1
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
2
|
Qi W, Jonker MJ, de Leeuw W, Brul S, ter Kuile BH. Role of RelA-synthesized (p)ppGpp and ROS-induced mutagenesis in de novo acquisition of antibiotic resistance in E. coli. iScience 2024; 27:109579. [PMID: 38617560 PMCID: PMC11015494 DOI: 10.1016/j.isci.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
The stringent response of bacteria to starvation and stress also fulfills a role in addressing the threat of antibiotics. Within this stringent response, (p)ppGpp, synthesized by RelA or SpoT, functions as a global alarmone. However, the effect of this (p)ppGpp on resistance development is poorly understood. Here, we show that knockout of relA or rpoS curtails resistance development against bactericidal antibiotics. The emergence of mutated genes associated with starvation and (p)ppGpp, among others, indicates the activation of stringent responses. The growth rate is decreased in ΔrelA-resistant strains due to the reduced ability to synthesize (p)ppGpp and the persistence of deacylated tRNA impeding protein synthesis. Sluggish cellular activity causes decreased production of reactive oxygen species (ROS), thereby reducing oxidative damage, leading to weakened DNA mismatch repair, potentially reducing the generation of mutations. These findings offer new targets for mitigating antibiotic resistance development, potentially achieved through inhibiting (p)ppGpp or ROS synthesis.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijs J. Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Benno H. ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Kruchinin AA, Kamzeeva PN, Zharkov DO, Aralov AV, Makarova AV. 8-Oxoadenine: A «New» Player of the Oxidative Stress in Mammals? Int J Mol Sci 2024; 25:1342. [PMID: 38279342 PMCID: PMC10816367 DOI: 10.3390/ijms25021342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Numerous studies have shown that oxidative modifications of guanine (7,8-dihydro-8-oxoguanine, 8-oxoG) can affect cellular functions. 7,8-Dihydro-8-oxoadenine (8-oxoA) is another abundant paradigmatic ambiguous nucleobase but findings reported on the mutagenicity of 8-oxoA in bacterial and eukaryotic cells are incomplete and contradictory. Although several genotoxic studies have demonstrated the mutagenic potential of 8-oxoA in eukaryotic cells, very little biochemical and bioinformatics data about the mechanism of 8-oxoA-induced mutagenesis are available. In this review, we discuss dual coding properties of 8-oxoA, summarize historical and recent genotoxicity and biochemical studies, and address the main protective cellular mechanisms of response to 8-oxoA. We also discuss the available structural data for 8-oxoA bypass by different DNA polymerases as well as the mechanisms of 8-oxoA recognition by DNA repair enzymes.
Collapse
Affiliation(s)
- Alexander A. Kruchinin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| | - Polina N. Kamzeeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Alena V. Makarova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| |
Collapse
|
4
|
Qi W, Jonker MJ, de Leeuw W, Brul S, ter Kuile BH. Reactive oxygen species accelerate de novo acquisition of antibiotic resistance in E. coli. iScience 2023; 26:108373. [PMID: 38025768 PMCID: PMC10679899 DOI: 10.1016/j.isci.2023.108373] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Reactive oxygen species (ROS) produced as a secondary effect of bactericidal antibiotics are hypothesized to play a role in killing bacteria. If correct, ROS may play a role in development of de novo resistance. Here we report that single-gene knockout strains with reduced ROS scavenging exhibited enhanced ROS accumulation and more rapid acquisition of resistance when exposed to sublethal levels of bactericidal antibiotics. Consistent with this observation, the ROS scavenger thiourea in the medium decelerated resistance development. Thiourea downregulated the transcriptional level of error-prone DNA polymerase and DNA glycosylase MutM, which counters the incorporation and accumulation of 8-hydroxy-2'-deoxyguanosine (8-HOdG) in the genome. The level of 8-HOdG significantly increased following incubation with bactericidal antibiotics but decreased after treatment with the ROS scavenger thiourea. These observations suggest that in E. coli sublethal levels of ROS stimulate de novo development of resistance, providing a mechanistic basis for hormetic responses induced by antibiotics.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijs J. Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Benno H. ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Warren GM, Ejaz A, Fay A, Glickman MS, Shuman S. Mycobacterial helicase Lhr abets resistance to DNA crosslinking agents mitomycin C and cisplatin. Nucleic Acids Res 2023; 51:218-235. [PMID: 36610794 PMCID: PMC9841417 DOI: 10.1093/nar/gkac1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium smegmatis Lhr exemplifies a novel clade of helicases composed of an N-terminal ATPase/helicase domain (Lhr-Core) and a large C-terminal domain (Lhr-CTD) that nucleates a unique homo-tetrameric quaternary structure. Expression of Lhr, and its operonic neighbor Nei2, is induced in mycobacteria exposed to mitomycin C (MMC). Here we report that lhr deletion sensitizes M. smegmatis to killing by DNA crosslinkers MMC and cisplatin but not to killing by monoadduct-forming alkylating agent methyl methanesulfonate or UV irradiation. Testing complementation of MMC and cisplatin sensitivity by expression of Lhr mutants in Δlhr cells established that: (i) Lhr-CTD is essential for DNA repair activity, such that Lhr-Core does not suffice; (ii) ATPase-defective mutant D170A/E171A fails to complement; (iii) ATPase-active, helicase-defective mutant W597A fails to complement and (iv) alanine mutations at the CTD-CTD interface that interdict homo-tetramer formation result in failure to complement. Our results instate Lhr's ATP-driven motor as an agent of inter-strand crosslink repair in vivo, contingent on Lhr's tetrameric quaternary structure. We characterize M. smegmatis Nei2 as a monomeric enzyme with AP β-lyase activity on single-stranded DNA. Counter to previous reports, we find Nei2 is inactive as a lyase at a THF abasic site and has feeble uracil glycosylase activity.
Collapse
Affiliation(s)
- Garrett M Warren
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, NY, NY 10065, USA
| | - Anam Ejaz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, NY, NY 10065, USA
| | - Allison Fay
- Immunology Program, Memorial Sloan Kettering Cancer Center, NY, NY 10065, USA
| | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, NY, NY 10065, USA
| | - Stewart Shuman
- To whom correspondence should be addressed. Tel: +1 212 639 7145; E-mail:
| |
Collapse
|
6
|
Kapoor I, Shaw A, Naha A, Emam EAF, Varshney U. Role of the nucleotide excision repair pathway proteins (UvrB and UvrD2) in recycling UdgB, a base excision repair enzyme in Mycobacterium smegmatis. DNA Repair (Amst) 2022; 113:103316. [PMID: 35306347 DOI: 10.1016/j.dnarep.2022.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/30/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Abstract
Cross-talks between DNA repair pathways are emerging as a crucial strategy in the maintenance of the genomic integrity. A double-stranded (ds) DNA specific DNA glycosylase, UdgB is known to excise uracil, hypoxanthine and ethenocytosine. We earlier showed that Mycobacterium smegmatis (Msm) UdgB stays back on the AP-sites it generates in the DNA upon excision of the damaged bases. Here, we show that in an Msm strain deleted for a nucleotide excision repair (NER) protein, UvrB (uvrB-), UdgB expression is toxic, and its deletion from the genome (udgB-) rescues the strain from the genotoxic stress. However, UdgB bound AP-site is not a direct substrate for NER in vitro. We show that UvrD2 and UvrB, known helicases with single-stranded (ss) DNA translocase activity, facilitate recycling of UdgB from AP-DNA. Our studies reveal that the helicases play an important role in exposing the AP-sites in DNA and make them available for further repair.
Collapse
Affiliation(s)
- Indu Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Abhirup Shaw
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Arindam Naha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Elhassan Ali Fathi Emam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| |
Collapse
|
7
|
Elevated Levels of Three Reactive Oxygen Species and Fe(II) in the Antibiotic-Surviving Population of Mycobacteria Facilitate De Novo Emergence of Genetic Resisters to Antibiotics. Antimicrob Agents Chemother 2022; 66:e0228521. [PMID: 35435709 DOI: 10.1128/aac.02285-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We had earlier reported the de novo emergence of genetic resisters of Mycobacterium tuberculosis and Mycobacterium smegmatis to rifampicin and moxifloxacin from the antibiotic-surviving population containing elevated levels of the non-DNA-specific mutagenic reactive oxygen species (ROS) hydroxyl radical. Since hydroxyl radical is generated by Fenton reaction between Fe(II) and H2O2, which is produced by superoxide dismutation, we here report significantly elevated levels of these three ROS and Fe(II) in the M. smegmatis rifampicin-surviving population. Elevated levels of superoxide and the consequential formation of high levels of H2O2 and Fe(II) led to the generation of hydroxyl radical, facilitating de novo high frequency emergence of antibiotic resisters. The M. smegmatis cultures, exposed to nontoxic concentrations of the ROS scavenger, thiourea (TU), and the NADH oxidase (one of the superoxide producers) inhibitor, diphenyleneiodonium chloride (DPI), showed a reduction in the levels of the three ROS, Fe(II), and antibiotic resister generation frequency. The non-antibiotic-exposed cultures grown in the absence/presence of TU/DPI did not show increased ROS, Fe(II) levels, or antibiotic resister generation frequency. The antibiotic-surviving population showed significantly increased expression and activity of superoxide-producing genes and decreased expression of antioxidant and DNA repair genes, revealing an environment conducive for the acquisition and retention of mutations. Since we recently reported significant comparability between the antibiotic-survival gene expression profiles of the saprophyte-cum-opportunistic pathogens M. smegmatis and the M. tuberculosis in tuberculosis patients undergoing treatment, we discuss the clinical relevance of the findings on the mechanism of emergence of antibiotic-resistant mycobacterial strains.
Collapse
|
8
|
Lata K, Vishwakarma J, Kumar S, Khanam T, Ramachandran R. Mycobacterium tuberculosis Endonuclease VIII 2 (Nei2) forms a prereplicative BER complex with DnaN: Identification, characterization, and disruption of complex formation. Mol Microbiol 2021; 117:320-333. [PMID: 34820919 DOI: 10.1111/mmi.14848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis Nei2 (Rv3297) is a BER glycosylase that removes oxidized base lesions from ssDNA and replication fork-mimicking substrates. We show that Endonuclease VIII 2 (Nei2) forms a BER complex with the β-clamp (DnaN, Rv0002) with a KD of 170 nM. The Nei2-β-clamp interactions enhance Nei2's activities up to several folds. SEC analysis shows that one molecule of Nei2 binds to a single β-clamp dimer. Nei2 interacts with subsites I and II of the β-clamp via a noncanonical 223 QGCRRCGTLIAY239 Clamp Interacting Protein (CIP) motif in the C-terminal zinc-finger domain, which was previously shown by us to be dispensable for intrinsic Nei2 activity. The 12-mer peptide alone exhibited a KD of 10.28 nM, suggesting that the motif is a key mediator of Nei2-β-clamp interactions. Finally, we identified inhibitors of Nei2-β-clamp interactions using rational methods, in vitro disruption, and SPR assays after querying a database of natural products. We found that Tubulosine, Fumitremorgin C, Toyocamycin, and Aleuritic acid exhibit IC50 values of 94.47, 83.49, 109.7, and 71.49 µM, respectively. They act by disrupting Nei2-β-clamp interactions and do not affect intrinsic Nei2 activity. Among other things, the present study gives insights into the role of Nei2 in bacterial prereplicative BER.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jyoti Vishwakarma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Wallace SS. Consequences and repair of radiation-induced DNA damage: fifty years of fun questions and answers. Int J Radiat Biol 2021; 98:367-382. [PMID: 34187282 DOI: 10.1080/09553002.2021.1948141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To summarize succinctly the 50 years of research undertaken in my laboratory and to provide an overview of my career in science. It is certainly a privilege to have been asked by Carmel Mothersill and Penny Jeggo to contribute to this special issue of the International Journal of Radiation Biology focusing on the work of women in the radiation sciences. CONCLUSION My students, post-docs and I identified and characterized a number of the enzymes that recognize and remove radiation-damaged DNA bases, the DNA glycosylases, which are the first enzymes in the Base Excision Repair (BER) pathway. Although this pathway actually evolved to repair oxidative and other endogenous DNA damages, it is also responsible for removing the vast majority of radiation-induced DNA damages including base damages, alkali-labile lesions and single strand breaks. However, because of its high efficiency, attempted BER of clustered lesions produced by ionizing radiation, can have disastrous effects on cellular DNA. We also evaluated the potential biological consequences of many of the radiation-induced DNA lesions. In addition, with collaborators, we employed computational techniques, x-ray crystallography and single molecule approaches to answer many questions at the molecular level.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
10
|
DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus. DNA Repair (Amst) 2021; 105:103160. [PMID: 34192601 DOI: 10.1016/j.dnarep.2021.103160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
GO system is part of base excision DNA repair and is required for the correct repair of 8-oxoguanine (8-oxoG), one of the most abundant oxidative lesions. Due to the ability of 8-oxoG to mispair with A, this base is highly mutagenic, and its repair requires two enzymes: Fpg that removes 8-oxoG from 8-oxoG:C pairs, and MutY that excises the normal A from 8-oxoG:A mispairs. Here we characterize the properties of putative GO system DNA glycosylases from Staphylococcus aureus, an important human opportunistic pathogen that causes hospital infections and presents a serious health concern due to quick spread of antibiotic-resistant strains. In addition to Fpg and MutY from the reference NCTC 8325 strain (SauFpg1 and SauMutY), we have also studied an Fpg homolog from a multidrug-resistant C0673 isolate (SauFpg2), which is different from SauFpg1 in its sequence. Both SauFpg enzymes showed the highest activity at pH 7.0-9.0 and NaCl concentrations 25-75 mM (SauFpg1) or 50-100 mM (SauFpg2), whereas SauMutY was active at a broad pH range and had a salt optimum at ∼75 mM NaCl. Both SauFpg1 and SauFpg2 bound and cleaved duplexes containing 8-oxoG, 5-hydroxyuracil, 5,6-dihydrouracil or apurinic/apyrimidinic site paired with C, T, or G, but not with A. For SauFpg1 and SauFpg2, 8-oxoG was the best substrate tested, and 5,6-dihydrouracil was the worst one. SauMutY efficiently excised adenine from duplex substrates containing A:8-oxoG or A:G pairs. SauFpg enzymes were readily trapped on DNA by NaBH4 treatment, indicating formation of a Schiff base reaction intermediate. Surprisingly, SauMutY was also trapped significantly better than its E. coli homolog. All three S. aureus GO glycosylases drastically reduced spontaneous mutagenesis when expressed in an fpg mutY E. coli double mutant. Overall, we conclude that S. aureus possesses an active GO system, which could possibly be targeted for sensitization of this pathogen to oxidative stress.
Collapse
|
11
|
|
12
|
A multilayered repair system protects the mycobacterial chromosome from endogenous and antibiotic-induced oxidative damage. Proc Natl Acad Sci U S A 2020; 117:19517-19527. [PMID: 32727901 DOI: 10.1073/pnas.2006792117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidative damage to DNA is a threat to the genomic integrity and coding accuracy of the chromosomes of all living organisms. Guanine is particularly susceptible to oxidation, and 8-oxo-dG (OG), when produced in situ or incorporated by DNA polymerases, is highly mutagenic due to mispairing with adenine. In many bacteria, defense against OG depends on MutT enzymes, which sanitize OG in the nucleotide pool, and the MutM/Y system, which counteracts OG in chromosomal DNA. In Escherichia coli, antibiotic lethality has been linked to oxidative stress and the downstream consequences of OG processing. However, in mycobacteria, the role of these systems in genomic integrity and antibiotic lethality is not understood, in part because mycobacteria encode four MutT enzymes and two MutMs, suggesting substantial redundancy. Here, we definitively probe the role of OG handling systems in mycobacteria. We find that, although MutT4 is the only MutT enzyme required for resistance to oxidative stress, this effect is not due to OG processing. We find that the dominant system that defends against OG-mediated mutagenesis is MutY/MutM1, and this system is dedicated to in situ chromosomal oxidation rather than correcting OG incorporated by accessory polymerases (DinB1/DinB2/DinB3/DnaE2). In addition, we uncover that mycobacteria resist antibiotic lethality through nucleotide sanitization by MutTs, and in the absence of this system, accessory DNA polymerases and MutY/M contribute to antibiotic-induced lethality. These results reveal a complex, multitiered system of OG handling in mycobacteria with roles in oxidative stress resistance, mutagenesis, and antibiotic lethality.
Collapse
|
13
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
14
|
Oxidation of dCTP contributes to antibiotic lethality in stationary-phase mycobacteria. Proc Natl Acad Sci U S A 2018; 115:2210-2215. [PMID: 29382762 DOI: 10.1073/pnas.1719627115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growing evidence shows that generation of reactive oxygen species (ROS) derived from antibiotic-induced metabolic perturbation contribute to antibiotic lethality. However, our knowledge of the mechanisms by which antibiotic-induced oxidative stress actually kills cells remains elusive. Here, we show that oxidation of dCTP underlies ROS-mediated antibiotic lethality via induction of DNA double-strand breaks (DSBs). Deletion of mazG-encoded 5-OH-dCTP-specific pyrophosphohydrolase potentiates antibiotic killing of stationary-phase mycobacteria, but did not affect antibiotic efficacy in exponentially growing cultures. Critically, the effect of mazG deletion on potentiating antibiotic killing is associated with antibiotic-induced ROS and accumulation of 5-OH-dCTP. Independent lines of evidence presented here indicate that the increased level of DSBs observed in the ΔmazG mutant is a dead-end event accounting for enhanced antibiotic killing. Moreover, we provided genetic evidence that 5-OH-dCTP is incorporated into genomic DNA via error-prone DNA polymerase DnaE2 and repair of 5-OH-dC lesions via the endonuclease Nth leads to the generation of lethal DSBs. This work provides a mechanistic view of ROS-mediated antibiotic lethality in stationary phase and may have broad implications not only with respect to antibiotic lethality but also to the mechanism of stress-induced mutagenesis in bacteria.
Collapse
|
15
|
Singh A. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2017; 163:1740-1758. [PMID: 29171825 DOI: 10.1099/mic.0.000578] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic integrity of Mycobacterium tuberculosis is continuously threatened by the harsh survival conditions inside host macrophages, due to immune and antibiotic stresses. Faithful genome maintenance and repair must be accomplished under stress for the bacillus to survive in the host, necessitating a robust DNA repair system. The importance of DNA repair systems in pathogenesis is well established. Previous examination of the M. tuberculosis genome revealed homologues of almost all the major DNA repair systems, i.e. nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent developments in the field have pointed to the presence of novel proteins and pathways in mycobacteria. Homologues of archeal mismatch repair proteins were recently reported in mycobacteria, a pathway previously thought to be absent. RecBCD, the major nuclease-helicase enzymes involved in HR in E. coli, were implicated in the single-strand annealing (SSA) pathway. Novel roles of archeo-eukaryotic primase (AEP) polymerases, previously thought to be exclusive to NHEJ, have been reported in BER. Many new proteins with a probable role in DNA repair have also been discovered. It is now realized that the DNA repair systems in M. tuberculosis are highly evolved and have redundant backup mechanisms to mend the damage. This review is an attempt to summarize our current understanding of the DNA repair systems in M. tuberculosis.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
16
|
Lata K, Afsar M, Ramachandran R. Biochemical characterization and novel inhibitor identification of Mycobacterium tuberculosis Endonuclease VIII 2 (Rv3297). Biochem Biophys Rep 2017; 12:20-28. [PMID: 28955788 PMCID: PMC5613217 DOI: 10.1016/j.bbrep.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/10/2017] [Accepted: 07/29/2017] [Indexed: 12/03/2022] Open
Abstract
Nei2 (Rv3297) is a DNA Base Excision Repair (BER) glycosylase that is essential for survival of Mycobacterium tuberculosis in primates. We show that MtbNei2 is a bifunctional glycosylase that specifically acts on oxidized pyrimidine-containing single-stranded, double-stranded, 5’/3’ fork and bubble DNA substrates. MtbNei2 possesses Uracil DNA glycosylase activity unlike E. coli Nei. Mutational studies demonstrate that Pro2 and Glu3 located in the active site are essential for glycosylase activity of MtbNei2. Mutational analysis demonstrated that an unstructured C-terminal zinc finger domain that was important for activity in E. coli Nei and Fpg, was not required for the glycosylase activity of MtbNei2. Lastly, we screened the NCI natural product compound database and identified three natural product inhibitors with IC50 values ranging between 41.8 μM-92.7 μM against MtbNei2 in in vitro inhibition assays. Surface Plasmon Resonance (SPR) experiments showed that the binding affinity of the best inhibitor, NSC31867, was 74 nM. The present results set the stage for exploiting this important target in developing new therapeutic strategies that target Mycobacterial BER. Biochemical characterization of MtbNei2 (Rv3297). Pro2 and Glu3 residues are essential for MtbNei2 activity. Zinc finger domain is dispensable for activity. 3 natural product inhibitors identified against MtbNei2.
Collapse
Key Words
- AP, apurinic/apyrimidinic
- BER
- BER inhibitors
- BER, base excision repair
- EcoFpg, E. coli Formamidopyrimidine glycosylase
- EcoNei, E. coli Endonuclease VIII
- Endonuclease VIII 2
- Glycosylases
- MDR, multidrug resistance
- Mtb, Mycobacterium tuberculosis
- MtbNei2, M. tuberculosis Endonuclease VIII 2
- MtbNei2ΔZNF, M. tuberculosis zinc finger domain deleted mutant
- NSC250430 (Pubchem CID: 317611)
- NSC31867 (Pubchem CID: 233380)
- NSC345647 (Pubchem CID: 53277)
- ROS
- ROS, reactive oxygen species
- SEC, size exclusion chromatography
- TB, tuberculosis
Collapse
|
17
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
18
|
Hassim F, Papadopoulos AO, Kana BD, Gordhan BG. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis. Mutat Res 2015; 779:24-32. [PMID: 26125998 DOI: 10.1016/j.mrfmmm.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Hydroxyl radical (OH) among reactive oxygen species cause damage to nucleobases with thymine being the most susceptible, whilst in contrast, the singlet oxygen ((1)02) targets only guanine bases. The high GC content of mycobacterial genomes predisposes these organisms to oxidative damage of guanine. The exposure of cellular DNA to OH and one-electron oxidants results in the formation of two main degradation products, the pro-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoGua) and the cytotoxic 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua). These lesions are repaired through the base excision repair (BER) pathway and we previously, demonstrated a combinatorial role for the mycobacterial Endonuclease III (Nth) and the Nei family of DNA glycosylases in mutagenesis. In addition, the formamidopyrimidine (Fpg/MutM) and MutY DNA glycosylases have also been implicated in mutation avoidance and BER in mycobacteria. In this study, we further investigate the combined role of MutY and the Fpg/Nei DNA glycosylases in Mycobacterium smegmatis and demonstrate that deletion of mutY resulted in enhanced sensitivity to oxidative stress, an effect which was not exacerbated in Δfpg1 Δfpg2 or Δnei1 Δnei2 double mutant backgrounds. However, combinatorial loss of the mutY, fpg1 and fpg2 genes resulted in a significant increase in mutation rates suggesting interplay between these enzymes. Consistent with this, there was a significant increase in C → A mutations with a corresponding change in cell morphology of rifampicin resistant mutants in the Δfpg1 Δfpg2 ΔmutY deletion mutant. In contrast, deletion of mutY together with the nei homologues did not result in any growth/survival defects or changes in mutation rates. Taken together these data indicate that the mycobacterial mutY, in combination with the Fpg DNA N-glycosylases, plays an important role in controlling mutagenesis under oxidative stress.
Collapse
Affiliation(s)
- Farzanah Hassim
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
| | - Andrea O Papadopoulos
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
| | - Bhavna G Gordhan
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa.
| |
Collapse
|
19
|
Khanam T, Shukla A, Rai N, Ramachandran R. Critical determinants for substrate recognition and catalysis in the M. tuberculosis class II AP-endonuclease/3'-5' exonuclease III. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:505-16. [PMID: 25748880 DOI: 10.1016/j.bbapap.2015.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/02/2015] [Accepted: 02/25/2015] [Indexed: 01/13/2023]
Abstract
The Mycobacterium tuberculosis AP-endonuclease/3'-5' exodeoxyribonuclease (MtbXthA) is an important player in DNA base excision repair (BER). We demonstrate that the enzyme has robust apurinic/apyrimidinic (AP) endonuclease activity, 3'-5' exonuclease, phosphatase, and phosphodiesterase activities. The enzyme functions as an AP-endonuclease at high ionic environments, while the 3'-5'-exonuclease activity is predominant at low ionic environments. Our molecular modelling and mutational experiments show that E57 and D251 are critical for catalysis. Although nicked DNA and gapped DNA are fair substrates of MtbXthA, the gap-size did not affect the excision activity and furthermore, a substrate with a recessed 3'-end is preferred. To understand the determinants of abasic-site recognition, we examined the possible roles of (i) the base opposite the abasic site, (ii) the abasic ribose ring itself, (iii) local distortions in the AP-site, and (iv) conserved residues located near the active site. Our experiments demonstrate that the first three determinants do not play a role in MtbXthA, and in fact the enzyme exhibits robust endonucleolytic activity against single-stranded AP DNA also. Regarding the fourth determinant, it is known that the catalytic-site of AP endonucleases is surrounded by conserved aromatic residues and intriguingly, the exact residues that are directly involved in abasic site recognition vary with the individual proteins. We therefore, used a combination of mutational analysis, kinetic assays, and structure-based modelling, to identify that Y237, supported by Y137, mediates the formation of the MtbXthA-AP-DNA complex and AP-site incision.
Collapse
Affiliation(s)
- Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Ankita Shukla
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Niyati Rai
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India.
| |
Collapse
|
20
|
van der Veen S, Tang CM. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat Rev Microbiol 2015; 13:83-94. [PMID: 25578955 DOI: 10.1038/nrmicro3391] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.
Collapse
Affiliation(s)
- Stijn van der Veen
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
21
|
Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases. Proc Natl Acad Sci U S A 2014; 111:E2091-9. [PMID: 24799677 DOI: 10.1073/pnas.1400386111] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
DNA glycosylases are enzymes that perform the initial steps of base excision repair, the principal repair mechanism that identifies and removes endogenous damages that occur in an organism's DNA. We characterized the motion of single molecules of three bacterial glycosylases that recognize oxidized bases, Fpg, Nei, and Nth, as they scan for damages on tightropes of λ DNA. We find that all three enzymes use a key "wedge residue" to scan for damage because mutation of this residue to an alanine results in faster diffusion. Moreover, all three enzymes bind longer and diffuse more slowly on DNA that contains the damages they recognize and remove. Using a sliding window approach to measure diffusion constants and a simple chemomechanical simulation, we demonstrate that these enzymes diffuse along DNA, pausing momentarily to interrogate random bases, and when a damaged base is recognized, they stop to evert and excise it.
Collapse
|
22
|
Lee AJ, Warshaw DM, Wallace SS. Insights into the glycosylase search for damage from single-molecule fluorescence microscopy. DNA Repair (Amst) 2014; 20:23-31. [PMID: 24560296 DOI: 10.1016/j.dnarep.2014.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/13/2013] [Accepted: 01/22/2014] [Indexed: 12/21/2022]
Abstract
The first step of base excision repair utilizes glycosylase enzymes to find damage within a genome. A persistent question in the field of DNA repair is how glycosylases interact with DNA to specifically find and excise target damaged bases with high efficiency and specificity. Ensemble studies have indicated that glycosylase enzymes rely upon both sliding and distributive modes of search, but ensemble methods are limited in their ability to directly observe these modes. Here we review insights into glycosylase scanning behavior gathered through single-molecule fluorescence studies of enzyme interactions with DNA and provide a context for these results in relation to ensemble experiments.
Collapse
Affiliation(s)
- Andrea J Lee
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, The University of Vermont, Health Science Research Facility, 149 Beaumont Avenue, Burlington, VT 05405-0075, USA.
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| |
Collapse
|
23
|
Genome and cancer single nucleotide polymorphisms of the human NEIL1 DNA glycosylase: activity, structure, and the effect of editing. DNA Repair (Amst) 2014; 14:17-26. [PMID: 24382305 PMCID: PMC3926126 DOI: 10.1016/j.dnarep.2013.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 01/07/2023]
Abstract
The repair of free-radical oxidative DNA damage is carried out by lesion-specific DNA glycosylases as the first step of the highly conserved base excision repair (BER) pathway. In humans, three orthologs of the prototypical endonuclease VIII (Nei), the Nei-like NEIL1-3 enzymes are involved in the repair of oxidized DNA lesions. In recent years, several genome and cancer single-nucleotide polymorphic variants of the NEIL1 glycosylase have been identified. In this study we characterized four variants of human NEIL1: S82C, G83D, P208S, and ΔE28, and tested their ability to excise pyrimidine-derived lesions such as thymine glycol (Tg), 5-hydroxyuracil (5-OHU), and dihydrouracil (DHU) and the purine-derived guanidinohydantoin (Gh), spiroiminodihydantoin 1 (Sp1), and methylated 2,6-diamino-4-hydroxy-5-formamidopyrimidine (MeFapyG). The P208S variant has near wild-type activity on all substrates tested. The S82C and ΔE28 variants exhibit decreased Tg excision compared to wild-type. G83D displays little to no activity with any of the substrates tested, with the exception of Gh and Sp1. Human NEIL1 is known to undergo editing whereby the lysine at position 242 is recoded into an arginine. The non-edited form of NEIL1 is more efficient at cleaving Tg than the R242 form, but the G83D variant does not cleave Tg regardless of the edited status of NEIL1. The corresponding G86D variant in Mimivirus Nei1 similarly lacks glycosylase activity. A structure of a G86D-DNA complex reveals a rearrangement in the β4/5 loop comprising Leu84, the highly-conserved void-filling residue, thereby providing a structural rationale for the decreased glycosylase activity of the glycine to aspartate variant.
Collapse
|
24
|
The contribution of Nth and Nei DNA glycosylases to mutagenesis in Mycobacterium smegmatis. DNA Repair (Amst) 2013; 13:32-41. [PMID: 24342191 DOI: 10.1016/j.dnarep.2013.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 11/20/2022]
Abstract
The increased prevalence of drug resistant strains of Mycobacterium tuberculosis (Mtb) indicates that significant mutagenesis occurs during tuberculosis disease in humans. DNA damage by host-derived reactive oxygen/nitrogen species is hypothesized to be critical for the mutagenic process in Mtb thus, highlighting an important role for DNA repair enzymes in maintenance of genome fidelity. Formamidopyrimidine (Fpg/MutM/Fapy) and EndonucleaseVIII (Nei) constitute the Fpg/Nei family of DNA glycosylases and together with EndonucleaseIII (Nth) are central to the base excision repair pathway in bacteria. In this study we assess the contribution of Nei and Nth DNA repair enzymes in Mycobacterium smegmatis (Msm), which retains a single nth homologue and duplications of the Fpg (fpg1 and fpg2) and Nei (nei1 and nei2) homologues. Using an Escherichia coli nth deletion mutant, we confirm the functionality of the mycobacterial nth gene in the base excision repair pathway. Msm mutants lacking nei1, nei2 and nth individually or in combination did not display aberrant growth in broth culture. Deletion of nth individually results in increased UV-induced mutagenesis and combinatorial deletion with the nei homologues results in reduced survival under oxidative stress conditions and an increase in spontaneous mutagenesis to rifampicin. Deletion of nth together with the fpg homolgues did not result in any growth/survival defects or changes in mutation rate. Furthermore, no differential emergence of the common rifampicin resistance conferring genotypes were noted. Collectively, these data confirm a role for Nth in base excision repair in mycobacteria and further highlight a novel interplay between the Nth and Nei homologues in spontaneous mutagenesis.
Collapse
|
25
|
Mandalakis M, Panikov N, Dai S, Ray S, Karger BL. Comparative proteomic analysis reveals mechanistic insights into Pseudomonas putida F1 growth on benzoate and citrate. AMB Express 2013; 3:64. [PMID: 24156539 PMCID: PMC3827995 DOI: 10.1186/2191-0855-3-64] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 10/21/2013] [Indexed: 11/10/2022] Open
Abstract
Pseudomonas species are capable to proliferate under diverse environmental conditions and thus have a significant bioremediation potential. To enhance our understanding of their metabolic versatility, this study explores the changes in the proteome and physiology of Pseudomonas putida F1 resulting from its growth on benzoate, a moderate toxic compound that can be catabolized, and citrate, a carbon source that is assimilated through central metabolic pathways. A series of repetitive batch cultivations were performed to ensure a complete adaptation of the bacteria to each of these contrasting carbon sources. After several growth cycles, cell growth stabilized at the maximum level and exhibited a reproducible growth profile. The specific growth rates measured for benzoate (1.01 ± 0.11 h-1) and citrate (1.11 ± 0.12 h-1) were similar, while a higher yield was observed for benzoate (0.6 and 0.3 g cell mass per g of benzoate and citrate, respectively), reflecting the different degrees of carbon reduction in the two substrates. Comparative proteomic analysis revealed an enrichment of several oxygenases/dehydrogenases in benzoate-grown cells, indicative of the higher carbon reduction of benzoate. Moreover, the upregulation of all 14 proteins implicated in benzoate degradation via the catechol ortho-cleavage pathway was observed, while several stress-response proteins were increased to aid cells to cope with benzoate toxicity. Unexpectedly, citrate posed more challenges than benzoate in the maintenance of pH homeostasis, as indicated by the enhancement of the Na+/H+ antiporter and carbonic anhydrase. The study provides important mechanistic insights into Pseudomonas adaptation to varying carbon sources that are of great relevance to bioremediation efforts.
Collapse
|
26
|
Rex K, Kurthkoti K, Varshney U. Hypersensitivity of hypoxia grown Mycobacterium smegmatis to DNA damaging agents: Implications of the DNA repair deficiencies in attenuation of mycobacteria. Mech Ageing Dev 2013; 134:516-22. [DOI: 10.1016/j.mad.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/07/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
|
27
|
Zhou J, Liu M, Fleming AM, Burrows CJ, Wallace SS. Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context. J Biol Chem 2013; 288:27263-27272. [PMID: 23926102 DOI: 10.1074/jbc.m113.479055] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The telomeric DNA of vertebrates consists of d(TTAGGG)n tandem repeats, which can form quadruplex DNA structures in vitro and likely in vivo. Despite the fact that the G-rich telomeric DNA is susceptible to oxidation, few biochemical studies of base excision repair in telomeric DNA and quadruplex structures have been done. Here, we show that telomeric DNA containing thymine glycol (Tg), 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh), or spiroiminodihydantoin (Sp) can form quadruplex DNA structures in vitro. We have tested the base excision activities of five mammalian DNA glycosylases (NEIL1, NEIL2, mNeil3, NTH1, and OGG1) on these lesion-containing quadruplex substrates and found that only mNeil3 had excision activity on Tg in quadruplex DNA and that the glycosylase exhibited a strong preference for Tg in the telomeric sequence context. Although Sp and Gh in quadruplex DNA were good substrates for mNeil3 and NEIL1, none of the glycosylases had activity on quadruplex DNA containing 8-oxoG. In addition, NEIL1 but not mNeil3 showed enhanced glycosylase activity on Gh in the telomeric sequence context. These data suggest that one role for Neil3 and NEIL1 is to repair DNA base damages in telomeres in vivo and that Neil3 and Neil1 may function in quadruplex-mediated cellular events, such as gene regulation via removal of damaged bases from quadruplex DNA.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, Burlington, Vermont 05405-0068
| | - Minmin Liu
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, Burlington, Vermont 05405-0068
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, Burlington, Vermont 05405-0068.
| |
Collapse
|
28
|
Puri RV, Singh N, Gupta RK, Tyagi AK. Endonuclease IV Is the major apurinic/apyrimidinic endonuclease in Mycobacterium tuberculosis and is important for protection against oxidative damage. PLoS One 2013; 8:e71535. [PMID: 23936515 PMCID: PMC3731287 DOI: 10.1371/journal.pone.0071535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/29/2013] [Indexed: 11/23/2022] Open
Abstract
During the establishment of an infection, bacterial pathogens encounter oxidative stress resulting in the production of DNA lesions. Majority of these lesions are repaired by base excision repair (BER) pathway. Amongst these, abasic sites are the most frequent lesions in DNA. Class II apurinic/apyrimidinic (AP) endonucleases play a major role in BER of damaged DNA comprising of abasic sites. Mycobacterium tuberculosis, a deadly pathogen, resides in the human macrophages and is continually subjected to oxidative assaults. We have characterized for the first time two AP endonucleases namely Endonuclease IV (End) and Exonuclease III (XthA) that perform distinct functions in M.tuberculosis. We demonstrate that M.tuberculosis End is a typical AP endonuclease while XthA is predominantly a 3′→5′ exonuclease. The AP endonuclease activity of End and XthA was stimulated by Mg2+ and Ca2+ and displayed a preferential recognition for abasic site paired opposite to a cytosine residue in DNA. Moreover, End exhibited metal ion independent 3′→5′ exonuclease activity while in the case of XthA this activity was metal ion dependent. We demonstrate that End is not only a more efficient AP endonuclease than XthA but it also represents the major AP endonuclease activity in M.tuberculosis and plays a crucial role in defense against oxidative stress.
Collapse
Affiliation(s)
- Rupangi Verma Puri
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Nisha Singh
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Rakesh K. Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
29
|
Biochemical properties of MutT2 proteins from Mycobacterium tuberculosis and M. smegmatis and their contrasting antimutator roles in Escherichia coli. J Bacteriol 2013; 195:1552-60. [PMID: 23354752 DOI: 10.1128/jb.02102-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is at increased risk of accumulating damaged guanine nucleotides such as 8-oxo-dGTP and 8-oxo-GTP because of its residency in the oxidative environment of the host macrophages. By hydrolyzing the oxidized guanine nucleotides before their incorporation into nucleic acids, MutT proteins play a critical role in allowing organisms to avoid their deleterious effects. Mycobacteria possess several MutT proteins. Here, we purified recombinant M. tuberculosis MutT2 (MtuMutT2) and M. smegmatis MutT2 (MsmMutT2) proteins from M. tuberculosis (a slow grower) and M. smegmatis (fast growing model mycobacteria), respectively, for their biochemical characterization. Distinct from the Escherichia coli MutT, which hydrolyzes 8-oxo-dGTP and 8-oxo-GTP, the mycobacterial proteins hydrolyze not only 8-oxo-dGTP and 8-oxo-GTP but also dCTP and 5-methyl-dCTP. Determination of kinetic parameters (Km and Vmax) revealed that while MtuMutT2 hydrolyzes dCTP nearly four times better than it does 8-oxo-dGTP, MsmMutT2 hydrolyzes them nearly equally. Also, MsmMutT2 is about 14 times more efficient than MtuMutT2 in its catalytic activity of hydrolyzing 8-oxo-dGTP. Consistent with these observations, MsmMutT2 but not MtuMutT2 rescues E. coli for MutT deficiency by decreasing both the mutation frequency and A-to-C mutations (a hallmark of MutT deficiency). We discuss these findings in the context of the physiological significance of MutT proteins.
Collapse
|
30
|
Abstract
Fundamental aspects of the lifestyle of Mycobacterium tuberculosis implicate DNA metabolism in bacillary survival and adaptive evolution. The environments encountered by M. tuberculosis during successive cycles of infection and transmission are genotoxic. Moreover, as an obligate pathogen, M. tuberculosis has the ability to persist for extended periods in a subclinical state, suggesting that active DNA repair is critical to maintain genome integrity and bacterial viability during prolonged infection. In this chapter, we provide an overview of the major DNA metabolic pathways identified in M. tuberculosis, and situate key recent findings within the context of mycobacterial pathogenesis. Unlike many other bacterial pathogens, M. tuberculosis is genetically secluded, and appears to rely solely on chromosomal mutagenesis to drive its microevolution within the human host. In turn, this implies that a balance between high versus relaxed fidelity mechanisms of DNA metabolism ensures the maintenance of genome integrity, while accommodating the evolutionary imperative to adapt to hostile and fluctuating environments. The inferred relationship between mycobacterial DNA repair and genome dynamics is considered in the light of emerging data from whole-genome sequencing studies of clinical M. tuberculosis isolates which have revealed the potential for considerable heterogeneity within and between different bacterial and host populations.
Collapse
|
31
|
Zegeye ED, Balasingham SV, Laerdahl JK, Homberset H, Tønjum T. Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions. MICROBIOLOGY-SGM 2012; 158:1982-1993. [PMID: 22628485 PMCID: PMC3542137 DOI: 10.1099/mic.0.058693-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the recG gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that Mycobacterium tuberculosis RecG (RecGMtb) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecGMtb preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecGMtb helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg2+, Mn2+, Cu2+ or Fe2+. Like its Escherichia coli orthologue, RecGMtb is also a strictly DNA-dependent ATPase.
Collapse
Affiliation(s)
- Ephrem Debebe Zegeye
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Jon K Laerdahl
- Bioinformatics Core Facility, Department of Informatics, University of Oslo, Oslo, Norway.,Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Håvard Homberset
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:71-91. [PMID: 22749143 DOI: 10.1016/b978-0-12-387665-2.00004-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the initial stages of the base excision DNA repair pathway, DNA glycosylases are responsible for locating and removing the majority of endogenous oxidative base lesions. The bifunctional formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of the Fpg/Nei family, one of the two families of glycosylases that recognize oxidized DNA bases, the other being the HhH/GPD (or Nth) superfamily. Structural and biochemical developments over the past decades have led to novel insights into the mechanism of damage recognition by the Fpg/Nei family of enzymes. Despite the overall structural similarity among members of this family, these enzymes exhibit distinct features that make them unique. This review summarizes the current structural knowledge of the Fpg/Nei family members, emphasizes their substrate specificities, and describes how these enzymes search for lesions.
Collapse
|
33
|
Base excision and nucleotide excision repair pathways in mycobacteria. Tuberculosis (Edinb) 2011; 91:533-43. [DOI: 10.1016/j.tube.2011.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/01/2011] [Accepted: 06/12/2011] [Indexed: 01/13/2023]
|
34
|
Kurthkoti K, Varshney U. Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth. Mech Ageing Dev 2011; 133:138-46. [PMID: 21982925 DOI: 10.1016/j.mad.2011.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 08/28/2011] [Accepted: 09/22/2011] [Indexed: 01/20/2023]
Abstract
About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. Emergence of drug resistant strains and the protracted treatment strategies have compelled the scientific community to identify newer drug targets, and to develop newer vaccines. In the host macrophages, the bacterium survives within an environment rich in reactive nitrogen and oxygen species capable of damaging its genome. Therefore, for its successful persistence in the host, the pathogen must need robust DNA repair mechanisms. Analysis of M. tuberculosis genome sequence revealed that it lacks mismatch repair pathway suggesting a greater role for other DNA repair pathways such as the nucleotide excision repair, and base excision repair pathways. In this article, we summarize the outcome of research involving these two repair pathways in mycobacteria focusing primarily on our own efforts. Our findings, using Mycobacterium smegmatis model, suggest that deficiency of various DNA repair functions in single or in combinations severely compromises their DNA repair capacity and attenuates their growth under conditions typically encountered in macrophages.
Collapse
Affiliation(s)
- Krishna Kurthkoti
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
35
|
Le Bihan YV, Angeles Izquierdo M, Coste F, Aller P, Culard F, Gehrke TH, Essalhi K, Carell T, Castaing B. 5-Hydroxy-5-methylhydantoin DNA lesion, a molecular trap for DNA glycosylases. Nucleic Acids Res 2011; 39:6277-90. [PMID: 21486746 PMCID: PMC3152353 DOI: 10.1093/nar/gkr215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/28/2011] [Accepted: 03/20/2011] [Indexed: 11/13/2022] Open
Abstract
DNA base-damage recognition in the base excision repair (BER) is a process operating on a wide variety of alkylated, oxidized and degraded bases. DNA glycosylases are the key enzymes which initiate the BER pathway by recognizing and excising the base damages guiding the damaged DNA through repair synthesis. We report here biochemical and structural evidence for the irreversible entrapment of DNA glycosylases by 5-hydroxy-5-methylhydantoin, an oxidized thymine lesion. The first crystal structure of a suicide complex between DNA glycosylase and unrepaired DNA has been solved. In this structure, the formamidopyrimidine-(Fapy) DNA glycosylase from Lactococcus lactis (LlFpg/LlMutM) is covalently bound to the hydantoin carbanucleoside-containing DNA. Coupling a structural approach by solving also the crystal structure of the non-covalent complex with site directed mutagenesis, this atypical suicide reaction mechanism was elucidated. It results from the nucleophilic attack of the catalytic N-terminal proline of LlFpg on the C5-carbon of the base moiety of the hydantoin lesion. The biological significance of this finding is discussed.
Collapse
Affiliation(s)
- Yann-Vaï Le Bihan
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Maria Angeles Izquierdo
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Franck Coste
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Pierre Aller
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Françoise Culard
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Tim H. Gehrke
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Kadija Essalhi
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Thomas Carell
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, France, Department of Chemistry and Biochemistry, Center for Integrated Protein Science CIPS, Ludwig-Maximilians University Munich, Butenandt strasse 5-13 (Haus F), D-81377 Munich, Germany and Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
36
|
Grin IR, Zharkov DO. Eukaryotic endonuclease VIII-Like proteins: New components of the base excision DNA repair system. BIOCHEMISTRY (MOSCOW) 2011; 76:80-93. [DOI: 10.1134/s000629791101010x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Abstract
Genotoxic agents from endogenous and exogenous sources cause double-strand breaks (DSBs) in chromosomal DNA. Given the threat these lesions pose to viability, it is not surprising that multiple, conserved mechanisms exist for their detection, processing and repair. Previous studies have established both functional non-homologous end-joining (NHEJ) and homologous recombination (HR) systems in mycobacteria. However, relative pathway utilization in these organisms, which include the major human pathogen Mycobacterium tuberculosis, remains unclear. In this issue, Glickman and colleagues describe an elegant assay to distinguish DSB repair outcomes through simple phenotypic screening. By applying their novel reporter system to a panel of repair pathway mutants, they identify an unexpected role for single-strand annealing (SSA) in the related non-pathogen, Mycobacterium smegmatis. As such, these results expand the mycobacterial DSB repair pathway complement to three mechanisms that are distinguishable by their differential requirements for the DSB-resecting, helicase-nuclease machines, AdnAB and RecBCD. Notably, in an unexpected departure from classical models, they establish that mycobacterial RecBCD is a dedicated SSA nuclease, while AdnAB is required for RecA-dependent HR. Here, we consider the implications of their observations, which include the asymmetric cross-regulation of pathway function, for the role of DSB repair in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Digby F Warner
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, PO Box 1038, Johannesburg 2000, South Africa.
| | | |
Collapse
|
38
|
|
39
|
The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. Proc Natl Acad Sci U S A 2010; 107:4925-30. [PMID: 20185759 DOI: 10.1073/pnas.0908307107] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To protect cells from oxidative DNA damage and mutagenesis, organisms possess multiple glycosylases to recognize the damaged bases and to initiate the Base Excision Repair pathway. Three DNA glycosylases have been identified in mammals that are homologous to the Escherichia coli Fpg and Nei proteins, Neil1, Neil2, and Neil3. Neil1 and Neil2 in human and mouse have been well characterized while the properties of the Neil3 protein remain to be elucidated. In this study, we report the characterization of Mus musculus (house mouse) Neil3 (MmuNeil3) as an active DNA glycosylase both in vitro and in vivo. In duplex DNA, MmuNeil3 recognizes the oxidized purines, spiroiminodihydantoin (Sp), guanidinohydantoin (Gh), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino- 5-formamidopyrimidine (FapyA), but not 8-oxo-7,8-dihydroguanine (8-oxoG). Interestingly, MmuNeil3 prefers lesions in single-stranded DNA and in bubble structures. In contrast to other members of the family that use the N-terminal proline as the nucleophile, MmuNeil3 forms a Schiff base intermediate via its N-terminal valine. We expressed the glycosylase domain of MmuNeil3 (MmuNeil3Delta324) in an Escherichia coli triple mutant lacking Fpg, Nei, and MutY glycosylase activities and showed that MmuNeil3 greatly reduced both the spontaneous mutation frequency and the level of FapyG in the DNA, suggesting that Neil3 plays a role in repairing FapyG in vivo.
Collapse
|