1
|
Song X, Shen L, Contreras JM, Liu Z, Ma K, Ma B, Liu X, Wang DO. New potential selective estrogen receptor modulators in traditional Chinese medicine for treating menopausal syndrome. Phytother Res 2024; 38:4736-4756. [PMID: 39120263 DOI: 10.1002/ptr.8289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/19/2024] [Accepted: 06/23/2024] [Indexed: 08/10/2024]
Abstract
Women go through several predictable conditions and symptoms during menopause that are caused by age, changes in sex hormone levels, and other factors. Conventional menopause hormone therapy has raised serious concerns about the increased risks of cancers, blood clots, depression, etc. Selective estrogen receptor modulators (SERMs) that can be both agonists and antagonists of estrogen receptors in a tissue-specific manner are being developed to reduce the health concerns associated with menopause hormone therapy. Here, we have searched the Chinese national traditional Chinese medicine (TCM) patent database to identify potential SERM-like compounds with reduced health risks. TCM has been widely used for treating complex symptoms associated with menopause syndrome and thus can be a particularly rich source for pharmaceutical alternatives with SERM properties. After extensive literature review and molecular simulation, we conclude that protopanaxatriol, paeoniflorin, astragalin, catalpol, and hyperoside among others may be particularly promising as SERM-like compounds in treating the menopausal syndrome. Compounds in TCM hold promise in yielding comparable outcomes to hormone therapy but with reduced associated risks, thus presenting promising avenues for their clinical applications.
Collapse
Affiliation(s)
- Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Lan Shen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | | | - Zhiyuan Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Biao Ma
- RIKEN Center for Computational Science, Kobe, Japan
| | - Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Lee HW, Kang WY, Gwon MR, Park SJ, Cho K, Seong SJ, Yoon YR. Comparative Pharmacokinetic Profiles of a Novel Low-Dose Micronized Formulation of Raloxifene 45 mg (AD-101) and the Conventional Raloxifene 60 mg in Healthy Subjects. Clin Pharmacol Drug Dev 2023; 12:1204-1210. [PMID: 37622634 DOI: 10.1002/cpdd.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
Raloxifene hydrochloride shows poor bioavailability (only 2%) when orally administered because of its poor aqueous solubility and its extensive first-pass metabolism. A new micronized formulation of raloxifene was developed to improve bioavailability via enhanced gastrointestinal absorption. The primary objective of this study was to evaluate the pharmacokinetic characteristics of a new micronized raloxifene formulation (AD-101) in comparison with the conventional raloxifene formulation. This study was designed as an open-label, randomized, 2-treatment-period, crossover study with a 2-week washout period. Two treatments consisted of micronized raloxifene 45 mg daily; and conventional raloxifene 60 mg daily administered in fasting conditions. Plasma raloxifene concentrations were determined by a validated method using ultra-fast liquid chromatography-tandem mass spectrometry, and pharmacokinetic parameters were calculated using a noncompartmental model. In total, 49 subjects completed the study. The geometric mean ratio (micronized/conventional) of the maximum concentration and the area under the plasma concentration-time curve from time zero to the last concentration values were 1.08 (90% CI, 0.95-1.24) and 0.97 (90% CI, 0.89-1.05), respectively. The adverse event profile did not differ between the 2 formulations. The results demonstrate that micronized formulation of raloxifene 45 mg is equivalent to conventional formulation of raloxifene 60 mg when administered at the single dose in the fasted state. After single oral dosing of AD-101, there were no serious or unexpected adverse events.
Collapse
Affiliation(s)
- Hae Won Lee
- Department of Clinical Pharmacology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Woo Youl Kang
- Department of Clinical Pharmacology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Mi-Ri Gwon
- Department of Clinical Pharmacology, Kyungpook National University Hospital, Daegu, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Soo-Jin Park
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Kyunghee Cho
- Analytical Research Division, Biocore Co. Ltd., Seoul, Republic of Korea
| | - Sook Jin Seong
- Department of Clinical Pharmacology, Kyungpook National University Hospital, Daegu, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Ran Yoon
- Department of Clinical Pharmacology, Kyungpook National University Hospital, Daegu, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
4
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Lee HW, Kang WY, Jung W, Gwon MR, Cho K, Lee B, Seong SJ, Yoon YR. Pharmacokinetic Drug Interaction Between Raloxifene and Cholecalciferol in Healthy Volunteers. Clin Pharmacol Drug Dev 2022; 11:623-631. [PMID: 34984851 PMCID: PMC9305550 DOI: 10.1002/cpdd.1062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
Osteoporosis is a common skeletal disorder, often leading to fragility fracture. Combination therapy with raloxifene, a selective estrogen receptor modulator, and cholecalciferol (vitamin D3) has been proposed to improve the overall efficacy and increase compliance of raloxifene therapy for postmenopausal osteoporosis. To our knowledge, there has been no report of any study on the pharmacokinetic interaction between raloxifene and cholecalciferol. This study aimed to evaluate the possible pharmacokinetic interactions between raloxifene and cholecalciferol in healthy adult male Korean volunteers. Twenty subjects completed this open‐label, randomized, single‐dose, 3‐period, 6‐sequence, crossover phase 1 study with a 14‐day washout period. Serial blood samples were collected from 20 hours before dosing to 96 hours after dosing. The plasma concentrations of raloxifene and cholecalciferol were determined using a validated method for high‐performance liquid chromatography with tandem mass spectrometry. The geometric mean ratios (90%CIs) for area under the plasma concentration–time curve from time 0 to the last quantifiable time point and maximum plasma concentration of raloxifene with or without cholecalciferol were 1.02 (0.87‐1.20) and 0.87 (0.70‐1.08), respectively. For baseline‐corrected cholecalciferol, geometric mean ratios (90%CIs) of area under the plasma concentration–time curve from time 0 to the last quantifiable time point and maximum plasma concentration with or without raloxifene were 1.01 (0.93‐1.09) and 0.99 (0.92‐1.06), respectively. Concurrent treatment with raloxifene and cholecalciferol was generally well tolerated. These results suggest that raloxifene and cholecalciferol have no clinically relevant pharmacokinetic drug‐drug interactions when administered concurrently. All treatments were well tolerated, with no serious adverse events.
Collapse
Affiliation(s)
- Hae Won Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Clinical Pharmacology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Woo Youl Kang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Clinical Pharmacology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Wookjae Jung
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Clinical Pharmacology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Mi-Ri Gwon
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Clinical Pharmacology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Kyunghee Cho
- Analytical Research Division, Biocore Co. Ltd., Seoul, Republic of Korea
| | - Backhwan Lee
- Department of Clinical Development, Alvogen Korea Co. Ltd., Seoul, Republic of Korea
| | - Sook Jin Seong
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Clinical Pharmacology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Young-Ran Yoon
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Clinical Pharmacology, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
6
|
Du T, Sun R, Etim I, Zheng Z, Liang D, Hu M, Gao S. Age-and Region-Dependent Disposition of Raloxifene in Rats. Pharm Res 2021; 38:1357-1367. [PMID: 34322833 PMCID: PMC8452384 DOI: 10.1007/s11095-021-03084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Raloxifene undergoes extensive glucuronidation in the gastrointestinal (GI) tract and the liver. However, the impact of age on raloxifene disposition has never been studied. The purpose of this paper is to determine glucuronidation and Pharmacokinetics (PK) profiles of raloxifene in rats at different ages. METHODS Raloxifene glucuronidation was characterized using S9 fractions prepared from different intestinal segments and the liver of F344 rats at 4-, 11-, and 28-week. PK studies were conducted to determine raloxifene oral bioavailability at different ages. Raloxifene and its glucuronides were quantified using LC-MS/MS. RESULTS Raloxifene-6-glucuronide and raloxifene-4'-glucuronide were detected as the major metabolites and the ratio of these two glucuronides were different ranging from 2.1 to 4.9 folds in the ileum, jejunum, liver, and duodenum, and from 14.5 to 50 folds in the colon. The clearances in the duodenum at 4-week for both two glucuronides were significantly lower than those at the other two ages. PK studies showed that the oral bioavailability of raloxifene is age dependent. The absolute oral bioavailability of raloxifene was 3.5-folds higher at 4-week compared to that at 11-weeks. When raloxifene was administered through IV bolus, its half-life was 5.9 ± 1.16 h and 3.7 ± 0.68 h at 11-and 4-week, respectively. CONCLUSION These findings suggested that raloxifene metabolism in the duodenum was significantly slower at young age in rats, which increased the oral bioavailability of raloxifene. At 11-week, enterohepatic recycling efficiency was higher than that of 4-week. Raloxifene's dose at different ages should be carefully considered.
Collapse
Affiliation(s)
- Ting Du
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, Texas, 77004, USA
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, Texas, 77204, USA
| | - Imoh Etim
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, Texas, 77004, USA
| | - Zicong Zheng
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, Texas, 77204, USA
| | - Dong Liang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, Texas, 77004, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, Texas, 77204, USA.
| | - Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, Texas, 77004, USA.
| |
Collapse
|
7
|
Liu F, Pei S, Li W, Wang X, Liang C, Yang R, Zhang Z, Yao X, Fang D, Xie S, Sun H. Characterization of Formononetin Sulfonation in SULT1A3 Overexpressing HKE293 Cells: Involvement of Multidrug Resistance-Associated Protein 4 in Excretion of Sulfate. Front Pharmacol 2021; 11:614756. [PMID: 33510641 PMCID: PMC7836013 DOI: 10.3389/fphar.2020.614756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 12/01/2022] Open
Abstract
Formononetin is one of the main active compounds of traditional Chinese herbal medicine Astragalus membranaceus. However, disposition of formononetin via sulfonation pathway remains undefined. Here, expression-activity correlation was performed to identify the contributing of SULT1A3 to formononetin metabolism. Then the sulfonation of formononetin and excretion of its sulfate were investigated in SULT1A3 overexpressing human embryonic kidney 293 cells (or HKE-SULT1A3 cells) with significant expression of breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 4 (MRP4). As a result, formononetin sulfonation was significantly correlated with SULT1A3 protein levels (r = 0.728; p < 0.05) in a bank of individual human intestine S9 fractions (n = 9). HEK-SULT1A3 cells catalyzed formononetin formation of a monosulfate metabolite. Sulfate formation of formononetin in HEK-SULT1A3 cell lysate followed the Michaelis-Menten kinetics (Vmax = 13.94 pmol/min/mg and Km = 6.17 μM). Reduced activity of MRP4 by MK-571 caused significant decrease in the excretion rate (79.1%–94.6%) and efflux clearance (85.3%–98.0%) of formononetin sulfate, whereas the BCRP specific inhibitor Ko143 had no effect. Furthermore, silencing of MRP4 led to obvious decrease in sulfate excretion rates (>32.8%) and efflux clearance (>50.6%). It was worth noting that the fraction of dose metabolized (fmet), an indicator of the extent of drug sulfonation, was also decreased (maximal 26.7%) with the knockdown of MRP4. In conclusion, SULT1A3 was of great significance in determining sulfonation of formononetin. HEK-SULT1A3 cells catalyzed formononetin formation of a monosulfate. MRP4 mainly contributed to cellular excretion of formononetin sulfate and further mediated the intracellular sulfonation of formononetin.
Collapse
Affiliation(s)
- Fanye Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Shuhua Pei
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Wenqi Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xiao Wang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Chao Liang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Ruohan Yang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Zhansheng Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin Yao
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Dong Fang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Songqiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, Kaifeng, China
| | - Hua Sun
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Du T, Sun R, Li L, Ebuzoeme C, Bui D, Zheng Z, Yin T, Liang D, Hu M, Gao S. Development and validation of ultra-high-performance liquid chromatography-mass spectrometry method for the determination of raloxifene and its phase II metabolites in plasma: Application to pharmacokinetic studies in rats. J Sep Sci 2020; 43:4414-4423. [PMID: 33119204 DOI: 10.1002/jssc.202000835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study is to establish a reliable liquid chromatography-mass spectrometry method to simultaneously quantitate raloxifene, and its major metabolites, raloxifene-6-glucuronide, raloxifene-4'-glucuronide, and raloxifene-6-sulfate in rat plasma samples for pharmacokinetic studies. The separation of the analytes was achieved on a Waters BEH C18 column. Water (0.1% formic acid) and acetonitrile were used as the mobile phases for elution. A one-step protein precipitation using a mixture solvent was applied for plasma sample preparation. The method was validated following the FDA guidance. The results showed that the linear range were 1.95-1000 nM for raloxifene-6-glucuronide, and raloxifene-4'-glucuronide, 0.195-100 nM for raloxifene-6-sulfate, and 0.195-200 nM for raloxifene, respectively. The lower limit of quantification was 1.95, 1.95, 0.195, and 0.195 nM for raloxifene-6-glucuronide, raloxifene-4'-glucuronide, raloxifene-6-sulfate, and raloxifene, respectively. Only 20 µl of plasma sample was required since the method is sensitive. The intra- and interday variance is <15% and the accuracy is within 85-115%. The variance of matrix effect and recovery were <15%. The method was successfully applied in a pharmacokinetic study in rats with oral administration of raloxifene.
Collapse
Affiliation(s)
- Ting Du
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health sciences, Texas Southern University, Houston, Texas, USA
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Christabel Ebuzoeme
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health sciences, Texas Southern University, Houston, Texas, USA
| | - Dinh Bui
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Zicong Zheng
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Dong Liang
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health sciences, Texas Southern University, Houston, Texas, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Song Gao
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
9
|
Hou J, Reid NE, Tromberg BJ, Potma EO. Kinetic Analysis of Lipid Metabolism in Breast Cancer Cells via Nonlinear Optical Microscopy. Biophys J 2020; 119:258-264. [PMID: 32610090 DOI: 10.1016/j.bpj.2020.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
Investigating the behavior of breast cancer cells via reaction kinetics may help unravel the mechanisms that underlie metabolic changes in tumors. However, obtaining human in vivo kinetic data is challenging because of difficulties associated with measuring these parameters. Nondestructive methods of measuring lipid content in live cells provide a novel approach to quantitatively model lipid synthesis and consumption. In this study, coherent Raman scattering microscopy was used to probe de novo intracellular lipid content. Combining nonlinear optical microscopy and Michaelis-Menten kinetics-based simulations, we isolated fatty acid synthesis/consumption rates and elucidated effects of altered lipid metabolism in T47D breast cancer cells. When treated with 17β-estradiol, the lipid utilization in cancer cells jumped by twofold. Meanwhile, the rate of de novo lipid synthesis in cancer cells treated with 17β-estradiol was increased by 42%. To test the model in extreme metabolic conditions, we treated T47D cells with etomoxir. Our kinetic analysis demonstrated that the rate of key enzymatic reactions dropped by 75%. These results underline the capability to probe lipid alterations in live cells with minimum interruption and to characterize lipid metabolism in breast cancer cells via quantitative kinetic models and parameters.
Collapse
Affiliation(s)
- Jue Hou
- Beckman Laser Institute and Medical Center, University of California, Irvine, Irvine, California
| | - Nellone E Reid
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Bruce J Tromberg
- Beckman Laser Institute and Medical Center, University of California, Irvine, Irvine, California
| | - Eric O Potma
- Beckman Laser Institute and Medical Center, University of California, Irvine, Irvine, California.
| |
Collapse
|
10
|
Fujiki J, Maeda N, Sato M, Ieko T, Inoue H, Iwasaki T, Iwano H, Yokota H. Corticosterone biosynthesis in mouse clonal myoblastic C2C12 cells. Steroids 2018; 138:64-71. [PMID: 30018003 DOI: 10.1016/j.steroids.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/04/2023]
Abstract
Corticosterone (CORT), the major glucocorticoid in rodents, is secreted from the adrenal gland, affects various organs in the body and regulates energy metabolism as a stress response. Although local steroidogenesis of androgens and estrogens in skeletal muscles has been previously reported, local CORT synthesis in skeletal muscle remains unconfirmed. In the present study, we investigated steroidogenic activities in a clonal myoblastic cell line, C2C12 cells. Three enzymes involved in CORT synthesis, 3ß-hydroxysteroid dehydrogenase (3ß-HSD), cytochrome P450c21 and cytochrome P45011ß, were identified in C2C12 cells by detecting the enzymatic reaction products with LC-MS/MS analysis. Only one enzyme that mediates cholesterol cleavage was not detected in the cells. After the addition of pregnenolone-sulfate conjugates to the cell culture medium, pregnenolone was detected and increased according to the incubation time. In conclusion, CORT synthesis occurs in C2C12 cells, and it is suggested that the initial steroidogenesis substrate is the pregnenolone-sulfate conjugate.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Naoyuki Maeda
- Safety Research Institute for Chemical Compounds Co., Ltd., Kiyota-ku, Sapporo, Hokkaido 004-0839, Japan; Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Michiko Sato
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takahiro Ieko
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Inoue
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroshi Yokota
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| |
Collapse
|
11
|
Liu T, Zhang X, Zhang Y, Hou J, Fang D, Sun H, Li Q, Xie S. Sulfation disposition of liquiritigenin in SULT1A3 overexpressing HEK293 cells: The role of breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 4 (MRP4) in sulfate efflux of liquiritigenin. Eur J Pharm Sci 2018; 124:228-239. [PMID: 30176366 DOI: 10.1016/j.ejps.2018.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/30/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022]
Abstract
This study aimed to investigate the cellular disposition of liquiritigenin via the sulfonation pathway and the role of efflux transporters in liquiritigenin sulfate excretion. The sulfonation disposition of liquiritigenin was investigated using SULT1A3 overexpressed HEK293 cells (HEK-SULT1A3 cells). Liquiritigenin generated one mono-sulfate metabolite (7-O-sulfate) in HEK-SULT1A3 cell lysate. And the sulfonation followed the Michaelis-Menten kinetic (Vmax = 0.84 nmol/min/mg and Km = 7.12 μM). Expectedly, recombinant SULT1A3 (hSULT1A3) showed a highly similar kinetic profile with cell lysate. Furthermore, 7-O-sulfate was rapidly generated and excreted in HEK-SULT1A3 cells. Ko143 (a BCRP-selective inhibitor) at 20 μM significantly decreased the excretion rate of liquiritigenin sulfate (>42.5%, p < 0.001). Moreover, the pan-MRPs inhibitor MK-571 at 20 μM essentially abolished the liquiritigenin sulfate effluxion, resulting in the marked reduction of excretion rate (>97.4%, p < 0.001). Furthermore, knockdown of BCRP led to moderate reduction in sulfate excretion (15.9%-16.9%, p < 0.05). Silencing of MRP4 caused significant decreased in sulfate excretion (20.2%-32.5%, p < 0.01). In conclusion, one sulfate metabolite was generated from liquiritigenin in HEK-SULT1A3 cells. BCRP and MRP4 should be the key factors for the cellular excretion of liquiritigenin sulfate.
Collapse
Affiliation(s)
- Tong Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Xiaojing Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Yidan Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Jiuzhou Hou
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Dong Fang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Hua Sun
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Qin Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Songqiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| |
Collapse
|
12
|
Qin Z, Li S, Yao Z, Hong X, Wu B, Krausz KW, Gonzalez FJ, Gao H, Yao X. Chemical inhibition and stable knock-down of efflux transporters leads to reduced glucuronidation of wushanicaritin in UGT1A1-overexpressing HeLa cells: the role of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs) in the excretion of glucuronides. Food Funct 2018; 9:1410-1423. [DOI: 10.1039/c7fo01298e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We determine the contributions of BCRP and MRP transporters in HeLa cells.
Collapse
Affiliation(s)
- Zifei Qin
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Shishi Li
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Zhihong Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Xiaodan Hong
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangzhou Research and Creativity Biotechnology Co. Ltd
| | - Baojian Wu
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Kristopher W. Krausz
- Laboratory of Metabolism
- Center for Cancer Research
- National Cancer Institute
- National Institutes of Health
- Bethesda
| | - Frank J. Gonzalez
- Laboratory of Metabolism
- Center for Cancer Research
- National Cancer Institute
- National Institutes of Health
- Bethesda
| | - Hao Gao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Xinsheng Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| |
Collapse
|
13
|
Xie C, Yan TM, Chen JM, Li XY, Zou J, Zhu LJ, Lu LL, Wang Y, Zhou FY, Liu ZQ, Hu M. LC-MS/MS quantification of sulfotransferases is better than conventional immunogenic methods in determining human liver SULT activities: implication in precision medicine. Sci Rep 2017. [PMID: 28634336 PMCID: PMC5478605 DOI: 10.1038/s41598-017-04202-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study aims to determine whether enzyme activities are correlated with protein amounts and mRNA expression levels of five major human sulfotransferase (SULT) enzymes in 10 matched pericarcinomatous and hepatocellular carcinoma liver samples. The MRM UHPLC-MS/MS method, Western blot and RT-PCR were used along with SULT activity measurement using probe substrates. The LC-MS/MS method was specific for all five tested SULTs, whereas Western blot was specific for only two isoforms. The activities of SULT1A1, SULT1B1, SULT1E1 and SULT2A1 in 9 of 10 samples showed a significant decrease in tumor tissues relative to matched pericarcinomatous tissues, whereas the activities of SULT1A3 in 7 of 10 samples increased. The turnover numbers of SULTs did not change, except for SULT1A1. A generally high degree of correlations was observed between SULT activities and protein amounts (r2 ≥ 0.59 except one), whereas a low degree of correlations was observed between SULT activities and mRNA expression levels (r2 ≤ 0.48 except one). HCC reduced the SULT activities via impaired protein amounts. LC-MS/MS quantification of SULTs is highly reliable measurement of SULT activities, and may be adopted for implementing precision medicine with respect to drugs mainly metabolized by SULTs in healthy and HCC patients.
Collapse
Affiliation(s)
- Cong Xie
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Tong-Meng Yan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Jia-Mei Chen
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiao-Yan Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Juan Zou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Li-Jun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Fu-Yuan Zhou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China. .,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Zhong-Qiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China. .,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Yao Z, Li S, Qin Z, Hong X, Dai Y, Wu B, Ye W, Gonzalez FJ, Yao X. Characterization of human UDP-glucuronosyltransferases responsible for glucuronidation and inhibition of norbakuchinic acid, a primary metabolite of hepatotoxicity and nephrotoxicity component bakuchiol inPsoralea corylifolia L. RSC Adv 2017. [DOI: 10.1039/c7ra10376j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Norbakuchinic acid (NBKA) is the most abundant metabolite of bakuchiol (a hepatotoxicity and nephrotoxicity component inPsoralea corylifoliaL.) in plasma and urine.
Collapse
Affiliation(s)
- Zhihong Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Shishi Li
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Zifei Qin
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Xiaodan Hong
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangzhou Research and Creativity Biotechnology Co. Ltd
| | - Yi Dai
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Baojian Wu
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Wencai Ye
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Frank J. Gonzalez
- Laboratory of Metabolism
- Center for Cancer Research
- National Cancer Institute
- National Institutes of Health
- Bethesda
| | - Xinsheng Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| |
Collapse
|
15
|
Wan S, Liu W, Tian C, Ren X, Ding Z, Qian Q, Jiang C, Wu Y. Differential Proteomics Analysis of Colonic Tissues in Patients of Slow Transit Constipation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4814702. [PMID: 27239471 PMCID: PMC4867068 DOI: 10.1155/2016/4814702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/11/2016] [Indexed: 11/17/2022]
Abstract
Objective. To investigate and screen the different expression of proteins in STC and normal group with a comparative proteomic approach. Methods. Two-dimensional electrophoresis was applied to separate the proteins in specimens from both 5 STC patients and 5 normal controls. The proteins with statistically significant differential expression between two groups were identified by computer aided image analysis and matrix assisted laser desorption ionization tandem time of flight mass spectrometry (MALDI-TOF-MS). Results. A total of 239 protein spots were identified in the average gel of the normal control and 215 in patients with STC. A total of 197 protein spots were matched and the mean matching rate was 82%. There were 14 protein spots which were expressed with statistically significant differences from others. Of those 14 protein spots, the expression of 12 spots increased markedly, while that of 2 spots decreased significantly. Conclusion. The proteomics expression in colonic specimens of STC patients is statistically significantly different from that of normal control, which may be associated with the pathogenesis of STC.
Collapse
Affiliation(s)
- Songlin Wan
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Weicheng Liu
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Cuiping Tian
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Xianghai Ren
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Zhao Ding
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Qun Qian
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Congqing Jiang
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Yunhua Wu
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| |
Collapse
|