1
|
Head ST, Dezem F, Todor A, Yang J, Plummer J, Gayther S, Kar S, Schildkraut J, Epstein MP. Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia. Am J Hum Genet 2024; 111:1084-1099. [PMID: 38723630 PMCID: PMC11179407 DOI: 10.1016/j.ajhg.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
Transcriptome-wide association studies (TWASs) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have focused on the regulatory effects of risk-associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWASs of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole-genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents an in-depth look into the role of trans eQTLs in the complex molecular mechanisms underlying these diseases.
Collapse
Affiliation(s)
- S Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Felipe Dezem
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrei Todor
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jingjing Yang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jasmine Plummer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Simon Gayther
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Siddhartha Kar
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Joellen Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Head ST, Dezem F, Todor A, Yang J, Plummer J, Gayther S, Kar S, Schildkraut J, Epstein MP. Cis- and trans-eQTL TWAS of breast and ovarian cancer identify more than 100 risk associated genes in the BCAC and OCAC consortia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566218. [PMID: 38014246 PMCID: PMC10680675 DOI: 10.1101/2023.11.09.566218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Transcriptome-wide association studies (TWAS) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have only considered regulatory effects of risk associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWAS of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents a first look into the role of trans-eQTLs in the complex molecular mechanisms underlying these diseases.
Collapse
Affiliation(s)
- S. Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Felipe Dezem
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrei Todor
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jingjing Yang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jasmine Plummer
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Simon Gayther
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Siddhartha Kar
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Joellen Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michael P. Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
NUDT1 Could Be a Prognostic Biomarker and Correlated with Immune Infiltration in Clear Cell Renal Cell Carcinoma. Appl Bionics Biomech 2022; 2022:3669296. [PMID: 36606241 PMCID: PMC9808898 DOI: 10.1155/2022/3669296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/25/2022] [Indexed: 12/28/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a malignant tumor with high morbidity and mortality. As a member of the Nudix hydrolase superfamily, Nudix (nucleoside diphosphate-linked moiety X)-type motif 1 (NUDT1) is closely related to the occurrence and development of cancer. Our study aims to explore the role of NUDT1 in ccRCC and its relationship with immune infiltration. Methods The NUDT1 expression matrix and corresponding clinical information were obtained from The Cancer Genome Atlas (TCGA) database. The expression difference of NUDT1 in ccRCC and its relationship with the clinical characteristics were investigated using R software. Kaplan-Meier (K-M) analysis, univariate Cox regression, multivariate Cox regression, receiver operating characteristic (ROC) curve, and nomogram were utilized to evaluate the survival and prognosis of patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to explore the function of differential genes in low- or high-expression group of NUDT1. TCGA dataset and Tumor IMmune Estimation Resource (TIMER) database were utilized to explore the relationship between NUDT1 and immune infiltration. Finally, TCGA dataset was utilized for gene set enrichment analysis (GSEA). Results NUDT1 was not only overexpressed in ccRCC but also significantly correlated with clinicopathological features (P < 0.05). K-M survival analysis showed that upregulated NUDT1 was closely related to the decrease of overall survival (OS) and progression-free survival (PFS) in ccRCC patients. Multivariate Cox regression revealed that NUDT1 was a independent prognostic indicator (HR = 1.437, 95% CI: 1.065-1.939, P=0.018). The ROC curve showed that NUDT1 had a certain accuracy in predicting the outcome of ccRCC patiens. Furthermore, a total of 150 coexpressed genes and 1,886 differentially expressed genes (DEGs) were identified. GO/KEGG and GSEA results suggested that NUDT1 and its DEGs were involved in the immune-related pathways. NUDT1 expression was positively correlated with infiltrating levels of regulatory T cells (Tregs), CD8+ T cells, follicular helper T cells, and M0 macrophages. In addition, NUDT1 was positively related to immune checkpoints, such as PD-1, LAG3, CTLA4, and CD70, in ccRCC. Conclusion NUDT1 plays a key role in the prognosis and immune cell infiltration of ccRCC patients, indicating its potential use as a prognostic biomarker and therapeutic target.
Collapse
|
4
|
Abstract
DNA repair enzymes continuously provide surveillance throughout our cells, protecting the enclosed DNA from the damage that is constantly arising from oxidation, alkylating species, and radiation. Members of this enzyme class are intimately linked to pathways controlling cancer and inflammation and are promising targets for diagnostics and future therapies. Their study is benefiting widely from the development of new tools and methods aimed at measuring their activities. Here, we provide an Account of our laboratory's work on developing chemical tools to study DNA repair processes in vitro, as well as in cells and tissues, and what we have learned by applying them.We first outline early work probing how DNA repair enzymes recognize specific forms of damage by use of chemical analogs of the damage with altered shapes and H-bonding abilities. One outcome of this was the development of an unnatural DNA base that is incorporated selectively by polymerase enzymes opposite sites of missing bases (abasic sites) in DNA, a very common form of damage.We then describe strategies for design of fluorescent probes targeted to base excision repair (BER) enzymes; these were built from small synthetic DNAs incorporating fluorescent moieties to engender light-up signals as the enzymatic reaction proceeds. Examples of targets for these DNA probes include UDG, SMUG1, Fpg, OGG1, MutYH, ALKBH2, ALKBH3, MTH1, and NTH1. Several such strategies were successful and were applied both in vitro and in cellular settings; moreover, some were used to discover small-molecule modulators of specific repair enzymes. One of these is the compound SU0268, a potent OGG1 inhibitor that is under investigation in animal models for inhibiting hyperinflammatory responses.To investigate cellular nucleotide sanitation pathways, we designed a series of "two-headed" nucleotides containing a damaged DNA nucleotide at one end and ATP at the other; these were applied to studying the three human sanitation enzymes MTH1, dUTPase, and dITPase, some of which are therapeutic targets. The MTH1 probe (ARGO) was used in collaboration with oncologists to measure the enzyme in tumors as a disease marker and also to develop the first small-molecule activators of the enzyme.We proceed to discuss the development of a "universal" probe of base excision repair processes (UBER), which reacts covalently with abasic site intermediates of base excision repair. UBER probes light up in real time as the reaction occurs, enabling the observation of base excision repair as it occurs in live cells and tissues. UBER probes can also be used in efficient and simple methods for fluorescent labeling of DNA. Finally, we suggest interesting directions for the future of this field in biomedicine and human health.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, Stanford University, 369 North-South Axis, Stauffer I, Stanford, California 94305, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University, 369 North-South Axis, Stauffer I, Stanford, California 94305, United States
| |
Collapse
|
5
|
Li C, Xue Y, Ba X, Wang R. The Role of 8-oxoG Repair Systems in Tumorigenesis and Cancer Therapy. Cells 2022; 11:cells11233798. [PMID: 36497058 PMCID: PMC9735852 DOI: 10.3390/cells11233798] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Tumorigenesis is highly correlated with the accumulation of mutations. The abundant and extensive DNA oxidation product, 8-Oxoguanine (8-oxoG), can cause mutations if it is not repaired by 8-oxoG repair systems. Therefore, the accumulation of 8-oxoG plays an essential role in tumorigenesis. To avoid the accumulation of 8-oxoG in the genome, base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase1 (OGG1), is responsible for the removal of genomic 8-oxoG. It has been proven that 8-oxoG levels are significantly elevated in cancer cells compared with cells of normal tissues, and the induction of DNA damage by some antitumor drugs involves direct or indirect interference with BER, especially through inducing the production and accumulation of reactive oxygen species (ROS), which can lead to tumor cell death. In addition, the absence of the core components of BER can result in embryonic or early post-natal lethality in mice. Therefore, targeting 8-oxoG repair systems with inhibitors is a promising avenue for tumor therapy. In this study, we summarize the impact of 8-oxoG accumulation on tumorigenesis and the current status of cancer therapy approaches exploiting 8-oxoG repair enzyme targeting, as well as possible synergistic lethality strategies involving exogenous ROS-inducing agents.
Collapse
Affiliation(s)
- Chunshuang Li
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Yaoyao Xue
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
- Correspondence: (X.B.); (R.W.)
| | - Ruoxi Wang
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (X.B.); (R.W.)
| |
Collapse
|
6
|
Coskun E, Singh N, Scanlan LD, Jaruga P, Doak SH, Dizdaroglu M, Nelson BC. Inhibition of human APE1 and MTH1 DNA repair proteins by dextran-coated γ-Fe 2O 3 ultrasmall superparamagnetic iron oxide nanoparticles. Nanomedicine (Lond) 2022; 17:2011-2021. [PMID: 36853189 PMCID: PMC10031551 DOI: 10.2217/nnm-2022-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Aim: To quantitatively evaluate the inhibition of human DNA repair proteins APE1 and MTH1 by dextran-coated γ-Fe2O3 ultrasmall superparamagnetic iron oxide nanoparticles (dUSPIONs). Materials & methods: Liquid chromatography-tandem mass spectrometry with isotope-dilution was used to measure the expression levels of APE1 and MTH1 in MCL-5 cells exposed to increasing doses of dUSPIONs. The expression levels of APE1 and MTH1 were measured in cytoplasmic and nuclear fractions of cell extracts. Results: APE1 and MTH1 expression was significantly inhibited in both cell fractions at the highest dUSPION dose. The expression of MTH1 was linearly inhibited across the full dUSPION dose range in both fractions. Conclusion: These findings warrant further studies to characterize the capacity of dUSPIONs to inhibit other DNA repair proteins in vitro and in vivo.
Collapse
Affiliation(s)
- Erdem Coskun
- Institute for Bioscience & Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Neenu Singh
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Leona D Scanlan
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I Street, Sacramento, CA 95814, USA
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Shareen H Doak
- Institute of Life Science, Center for NanoHealth, Swansea University Medical School, Wales, SA2 8PP, UK
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Bryant C Nelson
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
7
|
Zhang H, Jiang PJ, Lv MY, Zhao YH, Cui J, Chen J. OGG1 contributes to hepatocellular carcinoma by promoting cell cycle-related protein expression and enhancing DNA oxidative damage repair in tumor cells. J Clin Lab Anal 2022; 36:e24561. [PMID: 35723423 PMCID: PMC9279955 DOI: 10.1002/jcla.24561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Background This study aimed to analyze the expression of 8‐oxoguanine DNA glycosylase (OGG1) in patients with hepatocellular carcinoma (HCC) and its effect on prognosis by bioinformatics techniques and to determine its possible carcinogenic mechanism through data mining. Methods The difference in OGG1 expression between healthy people and HCC patients was searched and analyzed by TCGA and GEO databases, and the effect of OGG1 on prognosis was judged by survival analysis. Meanwhile, the possible molecular mechanism of OGG1 in the tumorigenesis and development of HCC was explored by GO analysis, KEGG analysis, immune infiltration analysis, protein–protein interaction network, promoter methylation analysis, and so forth. Quantitative polymerase chain reaction (qPCR) was used to examine the gene expression in 36 pairs of HCC tissues and adjacent tissues. Results The expression of OGG1 in HCC patients was higher than that in healthy people, and the overexpression of OGG1 might stimulate cell proliferation by increasing the activity of cell cycle‐related proteins. Conclusion The alteration of OGG1 was significantly correlated with the tumorigenesis and development of HCC. OGG1 is expected to be a new biomarker for evaluating the prognosis of HCC and a new target for the treatment of HCC.
Collapse
Affiliation(s)
- He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng-Jun Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Meng-Yuan Lv
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Hua Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ju Cui
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Bialkowski K, Szpila A. Specific 8-oxo-dGTPase activity of MTH1 (NUDT1) protein as a quantitative marker and prognostic factor in human colorectal cancer. Free Radic Biol Med 2021; 176:257-264. [PMID: 34624481 DOI: 10.1016/j.freeradbiomed.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 11/27/2022]
Abstract
The MTH1 (NUDT1) gene, because it is frequently upregulated in many types of human cancers, has been considered a general marker of carcinogenesis for over two decades. The MTH1 protein hydrolyzes the oxidized mutagenic DNA precursor, 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), to the corresponding 5'-monophosphate and inorganic pyrophosphate. This prevents its incorporation into DNA by DNA polymerases and protects cells from the accumulation of 8-oxo-dGTP-induced point mutations. Elevated MTH1 mRNA and protein in many types of human cancer indicate a worse prognosis. However, the enzymatic activity of MTH1 has remained largely uninvestigated in this context. Therefore, we have set out to determine the specific 8-oxo-dGTPase activity of MTH1 in 57 pairs of human colorectal cancers (CRC) and adjacent cancer-free tissues (CFCF). The goal was to ascertain the potential for measuring this enzymatic activity as a way to differentiate cancerous from non-cancerous specimens of the intestine, as well as defining its capabilities as a prognostic value for disease-free survival. We found that 79% of CRC tumors exhibited a higher MTH1 activity than did CFCF, with a significant 1.6-fold increase in overall median value (p < 1E-6). The 8-oxo-dGTPase in both tissues was proportional to the corresponding levels of MTH1 protein, as assayed by Western blotting. Activity higher than the ROC-optimized threshold (AUC = 0.71) indicated cancerous tissue, with a 54% sensitivity and an 83% specificity. Postoperative fate followed for up to 100 months showed that higher 8-oxo-dGTPase, in either the CFCF or the CRC tumor, clearly lowered the probability of a relapse-free survival, although borderline statistical significance (p < 0.05) was crossed only for the CFCF.
Collapse
Affiliation(s)
- Karol Bialkowski
- Department of Clinical Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.
| | - Anna Szpila
- Department of Clinical Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
9
|
Sanjiv K, Calderón-Montaño JM, Pham TM, Erkers T, Tsuber V, Almlöf I, Höglund A, Heshmati Y, Seashore-Ludlow B, Nagesh Danda A, Gad H, Wiita E, Göktürk C, Rasti A, Friedrich S, Centio A, Estruch M, Våtsveen TK, Struyf N, Visnes T, Scobie M, Koolmeister T, Henriksson M, Wallner O, Sandvall T, Lehmann S, Theilgaard-Mönch K, Garnett MJ, Östling P, Walfridsson J, Helleday T, Warpman Berglund U. MTH1 Inhibitor TH1579 Induces Oxidative DNA Damage and Mitotic Arrest in Acute Myeloid Leukemia. Cancer Res 2021; 81:5733-5744. [PMID: 34593524 PMCID: PMC9397639 DOI: 10.1158/0008-5472.can-21-0061] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/25/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy, exhibiting high levels of reactive oxygen species (ROS). ROS levels have been suggested to drive leukemogenesis and is thus a potential novel target for treating AML. MTH1 prevents incorporation of oxidized nucleotides into the DNA to maintain genome integrity and is upregulated in many cancers. Here we demonstrate that hematologic cancers are highly sensitive to MTH1 inhibitor TH1579 (karonudib). A functional precision medicine ex vivo screen in primary AML bone marrow samples demonstrated a broad response profile of TH1579, independent of the genomic alteration of AML, resembling the response profile of the standard-of-care treatments cytarabine and doxorubicin. Furthermore, TH1579 killed primary human AML blast cells (CD45+) as well as chemotherapy resistance leukemic stem cells (CD45+Lin-CD34+CD38-), which are often responsible for AML progression. TH1579 killed AML cells by causing mitotic arrest, elevating intracellular ROS levels, and enhancing oxidative DNA damage. TH1579 showed a significant therapeutic window, was well tolerated in animals, and could be combined with standard-of-care treatments to further improve efficacy. TH1579 significantly improved survival in two different AML disease models in vivo. In conclusion, the preclinical data presented here support that TH1579 is a promising novel anticancer agent for AML, providing a rationale to investigate the clinical usefulness of TH1579 in AML in an ongoing clinical phase I trial. SIGNIFICANCE: The MTH1 inhibitor TH1579 is a potential novel AML treatment, targeting both blasts and the pivotal leukemic stem cells while sparing normal bone marrow cells.
Collapse
Affiliation(s)
- Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Therese M. Pham
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tom Erkers
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Viktoriia Tsuber
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Höglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yaser Heshmati
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Akhilesh Nagesh Danda
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elisee Wiita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Göktürk
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Azita Rasti
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Friedrich
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anders Centio
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Montserrat Estruch
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thea Kristin Våtsveen
- Department for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,KG Jebsen Center for B cell malignancies, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nona Struyf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Torkild Visnes
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Olov Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Sandvall
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Haematology, Uppsala University, Uppsala, Sweden
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Hematology, Rigshospitalet/National Univ. Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Päivi Östling
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Julian Walfridsson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Oxcia AB, Stockholm, Sweden.,Corresponding Author: Ulrika Warpman Berglund, Department of Oncology Pathology, Karolinska Institute, Tomtebodavägen 23A, Stockholm 17121, Sweden or Oxcia AB, Norrbackagatan 70C, SE-113 34 Stockholm, Sweden. Phone: 46-73-2709605; E-mail: or
| |
Collapse
|
10
|
Chang LC, Hsu YC, Chiu HM, Ueda K, Wu MS, Kao CH, Shen TL. Exploration of the Proteomic Landscape of Small Extracellular Vesicles in Serum as Biomarkers for Early Detection of Colorectal Neoplasia. Front Oncol 2021; 11:732743. [PMID: 34589434 PMCID: PMC8473825 DOI: 10.3389/fonc.2021.732743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background Patient participation in colorectal cancer (CRC) screening via a stool test and colonoscopy is suboptimal, but participation can be improved by the development of a blood test. However, the suboptimal detection abilities of blood tests for advanced neoplasia, including advanced adenoma (AA) and CRC, limit their application. We aimed to investigate the proteomic landscape of small extracellular vesicles (sEVs) from the serum of patients with colorectal neoplasia and identify specific sEV proteins that could serve as biomarkers for early diagnosis. Materials and Methods We enrolled 100 patients including 13 healthy subjects, 12 non-AAs, 13 AAs, and 16 stage-I, 15 stage-II, 16 stage-III, and 15 stage-IV CRCs. These patients were classified as normal control, early neoplasia, and advanced neoplasia. The sEV proteome was explored by liquid chromatography-tandem mass spectrometry. Generalized association plots were used to integrate the clustering methods, visualize the data matrix, and analyze the relationship. The specific sEV biomarkers were identified by a decision tree via Orange3 software. Functional enrichment analysis was conducted by using the Ingenuity Pathway Analysis platform. Results The sEV protein matrix was identified from the serum of 100 patients and contained 3353 proteins, of which 1921 proteins from 98 patients were finally analyzed. Compared with the normal control, subjects with early and advanced neoplasia exhibited a distinct proteomic distribution in the data matrix plot. Six sEV proteins were identified, namely, GCLM, KEL, APOF, CFB, PDE5A, and ATIC, which properly distinguished normal control, early neoplasia, and advanced neoplasia patients from each other. Functional enrichment analysis revealed that APOF+ and CFB+ sEV associated with clathrin-mediated endocytosis signaling and the complement system, which have critical implications for CRC carcinogenesis. Conclusion Patients with colorectal neoplasia had a distinct sEV proteome expression pattern in serum compared with those patients who were healthy and did not have neoplasms. Moreover, the six identified specific sEV proteins had the potential to discriminate colorectal neoplasia between early-stage and advanced neoplasia. Collectively, our study provided a six-sEV protein biomarker panel for CRC diagnosis at early or advanced stages. Furthermore, the implication of the sEV proteome in CRC carcinogenesis via specific signaling pathways was explored.
Collapse
Affiliation(s)
- Li-Chun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Health Management Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Science and Engineering, National Central University, Taoyuan, Taiwan
| | - Han-Mo Chiu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Health Management Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Koji Ueda
- Cancer Precision Medicine Center, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiun-How Kao
- Department of Statistics, Tamkang University, New Taipei City, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Inhibitor development of MTH1 via high-throughput screening with fragment based library and MTH1 substrate binding cavity. Bioorg Chem 2021; 110:104813. [PMID: 33774493 DOI: 10.1016/j.bioorg.2021.104813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 11/22/2022]
Abstract
MutT Homolog 1 (MTH1) has been proven to hydrolyze oxidized nucleotide triphosphates during DNA repair. It can prevent the incorporation of wrong nucleotides during DNA replication and mitigate cell apoptosis. In a cancer cell, abundant reactive oxygen species can lead to substantial DNA damage and DNA mutations by base-pairing mismatch. MTH1 could eliminate oxidized dNTP and prevent cancer cells from entering cell death. Therefore, inhibition of MTH1 activity is considered to be an anti-cancer therapeutic target. In this study, high-throughput screening techniques were combined with a fragment-based library containing 2,313 compounds, which were used to screen for lead compounds with MTH1 inhibitor activity. Four compounds with MTH1 inhibitor ability were selected, and compound MI0639 was found to have the highest effective inhibition. To discover the selectivity and specificity of this action, several derivatives based on the MTH1 and MI0639 complex structure were synthesized. We compared 14 complex structures of MTH1 and the various compounds in combination with enzymatic inhibition and thermodynamic analysis. Nanomolar-range IC50 inhibition abilities by enzyme kinetics and Kd values by thermodynamic analysis were obtained for two compounds, named MI1020 and MI1024. Based on structural information and compound optimization, we aim to provide a strategy for the development of MTH1 inhibitors with high selectivity and specificity.
Collapse
|
12
|
Radiolabeled 6-(2, 3-Dichlorophenyl)-N4-methylpyrimidine-2, 4-diamine (TH287): A Potential Radiotracer for Measuring and Imaging MTH1. Int J Mol Sci 2020; 21:ijms21228860. [PMID: 33238630 PMCID: PMC7700685 DOI: 10.3390/ijms21228860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
MTH1 (MutT homolog 1) or NUDT1 (Nudix Hydrolase 1), also known as oxidized purine nucleoside triphosphatase, has potential as a biomarker for monitoring cancer progression and quantifying target engagement for relevant therapies. In this study, we validate one MTH1 inhibitor TH287 as a PET MTH1 radiotracer. TH287 was radiolabeled with tritium and the binding of [3H]TH287 to MTH1 was evaluated in live glioblastoma cells (U251MG) through saturation and competitive binding assays, together with in vitro enzymatic assays. Furthermore, TH287 was radiolabeled with carbon-11 for in vivo microPET studies. Saturation binding assays show that [3H]TH287 has a dissociation constant (Kd) of 1.97 ± 0.18 nM, Bmax of 2676 ± 122 fmol/mg protein for U251MG cells, and nH of 0.98 ± 0.02. Competitive binding assays show that TH287 (Ki: 3.04 ± 0.14 nM) has a higher affinity for MTH1 in U251MG cells compared to another well studied MTH1 inhibitor: (S)-crizotinib (Ki: 153.90 ± 20.48 nM). In vitro enzymatic assays show that TH287 has an IC50 of 2.2 nM in inhibiting MTH1 hydrolase activity and a Ki of 1.3 nM from kinetics assays, these results are consistent with our radioligand binding assays. Furthermore, MicroPET imaging shows that [11C]TH287 gets into the brain with rapid clearance from the brain, kidney, and heart. The results presented here indicate that radiolabeled TH287 has favorable properties to be a useful tool for measuring MTH1 in vitro and for further evaluation for in vivo PET imaging MTH1 of brain tumors and other central nervous system disorders.
Collapse
|
13
|
Moukengue B, Brown HK, Charrier C, Battaglia S, Baud'huin M, Quillard T, Pham TM, Pateras IS, Gorgoulis VG, Helleday T, Heymann D, Berglund UW, Ory B, Lamoureux F. TH1579, MTH1 inhibitor, delays tumour growth and inhibits metastases development in osteosarcoma model. EBioMedicine 2020; 53:102704. [PMID: 32151797 PMCID: PMC7063190 DOI: 10.1016/j.ebiom.2020.102704] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Osteosarcoma (OS) is the most common primary malignant bone tumour. Unfortunately, no new treatments are approved and over the last 30 years the survival rate remains only 30% at 5 years for poor responders justifying an urgent need of new therapies. The Mutt homolog 1 (MTH1) enzyme prevents incorporation of oxidized nucleotides into DNA and recently developed MTH1 inhibitors may offer therapeutic potential as MTH1 is overexpressed in various cancers. Methods The aim of this study was to evaluate the therapeutic benefits of targeting MTH1 with two chemical inhibitors, TH588 and TH1579 on human osteosarcoma cells. Preclinical efficacy of TH1579 was assessed in human osteosarcoma xenograft model on tumour growth and development of pulmonary metastases. Findings MTH1 is overexpressed in OS patients and tumour cell lines, compared to mesenchymal stem cells. In vitro, chemical inhibition of MTH1 by TH588 and TH1579 decreases OS cells viability, impairs their cell cycle and increases apoptosis in OS cells. TH1579 was confirmed to bind MTH1 by CETSA in OS model. Moreover, 90 mg/kg of TH1579 reduces in vivo tumour growth by 80.5% compared to non-treated group at day 48. This result was associated with the increase in 8-oxo-dG integration into tumour cells DNA and the increase of apoptosis. Additionally, TH1579 also reduces the number of pulmonary metastases. Interpretation All these results strongly provide a pre-clinical proof-of-principle that TH1579 could be a therapeutic option for patients with osteosarcoma. Funding This study was supported by La Ligue Contre le Cancer, la SFCE and Enfants Cancers Santé.
Collapse
Affiliation(s)
- Brice Moukengue
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Hannah K Brown
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; University of Sheffield, INSERM, European Associated Laboratory "Sarcoma Research Unit", Medical School, S10 2RX, Sheffield, UK
| | - Céline Charrier
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Séverine Battaglia
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Marc Baud'huin
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France; CHU de Nantes, Nantes, France
| | - Thibaut Quillard
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Therese M Pham
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Ioannis S Pateras
- Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Centre, The University of Manchester, Manchester, UK
| | - Thomas Helleday
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Dominique Heymann
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; University of Sheffield, INSERM, European Associated Laboratory "Sarcoma Research Unit", Medical School, S10 2RX, Sheffield, UK; INSERM, U1232, CRCINA, Institut de Cancérologie de l'Ouest, University of Nantes, Université d'Angers, Blvd Jacques Monod, 44805 Saint-Herblain, France
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Benjamin Ory
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Francois Lamoureux
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France.
| |
Collapse
|
14
|
Tahara YK, Kietrys AM, Hebenbrock M, Lee Y, Wilson DL, Kool ET. Dual Inhibitors of 8-Oxoguanine Surveillance by OGG1 and NUDT1. ACS Chem Biol 2019; 14:2606-2615. [PMID: 31622553 PMCID: PMC7061906 DOI: 10.1021/acschembio.9b00490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative damage in DNA is one of the primary sources of mutations in the cell. The activities of repair enzymes 8-oxoguanine DNA glycosylase (OGG1) and human MutT Homologue 1 (NUDT1 or MTH1), which work together to ameliorate this damage, are closely linked to mutagenesis, genotoxicity, cancer, and inflammation. Here we have undertaken the development of small-molecule dual inhibitors of the two enzymes as tools to test the relationships between these pathways and disease. The compounds preserve key structural elements of known inhibitors of the two enzymes, and they were synthesized and assayed with recently developed luminescence assays of the enzymes. Further structural refinement of initial lead molecules yielded compound 5 (SU0383) with IC50(NUDT1) = 0.034 μM and IC50(OGG1) = 0.49 μM. The compound SU0383 displayed low toxicity in two human cell lines at 10 μM. Experiments confirm the ability of SU0383 to increase sensitivity of tumor cells to oxidative stress. Dual inhibitors of these two enzymes are expected to be useful in testing multiple hypotheses regarding the roles of 8-oxo-dG in multiple disease states.
Collapse
Affiliation(s)
- Yu-ki Tahara
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anna M. Kietrys
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Marian Hebenbrock
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yujeong Lee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - David L. Wilson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Scanlan LD, Coskun SH, Jaruga P, Hanna SK, Sims CM, Almeida JL, Catoe D, Coskun E, Golan R, Dizdaroglu M, Nelson BC. Measurement of Oxidatively Induced DNA Damage in Caenorhabditis elegans with High-Salt DNA Extraction and Isotope-Dilution Mass Spectrometry. Anal Chem 2019; 91:12149-12155. [PMID: 31454479 PMCID: PMC6996937 DOI: 10.1021/acs.analchem.9b01503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Caenorhabditis elegans is used extensively as a medical and toxicological model organism. However, little is known about background levels of oxidatively induced DNA damage in the nematode or how culturing methods affect DNA damage levels. The tough C. elegans cuticle makes it challenging to extract genomic DNA without harsh procedures that can artifactually increase DNA damage. Therefore, a mild extraction protocol based on enzymatic digestion of the C. elegans cuticle with high-salt phase-separation of DNA has been developed and optimized. This method allows for efficient extraction of >50 μg DNA using a minimum of 250000 nematodes grown in liquid culture. The extracted DNA exhibited acceptable RNA levels (<10% contamination), functionality in polymerase chain reaction assays, and reproducible DNA fragmentation. Gas chromatography/tandem mass spectrometry (GC-MS/MS) with isotope-dilution measured lower lesion levels in high-salt extracts than in phenol extracts. Phenolic extraction produced a statistically significant increase in 8-hydroxyguanine, a known artifact, and additional artifactual increases in 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 4,6-diamino-5-formamidopyrimidine, and 8-hydroxyadenine. The high-salt DNA extraction procedure utilizes green solvents and reagents and minimizes artifactual DNA damage, making it more suitable for molecular and toxicological studies in C. elegans. This is, to our knowledge, the first use of GC-MS/MS to measure multiple 8,5'-cyclopurine-2'-deoxynucleosides in a toxicologically important terrestrial organism.
Collapse
Affiliation(s)
- Leona D. Scanlan
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sanem Hosbas Coskun
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Gazi University, Faculty of Pharmacy, Ankara, 06330, Turkey
| | - Pawel Jaruga
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Shannon K. Hanna
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Christopher M. Sims
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jamie L. Almeida
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David Catoe
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Erdem Coskun
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Rachel Golan
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Miral Dizdaroglu
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Bryant C. Nelson
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
16
|
Anticancer effect of (S)-crizotinib on osteosarcoma cells by targeting MTH1 and activating reactive oxygen species. Anticancer Drugs 2019; 29:341-352. [PMID: 29420337 PMCID: PMC5882294 DOI: 10.1097/cad.0000000000000602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MTH1 has become a new rising star in the field of ‘cancer phenotypic lethality’ and can be targeted in many kinds of tumors. This study aimed to explore the anticancer effect of MTH1-targeted drug (S)-crizotinib on osteosarcoma (OS) cells. We detected MTH1 expression in OS tissues and cells using immunohistochemistry and western blot. The effects of MTH1 on OS cell viability were explored using the siRNA technique and CCK8. The anticancer effects of the MTH1-targeted drug (S)-crizotinib on OS cells were explored by in-vitro assays. The intracellular 8-oxo-dGTP level and oxygen reactive species (ROS) of OS cells were detected by Cy3-conjugated avidin staining and dichlorofluorescein diacetate staining, respectively. The expression of MTH1 was significantly higher in OS tissues and cell lines than that in the corresponding adjacent tissues and osteoblastic cell line. The proliferation of OS cells was significantly inhibited through knockdown of MTH1 by siRNA technology. (S)-Crizotinib could inhibit the proliferation of OS cells with an increase in the apoptosis levels and causing G0/G1 arrest by targeting MTH1 and activating ROS. In addition, (S)-crizotinib could inhibit the migration of OS cells. (S)-Crizotinib could suppress the proliferation and migration, cause G0/G1 arrest, and increase the apoptosis level of OS cells by targeting MTH1 and activating ROS. This study will provide a promising therapeutic target and the theoretical basis for the clinical application of (S)-crizotinib in OS.
Collapse
|
17
|
Identification and quantification of DNA repair protein poly(ADP ribose) polymerase 1 (PARP1) in human tissues and cultured cells by liquid chromatography/isotope-dilution tandem mass spectrometry. DNA Repair (Amst) 2019; 75:48-59. [PMID: 30743082 DOI: 10.1016/j.dnarep.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022]
Abstract
Poly(ADP ribose) polymerase 1 (PARP1) is a multifunctional DNA repair protein of the base excision repair pathway and plays a major role in the repair of DNA strand breaks and in replication and transcriptional regulation among other functions. Mounting evidence points to the predictive and prognostic value of PARP1 expression in human cancers. Thus, PARP1 has become an important target in cancer therapy, leading to the development of inhibitors as anticancer drugs. In the past, PARP1 expression levels in tissue samples have generally been estimated by indirect and semi-quantitative immunohistochemical methods. Accurate measurement of PARP1 in normal tissues and malignant tumors of patients will be essential for evaluating PARP1 as a predictive and prognostic biomarker in cancer and other diseases, and for the development and use of its inhibitors in cancer therapy. In this work, we present an approach involving liquid chromatography-isotope-dilution tandem mass spectrometry to positively identify and accurately quantify PARP1 in human tissues and cultured cells. We identified and quantified PARP1 in human normal ovarian tissues and malignant ovarian tumors, and in three pairs of human cell lines, each pair consisting of a normal cell line and its cancerous counterpart. Significantly greater expression of PARP1 was observed in malignant ovarian tissues than in normal ovarian tissues. In the case of one pair of cell lines, the cancerous cell line also exhibited greater expression of PARP1 than in normal cell line. We also show the simultaneous measurement of PARP1 and apurinic/apyrimidinic endonuclease 1 (APE1) in a given protein extract. The approach presented in this work is expected to contribute to the accurate quantitative assessment of PARP1 levels in basic research and clinical studies.
Collapse
|
18
|
Pompsch M, Vogel J, Classen F, Kranz P, Iliakis G, Riffkin H, Brockmeier U, Metzen E. The presumed MTH1-inhibitor TH588 sensitizes colorectal carcinoma cells to ionizing radiation in hypoxia. BMC Cancer 2018; 18:1190. [PMID: 30497423 PMCID: PMC6267833 DOI: 10.1186/s12885-018-5095-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Background The nudix family member enzyme MutT homologue-1 (MTH1) hydrolyses the oxidized nucleotides 8-oxo-dGTP and 2-hydroxy-dATP and thus prevents the incorporation of damaged nucleotides into nuclear and mitochondrial DNA. Therefore MTH1 was proposed to protect cancer cells from oxidative DNA lesions and subsequent cell death. We investigated whether the bona fide MTH1 inhibitor TH588 affects responses of cultured colorectal tumor cells to ionizing radiation (IR) in normoxia and in moderate or severe hypoxia. Methods TH588 was tested in cell viability and survival assays (tetrazolium dye (MTT), propidium iodide staining, caspase-3 activity, and colony formation assays (CFA)) in colorectal carcinoma cells (HCT116 and SW480) in combination with IR in normoxia and in hypoxia. Additionally, MTH1 was targeted by lentiviral shRNA expression. Human umbilical vein endothelial cells (HUVEC) were assessed in MTT assays. Results In all cell lines tested, TH588 dose-dependently impaired cell survival. In CFAs, TH588 and IR effects on carcinoma cells were additive in normoxia and in hypoxia. Using 3 different shRNAs, the lentiviral approach was detrimental to SW480, but not to HCT116. Conclusions TH588 has cytotoxic effects on transformed and untransformed cells and synergizes with IR in normoxia and in hypoxia. TH588 toxicity is not fully explained by MTH1 inhibition as HCT116 were unaffected by lentiviral suppression of MTH1 expression. TH588 should be explored further because it has radiosensitizing effects in hypoxia.
Collapse
Affiliation(s)
- Mosche Pompsch
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - Julia Vogel
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - Fabian Classen
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - Philip Kranz
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - George Iliakis
- Institut für Medizinische Strahlenbiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - Helena Riffkin
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - Ulf Brockmeier
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany
| | - Eric Metzen
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstraße 55, D45122, Essen, Germany.
| |
Collapse
|
19
|
Versano Z, Shany E, Freedman S, Tuval-Kochen L, Leitner M, Paglin S, Toren A, Yalon M. MutT homolog 1 counteracts the effect of anti-neoplastic treatments in adult and pediatric glioblastoma cells. Oncotarget 2018; 9:27547-27563. [PMID: 29938005 PMCID: PMC6007941 DOI: 10.18632/oncotarget.25547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/19/2018] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma, a fatal disease in both adult and pediatric patients, currently has limited treatment options that offer no more than temporary relief. Our experiments with adult and pediatric glioblastoma cell lines showed that radiation induces a dose-dependent increase in the level of MutT homolog 1 (MTH1) - an enzyme that hydrolyzes oxidized purine nucleoside triphosphates. Similarly, the combination of vorinostat, which is a histone deacetylase inhibitor, and ABT-888, which is a PARP-1 inhibitor, enhanced clonogenic death and increased the MTH1 level, relative to each treatment alone. This result suggests that the MTH1 level is directly related to the damage that is inflicted upon the cells, and its activity protects them against anti-neoplastic therapy. Indeed, the MTH1 inhibitor TH588 and MTH1 siRNA increased glioblastoma's response to both radiation and the combination of vorinostat and ABT-888. TH588 also inhibited glioblastoma's capacity for migration and invasion. In normal fibroblasts, low radiation doses and the combination of vorinostat and ABT-888 decreased the level of the enzyme. TH588 did not alter the fibroblasts’ response to radiation and only mildly affected their response to the combination of vorinostat and ABT-888. In summary, the inhibition of MTH1 is required to better realize the therapeutic potential of anti-neoplastic treatments in glioblastoma.
Collapse
Affiliation(s)
- Ziv Versano
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eitan Shany
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Shany Freedman
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liron Tuval-Kochen
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Leitner
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Shoshana Paglin
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Amos Toren
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michal Yalon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,The Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan 52621, Israel
| |
Collapse
|
20
|
Duan J, Zhang H, Li S, Wang X, Yang H, Jiao S, Ba Y. The role of miR-485-5p/NUDT1 axis in gastric cancer. Cancer Cell Int 2017; 17:92. [PMID: 29075149 PMCID: PMC5645910 DOI: 10.1186/s12935-017-0462-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022] Open
Abstract
Background Cancers can survive the oxidative conditions by upregulating nucleoside diphosphate linked moiety X-type motif 1 (NUDT1). However, the mechanisms underlying gastric carcinogenesis and the dys-regulation of NUDT1 in gastric cancer (GC) remain unknown. Our study aimed to explore the role of NUDT1 and its regulatory pathway by miR-485-5p in GC. Methods Gastric cancer tissues and paired noncancerous tissue samples were collected, and the expression level of NUDT1 and miR-485-5p were detected. Two cohorts from The Cancer Genome Atlas (TCGA) database and another cohort from the Tianjin Medical University Cancer Institute and Hospital were further analyzed. Luciferase assays were performed, and the effects of the miR-485-5p/NUDT1 axis on GC cells and normal gastric cells were determined by subsequent experiments. Results We found that the expression of miR-485-5p was clearly repressed in GC tissues, while NUDT1 expression level was dramatically increased. The overexpression of NUDT1 correlated closely with an increase in invasive depth and a decrease in survival in GC patients. MiR-485-5p could directly bind to the 3′UTR of NUDT1 mRNA and induce its degradation, thus down-regulate its expression. The miR-485-5p/NUDT1 axis could lead to the changes of 8-oxo-dG in GC cells. And the increased expression of NUDT1 resulting from the downregulation of miR-485-5p could accelerate cell proliferation and metastasis in GC. However, the growth and migration of normal gastric cells did not depend on the protection of NUDT1, while the overexpression of NUDT1 could promote malignant transition in normal gastric cells. Conclusions MiR-485-5p acts as a tumor suppressor by targeting NUDT1 in GC. The miR-485-5p/NUDT1 axis is involved in the processes of cell growth and cell motility and plays a key role in the tumorigenesis of GC. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0462-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingjing Duan
- Medical College, Nankai University, Weijin Road 94, Tianjin, 300071 China.,Department of Oncology, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853 China
| | - Haiyang Zhang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huan hu xi Road 18, Tianjin, 300060 China
| | - Shuang Li
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huan hu xi Road 18, Tianjin, 300060 China
| | - Xinyi Wang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huan hu xi Road 18, Tianjin, 300060 China
| | - Haiou Yang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huan hu xi Road 18, Tianjin, 300060 China
| | - Shunchang Jiao
- Medical College, Nankai University, Weijin Road 94, Tianjin, 300071 China.,Department of Oncology, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853 China
| | - Yi Ba
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huan hu xi Road 18, Tianjin, 300060 China
| |
Collapse
|
21
|
Nakabeppu Y, Ohta E, Abolhassani N. MTH1 as a nucleotide pool sanitizing enzyme: Friend or foe? Free Radic Biol Med 2017; 107:151-158. [PMID: 27833032 DOI: 10.1016/j.freeradbiomed.2016.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 12/21/2022]
Abstract
8-Oxo-7,8-dihydroguanine (GO) can originate as 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), an oxidized form of dGTP in the nucleotide pool, or by direct oxidation of guanine base in DNA. Accumulation of GO in cellular genomes can result in mutagenesis or programmed cell death, and is thus minimized by the actions of MutT homolog-1 (MTH1) with 8-oxo-dGTPase, OGG1 with GO DNA glycosylase and MutY homolog (MUTYH) with adenine DNA glycosylase. Studies on Mth1/Ogg1/Mutyh-triple knockout mice demonstrated that the defense systems efficiently minimize GO accumulation in cellular genomes, and thus maintain low incidences of spontaneous mutagenesis and tumorigenesis. Mth1/Ogg1-double knockout mice increased GO accumulation in the genome, but exhibited little susceptibility to spontaneous tumorigenesis, thus revealing that accumulation of GO in cellular genomes induces MUTYH-dependent cell death. Cancer cells are exposed to high oxidative stress levels and accumulate a high level of 8-oxo-dGTP in their nucleotide pools; cancer cells consequently express increased levels of MTH1 to eliminate 8-oxo-dGTP, indicating that increased expression of MTH1 in cancer cells may be detrimental for cancer patients. Mth1/Ogg1-double knockout mice are highly vulnerable to neurodegeneration under oxidative conditions, while transgenic expression of human MTH1 efficiently prevents neurodegeneration by avoiding GO accumulation in mitochondrial genomes of neurons and/or nuclear genomes of microglia, indicating that increased expression of MTH1 may be beneficial for neuronal tissues.
Collapse
Affiliation(s)
- Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| | - Eiko Ohta
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
22
|
Samaranayake GJ, Huynh M, Rai P. MTH1 as a Chemotherapeutic Target: The Elephant in the Room. Cancers (Basel) 2017; 9:cancers9050047. [PMID: 28481306 PMCID: PMC5447957 DOI: 10.3390/cancers9050047] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/26/2022] Open
Abstract
Many tumors sustain elevated levels of reactive oxygen species (ROS), which drive oncogenic signaling. However, ROS can also trigger anti-tumor responses, such as cell death or senescence, through induction of oxidative stress and concomitant DNA damage. To circumvent the adverse consequences of elevated ROS levels, many tumors develop adaptive responses, such as enhanced redox-protective or oxidatively-generated damage repair pathways. Targeting these enhanced oxidative stress-protective mechanisms is likely to be both therapeutically effective and highly specific to cancer, as normal cells are less reliant on such mechanisms. In this review, we discuss one such stress-protective protein human MutT Homolog1 (MTH1), an enzyme that eliminates 8-oxo-7,8-dihydro-2’-deoxyguanosine triphosphate (8-oxodGTP) through its pyrophosphatase activity, and is found to be elevated in many cancers. Our studies, and subsequently those of others, identified MTH1 inhibition as an effective tumor-suppressive strategy. However, recent studies with the first wave of MTH1 inhibitors have produced conflicting results regarding their cytotoxicity in cancer cells and have led to questions regarding the validity of MTH1 as a chemotherapeutic target. To address the proverbial "elephant in the room" as to whether MTH1 is a bona fide chemotherapeutic target, we provide an overview of MTH1 function in the context of tumor biology, summarize the current literature on MTH1 inhibitors, and discuss the molecular contexts likely required for its efficacy as a therapeutic target.
Collapse
Affiliation(s)
- Govindi J Samaranayake
- Department of Medicine/Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami, Miami, FL 33136, USA.
| | - Mai Huynh
- Department of Medicine/Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- College of Arts and Sciences, University of Miami, Coral Gables, FL 33146, USA.
| | - Priyamvada Rai
- Department of Medicine/Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| |
Collapse
|
23
|
Fujishita T, Okamoto T, Akamine T, Takamori S, Takada K, Katsura M, Toyokawa G, Shoji F, Shimokawa M, Oda Y, Nakabeppu Y, Maehara Y. Association of MTH1 expression with the tumor malignant potential and poor prognosis in patients with resected lung cancer. Lung Cancer 2017; 109:52-57. [PMID: 28577950 DOI: 10.1016/j.lungcan.2017.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/13/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The oxidized purine nucleoside triphosphatase, mutT homolog 1 (MTH1), physiologically sanitizes 8-oxo-dGTP in the nucleotide pool. Previous studies indicated that MTH1 is associated with tumor proliferation and invasion in non-small cell lung cancer (NSCLC) cell lines; however, the role of MTH1 in patients with NSCLC remains unclear. MATERIALS AND METHODS Two patient cohorts that underwent surgery for NSCLC in our institution were investigated retrospectively. In one cohort consisting of 197 patients, the associations between MTH1 expression and clinicopathological factors or prognosis were analyzed. In another cohort consisting of 41 patients, the relationship between MTH1 expression in the tumors and serum oxidative stress levels (evaluated by the diacron-reactive oxygen metabolites [d-ROMs] test) or antioxidant capacity in the patients (evaluated by the biological antioxidant potential (BAP) test) was analyzed. A total of 238 patients were assessed for MTH1 protein levels using immunohistochemistry. RESULTS Among the 197 patients in the former cohort, 111 (56.3%) exhibited high MTH1 expression, while 86 (43.7%) exhibited low MTH1 expression. Male sex, smoking habit of ≥20 pack-years, squamous cell carcinoma, pathological stage ≥ II, tumor diameter ≥30mm, lymph node metastases, pleural invasion, lymphatic permeation and vascular infiltration were significantly associated with high MTH1 expression (p<0.05). The high MTH1 expression group had a significantly worse prognosis than that of the low MTH1 expression group (5-year overall survival: 81.6% vs. 92.3%, p=0.0011; 5-year disease-free survival: 55.0% vs. 83.7%, p=0.0002). d-ROMs and BAP test values were significantly higher in the high than in the low MTH1 expression group (p<0.05). CONCLUSION This study showed that MTH1 protein expression was closely related to factors associated with a high malignant potential and poor patient survival. MTH1 may be a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Takatoshi Fujishita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Takada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masakazu Katsura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Goji Toyokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiro Shoji
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
25
|
Waz S, Nakamura T, Hirata K, Koga-Ogawa Y, Chirifu M, Arimori T, Tamada T, Ikemizu S, Nakabeppu Y, Yamagata Y. Structural and Kinetic Studies of the Human Nudix Hydrolase MTH1 Reveal the Mechanism for Its Broad Substrate Specificity. J Biol Chem 2016; 292:2785-2794. [PMID: 28035004 PMCID: PMC5314174 DOI: 10.1074/jbc.m116.749713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/23/2016] [Indexed: 01/29/2023] Open
Abstract
The human MutT homolog 1 (hMTH1, human NUDT1) hydrolyzes oxidatively damaged nucleoside triphosphates and is the main enzyme responsible for nucleotide sanitization. hMTH1 recently has received attention as an anticancer target because hMTH1 blockade leads to accumulation of oxidized nucleotides in the cell, resulting in mutations and death of cancer cells. Unlike Escherichia coli MutT, which shows high substrate specificity for 8-oxoguanine nucleotides, hMTH1 has broad substrate specificity for oxidized nucleotides, including 8-oxo-dGTP and 2-oxo-dATP. However, the reason for this broad substrate specificity remains unclear. Here, we determined crystal structures of hMTH1 in complex with 8-oxo-dGTP or 2-oxo-dATP at neutral pH. These structures based on high quality data showed that the base moieties of two substrates are located on the similar but not the same position in the substrate binding pocket and adopt a different hydrogen-bonding pattern, and both triphosphate moieties bind to the hMTH1 Nudix motif (i.e. the hydrolase motif) similarly and align for the hydrolysis reaction. We also performed kinetic assays on the substrate-binding Asp-120 mutants (D120N and D120A), and determined their crystal structures in complex with the substrates. Analyses of bond lengths with high-resolution X-ray data and the relationship between the structure and enzymatic activity revealed that hMTH1 recognizes the different oxidized nucleotides via an exchange of the protonation state at two neighboring aspartate residues (Asp-119 and Asp-120) in its substrate binding pocket. To our knowledge, this mechanism of broad substrate recognition by enzymes has not been reported previously and may have relevance for anticancer drug development strategies targeting hMTH1.
Collapse
Affiliation(s)
- Shaimaa Waz
- From the Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973
| | - Teruya Nakamura
- From the Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973.,the Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 862-0973
| | - Keisuke Hirata
- From the Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973
| | - Yukari Koga-Ogawa
- From the Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973
| | - Mami Chirifu
- From the Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973
| | - Takao Arimori
- the Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki 319-1106, and
| | - Taro Tamada
- the Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki 319-1106, and
| | - Shinji Ikemizu
- From the Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973
| | - Yusaku Nakabeppu
- the Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuriko Yamagata
- From the Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973,
| |
Collapse
|
26
|
Ji D, Beharry AA, Ford JM, Kool ET. A Chimeric ATP-Linked Nucleotide Enables Luminescence Signaling of Damage Surveillance by MTH1, a Cancer Target. J Am Chem Soc 2016; 138:9005-8. [PMID: 27413803 DOI: 10.1021/jacs.6b02895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enzyme MTH1 cleanses the cellular nucleotide pool of oxidatively damaged 8-oxo-dGTP, preventing mutagenesis by this nucleotide. The enzyme is considered a promising therapeutic target; however, methods to measure its activity are indirect and laborious and have low sensitivity. Here we describe a novel ATP-linked chimeric nucleotide (ARGO) that enables luminescence signaling of the enzymatic reaction, greatly simplifying the measurement of MTH1 activity. We show that the reporting system can be used to identify inhibitors of MTH1, and we use it to quantify enzyme activity in eight cell lines and in colorectal tumor tissue. The ARGO reporter is likely to have considerable utility in the study of the biology of MTH1 and potentially in analyzing patient samples during clinical testing.
Collapse
Affiliation(s)
- Debin Ji
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Andrew A Beharry
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - James M Ford
- Departments of Medicine (Oncology) and Genetics, Stanford School of Medicine , Stanford, California 94305, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
27
|
Dong L, Wang H, Niu J, Zou M, Wu N, Yu D, Wang Y, Zou Z. Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1. Onco Targets Ther 2015; 8:3649-64. [PMID: 26677335 PMCID: PMC4677763 DOI: 10.2147/ott.s94513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Inhibition of the nucleotide pool sanitizing enzyme MTH1 causes extensive oxidative DNA damages and apoptosis in cancer cells and hence may be used as an anticancer strategy. As natural products have been a rich source of medicinal chemicals, in the present study, we used the MTH1-catalyzed enzymatic reaction as a high-throughput in vitro screening assay to search for natural compounds capable of inhibiting MTH1. Echinacoside, a compound derived from the medicinal plants Cistanche and Echinacea, effectively inhibited the catalytic activity of MTH1 in an in vitro assay. Treatment of various human cancer cell lines with Echinacoside resulted in a significant increase in the cellular level of oxidized guanine (8-oxoguanine), while cellular reactive oxygen species level remained unchanged, indicating that Echinacoside also inhibited the activity of cellular MTH1. Consequently, Echinacoside treatment induced an immediate and dramatic increase in DNA damage markers and upregulation of the G1/S-CDK inhibitor p21, which were followed by marked apoptotic cell death and cell cycle arrest in cancer but not in noncancer cells. Taken together, these studies identified a natural compound as an MTH1 inhibitor and suggest that natural products can be an important source of anticancer agents.
Collapse
Affiliation(s)
- Liwei Dong
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Hongge Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiajing Niu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Mingwei Zou
- Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA
| | - Nuoting Wu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Debin Yu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Ye Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zhihua Zou
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
28
|
Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J 2015; 283:232-45. [DOI: 10.1111/febs.13574] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/04/2015] [Accepted: 10/21/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Jordi Carreras Puigvert
- Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| | - Thomas Helleday
- Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
29
|
Reddy PT, Jaruga P, Nelson BC, Lowenthal MS, Jemth AS, Loseva O, Coskun E, Helleday T, Dizdaroglu M. Production, Purification, and Characterization of ¹⁵N-Labeled DNA Repair Proteins as Internal Standards for Mass Spectrometric Measurements. Methods Enzymol 2015; 566:305-32. [PMID: 26791985 DOI: 10.1016/bs.mie.2015.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by a variety of damaging agents, resulting in the formation of a multiplicity of lesions, which are mutagenic and cytotoxic. Unless repaired by DNA repair mechanisms before DNA replication, DNA lesions can lead to genomic instability, which is one of the hallmarks of cancer. Oxidatively induced DNA damage is mainly repaired by base excision repair pathway with the involvement of a plethora of proteins. Cancer tissues develop greater DNA repair capacity than normal tissues by overexpressing DNA repair proteins. Increased DNA repair in tumors that removes DNA lesions generated by therapeutic agents before they became toxic is a major mechanism in the development of therapy resistance. Evidence suggests that DNA repair capacity may be a predictive biomarker of patient response. Thus, knowledge of DNA-protein expressions in disease-free and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. Our laboratory has developed methodologies that use mass spectrometry with isotope dilution for the measurement of expression of DNA repair proteins in human tissues and cultured cells. For this purpose, full-length (15)N-labeled analogs of a number of human DNA repair proteins have been produced and purified to be used as internal standards for positive identification and accurate quantification. This chapter describes in detail the protocols of this work. The use of (15)N-labeled proteins as internal standards for the measurement of several DNA repair proteins in vivo is also presented.
Collapse
Affiliation(s)
- Prasad T Reddy
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, USA.
| | - Pawel Jaruga
- Biochemical Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Bryant C Nelson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Mark S Lowenthal
- Biochemical Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Erdem Coskun
- Biochemical Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Miral Dizdaroglu
- Biochemical Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
| |
Collapse
|