) and 96.9% (83.7%-99.9%) respectively. It is considered that this technology can be used to establish the starting point in the evaluation of lung damage in postCOVID patients with pulmonary sequelae.
Collapse
Affiliation(s)
- Blanca Nohemí Zamora-Mendoza
- Faculty of Medicine-Center for Applied Research on Environment and Health (CIAAS), Autonomous University of San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, Mexico
| | - Hannia Sandoval-Flores
- Faculty of Medicine-Center for Applied Research on Environment and Health (CIAAS), Autonomous University of San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, Mexico
| | | | - Carlos Jiménez-González
- Faculty of Medicine-Center for Applied Research on Environment and Health (CIAAS), Autonomous University of San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, Mexico
| | - Luz Eugenia Alcántara-Quintana
- CONACYT Research Fellow, Coordination for Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, Mexico
| | - Alejandra Abigail Berumen-Rodríguez
- Faculty of Medicine-Center for Applied Research on Environment and Health (CIAAS), Autonomous University of San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, Mexico
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordination for Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, Mexico.
| |
Collapse
|
12
|
van Raaij BFM, Veltman JD, Hameete JF, Stöger JL, Geelhoed JJM. Diagnostic performance of eNose technology in COVID-19 patients after hospitalization. BMC Pulm Med 2023; 23:134. [PMID: 37081422 PMCID: PMC10117233 DOI: 10.1186/s12890-023-02407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Volatile organic compounds (VOCs) produced by human cells reflect metabolic and pathophysiological processes which can be detected with the use of electronic nose (eNose) technology. Analysis of exhaled breath may potentially play an important role in diagnosing COVID-19 and stratification of patients based on pulmonary function or chest CT. METHODS Breath profiles of COVID-19 patients were collected with an eNose device (SpiroNose) 3 months after discharge from the Leiden University Medical Centre and matched with breath profiles from healthy individuals for analysis. Principal component analysis was performed with leave-one-out cross validation and visualised with receiver operating characteristics. COVID-19 patients were stratified in subgroups with a normal pulmonary diffusion capacity versus patients with an impaired pulmonary diffusion capacity (DLCOc < 80% of predicted) and in subgroups with a normal chest CT versus patients with COVID-19 related chest CT abnormalities. RESULTS The breath profiles of 135 COVID-19 patients were analysed and matched with 174 healthy controls. The SpiroNose differentiated between COVID-19 after hospitalization and healthy controls with an AUC of 0.893 (95-CI, 0.851-0.934). There was no difference in VOCs patterns in subgroups of COVID-19 patients based on diffusion capacity or chest CT. CONCLUSIONS COVID-19 patients have a breath profile distinguishable from healthy individuals shortly after hospitalization which can be detected using eNose technology. This may suggest ongoing inflammation or a common repair mechanism. The eNose could not differentiate between subgroups of COVID-19 patients based on pulmonary diffusion capacity or chest CT.
Collapse
Affiliation(s)
- B F M van Raaij
- Department of Internal Medicine, Section of Geriatrics and Gerontology, Leiden University Medical Centre, Albinusdreef 2, 2333ZA, Leiden, Netherlands.
| | - J D Veltman
- Department of Pulmonary Diseases, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - J F Hameete
- Department of Pulmonary Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - J L Stöger
- Department of Radiology, Leiden University Medical Centre, Leiden, Netherlands
| | - J J M Geelhoed
- Department of Pulmonary Diseases, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
13
|
Wilson AD, Forse LB. Potential for Early Noninvasive COVID-19 Detection Using Electronic-Nose Technologies and Disease-Specific VOC Metabolic Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:2887. [PMID: 36991597 PMCID: PMC10054641 DOI: 10.3390/s23062887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/12/2023]
Abstract
The established efficacy of electronic volatile organic compound (VOC) detection technologies as diagnostic tools for noninvasive early detection of COVID-19 and related coronaviruses has been demonstrated from multiple studies using a variety of experimental and commercial electronic devices capable of detecting precise mixtures of VOC emissions in human breath. The activities of numerous global research teams, developing novel electronic-nose (e-nose) devices and diagnostic methods, have generated empirical laboratory and clinical trial test results based on the detection of different types of host VOC-biomarker metabolites from specific chemical classes. COVID-19-specific volatile biomarkers are derived from disease-induced changes in host metabolic pathways by SARS-CoV-2 viral pathogenesis. The unique mechanisms proposed from recent researchers to explain how COVID-19 causes damage to multiple organ systems throughout the body are associated with unique symptom combinations, cytokine storms and physiological cascades that disrupt normal biochemical processes through gene dysregulation to generate disease-specific VOC metabolites targeted for e-nose detection. This paper reviewed recent methods and applications of e-nose and related VOC-detection devices for early, noninvasive diagnosis of SARS-CoV-2 infections. In addition, metabolomic (quantitative) COVID-19 disease-specific chemical biomarkers, consisting of host-derived VOCs identified from exhaled breath of patients, were summarized as possible sources of volatile metabolic biomarkers useful for confirming and supporting e-nose diagnoses.
Collapse
Affiliation(s)
- Alphus Dan Wilson
- Pathology Department, Center for Forest Health & Disturbance, Forest Genetics and Ecosystems Biology, Southern Research Station, USDA Forest Service, Stoneville, MS 38776, USA
| | - Lisa Beth Forse
- Southern Hardwoods Laboratory, Southern Research Station, USDA Forest Service, Stoneville, MS 38776, USA
| |
Collapse
|
14
|
Singh BP, Sohrab SS, Athar M, Alandijany TA, Kumari S, Nair A, Kumari S, Mehra K, Chowdhary K, Rahman S, Azhar EI. Substantial Changes in Selected Volatile Organic Compounds (VOCs) and Associations with Health Risk Assessments in Industrial Areas during the COVID-19 Pandemic. TOXICS 2023; 11:165. [PMID: 36851040 PMCID: PMC9963041 DOI: 10.3390/toxics11020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
During the COVID-19 pandemic, governments in many countries worldwide, including India, imposed several restriction measures, including lockdowns, to prevent the spread of the infection. COVID-19 lockdowns led to a reduction in gaseous and particulate pollutants in ambient air. In the present study, we investigated the substantial changes in selected volatile organic compounds (VOCs) after the outbreak of the coronavirus pandemic and associations with health risk assessments in industrial areas. VOC data from 1 January 2019 to 31 December 2021 were collected from the Central Pollution Control Board (CPCB) website, to identify percentage changes in VOC levels before, during, and after COVID-19. The mean TVOC levels at all monitoring stations were 47.22 ± 30.15, 37.19 ± 37.19, and 32.81 ± 32.81 µg/m3 for 2019, 2020, and 2021, respectively. As a result, the TVOC levels gradually declined in consecutive years due to the pandemic in India. The mean TVOC levels at all monitoring stations declined from 9 to 61% during the pandemic period as compared with the pre-pandemic period. In the current study, the T/B ratio values ranged from 2.16 (PG) to 26.38 (NL), which indicated that the major pollutant contributors were traffic and non-traffic sources during the pre-pandemic period. The present findings indicated that TVOC levels had positive but low correlations with SR, BP, RF, and WD, with correlation coefficients (r) of 0.034, 0.118, 0.012, and 0.007, respectively, whereas negative correlations were observed with AT and WS, with correlation coefficients (r) of -0.168 and -0.150, respectively. The lifetime cancer risk (LCR) value for benzene was reported to be higher in children, followed by females and males, for the pre-pandemic, pandemic, and post-pandemic periods. A nationwide scale-up of this study's findings might be useful in formulating future air pollution reduction policies associated with a reduction in health risk factors. Furthermore, the present study provides baseline data for future studies on the impacts of anthropogenic activities on the air quality of a region.
Collapse
Affiliation(s)
- Bhupendra Pratap Singh
- Department of Environmental Studies, Deshbadhu College, University of Delhi, New Delhi 110019, India
- Delhi School of Climate Change and Sustainability (Institute of Eminence), University of Delhi, New Delhi 110007, India
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Athar
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Thamir A. Alandijany
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saumya Kumari
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India
| | - Arathi Nair
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India
| | - Sweety Kumari
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India
| | - Kriti Mehra
- Department of Life Science, Deshbadhu College, University of Delhi, New Delhi 110019, India
| | - Khyati Chowdhary
- Department of Life Science, Deshbadhu College, University of Delhi, New Delhi 110019, India
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110019, India
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Sharma R, Zang W, Tabartehfarahani A, Lam A, Huang X, Sivakumar AD, Thota C, Yang S, Dickson RP, Sjoding MW, Bisco E, Mahmood CC, Diaz KM, Sautter N, Ansari S, Ward KR, Fan X. Portable Breath-Based Volatile Organic Compound Monitoring for the Detection of COVID-19 During the Circulation of the SARS-CoV-2 Delta Variant and the Transition to the SARS-CoV-2 Omicron Variant. JAMA Netw Open 2023; 6:e230982. [PMID: 36853606 PMCID: PMC9975913 DOI: 10.1001/jamanetworkopen.2023.0982] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
Importance Breath analysis has been explored as a noninvasive means to detect COVID-19. However, the impact of emerging variants of SARS-CoV-2, such as Omicron, on the exhaled breath profile and diagnostic accuracy of breath analysis is unknown. Objective To evaluate the diagnostic accuracies of breath analysis on detecting patients with COVID-19 when the SARS-CoV-2 Delta and Omicron variants were most prevalent. Design, Setting, and Participants This diagnostic study included a cohort of patients who had positive and negative test results for COVID-19 using reverse transcriptase polymerase chain reaction between April 2021 and May 2022, which covers the period when the Delta variant was overtaken by Omicron as the major variant. Patients were enrolled through intensive care units and the emergency department at the University of Michigan Health System. Patient breath was analyzed with portable gas chromatography. Main Outcomes and Measures Different sets of VOC biomarkers were identified that distinguished between COVID-19 (SARS-CoV-2 Delta and Omicron variants) and non-COVID-19 illness. Results Overall, 205 breath samples from 167 adult patients were analyzed. A total of 77 patients (mean [SD] age, 58.5 [16.1] years; 41 [53.2%] male patients; 13 [16.9%] Black and 59 [76.6%] White patients) had COVID-19, and 91 patients (mean [SD] age, 54.3 [17.1] years; 43 [47.3%] male patients; 11 [12.1%] Black and 76 [83.5%] White patients) had non-COVID-19 illness. Several patients were analyzed over multiple days. Among 94 positive samples, 41 samples were from patients in 2021 infected with the Delta or other variants, and 53 samples were from patients in 2022 infected with the Omicron variant, based on the State of Michigan and US Centers for Disease Control and Prevention surveillance data. Four VOC biomarkers were found to distinguish between COVID-19 (Delta and other 2021 variants) and non-COVID-19 illness with an accuracy of 94.7%. However, accuracy dropped substantially to 82.1% when these biomarkers were applied to the Omicron variant. Four new VOC biomarkers were found to distinguish the Omicron variant and non-COVID-19 illness (accuracy, 90.9%). Breath analysis distinguished Omicron from the earlier variants with an accuracy of 91.5% and COVID-19 (all SARS-CoV-2 variants) vs non-COVID-19 illness with 90.2% accuracy. Conclusions and Relevance The findings of this diagnostic study suggest that breath analysis has promise for COVID-19 detection. However, similar to rapid antigen testing, the emergence of new variants poses diagnostic challenges. The results of this study warrant additional evaluation on how to overcome these challenges to use breath analysis to improve the diagnosis and care of patients.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
| | - Wenzhe Zang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
| | - Ali Tabartehfarahani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
| | - Andres Lam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
| | - Xiaheng Huang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Anjali Devi Sivakumar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Chandrakalavathi Thota
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
| | - Shuo Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
| | - Robert P. Dickson
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
- Department of Internal Medicine, Division of Pulmonary Critical Care Medicine, University of Michigan, Ann Arbor
| | - Michael W. Sjoding
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
- Department of Internal Medicine, Division of Pulmonary Critical Care Medicine, University of Michigan, Ann Arbor
| | - Erin Bisco
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
- Department of Emergency Medicine, University of Michigan, Ann Arbor
| | - Carmen Colmenero Mahmood
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
- Department of Emergency Medicine, University of Michigan, Ann Arbor
| | - Kristen Machado Diaz
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
- Department of Emergency Medicine, University of Michigan, Ann Arbor
| | - Nicholas Sautter
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Sardar Ansari
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
- Department of Emergency Medicine, University of Michigan, Ann Arbor
| | - Kevin R. Ward
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
- Department of Emergency Medicine, University of Michigan, Ann Arbor
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor
| |
Collapse
|
16
|
Laird S, Debenham L, Chandla D, Chan C, Daulton E, Taylor J, Bhat P, Berry L, Munthali P, Covington JA. Breath Analysis of COVID-19 Patients in a Tertiary UK Hospital by Optical Spectrometry: The E-Nose CoVal Study. BIOSENSORS 2023; 13:bios13020165. [PMID: 36831932 PMCID: PMC9953365 DOI: 10.3390/bios13020165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 05/31/2023]
Abstract
Throughout the SARS-CoV-2 pandemic, diagnostic technology played a crucial role in managing outbreaks on a national and global level. One diagnostic modality that has shown promise is breath analysis, due to its non-invasive nature and ability to give a rapid result. In this study, a portable FTIR (Fourier Transform Infra-Red) spectrometer was used to detect chemical components in the breath from Covid positive symptomatic and asymptomatic patients versus a control cohort of Covid negative patients. Eighty-five patients who had a nasopharyngeal polymerase chain reaction (PCR) test for the detection of SARS-CoV-2 within the last 5 days were recruited to the study (36 symptomatic PCR positive, 23 asymptomatic PCR positive and 26 asymptomatic PCR negative). Data analysis indicated significant difference between the groups, with SARS-CoV-2 present on PCR versus the negative PCR control group producing an area under the curve (AUC) of 0.87. Similar results were obtained comparing symptomatic versus control and asymptomatic versus control. The asymptomatic results were higher than the symptomatic (0.88 vs. 0.80 AUC). When analysing individual chemicals, we found ethanol, methanol and acetaldehyde were the most important, with higher concentrations in the COVID-19 group, with symptomatic patients being higher than asymptomatic patients. This study has shown that breath analysis can provide significant results that distinguish patients with or without COVID-19 disease/carriage.
Collapse
Affiliation(s)
- Steven Laird
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Coventry and Warwickshire Pathology Service, University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Luke Debenham
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Danny Chandla
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Cathleen Chan
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Coventry and Warwickshire Pathology Service, University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Emma Daulton
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Johnathan Taylor
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Coventry and Warwickshire Pathology Service, University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Palashika Bhat
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Lisa Berry
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Coventry and Warwickshire Pathology Service, University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Peter Munthali
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Coventry and Warwickshire Pathology Service, University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | | |
Collapse
|
17
|
Chung J, Akter S, Han S, Shin Y, Choi TG, Kang I, Kim SS. Diagnosis by Volatile Organic Compounds in Exhaled Breath in Exhaled Breath from Patients with Gastric and Colorectal Cancers. Int J Mol Sci 2022; 24:129. [PMID: 36613569 PMCID: PMC9820758 DOI: 10.3390/ijms24010129] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
One in three cancer deaths worldwide are caused by gastric and colorectal cancer malignancies. Although the incidence and fatality rates differ significantly from country to country, the rates of these cancers in East Asian nations such as South Korea and Japan have been increasing each year. Above all, the biggest danger of this disease is how challenging it is to recognize in its early stages. Moreover, most patients with these cancers do not present with any disease symptoms before receiving a definitive diagnosis. Currently, volatile organic compounds (VOCs) are being used for the early prediction of several other diseases, and research has been carried out on these applications. Exhaled VOCs from patients possess remarkable potential as novel biomarkers, and their analysis could be transformative in the prevention and early diagnosis of colon and stomach cancers. VOCs have been spotlighted in recent studies due to their ease of use. Diagnosis on the basis of patient VOC analysis takes less time than methods using gas chromatography, and results in the literature demonstrate that it is possible to determine whether a patient has certain diseases by using organic compounds in their breath as indicators. This study describes how VOCs can be used to precisely detect cancers; as more data are accumulated, the accuracy of this method will increase, and it can be applied in more fields.
Collapse
Affiliation(s)
- Jinwook Chung
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Riccò M, Zaniboni A, Satta E, Ranzieri S, Marchesi F. Potential Use of Exhaled Breath Condensate for Diagnosis of SARS-CoV-2 Infections: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12092245. [PMID: 36140647 PMCID: PMC9497929 DOI: 10.3390/diagnostics12092245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Reverse-transcriptase polymerase chain reaction (RT-qPCR) assays performed on respiratory samples collected through nasal swabs still represent the gold standard for COVID-19 diagnosis. Alternative methods to this invasive and time-consuming options are still being inquired, including the collection of airways lining fluids through exhaled breath condensate (EBC). Materials and Methods. We performed a systematic review and meta-analysis in order to explore the reliability of EBC as a way to collect respiratory specimens for RT-qPCR for diagnosis of COVID-19. Results. A total of 4 studies (205 specimens), were ultimately collected, with a pooled sensitivity of 69.5% (95%CI 26.8–93.4), and a pooled specificity of 98.3% (95%CI 87.8–99.8), associated with high heterogeneity and scarce diagnostic agreement with the gold standard represented by nasal swabs (Cohen’s kappa = 0.585). Discussion. Even though non-invasive options for diagnosis of COVID-19 are still necessary, EBC-based RT-qPCR showed scarce diagnostic performances, ultimately impairing its implementation in real-world settings. However, as few studies have been carried out to date, and the studies included in the present review are characterized by low numbers and low sample power, further research are requested to fully characterize the actual reliability of EBC-based RT-qPCR in the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola n.2, I-42122 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-339-2994-343
| | - Alessandro Zaniboni
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Elia Satta
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| |
Collapse
|
19
|
Zhang P, Ren T, Chen H, Li Q, He M, Feng Y, Wang L, Huang T, Yuan J, Deng G, Lu H. A feasibility study of COVID-19 detection using breath analysis by high-pressure photon ionization time-of-flight mass spectrometry. J Breath Res 2022; 16. [PMID: 36052728 DOI: 10.1088/1752-7163/ac8ea1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND SARS-CoV-2 has caused a tremendous threat to global health. PCR and antigen testing have played a prominent role in the detection of SARS-CoV-2-infected individuals and disease control. An efficient, reliable detection tool is still urgently needed to halt the global COVID-19 pandemic. Recently, FDA emergency approved VOC as an alternative test for COVID-19 detection. METHODS AND MATERIALS In this case-control study, we prospectively and consecutively recruited 95 confirmed COVID-19 patients and 106 healthy controls in the designated hospital for treatment of COVID-19 patients in Shenzhen, China. Exhaled breath samples were collected and stored in customized bags and then detected by HPPI-TOFMS for volatile organic components (VOCs). Machine learning (ML) algorithms were employed for COVID-19 detection model construction. Participants were randomly assigned in a 5:2:3 ratio to the training, validation, and blinded test sets. The sensitivity (SEN), specificity (SPE), and other general metrics were employed for the VOCs based COVID-19 detection model performance evaluation. RESULTS The VOCs based COVID-19 detection model achieved good performance, with a SEN of 92.2% (95% CI: 83.8%, 95.6%), a SPE of 86.1% (95% CI: 74.8%, 97.4%) on blinded test set. Five potential VOC ions related to COVID-19 infection were discovered, which are significantly different between COVID-19 infected patients and controls. CONCLUSIONS This study evaluated a simple, fast, non-invasive VOCs-based COVID-19 detection method and demonstrated that it has good sensitivity and specificity in distinguishing COVID-19 infected patients from controls. It has great potential for fast and accurate COVID-19 detection.
Collapse
Affiliation(s)
- Peize Zhang
- Department of Pulmonary medicine and Tuberculosis, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, CHINA
| | - Tantan Ren
- Department of Pulmonary medicine and Tuberculosis, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, CHINA
| | - Haibin Chen
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, 3rd Gangnanli, Fengtai Distinct, Beijing, 100071, CHINA
| | - Qingyun Li
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, 3rd Gangnanli, Fengtai Distinct, Beijing, 100071, CHINA
| | - Mengqi He
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, 3rd Gangnanli, Fengtai Distinct, Beijing, 100071, CHINA
| | - Yong Feng
- Breax Laboratory, PCAB Research Center of Breath and Metabolism,, 3rd Gangnanli, Fengtai Distinct, Beijing, 100071, CHINA
| | - Lei Wang
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, 3rd Gangnanli, Fengtai Distinct, Beijing, 100071, CHINA
| | - Ting Huang
- Department of Disease Control, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Beijing, 100071, CHINA
| | - Jing Yuan
- Department of Infectious Disease, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, CHINA
| | - Guofang Deng
- Department of Pulmonary medicine and Tuberculosis,, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, Shenzhen, 518112, CHINA
| | - Hongzhou Lu
- Department of Infectious Disease, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, CHINA
| |
Collapse
|
20
|
Yodsin N, Sriphumrat K, Mano P, Kongpatpanich K, Namuangruk S. Metal-organic framework MIL-100(Fe) as a promising sensor for COVID-19 biomarkers detection. MICROPOROUS AND MESOPOROUS MATERIALS : THE OFFICIAL JOURNAL OF THE INTERNATIONAL ZEOLITE ASSOCIATION 2022; 343:112187. [PMID: 35999991 PMCID: PMC9389852 DOI: 10.1016/j.micromeso.2022.112187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 05/22/2023]
Abstract
The development of fast and non-invasive techniques to detect SARS-CoV-2 virus at the early stage of the infection would be highly desirable to control the COVID-19 outbreak. Metal-organic frameworks (MOFs) are porous materials with uniform porous structures and tunable pore surfaces, which would be essential for the selective sensing of the specific COVID-19 biomarkers. However, the use of MOFs materials to detect COVID-19 biomarkers has not been demonstrated so far. In this work, for the first time, we employed the density functional theory calculations to investigate the specific interactions of MOFs and the targeted biomarkers, in which the interactions were confirmed by experiment. The five dominant COVID-19 biomarkers and common exhaled gases are comparatively studied by exposing them to MOFs, namely MIL-100(Al) and MIL-100(Fe). The adsorption mechanism, binding site, adsorption energy, recovery time, charge transfer, sensing response, and electronic structures are systematically investigated. We found that MIL-100(Fe) has a higher sensing performance than MIL-100(Al) in terms of sensitivity and selectivity. MIL-100(Fe) shows sensitive to COVID-19 biomarkers, namely 2-methylpent-2-enal and 2,4-octadiene with high sensing responses as 7.44 x 105 and 9 x 107 which are exceptionally higher than those of the common gases which are less than 6. The calculated recovery times of 0.19 and 1.84 x 10-4 s are short enough to be a resuable sensor. An experimental study also showed that the MIL-100(Fe) provides a sensitivity toward 2-methylpent-2-enal. In conclusion, we suggest that MIL-100(Fe) could be used as a potential sensor for the exhaled breath analysis. We hope that our research can aid in the development of a biosensor for quick and easy COVID-19 biomarker detection in order to control the current pandemic.
Collapse
Affiliation(s)
- Nuttapon Yodsin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kunlanat Sriphumrat
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Poobodin Mano
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kanokwan Kongpatpanich
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
21
|
Arguni E, Dewi FST, Fachiroh J, Paramita DK, Lestari SK, Wiratama BS, Susilaningrum AR, Kharisma B, Meisyarah YH, Sari MP, Farahdilla ZA, Siswanto S, Sjaugi MF, Sasongko TH, Lazuardi L. Two-years antibody responses following SARS-CoV-2 infection in humans: A study protocol. PLoS One 2022; 17:e0272690. [PMID: 35972930 PMCID: PMC9380924 DOI: 10.1371/journal.pone.0272690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The long-term antibody response to the novel SARS-CoV-2 in infected patients and their residential neighborhood remains unknown in Indonesia. This information will provide insights into the antibody kinetics over a relatively long period as well as transmission risk factors in the community. We aim to prospectively observe and determine the kinetics of the anti-SARS-CoV-2 antibody for 2 years after infection in relation to disease severity and to determine the risk and protective factors of SARS CoV-2 infections in the community. A cohort of RT-PCR confirmed SARS-CoV-2 patients (case) will be prospectively followed for 2 years and will be compared to a control population. The control group comprises SARS-CoV-2 non-infected people who live within a one-kilometer radius from the corresponding case (location matching). This study will recruit at least 165 patients and 495 controls. Demographics, community variables, behavioral characteristics, and relevant clinical data will be collected. Serum samples taken at various time points will be tested for IgM anti-Spike protein of SARS-CoV-2 and IgG anti-Spike RBD of SARS-CoV-2 by using Chemiluminescent Microparticle Immunoassay (CMIA) method. The Kaplan-Meier method will be used to calculate cumulative seroconversion rates, and their association with disease severity will be estimated by logistic regression. The risk and protective factors associated with the SARS-CoV-2 infection will be determined using conditional (matched) logistic regression and presented as an odds ratio and 95% confidence interval.
Collapse
Affiliation(s)
- Eggi Arguni
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fatwa Sari Tetra Dewi
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Health Behavior, Environment, and Social Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jajah Fachiroh
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Kartikawati Paramita
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Septi Kurnia Lestari
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Bayu Satria Wiratama
- Department Biostatistics, Epidemiology and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Annisa Ryan Susilaningrum
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Bara Kharisma
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yogi Hasna Meisyarah
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Merlinda Permata Sari
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Zakiya Ammalia Farahdilla
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Siswanto Siswanto
- Universitas Gadjah Mada Academic Hospital, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhammad Farhan Sjaugi
- Perdana University Graduate School of Medicine and Perdana University Center for Research Excellence, Kuala Lumpur, Malaysia
| | - Teguh Haryo Sasongko
- Department of Physiology, School of Medicine and Institute for Research, Development, and Innovation, International Medical University Kuala Lumpur, Malaysia
| | - Lutfan Lazuardi
- Department of Health Policy and Management, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
22
|
Barucha A, Mauch RM, Duckstein F, Zagoya C, Mainz JG. The potential of volatile organic compound analysis for pathogen detection and disease monitoring in patients with cystic fibrosis. Expert Rev Respir Med 2022; 16:723-735. [PMID: 35853615 DOI: 10.1080/17476348.2022.2104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Airway infection with pathogens and its associated pulmonary exacerbations (PEX) are the major causes of morbidity and premature death in cystic fibrosis (CF). Preventing or postponing chronic infections requires early diagnosis. However, limitations of conventional microbiology-based methods can hamper identification of exacerbations and specific pathogen detection. Analyzing volatile organic compounds (VOCs) in breath samples may be an interesting tool in this regard, as VOC-biomarkers can characterize specific airway infections in CF. AREAS COVERED We address the current achievements in VOC-analysis and discuss studies assessing VOC-biomarkers and fingerprints, i.e. a combination of multiple VOCs, in breath samples aiming at pathogen and PEX detection in people with CF (pwCF). We aim to provide bases for further research in this interesting field. EXPERT OPINION Overall, VOC-based analysis is a promising tool for diagnosis of infection and inflammation with potential to monitor disease progression in pwCF. Advantages over conventional diagnostic methods, including easy and non-invasive sampling procedures, may help to drive prompt, suitable therapeutic approaches in the future. Our review shall encourage further research, including validation of VOC-based methods. Specifically, longitudinal validation under standardized conditions is of interest in order to ensure repeatability and enable inclusion in CF diagnostic routine.
Collapse
Affiliation(s)
- Anton Barucha
- Cystic Fibrosis Center for Children and Adults, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Renan M Mauch
- Center for Investigation in Pediatrics, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Franziska Duckstein
- Cystic Fibrosis Center for Children and Adults, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Carlos Zagoya
- Cystic Fibrosis Center for Children and Adults, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Jochen G Mainz
- Cystic Fibrosis Center for Children and Adults, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany.,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Germany
| |
Collapse
|
23
|
Bax C, Robbiani S, Zannin E, Capelli L, Ratti C, Bonetti S, Novelli L, Raimondi F, Di Marco F, Dellacà RL. An Experimental Apparatus for E-Nose Breath Analysis in Respiratory Failure Patients. Diagnostics (Basel) 2022; 12:776. [PMID: 35453824 PMCID: PMC9026987 DOI: 10.3390/diagnostics12040776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Non-invasive, bedside diagnostic tools are extremely important for tailo ring the management of respiratory failure patients. The use of electronic noses (ENs) for exhaled breath analysis has the potential to provide useful information for phenotyping different respiratory disorders and improving diagnosis, but their application in respiratory failure patients remains a challenge. We developed a novel measurement apparatus for analysing exhaled breath in such patients. Methods: The breath sampling apparatus uses hospital medical air and oxygen pipeline systems to control the fraction of inspired oxygen and prevent contamination of exhaled gas from ambient Volatile Organic Compounds (VOCs) It is designed to minimise the dead space and respiratory load imposed on patients. Breath odour fingerprints were assessed using a commercial EN with custom MOX sensors. We carried out a feasibility study on 33 SARS-CoV-2 patients (25 with respiratory failure and 8 asymptomatic) and 22 controls to gather data on tolerability and for a preliminary assessment of sensitivity and specificity. The most significant features for the discrimination between breath-odour fingerprints from respiratory failure patients and controls were identified using the Boruta algorithm and then implemented in the development of a support vector machine (SVM) classification model. Results: The novel sampling system was well-tolerated by all patients. The SVM differentiated between respiratory failure patients and controls with an accuracy of 0.81 (area under the ROC curve) and a sensitivity and specificity of 0.920 and 0.682, respectively. The selected features were significantly different in SARS-CoV-2 patients with respiratory failure versus controls and asymptomatic SARS-CoV-2 patients (p < 0.001 and 0.046, respectively). Conclusions: the developed system is suitable for the collection of exhaled breath samples from respiratory failure patients. Our preliminary results suggest that breath-odour fingerprints may be sensitive markers of lung disease severity and aetiology.
Collapse
Affiliation(s)
- Carmen Bax
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” (DCMC), Politecnico di Milano, 20133 Milano, Italy; (C.B.); (C.R.)
| | - Stefano Robbiani
- TechRes Lab, Department of Electronics Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy; (S.R.); (E.Z.); (R.L.D.)
| | - Emanuela Zannin
- TechRes Lab, Department of Electronics Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy; (S.R.); (E.Z.); (R.L.D.)
| | - Laura Capelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” (DCMC), Politecnico di Milano, 20133 Milano, Italy; (C.B.); (C.R.)
| | - Christian Ratti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” (DCMC), Politecnico di Milano, 20133 Milano, Italy; (C.B.); (C.R.)
| | - Simone Bonetti
- Unit of Pneumology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy; (S.B.); (L.N.); (F.R.); (F.D.M.)
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy
| | - Luca Novelli
- Unit of Pneumology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy; (S.B.); (L.N.); (F.R.); (F.D.M.)
| | - Federico Raimondi
- Unit of Pneumology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy; (S.B.); (L.N.); (F.R.); (F.D.M.)
| | - Fabiano Di Marco
- Unit of Pneumology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy; (S.B.); (L.N.); (F.R.); (F.D.M.)
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy
| | - Raffaele L. Dellacà
- TechRes Lab, Department of Electronics Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy; (S.R.); (E.Z.); (R.L.D.)
| |
Collapse
|
24
|
Hu B. Recent Advances in Facemask Devices for In Vivo Sampling of Human Exhaled Breath Aerosols and Inhalable Environmental Exposures. Trends Analyt Chem 2022; 151:116600. [PMID: 35310778 PMCID: PMC8917876 DOI: 10.1016/j.trac.2022.116600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the COVID-19 pandemic, the unprecedented use of facemasks has been requiring for wearing in daily life. By wearing facemask, human exhaled breath aerosols and inhaled environmental exposures can be efficiently filtered and thus various filtration residues can be deposited in facemask. Therefore, facemask could be a simple, wearable, in vivo, onsite and noninvasive sampler for collecting exhaled and inhalable compositions, and gain new insights into human health and environmental exposure. In this review, the recent advances in developments and applications of in vivo facemask sampling of human exhaled bacteria, viruses, proteins, and metabolites, and inhalable facemask contaminants and air pollutants, are reviewed. New features of facemask sampling are highlighted. The perspectives and challenges on further development and potential applications of facemask devices are also discussed.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| |
Collapse
|
25
|
Issitt T, Wiggins L, Veysey M, Sweeney S, Brackenbury W, Redeker K. Volatile compounds in human breath: critical review and meta-analysis. J Breath Res 2022; 16. [PMID: 35120340 DOI: 10.1088/1752-7163/ac5230] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Volatile compounds contained in human breath reflect the inner workings of the body. A large number of studies have been published that link individual components of breath to disease, but diagnostic applications remain limited, in part due to inconsistent and conflicting identification of breath biomarkers. New approaches are therefore required to identify effective biomarker targets. Here, volatile organic compounds have been identified in the literature from four metabolically and physiologically distinct diseases and grouped into chemical functional groups (e.g. - methylated hydrocarbons or aldehydes; based on known metabolic and enzymatic pathways) to support biomarker discovery and provide new insight on existing data. Using this functional grouping approach, principal component analysis doubled explanatory capacity from 19.1% to 38% relative to single individual compound approaches. Random forest and linear discriminant analysis reveal 93% classification accuracy for cancer. This review and meta-analysis provides insight for future research design by identifying volatile functional groups associated with disease. By incorporating our understanding of the complexities of the human body, along with accounting for variability in methodological and analytical approaches, this work demonstrates that a suite of targeted, functional volatile biomarkers, rather than individual biomarker compounds, will improve accuracy and success in diagnostic research and application.
Collapse
Affiliation(s)
- Theo Issitt
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Laura Wiggins
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Martin Veysey
- The University of Newcastle, School of Medicine & Public Health, Callaghan, New South Wales, 2308, AUSTRALIA
| | - Sean Sweeney
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - William Brackenbury
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Kelly Redeker
- Biology, University of York, Biology Dept. University of York, York, York, North Yorkshire, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
26
|
Spernovasilis N, Tsiodras S, Poulakou G. Emerging and Re-Emerging Infectious Diseases: Humankind's Companions and Competitors. Microorganisms 2022; 10:microorganisms10010098. [PMID: 35056547 PMCID: PMC8780145 DOI: 10.3390/microorganisms10010098] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 01/01/2023] Open
Affiliation(s)
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, Attikon University Hospital, 12462 Athens, Greece;
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Garyphallia Poulakou
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Third Department of Internal Medicine, Sotiria General Hospital, 11527 Athens, Greece
| |
Collapse
|