1
|
Chiang IKN, Humphrey D, Mills RJ, Kaltzis P, Pachauri S, Graus M, Saha D, Wu Z, Young P, Sim CB, Davidson T, Hernandez‐Garcia A, Shaw CA, Renwick A, Scott DA, Porrello ER, Wong ES, Hudson JE, Red‐Horse K, del Monte‐Nieto G, Francois M. Sox7-positive endothelial progenitors establish coronary arteries and govern ventricular compaction. EMBO Rep 2023; 24:e55043. [PMID: 37551717 PMCID: PMC10561369 DOI: 10.15252/embr.202255043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
The cardiac endothelium influences ventricular chamber development by coordinating trabeculation and compaction. However, the endothelial-specific molecular mechanisms mediating this coordination are not fully understood. Here, we identify the Sox7 transcription factor as a critical cue instructing cardiac endothelium identity during ventricular chamber development. Endothelial-specific loss of Sox7 function in mice results in cardiac ventricular defects similar to non-compaction cardiomyopathy, with a change in the proportions of trabecular and compact cardiomyocytes in the mutant hearts. This phenotype is paralleled by abnormal coronary artery formation. Loss of Sox7 function disrupts the transcriptional regulation of the Notch pathway and connexins 37 and 40, which govern coronary arterial specification. Upon Sox7 endothelial-specific deletion, single-nuclei transcriptomics analysis identifies the depletion of a subset of Sox9/Gpc3-positive endocardial progenitor cells and an increase in erythro-myeloid cell lineages. Fate mapping analysis reveals that a subset of Sox7-null endothelial cells transdifferentiate into hematopoietic but not cardiomyocyte lineages. Our findings determine that Sox7 maintains cardiac endothelial cell identity, which is crucial to the cellular cross-talk that drives ventricular compaction and coronary artery development.
Collapse
Affiliation(s)
- Ivy KN Chiang
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - David Humphrey
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Richard J Mills
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Peter Kaltzis
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Shikha Pachauri
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - Matthew Graus
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | - Diptarka Saha
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Zhijian Wu
- The Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Paul Young
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Choon Boon Sim
- The Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
| | - Tara Davidson
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| | | | - Chad A Shaw
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Alexander Renwick
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Daryl A Scott
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Enzo R Porrello
- The Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
- Melbourne Centre for Cardiovascular Genomics and Regenerative MedicineThe Royal Children's HospitalMelbourneVICAustralia
- Department of Anatomy and Physiology, School of Biomedical SciencesThe University of MelbourneMelbourneVICAustralia
| | - Emily S Wong
- The Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - James E Hudson
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | | | | | - Mathias Francois
- Centenary Institute, Royal Prince Alfred HospitalThe University of SydneySydneyNSWAustralia
| |
Collapse
|
2
|
Predisposition to atrioventricular septal defects may be caused by SOX7 variants that impair interaction with GATA4. Mol Genet Genomics 2022; 297:671-687. [PMID: 35260939 DOI: 10.1007/s00438-022-01859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/12/2022] [Indexed: 10/18/2022]
Abstract
Atrioventricular septal defects (AVSD) are a complicated subtype of congenital heart defects for which the genetic basis is poorly understood. Many studies have demonstrated that the transcription factor SOX7 plays a pivotal role in cardiovascular development. However, whether SOX7 single nucleotide variants are involved in AVSD pathogenesis is unclear. To explore the potential pathogenic role of SOX7 variants, we recruited a total of 100 sporadic non-syndromic AVSD Chinese Han patients and screened SOX7 variants in the patient cohort by targeted sequencing. Functional assays were performed to evaluate pathogenicity of nonsynonymous variants of SOX7. We identified three rare SOX7 variants, c.40C > G, c.542G > A, and c.743C > T, in the patient cohort, all of which were found to be highly conserved in mammals. Compared to the wild type, these SOX7 variants had increased mRNA expression and decreased protein expression. In developing hearts, SOX7 and GATA4 were highly expressed in the region of atrioventricular cushions. Moreover, SOX7 overexpression promoted the expression of GATA4 in human umbilical vein endothelial cells. A chromatin immunoprecipitation assay revealed that SOX7 could directly bind to the GATA4 promoter and luciferase assays demonstrated that SOX7 activated the GATA4 promoter. The SOX7 variants had impaired transcriptional activity relative to wild-type SOX7. Furthermore, the SOX7 variants altered the ability of GATA4 to regulate its target genes. In conclusion, our findings showed that deleterious SOX7 variants potentially contribute to human AVSD by impairing its interaction with GATA4. This study provides novel insights into the etiology of AVSD and contributes new strategies to the prenatal diagnosis of AVSD.
Collapse
|
3
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022; 14:1-40. [PMID: 35126826 PMCID: PMC8788183 DOI: 10.4252/wjsc.v14.i1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/02/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases’ morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| |
Collapse
|
4
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022. [PMID: 35126826 DOI: 10.4252/wjsc.v14.i1.1]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases' morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt.
| |
Collapse
|
5
|
Long Non-coding RNAs (lncRNAs), A New Target in Stroke. Cell Mol Neurobiol 2020; 42:501-519. [PMID: 32865676 DOI: 10.1007/s10571-020-00954-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
Stroke has become the most disabling and the second most fatal disease in the world. It has been a top priority to reveal the pathophysiology of stroke at cellular and molecular levels. A large number of long non-coding RNAs (lncRNAs) are identified to be abnormally expressed after stroke. Here, we summarize 35 lncRNAs associated with stroke, and clarify their functions on the prognosis through signal transduction and predictive values as biomarkers. Changes in the expression of these lncRNAs mediate a wide range of pathological processes in stroke, including apoptosis, inflammation, angiogenesis, and autophagy. Based on the exploration of the functions and mechanisms of lncRNAs in stroke, more timely, accurate predictions and more effective, safer treatments for stroke could be developed.
Collapse
|
6
|
SOX7 is involved in polyphyllin D-induced G0/G1 cell cycle arrest through down-regulation of cyclin D1. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:191-200. [PMID: 31955140 DOI: 10.2478/acph-2020-0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2019] [Indexed: 01/19/2023]
Abstract
The incidence of mortality of prostate cancer (PCa) has been an uptrend in recent years. Our previous study showed that the sex-determining region Y-box 7 (SOX7) was low-expressed and served as a tumor suppressor in PCa cells. Here, we describe the effects of polyphyllin D (PD) on proliferation and cell cycle modifications of PCa cells, and whether SOX7 participates in this process. PC-3 cells were cultured in complete medium containing PD for 12, 24, and 48 h. MTT assay was used to investigate the cytotoxic effects of PD. Cell cycle progression was analyzed using propidium iodide (PI) staining, and protein levels were assayed by Western blot analysis. Our results showed low expression of SOX7 in PCa tissues/cells compared to their non-tumorous counterparts/RWPE-1 cells. Moreover, PD inhibited the proliferation of PC-3 cells in a dose- and time-dependent manner. PD induced G0/G1 cell cycle arrest, while co-treatment with short interfering RNA targeting SOX7 (siSOX7) had reversed this effect. PD downregulated SOX7, cyclin D1, cyclin-dependent kinase 4 (CDK4), and cyclin-dependent kinase 6 (CDK6) expressions in a dose-dependent manner, whereas co-treatment of siSOX7 and PD rescued the PD-inhibited cyclin D1 expression. However, no obvious changes were observed in CDK4 or CDK6 expression. These results indicate that SOX7 is involved in PD-induced PC-3 cell cycle arrest through down-regulation of cyclin D1.
Collapse
|
7
|
Hu C, Bai X, Liu C, Hu Z. Long noncoding RNA XIST participates hypoxia-induced angiogenesis in human brain microvascular endothelial cells through regulating miR-485/SOX7 axis. Am J Transl Res 2019; 11:6487-6497. [PMID: 31737200 PMCID: PMC6834526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) X-inactive specific transcript (XIST) has identified to involve into the tumor cell angiogenesis. However, whether XIST contributes to Human Brain Microvascular Endothelial Cells (HBMEC) angiogenesis as well as potential mechanisms are largely unclear. METHODS The expression of XIST, miR-485-3p and SRY-box 7 (SOX7) in HBMEC were altered by transfection. The cell viability, cell migration and tube formation of HBMEC were measured, respectively. The cross-regulations between XIST, miR-485-3p, SOX7, and vascular endothelial growth factor (VEGF) signaling pathway were investigated by RT-qPCR and Western blot assay. RESULTS In this study, we characterized the upregulation of XIST in HBMEC under hypoxia condition. Meanwhile, XIST silencing impaired hypoxia-induced cell proliferation, migration and tube formation. Besides, our integrated experiments identified that XIST may competitively bind with miR-485-3p and then modulate the derepression of downstream target SRY-box 7 (SOX7). Mechanically, knockdown of XIST impaired hypoxia-induced angiogenesis via miR-485-3p/SOX7 axis and subsequent suppression of VEGF signaling pathway. CONCLUSION Altogether, the present study suggested that XIST is required to maintain VEGF signaling expression in HBMEC under hypoxia condition and plays a vital role in hypoxia-induced angiogenesis via miR-485-3p/SOX7 axis.
Collapse
Affiliation(s)
- Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| | - Xue Bai
- Department of Critical Care Medicine, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| | - Chang Liu
- Department of Critical Care Medicine, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| | - Zhi Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| |
Collapse
|
8
|
Higashijima Y, Kanki Y. Molecular mechanistic insights: The emerging role of SOXF transcription factors in tumorigenesis and development. Semin Cancer Biol 2019; 67:39-48. [PMID: 31536760 DOI: 10.1016/j.semcancer.2019.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/31/2019] [Accepted: 09/15/2019] [Indexed: 01/22/2023]
Abstract
Over the last decade, the development and progress of next-generation sequencers incorporated with classical biochemical analyses have drastically produced novel insights into transcription factors, including Sry-like high-mobility group box (SOX) factors. In addition to their primary functions in binding to and activating specific downstream genes, transcription factors also participate in the dedifferentiation or direct reprogramming of somatic cells to undifferentiated cells or specific lineage cells. Since the discovery of SOX factors, members of the SOXF (SOX7, SOX17, and SOX18) family have been identified to play broad roles, especially with regard to cardiovascular development. More recently, SOXF factors have been recognized as crucial players in determining the cell fate and in the regulation of cancer cells. Here, we provide an overview of research on the mechanism by which SOXF factors regulate development and cancer, and discuss their potential as new targets for cancer drugs while offering insight into novel mechanistic transcriptional regulation during cell lineage commitment.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
9
|
Novel role of sex-determining region Y-box 7 (SOX7) in tumor biology and cardiovascular developmental biology. Semin Cancer Biol 2019; 67:49-56. [PMID: 31473269 DOI: 10.1016/j.semcancer.2019.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
The sex-determining region Y-box 7 (Sox7) is an important member of the SOX F family, which is characterized by a high-mobility-group DNA-binding domain. Previous studies have demonstrated the role of SOX7 in cardiovascular development. SOX7 expression could be detected in normal adult tissues. Furthermore, the expression levels of SOX7 were different in different tumors. Most studies showed the downregulation of SOX7 in tumors, while some studies reported its upregulation in tumors. In this review, we first summarized the upstream regulators (including transcription factors, microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and some exogenous regulators) and downstream molecules (including factors in the Wnt/β-catenin signaling pathway and some other signaling pathways) of SOX7. Then, the roles of SOX7 in multiple tumors were presented. Finally, the significance of divergent SOX7 expression during cardiovascular development was briefly discussed. The information compiled in this study characterized SOX7 during tumorigenesis and cardiovascular development, which should facilitate the design of future research and promote SOX7 as a therapeutic target.
Collapse
|
10
|
Doyle MJ, Magli A, Estharabadi N, Amundsen D, Mills LJ, Martin CM. Sox7 Regulates Lineage Decisions in Cardiovascular Progenitor Cells. Stem Cells Dev 2019; 28:1089-1103. [PMID: 31154937 DOI: 10.1089/scd.2019.0040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Specification of the mesodermal lineages requires a complex set of morphogenetic events orchestrated by interconnected signaling pathways and gene regulatory networks. The transcription factor Sox7 has critical functions in differentiation of multiple mesodermal lineages, including cardiac, endothelial, and hematopoietic. Using a doxycycline-inducible mouse embryonic stem cell line, we have previously shown that expression of Sox7 in cardiovascular progenitor cells promotes expansion of endothelial progenitor cells (EPCs). In this study, we show that the ability of Sox7 to promote endothelial cell fate occurs at the expense of the cardiac lineage. Using ChIP-Seq coupled with ATAC-Seq we identify downstream target genes of Sox7 in cardiovascular progenitor cells and by integrating these data with transcriptomic analyses, we define Sox7-dependent gene programs specific to cardiac and EPCs. Furthermore, we demonstrate a protein-protein interaction between SOX7 and GATA4 and provide evidence that SOX7 interferes with the transcriptional activity of GATA4 on cardiac genes. In addition, we show that Sox7 modulates WNT and BMP signaling during cardiovascular differentiation. Our data represent the first genome-wide analysis of Sox7 function and reveal a critical role for Sox7 in regulating signaling pathways that affect cardiovascular progenitor cell differentiation.
Collapse
Affiliation(s)
- Michelle J Doyle
- 1Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Alessandro Magli
- 2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota.,3Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Nima Estharabadi
- 1Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Danielle Amundsen
- 1Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Lauren J Mills
- 4Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Cindy M Martin
- 1Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
11
|
Qin Y, Sun B, Zhang F, Wang Y, Shen B, Liu Y, Guo Y, Fan Y, Qiu J. Sox7 is involved in antibody-dependent endothelial cell activation and renal allograft injury via the Jagged1-Notch1 pathway. Exp Cell Res 2019; 375:20-27. [PMID: 30639059 DOI: 10.1016/j.yexcr.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Antibody-mediated rejection (AMR) can cause graft loss and reduces long-term graft survival after kidney transplantation. Human leukocyte antigen (HLA) and/or non-HLA antibodies play a key role in the pathogenesis of AMR by targeting the allograft epithelium via complement activation and complement-independent mechanisms. However, the precise mechanisms of AMR remain unclear and treatment is still limited. METHODS In this study, we investigated the role of the endothelial-associated transcription factor Sox7 in AMR, using the anti-HLA antibody W6/32, shRNA-mediated Sox7 knockdown, and by manipulating the Notch pathway. We used an in vitro human kidney glomerular endothelial cells (HKGECs) model and an in vivo MHC-mismatched kidney transplantation model. RESULTS Sox7 expression was upregulated and the Jagged1-Notch1 pathway was activated in HKGECs after W6/32 activation. W6/32 antibodies increased the expression of adhesion molecules (VCAM-1, ICAM-1), inflammatory cytokines (IL-6, TNF-α), and chemokines (CXCL8, CXCL10), and Sox7 knockdown and inhibition of the Notch pathway by DAPT significantly reduced these effects. Jagged1 overexpression rescued the inhibitory effects of Sox7 knockdown. In addition, Sox7 knockdown attenuated acute allograft kidney injury in mice and reduced the expression of adhesion molecules and Jagged1-Notch1 signaling after transplantation. CONCLUSIONS Our findings suggest that Sox7 plays an important role in mediating HLA I antibody-dependent endothelial cell activation and acute kidney allograft rejection via the Jagged1-Notch1 pathway. Manipulating Sox7 in donor organs may represent a useful treatment for AMR in solid organ transplantation.
Collapse
Affiliation(s)
- Yan Qin
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Bo Sun
- Shanghai Center for Drug Evaluation & Inspection, Shanghai 201203, China
| | - Fang Zhang
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Yong Wang
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Bing Shen
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Yong Liu
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Yifeng Guo
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Yu Fan
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jianxin Qiu
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China.
| |
Collapse
|
12
|
Yang J, Hu F, Fu X, Jiang Z, Zhang W, Chen K. MiR-128/SOX7 alleviates myocardial ischemia injury by regulating IL-33/sST2 in acute myocardial infarction. Biol Chem 2018; 400:533-544. [PMID: 30265647 DOI: 10.1515/hsz-2018-0207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Abstract
Acute myocardial infarction (AMI) induced by ischemia hypoxia severely threatens human life. Cell apoptosis of neurocytes was identified to mediate the pathogenesis, while the potential mechanism was still unclear. Sprague Dawley (SD) rats were used to establish the AMI rat model. Real-time polymerase chain reaction (PCR) and Western blot were performed to detect gene expression in mRNA and protein levels, respectively. A TUNEL assay was carried out to determine cell apoptosis. The relationship between SRY-related HMG-box (SOX7) and miR-128 was verified using luciferase reporter assay. The expression of SOX7 was decreased, while miR-128 was increased in AMI rats and ischemia hypoxia (IH) induced H9c2 cells. Hypoxia induction significantly promoted the expression of interleukin (IL)-33 and soluble ST2 (sST2), and also promoted cell apoptosis. MiR-128 targets SOX7 to regulate its expression. Down-regulated miR-128 reversed the effects of IH on expression of SOX7, sST2 and cell apoptosis, while down-regulated sST2 abolished the effects of miR-128 inhibitor. In addition, overexpressed IL-33 abolished the effects of miR-128 inhibitor that induced by IH on the expression of SOX7 and cell apoptosis. In vivo experiments validated the expression of miR-128 on cell apoptosis. The present study indicated that miR-128 modulated cell apoptosis by targeting SOX7, which was mediated by IL-33/sST2 signaling pathway.
Collapse
Affiliation(s)
- Jinhua Yang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Fudong Hu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Xin Fu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Zhengming Jiang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Wencai Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Kui Chen
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| |
Collapse
|
13
|
Wang L, Fan Y, Zhang L, Li L, Kuang G, Luo C, Li C, Xiang T, Tao Q, Zhang Q, Ying J. Classic SRY-box protein SOX7 functions as a tumor suppressor regulating WNT signaling and is methylated in renal cell carcinoma. FASEB J 2018; 33:254-263. [PMID: 29957056 DOI: 10.1096/fj.201701453rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SOX7 (SRY-related high mobility group box 7), a high mobility group protein, is reported to be down-regulated in several cancer types, which indicates an important role in tumorigenesis; however, its biologic role in renal cell carcinoma (RCC) pathogenesis remains unknown. We studied the alterations and functions of SOX7 in RCC. We detected its broad expression in multiple human normal tissues, including kidney, but frequent down-regulation in RCC cell lines and primary tumors. Promoter CpG methylation seems to directly mediate SOX7 silencing in RCC cells, which could be reversed by demethylation treatment. SOX7 methylation was detected in primary RCC tumors, but rarely in normal kidney tissues. Restoration of SOX7 in silenced 786-O and A498 RCC cell lines inhibited their cell growth by inducing G0/G1 arrest, whereas SOX7 knockdown promoted RCC cell proliferation. We also found that SOX7 silencing resulted in the activation of WNT signaling and the induction of epithelial to mesenchymal transition. In conclusion, the current study demonstrates that SOX7 is frequently inactivated by promoter CpG methylation in RCC and functions as a tumor suppressor by regulating WNT signaling.-Wang, L., Fan, Y., Zhang, L., Li, L., Kuang, G., Luo, C., Li, C., Xiang, T., Tao, Q., Zhang, Q., Ying, J. Classic SRY-box protein SOX7 functions as a tumor suppressor regulating WNT signaling and is methylated in renal cell carcinoma.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Yu Fan
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Lian Zhang
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Department of Clinical Oncology, Sir Y. K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and Chinese University of Hong Kong Shenzhen Research Institute, Hong Kong, China
| | - Guanyu Kuang
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Cheng Luo
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Chen Li
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Department of Clinical Oncology, Sir Y. K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and Chinese University of Hong Kong Shenzhen Research Institute, Hong Kong, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Department of Clinical Oncology, Sir Y. K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and Chinese University of Hong Kong Shenzhen Research Institute, Hong Kong, China
| | - Qian Zhang
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Jha R, Singh M, Wu Q, Gentillon C, Preininger MK, Xu C. Downregulation of LGR5 Expression Inhibits Cardiomyocyte Differentiation and Potentiates Endothelial Differentiation from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 9:513-527. [PMID: 28793247 PMCID: PMC5550222 DOI: 10.1016/j.stemcr.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023] Open
Abstract
Understanding molecules involved in differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes and endothelial cells is important in advancing hPSCs for cell therapy and drug testing. Here, we report that LGR5, a leucine-rich repeat-containing G-protein-coupled receptor, plays a critical role in hPSC differentiation into cardiomyocytes and endothelial cells. LGR5 expression was transiently upregulated during the early stage of cardiomyocyte differentiation, and knockdown of LGR5 resulted in reduced expression of cardiomyocyte-associated markers and poor cardiac differentiation. In contrast, knockdown of LGR5 promoted differentiation of endothelial-like cells with increased expression of endothelial cell markers and appropriate functional characteristics, including the ability to form tube-like structures and to take up acetylated low-density lipoproteins. Furthermore, knockdown of LGR5 significantly reduced the proliferation of differentiated cells and increased the nuclear translocation of β-catenin and expression of Wnt signaling-related genes. Therefore, regulation of LGR5 may facilitate efficient generation of cardiomyocytes or endothelial cells from hPSCs. LGR5 expression is upregulated in the early stage of cardiomyocyte differentiation Knockdown of LGR5 inhibits differentiation of cardiomyocytes Knockdown of LGR5 increases differentiation of endothelial cells Knockdown of LGR5 decreases the expression of Wnt signaling-related genes
Collapse
Affiliation(s)
- Rajneesh Jha
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Monalisa Singh
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Cinsley Gentillon
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Marcela K Preininger
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
15
|
Wang J, Zhang S, Wu J, Lu Z, Yang J, Wu H, Chen H, Lin B, Cao T. Clinical significance and prognostic value of SOX7 expression in liver and pancreatic carcinoma. Mol Med Rep 2017; 16:499-506. [PMID: 28586005 PMCID: PMC5482098 DOI: 10.3892/mmr.2017.6660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/17/2017] [Indexed: 12/18/2022] Open
Abstract
Sex determining region Y‑box 7 (SOX7) is known to function as a tumor suppressor in a number of types of cancer; however, its role in liver and pancreatic carcinoma remains unclear. The present study investigated the association between SOX7 expression and the clinical pathology of these carcinomas, in particular if SOX7 expression may be used to predict recurrence and patient prognosis following radical resection of liver and pancreatic carcinoma. SOX7 expression in human liver and pancreatic carcinoma was detected by immunohistochemical analyses and validated using mRNA data from a high‑throughput sequencing dataset from The Cancer Genome Atlas (TCGA). SOX7 expression was significantly downregulated in liver and pancreatic carcinoma relative to the adjacent benign tissues [immunoreactivity scores: Liver carcinoma (3.53±1.57) vs. benign (7.00±0.00), P<0.001; and pancreatic carcinoma (2.39±1.88) vs. benign (4.80±0.45), P=0.005]. In addition, downregulation of SOX7 was significantly associated with advanced stage liver carcinoma, and the primary pathological tumor stage and regional lymph node stages. These findings were further validated in the TCGA dataset. However, SOX7 down regulation was closely associated with the only pathological grade in pancreatic patients. Kaplan‑Meier analyses revealed significant differences in overall and disease‑free survival between patients with high and low levels of SOX7 expression. In addition, a multivariate analysis with Cox regression indicated that SOX7 may be an independent predictor of disease‑free survival. The results indicate that SOX7 may inhibit the progression of liver carcinoma and that SOX7 downregulation may accurately predict poor prognosis in liver carcinoma patients.
Collapse
Affiliation(s)
- Jian Wang
- Department of General Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Shengmin Zhang
- Department of General Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Jiamian Wu
- Department of General Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Zhuocai Lu
- Department of General Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Jianrong Yang
- Department of General Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Hongsheng Wu
- Department of General Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Hao Chen
- Department of General Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Bo Lin
- Department of General Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Tiansheng Cao
- Department of General Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| |
Collapse
|
16
|
Lilly AJ, Lacaud G, Kouskoff V. SOXF transcription factors in cardiovascular development. Semin Cell Dev Biol 2017; 63:50-57. [PMID: 27470491 DOI: 10.1016/j.semcdb.2016.07.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022]
Abstract
Cardiovascular development during embryogenesis involves complex changes in gene regulatory networks regulated by a variety of transcription factors. In this review we discuss the various reported roles of the SOXF factors: SOX7, SOX17 and SOX18 in cardiac, vascular and lymphatic development. SOXF factors have pleiotropic roles during these processes, and there is significant redundancy and functional compensation between SOXF family members. Despite this, evidence suggests that there is some specificity in the transcriptional programs they regulate which is necessary to control the differentiation and behaviour of endothelial subpopulations. Furthermore, SOXF factors appear to have an indirect role in regulating cardiac mesoderm specification and differentiation. Understanding how SOXF factors are regulated, as well as their downstream transcriptional target genes, will be important for unravelling their roles in cardiovascular development and related diseases.
Collapse
Affiliation(s)
- Andrew J Lilly
- Cancer Research UK, Stem Cell Hematopoiesis, The University of Manchester, Wilmslow road, M20 4BX, UK
| | - Georges Lacaud
- Cancer Research UK, Stem Cell Biology group Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK.
| | - Valerie Kouskoff
- Cancer Research UK, Stem Cell Hematopoiesis, The University of Manchester, Wilmslow road, M20 4BX, UK.
| |
Collapse
|
17
|
Tsai PH, Chien Y, Chuang JH, Chou SJ, Chien CH, Lai YH, Li HY, Ko YL, Chang YL, Wang CY, Liu YY, Lee HC, Yang CH, Tsai TF, Lee YY, Chiou SH. Dysregulation of Mitochondrial Functions and Osteogenic Differentiation in Cisd2-Deficient Murine Induced Pluripotent Stem Cells. Stem Cells Dev 2015; 24:2561-76. [PMID: 26230298 DOI: 10.1089/scd.2015.0066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wolfram syndrome 2 (WFS2) is a premature aging syndrome caused by an irreversible mitochondria-mediated disorder. Cisd2, which regulates mitochondrial electron transport, has been recently identified as the causative gene of WFS2. The mouse Cisd2 knockout (KO) (Cisd2(-/-)) recapitulates most of the clinical manifestations of WFS2, including growth retardation, osteopenia, and lordokyphosis. However, the precise mechanisms underlying osteopenia in WFS2 and Cisd2 KO mice remain unknown. In this study, we collected embryonic fibroblasts from Cisd2-deficient embryos and reprogrammed them into induced pluripotent stem cells (iPSCs) via retroviral transduction with Oct4/Sox2/Klf4/c-Myc. Cisd2-deficient mouse iPSCs (miPSCs) exhibited structural abnormalities in their mitochondria and an impaired proliferative capability. The global gene expression profiles of Cisd2(+/+), Cisd2(+/-), and Cisd2(-/-) miPSCs revealed that Cisd2 functions as a regulator of both mitochondrial electron transport and Wnt/β-catenin signaling, which is critical for cell proliferation and osteogenic differentiation. Notably, Cisd2(-/-) miPSCs exhibited impaired Wnt/β-catenin signaling, with the downregulation of downstream genes, such as Tcf1, Fosl1, and Jun and the osteogenic regulator Runx2. Several differentiation markers for tridermal lineages were globally impaired in Cisd2(-/-) miPSCs. Alizarin red S staining and flow cytometry analysis further revealed that Cisd2(-/-) miPSCs failed to undergo osteogenic differentiation. Taken together, our results, as determined using an miPSC-based platform, have demonstrated that Cisd2 regulates mitochondrial function, proliferation, intracellular Ca(2+) homeostasis, and Wnt pathway signaling. Cisd2 deficiency impairs the activation of Wnt/β-catenin signaling and thereby contributes to the pathogeneses of osteopenia and lordokyphosis in WFS2 patients.
Collapse
Affiliation(s)
- Ping-Hsing Tsai
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan
| | - Yueh Chien
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan .,2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan
| | - Jen-Hua Chuang
- 2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Shih-Jie Chou
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan
| | - Chian-Hsu Chien
- 2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Ying-Hsiu Lai
- 4 Institute of Anatomy & Cell Biology, National Yang-Ming University , Taipei, Taiwan
| | - Hsin-Yang Li
- 4 Institute of Anatomy & Cell Biology, National Yang-Ming University , Taipei, Taiwan .,5 School of Medicine, National Yang-Ming University , Taipei, Taiwan .,6 Department of Obstetrics and Gynecology, Neurological Institute , Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Lin Ko
- 2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,5 School of Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Yuh-Lih Chang
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan .,7 Department of Pharmacy, Neurological Institute , Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen-Ying Wang
- 5 School of Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Yung-Yang Liu
- 2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Hsin-Chen Lee
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan .,5 School of Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Chang-Hao Yang
- 8 Department of Ophthalmology, National Taiwan University Hospital , Taipei, Taiwan
| | - Ting-Fen Tsai
- 9 Department of Life Sciences & Institute of Genome Sciences, National Yang-Ming University , Taipei, Taiwan
| | - Yi-Yen Lee
- 3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan .,10 Department of Neurosurgery, Neurological Institute , Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan .,2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan .,4 Institute of Anatomy & Cell Biology, National Yang-Ming University , Taipei, Taiwan
| |
Collapse
|
18
|
Zhou Y, Fujisawa I, Ino K, Matsue T, Shiku H. Metabolic suppression during mesodermal differentiation of embryonic stem cells identified by single-cell comprehensive gene expression analysis. MOLECULAR BIOSYSTEMS 2015. [DOI: 10.1039/c5mb00340g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metabolic suppression has been revealed during mesodermal differentiation by using single-cell gene expression analysis.
Collapse
Affiliation(s)
- Yuanshu Zhou
- WPI-Advanced Institute for Materials Research
- Tohoku University
- Sendai 980-8577
- Japan
| | - Ikuma Fujisawa
- Graduate School of Environmental Studies
- Tohoku University
- Sendai 980-8579
- Japan
| | - Kosuke Ino
- Graduate School of Environmental Studies
- Tohoku University
- Sendai 980-8579
- Japan
| | - Tomokazu Matsue
- WPI-Advanced Institute for Materials Research
- Tohoku University
- Sendai 980-8577
- Japan
- Graduate School of Environmental Studies
| | - Hitoshi Shiku
- Graduate School of Environmental Studies
- Tohoku University
- Sendai 980-8579
- Japan
| |
Collapse
|
19
|
Long F, Wang X, Fang S, Xu Y, Sun K, Chen S, Xu R. A potential relationship among beta-defensins haplotype, SOX7 duplication and cardiac defects. PLoS One 2013; 8:e72515. [PMID: 24009689 PMCID: PMC3757027 DOI: 10.1371/journal.pone.0072515] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/11/2013] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE To determine the pathogenesis of a patient born with congenital heart defects, who had appeared normal in prenatal screening. METHODS In routine prenatal screening, G-banding was performed to analyse the karyotypes of the family and fluorescence in situ hybridization was used to investigate the 22q11.2 deletion in the fetus. After birth, the child was found to be suffering from heart defects by transthoracic echocardiography. In the following study, sequencing was used to search for potential mutations in pivotal genes. SNP-array was employed for fine mapping of the aberrant region and quantitative real-time PCR was used to confirm the results. Furthermore, other patients with a similar phenotype were screened for the same genetic variations. To compare with a control, these variations were also assessed in the general population. RESULTS The child and his mother each had a region that was deleted in the beta-defensin repeats, which are usually duplicated in the general population. Besides, the child carried a SOX7-gene duplication. While this duplication was not detected in his mother, it was found in two other patients with cardiac defects who also had the similar deletion in the beta-defensin repeats. CONCLUSION The congenital heart defects of the child were probably caused by a SOX7-gene duplication, which may be a consequence of the partial haplotype of beta-defensin regions at 8p23.1. To our knowledge, this is the first congenital heart defect case found to have the haplotype of beta-defensin and the duplication of SOX7.
Collapse
Affiliation(s)
- Fei Long
- Scientific Research Center, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xike Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Shaohai Fang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Yuejuan Xu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- * E-mail: (SC); (RX)
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- * E-mail: (SC); (RX)
| |
Collapse
|
20
|
Hayano T, Garg M, Yin D, Sudo M, Kawamata N, Shi S, Chien W, Ding LW, Leong G, Mori S, Xie D, Tan P, Koeffler HP. SOX7 is down-regulated in lung cancer. J Exp Clin Cancer Res 2013; 32:17. [PMID: 23557216 PMCID: PMC3648366 DOI: 10.1186/1756-9966-32-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/06/2013] [Indexed: 11/16/2022] Open
Abstract
Background SOX7 is a transcription factor belonging to the SOX family. Its role in lung cancer is unknown. Methods In this study, whole genomic copy number analysis was performed on a series of non-small cell lung cancer (NSCLC) cell lines and samples from individuals with epidermal growth factor receptor (EGFR) mutations using a SNP-Chip platform. SOX7 was measured in NSCLC samples and cell lines, and forced expressed in one of these lines. Results A notable surprise was that the numerous copy number (CN) changes observed in samples of Asian, non-smoking EGFR mutant NSCLC were nearly the same as those CN alterations seen in a large collection of NSCLC from The Cancer Genome Atlas which is presumably composed of predominantly Caucasians who often smoked. However, four regions had CN changes fairly unique to the Asian EGFR mutant group. We also examined CN changes in NSCLC lines. The SOX7 gene was homozygously deleted in one (HCC2935) of 10 NSCLC cell lines and heterozygously deleted in two other NSCLC lines. Expression of SOX7 was significantly downregulated in NSCLC cell lines (8/10, 80%) and a large collection of NSCLC samples compared to matched normal lung (57/62, 92%, p= 0.0006). Forced-expression of SOX7 in NSCLC cell lines markedly reduced their cell growth and enhanced their apoptosis. Conclusion These data suggest that SOX7 is a novel tumor suppressor gene silenced in the majority of NSCLC samples.
Collapse
Affiliation(s)
- Takahide Hayano
- Genomic Oncology Programme, Cancer Science Institute of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. J Cardiovasc Transl Res 2010; 3:13-23. [PMID: 20221419 DOI: 10.1007/s12265-009-9150-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Induced pluripotent stem cell (iPS) technology has launched a new platform in regenerative medicine aimed at deriving unlimited replacement tissue from autologous sources through somatic cell reprogramming using stemness factor sets. In this way, authentic cardiomyocytes have been obtained from iPS and recently demonstrated in proof-of-principle studies to repair infarcted heart. Optimizing the cardiogenic potential of iPS progeny would ensure a maximized yield of bioengineered cardiac tissue. Here, we reprogrammed fibroblasts in the presence or absence of c-MYC to determine if the acquired cardiogenicity is sensitive to the method of nuclear reprogramming. Using lentiviral constructs that expressed stemness factors SOX2, OCT4, and KLF4 with or without c-MYC, iPS clones generated through fibroblast reprogramming demonstrated indistinguishable characteristics for 5 days of differentiation with similar cell morphology, growth rates, and chimeric embryo integration. However, 4-factor c-MYC dependent nuclear reprogramming produced iPS progeny that consistently prolonged the expression of pluripotent Oct-4 and Fgf4 genes and repressed cardiac differentiation. In contrast, 3-factor c-MYC-less iPS clones efficiently up-regulated pre-cardiac (CXCR4, Flk-1, and Mesp1/2) and cardiac (Nkx2.5, Mef2c, and Myocardin) gene expression patterns. In fact, 3-factor iPS progeny demonstrated early and robust cardiogenesis during in vitro differentiation with consistent beating activity, sarcomere maturation, and rhythmical intracellular calcium dynamics. Thus, nuclear reprogramming independent of c-MYC enhances production of pluripotent stem cells with innate cardiogenic potential.
Collapse
|
22
|
Chiriac A, Nelson TJ, Faustino RS, Behfar A, Terzic A. Cardiogenic induction of pluripotent stem cells streamlined through a conserved SDF-1/VEGF/BMP2 integrated network. PLoS One 2010; 5:e9943. [PMID: 20376342 PMCID: PMC2848581 DOI: 10.1371/journal.pone.0009943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 02/22/2010] [Indexed: 12/28/2022] Open
Abstract
Background Pluripotent stem cells produce tissue-specific lineages through programmed acquisition of sequential gene expression patterns that function as a blueprint for organ formation. As embryonic stem cells respond concomitantly to diverse signaling pathways during differentiation, extraction of a pro-cardiogenic network would offer a roadmap to streamline cardiac progenitor output. Methods and Results To resolve gene ontology priorities within precursor transcriptomes, cardiogenic subpopulations were here generated according to either growth factor guidance or stage-specific biomarker sorting. Innate expression profiles were independently delineated through unbiased systems biology mapping, and cross-referenced to filter transcriptional noise unmasking a conserved progenitor motif (55 up- and 233 down-regulated genes). The streamlined pool of 288 genes organized into a core biological network that prioritized the “Cardiovascular Development” function. Recursive in silico deconvolution of the cardiogenic neighborhood and associated canonical signaling pathways identified a combination of integrated axes, CXCR4/SDF-1, Flk-1/VEGF and BMP2r/BMP2, predicted to synchronize cardiac specification. In vitro targeting of the resolved triad in embryoid bodies accelerated expression of Nkx2.5, Mef2C and cardiac-MHC, enhanced beating activity, and augmented cardiogenic yield. Conclusions Transcriptome-wide dissection of a conserved progenitor profile thus revealed functional highways that coordinate cardiogenic maturation from a pluripotent ground state. Validating the bioinformatics algorithm established a strategy to rationally modulate cell fate, and optimize stem cell-derived cardiogenesis.
Collapse
Affiliation(s)
- Anca Chiriac
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Timothy J. Nelson
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Randolph S. Faustino
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Atta Behfar
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andre Terzic
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
23
|
Martinez-Fernandez A, Nelson TJ, Yamada S, Reyes S, Alekseev AE, Perez-Terzic C, Ikeda Y, Terzic A. iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circ Res 2009; 105:648-56. [PMID: 19696409 DOI: 10.1161/circresaha.109.203109] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Induced pluripotent stem cells (iPS) allow derivation of pluripotent progenitors from somatic sources. Originally, iPS were induced by a stemness-related gene set that included the c-MYC oncogene. OBJECTIVE Here, we determined from embryo to adult the cardiogenic proficiency of iPS programmed without c-MYC, a cardiogenicity-associated transcription factor. METHODS AND RESULTS Transgenic expression of 3 human stemness factors SOX2, OCT4, and KLF4 here reset murine fibroblasts to the pluripotent ground state. Transduction without c-MYC reversed cellular ultrastructure into a primitive archetype and induced stem cell markers generating 3-germ layers, all qualifiers of acquired pluripotency. Three-factor induced iPS (3F-iPS) clones reproducibly demonstrated cardiac differentiation properties characterized by vigorous beating activity of embryoid bodies and robust expression of cardiac Mef2c, alpha-actinin, connexin43, MLC2a, and troponin I. In vitro isolated iPS-derived cardiomyocytes demonstrated functional excitation-contraction coupling. Chimerism with 3F-iPS derived by morula-stage diploid aggregation was sustained during prenatal heart organogenesis and contributed in vivo to normal cardiac structure and overall performance in adult tumor-free offspring. CONCLUSIONS Thus, 3F-iPS bioengineered without c-MYC achieve highest stringency criteria for bona fide cardiogenesis enabling reprogrammed fibroblasts to yield de novo heart tissue compatible with native counterpart throughout embryological development and into adulthood.
Collapse
Affiliation(s)
- Almudena Martinez-Fernandez
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minn. 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 2009; 120:408-16. [PMID: 19620500 DOI: 10.1161/circulationaha.109.865154] [Citation(s) in RCA: 379] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nuclear reprogramming provides an emerging strategy to produce embryo-independent pluripotent stem cells from somatic tissue. Induced pluripotent stem cells (iPS) demonstrate aptitude for de novo cardiac differentiation, yet their potential for heart disease therapy has not been tested. METHODS AND RESULTS In this study, fibroblasts transduced with human stemness factors OCT3/4, SOX2, KLF4, and c-MYC converted into an embryonic stem cell-like phenotype and demonstrated the ability to spontaneously assimilate into preimplantation host morula via diploid aggregation, unique to bona fide pluripotent cells. In utero, iPS-derived chimera executed differentiation programs to construct normal heart parenchyma patterning. Within infarcted hearts in the adult, intramyocardial delivery of iPS yielded progeny that properly engrafted without disrupting cytoarchitecture in immunocompetent recipients. In contrast to parental nonreparative fibroblasts, iPS treatment restored postischemic contractile performance, ventricular wall thickness, and electric stability while achieving in situ regeneration of cardiac, smooth muscle, and endothelial tissue. CONCLUSIONS Fibroblasts reprogrammed by human stemness factors thus acquire the potential to repair acute myocardial infarction, establishing iPS in the treatment of heart disease.
Collapse
|