1
|
Li M, Shao G. Senataxin Attenuates DNA Damage Response Activation and Suppresses Senescence. Antioxidants (Basel) 2024; 13:1337. [PMID: 39594478 PMCID: PMC11591223 DOI: 10.3390/antiox13111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), induces DNA double-strand breaks (DSBs) that compromise genomic integrity. The DNA Damage Response (DDR), primarily mediated by ATM and ATR kinases, is crucial for recognizing and repairing DSBs. Senataxin (SETX), a DNA/RNA helicase, is critical in resolving R-loops, with mutations in SETX associated with neurodegenerative diseases. This study uncovers a novel function of senataxin in modulating DDR and its impact on cellular senescence. Senataxin is shown to be crucial not only for DSB repair but also for determining cell fate under oxidative stress. SETX knockout cells show impaired DSB repair and prolonged ATM/ATR signaling detected by Western blotting, leading to increased senescence, as indicated by elevated β-galactosidase activity following H2O2 exposure and I-PpoI-induced DSBs. Wild-type cells exhibit higher apoptosis levels compared to SETX knockout cells under H2O2 treatment, suggesting that senataxin promotes apoptosis over senescence in oxidative stress. This indicates that senataxin plays a protective role against the accumulation of senescent cells, potentially mitigating age-related cellular decline and neurodegenerative disease progression. These findings highlight senataxin as a critical mediator in DDR pathways and a potential therapeutic target for conditions where cellular senescence contributes to disease pathology.
Collapse
Affiliation(s)
| | - Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
2
|
Shikazono N, Akamatsu K. The role of DNA polymerase I in tolerating single-strand breaks generated at clustered DNA damage in Escherichia coli. Sci Rep 2024; 14:19124. [PMID: 39155334 PMCID: PMC11330960 DOI: 10.1038/s41598-024-69823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
Clustered DNA damage, when multiple lesions are generated in close proximity, has various biological consequences, including cell death, chromosome aberrations, and mutations. It is generally perceived as a hallmark of ionizing radiation. The enhanced mutagenic potential of lesions within a cluster has been suggested to result, at least in part, from the selection of the strand with the mutagenic lesion as the preferred template strand, and that this process is relevant to the tolerance of persistent single-strand breaks generated during an attempted repair. Using a plasmid-based assay in Escherichia coli, we examined how the strand bias is affected in mutant strains deficient in different DNA polymerase I activities. Our study revealed that the strand-displacement and 5'-flap endonuclease activities are required for this process, while 3'-to-5' exonuclease activity is not. We also found the strand template that the mutagenic lesion was located on, whether lagging or leading, had no effect on this strand bias. Our results imply that an unknown pathway operates to repair/tolerate the single-strand break generated at a bi-stranded clustered damage site, and that there exist different backup pathways, depending on which DNA polymerase I activity is compromised.
Collapse
Affiliation(s)
- Naoya Shikazono
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan.
| | - Ken Akamatsu
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| |
Collapse
|
3
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Štětina T, Koštál V. Mortality caused by extracellular freezing is associated with fragmentation of nuclear DNA in larval haemocytes of two drosophilid flies. J Exp Biol 2023; 226:jeb246456. [PMID: 37846596 DOI: 10.1242/jeb.246456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
The great complexity of extracellular freezing stress, involving mechanical, osmotic, dehydration and chemical perturbations of the cellular milieu, hampers progress in understanding the nature of freezing injury and the mechanisms to cope with it in naturally freeze-tolerant insects. Here, we show that nuclear DNA fragmentation begins to occur in larval haemocytes of two fly species, Chymomyza costata and Drosophila melanogaster, before or at the same time as the sub-zero temperature is reached that causes irreparable freezing injury and mortality in freeze-sensitive larval phenotypes. However, when larvae of the freeze-tolerant phenotype (diapausing-cold acclimated-hyperprolinemic) of C. costata were subjected to severe freezing stress in liquid nitrogen, no DNA damage was observed. Artificially increasing the proline concentration in freeze-sensitive larvae of both species by feeding them a proline-enriched diet resulted in a decrease in the proportion of nuclei with fragmented DNA during freezing stress. Our results suggest that proline accumulated in diapausing C. costata larvae during cold acclimation may contribute to the protection of nuclear DNA against fragmentation associated with freezing stress.
Collapse
Affiliation(s)
- Tomáš Štětina
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160-31, 370505 České Budějovice, Czech Republic
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160-31, 370505 České Budějovice, Czech Republic
| |
Collapse
|
5
|
Carvajal-Garcia J, Samadpour AN, Hernandez Viera AJ, Merrikh H. Oxidative stress drives mutagenesis through transcription-coupled repair in bacteria. Proc Natl Acad Sci U S A 2023; 120:e2300761120. [PMID: 37364106 PMCID: PMC10318952 DOI: 10.1073/pnas.2300761120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
In bacteria, mutations lead to the evolution of antibiotic resistance, which is one of the main public health problems of the twenty-first century. Therefore, determining which cellular processes most frequently contribute to mutagenesis, especially in cells that have not been exposed to exogenous DNA damage, is critical. Here, we show that endogenous oxidative stress is a key driver of mutagenesis and the subsequent development of antibiotic resistance. This is the case for all classes of antibiotics and highly divergent species tested, including patient-derived strains. We show that the transcription-coupled repair pathway, which uses the nucleotide excision repair proteins (TC-NER), is responsible for endogenous oxidative stress-dependent mutagenesis and subsequent evolution. This suggests that a majority of mutations arise through transcription-associated processes rather than the replication fork. In addition to determining that the NER proteins play a critical role in mutagenesis and evolution, we also identify the DNA polymerases responsible for this process. Our data strongly suggest that cooperation between three different mutagenic DNA polymerases, likely at the last step of TC-NER, is responsible for mutagenesis and evolution. Overall, our work identifies a highly conserved pathway that drives mutagenesis due to endogenous oxidative stress, which has broad implications for all diseases of evolution, including antibiotic resistance development.
Collapse
Affiliation(s)
- Juan Carvajal-Garcia
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232
| | | | | | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232
| |
Collapse
|
6
|
Jaiswal AS, Kim HS, Schärer OD, Sharma N, Williamson E, Srinivasan G, Phillips L, Kong K, Arya S, Misra A, Dutta A, Gupta Y, Walter C, Burma S, Narayan S, Sung P, Nickoloff J, Hromas R. EEPD1 promotes repair of oxidatively-stressed replication forks. NAR Cancer 2023; 5:zcac044. [PMID: 36683914 PMCID: PMC9846428 DOI: 10.1093/narcan/zcac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Unrepaired oxidatively-stressed replication forks can lead to chromosomal instability and neoplastic transformation or cell death. To meet these challenges cells have evolved a robust mechanism to repair oxidative genomic DNA damage through the base excision repair (BER) pathway, but less is known about repair of oxidative damage at replication forks. We found that depletion or genetic deletion of EEPD1 decreases clonogenic cell survival after oxidative DNA damage. We demonstrate that EEPD1 is recruited to replication forks stressed by oxidative damage induced by H2O2 and that EEPD1 promotes replication fork repair and restart and decreases chromosomal abnormalities after such damage. EEPD1 binds to abasic DNA structures and promotes resolution of genomic abasic sites after oxidative stress. We further observed that restoration of expression of EEPD1 via expression vector transfection restores cell survival and suppresses chromosomal abnormalities induced by oxidative stress in EEPD1-depleted cells. Consistent with this, we found that EEPD1 preserves replication fork integrity by preventing oxidatively-stressed unrepaired fork fusion, thereby decreasing chromosome instability and mitotic abnormalities. Our results indicate a novel role for EEPD1 in replication fork preservation and maintenance of chromosomal stability during oxidative stress.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth A Williamson
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Gayathri Srinivasan
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Linda Phillips
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Kimi Kong
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Shailee Arya
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Anurag Misra
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yogesh Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Christi A Walter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Mahaseth T, Kuzminov A. Catastrophic chromosome fragmentation probes the nucleoid structure and dynamics in Escherichia coli. Nucleic Acids Res 2022; 50:11013-11027. [PMID: 36243965 PMCID: PMC9638926 DOI: 10.1093/nar/gkac865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli cells treated with a combination of cyanide (CN) and hydrogen peroxide (HP) succumb to catastrophic chromosome fragmentation (CCF), detectable in pulsed-field gels as >100 double-strand breaks per genome equivalent. Here we show that CN + HP-induced double-strand breaks are independent of replication and occur uniformly over the chromosome,—therefore we used CCF to probe the nucleoid structure by measuring DNA release from precipitated nucleoids. CCF releases surprisingly little chromosomal DNA from the nucleoid suggesting that: (i) the nucleoid is a single DNA-protein complex with only limited stretches of protein-free DNA and (ii) CN + HP-induced breaks happen within these unsecured DNA stretches, rather than at DNA attachments to the central scaffold. Mutants lacking individual nucleoid-associated proteins (NAPs) release more DNA during CCF, consistent with NAPs anchoring chromosome to the central scaffold (Dps also reduces the number of double-strand breaks directly). Finally, significantly more broken DNA is released once ATP production is restored, with about two-thirds of this ATP-dependent DNA release being due to transcription, suggesting that transcription complexes act as pulleys to move DNA loops. In addition to NAPs, recombinational repair of double-strand breaks also inhibits DNA release by CCF, contributing to a dynamic and complex nucleoid structure.
Collapse
Affiliation(s)
- Tulip Mahaseth
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
8
|
Khan SR, Kuzminov A. Thymine-starvation-induced chromosomal fragmentation is not required for thymineless death in Escherichia coli. Mol Microbiol 2022; 117:1138-1155. [PMID: 35324030 PMCID: PMC11574965 DOI: 10.1111/mmi.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
Thymine or thymidine starvation induces robust chromosomal fragmentation in Escherichia coli thyA deoCABD mutants and is proposed to be the cause of thymineless death (TLD). However, fragmentation kinetics challenges the idea that fragmentation causes TLD, by peaking before the onset of TLD and disappearing by the time TLD accelerates. Quantity and kinetics of fragmentation also stay unchanged in hyper-TLD-exhibiting recBCD mutant, making its faster and deeper TLD independent of fragmentation as well. Elimination of fragmentation without affecting cellular metabolism did not abolish TLD in the thyA mutant, but reduced early TLD in the thyA recBCD mutant, suggesting replication-dependent, but undetectable by pulsed-field gel, double-strand breaks contributed to TLD. Chromosomal fragmentation, but not TLD, was eliminated in both the thyA and thyA recBCD mutants harboring deoCABD operon. The expression of a single gene, deoA, encoding thymidine phosphorylase, was sufficient to abolish fragmentation, suggesting thymidine-to-thymine interconversion during T-starvation being a key factor. Overall, this study reveals that chromosomal fragmentation, a direct consequence of T-starvation, is either dispensable or redundant for the overall TLD pathology, including hyper-TLD in the recBCD mutant. Replication forks, unlike chromosomal fragmentation, may provide a minor contribution to TLD, but only in the repair-deficient thyA deoCABD recBCD mutant.
Collapse
Affiliation(s)
- Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Nitric oxide precipitates catastrophic chromosome fragmentation by bolstering both hydrogen peroxide and Fe(II) Fenton reactants in E. coli. J Biol Chem 2022; 298:101825. [PMID: 35288189 PMCID: PMC9018393 DOI: 10.1016/j.jbc.2022.101825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Immune cells kill invading microbes by producing reactive oxygen and nitrogen species, primarily hydrogen peroxide (H2O2) and nitric oxide (NO). We previously found that NO inhibits catalases in Escherichia coli, stabilizing H2O2 around treated cells and promoting catastrophic chromosome fragmentation via continuous Fenton reactions generating hydroxyl radicals. Indeed, H2O2-alone treatment kills catalase-deficient (katEG) mutants similar to H2O2+NO treatment. However, the Fenton reaction, in addition to H2O2, requires Fe(II), which H2O2 excess instantly converts into Fenton-inert Fe(III). For continuous Fenton when H2O2 is stable, a supply of reduced iron becomes necessary. We show here that this supply is ensured by Fe(II) recruitment from ferritins and Fe(III) reduction by flavin reductase. Our observations also concur with NO-mediated respiration inhibition that drives Fe(III) reduction. We modeled this NO-mediated inhibition via inactivation of ndh and nuo respiratory enzymes responsible for the step of NADH oxidation, which results in increased NADH pools driving flavin reduction. We found that, like the katEG mutant, the ndh nuo double mutant is similarly sensitive to H2O2-alone and H2O2+NO treatments. Moreover, the quadruple katEG ndh nuo mutant lacking both catalases and efficient respiration was rapidly killed by H2O2-alone, but this killing was delayed by NO, rather than potentiated by it. Taken together, we conclude that NO boosts the levels of both H2O2 and Fe(II) Fenton reactants, making continuous hydroxyl-radical production feasible and resulting in irreparable oxidative damage to the chromosome.
Collapse
|
10
|
Oxidative damage blocks thymineless death and trimethoprim poisoning in Escherichia coli. J Bacteriol 2021; 204:e0037021. [PMID: 34633866 DOI: 10.1128/jb.00370-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells that cannot synthesize one of the DNA precursors, dTTP, due to thyA mutation or metabolic poisoning, undergo thymineless death (TLD), - a chromosome-based phenomenon of unclear mechanisms. In E. coli, thymineless death is caused either by denying thyA mutants thymidine supplementation or by treating wild type cells with trimethoprim. Two recent reports promised a potential breakthrough in TLD understanding, suggesting significant oxidative damage during thymine starvation. Oxidative damage in vivo comes from Fenton's reaction, when hydrogen peroxide meets ferrous iron to produce hydroxyl radical. Therefore, TLD could kill via irreparable double-strand breaks behind replication forks, when starvation-caused single-strand DNA gaps are attacked by hydroxyl radicals. We tested the proposed Fenton-TLD connection, in both thyA mutants denied thymidine, as well as in trimethoprim-treated WT cells, under three conditions: 1) intracellular iron chelation; 2) mutational inactivation of hydrogen peroxide (HP) scavenging; 3) acute treatment with sublethal HP concentrations. We found that TLD kinetics are affected by neither iron chelation, nor HP stabilization in cultures, indicating no induction of oxidative damage during thymine starvation. Moreover, acute exogenous HP treatments completely block TLD, apparently by blocking cell division - which may be a novel TLD prerequisite. Separately, the acute trimethoprim sensitivity of the rffC and recBCD mutants demonstrates how bactericidal power of this antibiotic could be amplified by inhibiting the corresponding enzymes. Importance Mysterious thymineless death strikes cells that are starved for thymine and therefore replicating their chromosomal DNA without dTTP. After 67 years of experiments testing various obvious and not so obvious explanations, thymineless death is still without a mechanism. Recently, oxidative damage via in vivo Fenton's reaction was proposed as a critical contributor to the irreparable chromosome damage during thymine starvation. We have tested this idea by either blocking in vivo Fenton's reaction (expecting no thymineless death) or by amplifying oxidative damage (expecting hyper thymineless death). Instead, we found that blocking Fenton's reaction has no influence on thymineless death, while amplifying oxidative damage prevents thymineless death altogether. Thus, oxidative damage does not contribute to thymineless death, while the latter remains enigmatic.
Collapse
|
11
|
Si L, Gu J, Wen M, Wang R, Fleming J, Li J, Xu J, Bi L, Deng J. relA Inactivation Converts Sulfonamides Into Bactericidal Compounds. Front Microbiol 2021; 12:698468. [PMID: 34646242 PMCID: PMC8503649 DOI: 10.3389/fmicb.2021.698468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Folates are required for the de novo biosynthesis of purines, thymine, methionine, glycine, and pantothenic acid, key metabolites that bacterial cells cannot survive without. Sulfonamides, which inhibit bacterial folate biosynthesis and are generally considered as bacteriostats, have been extensively used as broad-spectrum antimicrobials for decades. Here we show that, deleting relA in Escherichia coli and other bacterial species converted sulfamethoxazole from a bacteriostat into a bactericide. Not as previously assumed, the bactericidal effect of SMX was not caused by thymine deficiency. When E. coli ∆relA was treated with SMX, reactive oxygen species and ferrous ion accumulated inside the bacterial cells, which caused extensive DNA double-strand breaks without the involvement of incomplete base excision repair. In addition, sulfamethoxazole showed bactericidal effect against E. coli O157 ∆relA in mice, suggesting the possibility of designing new potentiators for sulfonamides targeting RelA. Thus, our study uncovered the previously unknown bactericidal effects of sulfonamides, which advances our understanding of their mechanisms of action, and will facilitate the designing of new potentiators for them.
Collapse
Affiliation(s)
- Lizhen Si
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Gu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mi Wen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruiqi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Joy Fleming
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jinyue Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jintian Xu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Bi
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Stomatology and Medicine, Foshan University, Foshan, China
- Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan, China
| | - Jiaoyu Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan, China
| |
Collapse
|
12
|
Agashe P, Kuzminov A. Catalase inhibition by nitric oxide potentiates hydrogen peroxide to trigger catastrophic chromosome fragmentation in Escherichia coli. Genetics 2021; 218:6214516. [PMID: 34027548 DOI: 10.1093/genetics/iyab057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/02/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrogen peroxide (H2O2, HP) is a universal toxin that organisms deploy to kill competing or invading cells. Bactericidal action of H2O2 presents several questions. First, the lethal H2O2 concentrations in bacterial cultures are 1000x higher than, for example, those calculated for the phagosome. Second, H2O2-alone kills bacteria in cultures either by mode-one, via iron-mediated chromosomal damage, or by mode-two, via unknown targets, but the killing mode in phagosomes is unclear. Third, phagosomal H2O2 toxicity is enhanced by production of nitric oxide (NO), but in vitro studies disagree: some show NO synergy with H2O2 antimicrobial action, others instead report alleviation. To investigate this "NO paradox," we treated Escherichia coli with various concentrations of H2O2-alone or H2O2+NO, measuring survival and chromosome stability. We found that all NO concentrations make sublethal H2O2 treatments highly lethal, via triggering catastrophic chromosome fragmentation (mode-one killing). Yet, NO-alone is not lethal, potentiating H2O2 toxicity by blocking H2O2 scavenging in cultures. Catalases represent obvious targets of NO inhibition, and catalase-deficient mutants are indeed killed equally by H2O2-alone or H2O2+NO treatments, also showing similar levels of chromosome fragmentation. Interestingly, iron chelation blocks chromosome fragmentation in catalase-deficient mutants without blocking H2O2-alone lethality, indicating mode-two killing. In fact, mode-two killing of WT cells by much higher H2O2 concentrations is transiently alleviated by NO, reproducing the "NO paradox." We conclude that NO potentiates H2O2 toxicity by promoting mode-one killing (via catastrophic chromosome fragmentation) by otherwise static low H2O2 concentrations, while transiently suppressing mode-two killing by immediately lethal high H2O2 concentrations.
Collapse
Affiliation(s)
- Pooja Agashe
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Weissman JL, Fagan WF, Johnson PLF. Linking high GC content to the repair of double strand breaks in prokaryotic genomes. PLoS Genet 2019; 15:e1008493. [PMID: 31703064 PMCID: PMC6867656 DOI: 10.1371/journal.pgen.1008493] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/20/2019] [Accepted: 10/25/2019] [Indexed: 01/21/2023] Open
Abstract
Genomic GC content varies widely among microbes for reasons unknown. While mutation bias partially explains this variation, prokaryotes near-universally have a higher GC content than predicted solely by this bias. Debate surrounds the relative importance of the remaining explanations of selection versus biased gene conversion favoring GC alleles. Some environments (e.g. soils) are associated with a high genomic GC content of their inhabitants, which implies that either high GC content is a selective adaptation to particular habitats, or that certain habitats favor increased rates of gene conversion. Here, we report a novel association between the presence of the non-homologous end joining DNA double-strand break repair pathway and GC content; this observation suggests that DNA damage may be a fundamental driver of GC content, leading in part to the many environmental patterns observed to-date. We discuss potential mechanisms accounting for the observed association, and provide preliminary evidence that sites experiencing higher rates of double-strand breaks are under selection for increased GC content relative to the genomic background. The overall nucleotide composition of an organism’s genome varies greatly between species. Previous work has identified certain environmental factors (e.g., oxygen availability) associated with the relative number of GC bases as opposed to AT bases in the genomes of species. Many of these environments that are associated with high GC content are also associated with relatively high rates of DNA damage. We show that organisms possessing the non-homologous end-joining DNA repair pathway, which is one mechanism to repair DNA double-strand breaks, have an elevated GC content relative to expectation. We also show that certain sites on the genome that are particularly susceptible to double strand breaks have an elevated GC content. This leads us to suggest that an important underlying driver of variability in nucleotide composition across environments is the rate of DNA damage (specifically double-strand breaks) to which an organism living in each environment is exposed.
Collapse
Affiliation(s)
- JL Weissman
- Department of Biology, University of Maryland - College Park, College Park, Maryland, United States of America
| | - William F. Fagan
- Department of Biology, University of Maryland - College Park, College Park, Maryland, United States of America
| | - Philip L. F. Johnson
- Department of Biology, University of Maryland - College Park, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Xia Y, Pfeifer CR, Zhu K, Irianto J, Liu D, Pannell K, Chen EJ, Dooling LJ, Tobin MP, Wang M, Ivanovska IL, Smith LR, Greenberg RA, Discher DE. Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. J Cell Biol 2019; 218:2545-2563. [PMID: 31239284 PMCID: PMC6683732 DOI: 10.1083/jcb.201811100] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/19/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
Migration through 3D constrictions can cause nuclear rupture and mislocalization of nuclear proteins, but damage to DNA remains uncertain, as does any effect on cell cycle. Here, myosin II inhibition rescues rupture and partially rescues the DNA damage marker γH2AX, but an apparent block in cell cycle appears unaffected. Co-overexpression of multiple DNA repair factors or antioxidant inhibition of break formation also exert partial effects, independently of rupture. Combined treatments completely rescue cell cycle suppression by DNA damage, revealing a sigmoidal dependence of cell cycle on excess DNA damage. Migration through custom-etched pores yields the same damage threshold, with ∼4-µm pores causing intermediate levels of both damage and cell cycle suppression. High curvature imposed rapidly by pores or probes or else by small micronuclei consistently associates nuclear rupture with dilution of stiff lamin-B filaments, loss of repair factors, and entry from cytoplasm of chromatin-binding cGAS (cyclic GMP-AMP synthase). The cell cycle block caused by constricted migration is nonetheless reversible, with a potential for DNA misrepair and genome variation.
Collapse
Affiliation(s)
- Yuntao Xia
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Charlotte R. Pfeifer
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA,Department of Physics and Astronomy, Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - Kuangzheng Zhu
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Jerome Irianto
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Dazhen Liu
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Kalia Pannell
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Emily J. Chen
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Lawrence J. Dooling
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Michael P. Tobin
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Mai Wang
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Irena L. Ivanovska
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Lucas R. Smith
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Roger A. Greenberg
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dennis E. Discher
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA,Department of Physics and Astronomy, Graduate Group, University of Pennsylvania, Philadelphia, PA,Correspondence to D.E. Discher:
| |
Collapse
|
15
|
Weissman JL, Laljani RMR, Fagan WF, Johnson PLF. Visualization and prediction of CRISPR incidence in microbial trait-space to identify drivers of antiviral immune strategy. ISME JOURNAL 2019; 13:2589-2602. [PMID: 31239539 PMCID: PMC6776019 DOI: 10.1038/s41396-019-0411-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/15/2019] [Accepted: 03/24/2019] [Indexed: 01/21/2023]
Abstract
Bacteria and archaea are locked in a near-constant battle with their viral pathogens. Despite previous mechanistic characterization of numerous prokaryotic defense strategies, the underlying ecological drivers of different strategies remain largely unknown and predicting which species will take which strategies remains a challenge. Here, we focus on the CRISPR immune strategy and develop a phylogenetically-corrected machine learning approach to build a predictive model of CRISPR incidence using data on over 100 traits across over 2600 species. We discover a strong but hitherto-unknown negative interaction between CRISPR and aerobicity, which we hypothesize may result from interference between CRISPR-associated proteins and non-homologous end-joining DNA repair due to oxidative stress. Our predictive model also quantitatively confirms previous observations of an association between CRISPR and temperature. Finally, we contrast the environmental associations of different CRISPR system types (I, II, III) and restriction modification systems, all of which act as intracellular immune systems.
Collapse
Affiliation(s)
- Jake L Weissman
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Rohan M R Laljani
- Department of Biology, University of Maryland, College Park, MD, USA
| | - William F Fagan
- Department of Biology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
16
|
Zhang K, Zheng DQ, Sui Y, Qi L, Petes T. Genome-wide analysis of genomic alterations induced by oxidative DNA damage in yeast. Nucleic Acids Res 2019; 47:3521-3535. [PMID: 30668788 PMCID: PMC6468167 DOI: 10.1093/nar/gkz027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
Oxidative DNA damage is a threat to genome stability. Using a genetic system in yeast that allows detection of mitotic recombination, we found that the frequency of crossovers is greatly elevated when cells are treated with hydrogen peroxide (H2O2). Using a combination of microarray analysis and genomic sequencing, we mapped the breakpoints of mitotic recombination events and other chromosome rearrangements at a resolution of about 1 kb. Gene conversions and crossovers were the two most common types of events, but we also observed deletions, duplications, and chromosome aneuploidy. In addition, H2O2-treated cells had elevated rates of point mutations (particularly A to T/T to A and C to G/G to C transversions) and small insertions/deletions (in/dels). In cells that underwent multiple rounds of H2O2 treatments, we identified a genetic alteration that resulted in improved H2O2 tolerance by amplification of the CTT1 gene that encodes cytosolic catalase T. Lastly, we showed that cells grown in the absence of oxygen have reduced levels of recombination. This study provided multiple novel insights into how oxidative stress affects genomic instability and phenotypic evolution in aerobic cells.
Collapse
Affiliation(s)
- Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan 316021, China
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yang Sui
- Ocean College, Zhejiang University, Zhoushan 316021, China
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lei Qi
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
17
|
Romero H, Torres R, Hernández-Tamayo R, Carrasco B, Ayora S, Graumann PL, Alonso JC. Bacillus subtilis RarA acts at the interplay between replication and repair-by-recombination. DNA Repair (Amst) 2019; 78:27-36. [PMID: 30954900 DOI: 10.1016/j.dnarep.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Bacterial RarA is thought to play crucial roles in the cellular response to blocked replication forks. We show that lack of Bacillus subtilis RarA renders cells very sensitive to H2O2, but not to methyl methane sulfonate or 4-nitroquinoline-1-oxide. RarA is epistatic to RecA in response to DNA damage. Inactivation of rarA partially suppressed the DNA repair defect of mutants lacking translesion synthesis polymerases. RarA may contribute to error-prone DNA repair as judged by the reduced frequency of rifampicin-resistant mutants in ΔrarA and in ΔpolY1 ΔrarA cells. The absence of RarA strongly reduced the viability of dnaD23ts and dnaB37ts cells upon partial thermal inactivation, suggesting that ΔrarA cells are deficient in replication fork assembly. A ΔrarA mutation also partially reduced the viability of dnaC30ts and dnaX51ts cells and slightly improved the viability of dnaG40ts cells at semi-permissive temperature. These results suggest that RarA links re-initiation of DNA replication with repair-by-recombination by controlling the access of the replication machinery to a collapsed replication fork.
Collapse
Affiliation(s)
- Hector Romero
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Madrid, Spain; SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043, Marburg, Germany; Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Madrid, Spain
| | - Rogelio Hernández-Tamayo
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043, Marburg, Germany; Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Madrid, Spain
| | - Peter L Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043, Marburg, Germany; Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032, Marburg, Germany.
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Madrid, Spain.
| |
Collapse
|
18
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
19
|
Sloots J, Lalonde W, Reid B, Millman J. Kastle-Meyer blood test reagents are deleterious to DNA. Forensic Sci Int 2017; 281:141-146. [PMID: 29128654 DOI: 10.1016/j.forsciint.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/25/2017] [Accepted: 10/04/2017] [Indexed: 11/17/2022]
Abstract
The Kastle-Meyer (KM) test is a quick and easy chemical test for blood used in forensic analyses. Two practical variations of this test are the KM-rub (indirect) test and the more sensitive KM-direct test, the latter of which is performed by applying reagents directly to a suspected blood stain. This study found that sodium hydroxide present in the KM reagents eliminated the potential to generate a DNA profile when applied directly to small quantities of blood. A modified approach to the KM-rub test that increases its sensitivity is presented as a method to replace destructive KM-direct testing.
Collapse
Affiliation(s)
- James Sloots
- Centre of Forensic Sciences, 25 Morton Shulman Ave, Toronto, ON M3M 0B1, Canada
| | - Wendy Lalonde
- Centre of Forensic Sciences, 25 Morton Shulman Ave, Toronto, ON M3M 0B1, Canada
| | - Barbara Reid
- Centre of Forensic Sciences, 25 Morton Shulman Ave, Toronto, ON M3M 0B1, Canada
| | - Jonathan Millman
- Centre of Forensic Sciences, 25 Morton Shulman Ave, Toronto, ON M3M 0B1, Canada.
| |
Collapse
|
20
|
Ibáñez-Cabellos JS, Pérez-Machado G, Seco-Cervera M, Berenguer-Pascual E, García-Giménez JL, Pallardó FV. Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. Redox Biol 2017; 14:398-408. [PMID: 29055871 PMCID: PMC5650655 DOI: 10.1016/j.redox.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/13/2023] Open
Abstract
Loss of function of dyskerin (DKC1), NOP10 and TIN2 are responsible for different inheritance patterns of Dyskeratosis congenita (DC; ORPHA1775). They are key components of telomerase (DKC1 and NOP10) and shelterin (TIN2), and play an important role in telomere homeostasis. They participate in several fundamental cellular processes by contributing to Dyskeratosis congenita through mechanisms that are not fully understood. Presence of oxidative stress was postulated to result from telomerase ablation. However, the resulting disturbed redox status can promote telomere attrition by generating a vicious circle, which promotes cellular senescence. This fact prompted us to study if acute loss of DKC1, NOP10 and TINF2 can promote redox disequilibrium as an early event when telomere shortening has not yet taken place. We generated siRNA-mediated (DKC1, NOP10 and TINF2) cell lines by RNA interference, which was confirmed by mRNA and protein expression analyses. No telomere shortening occurred in any silenced cell line. Depletion of H/ACA ribonucleoproteins DKC1 and NOP10 diminished telomerase activity via TERC down-regulation, and produced alterations in pseudouridylation and ribosomal biogenesis. An increase in the GSSG/GSH ratio, carbonylated proteins and oxidized peroxiredoxin-6 was observed, in addition to MnSOD and TRX1 overexpression in the siRNA DC cells. Likewise, high PARylation levels and high PARP1 protein expression were detected. In contrast, the silenced TINF2 cells did not alter any evaluated oxidative stress marker. Altogether these findings lead us to conclude that loss of DKC1 and NOP10 functions induces oxidative stress in a telomere shortening independent manner. Transient silencing of DKC1 and NOP10 genes produce oxidative stress. Cells depleted of DKC1 and NOP10 are susceptible to DNA damage. Acute DKC1 and NOP10 depletion disrupts RNA maturation. Oxidative stress is an early event previous to telomere shortening.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Giselle Pérez-Machado
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Ester Berenguer-Pascual
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
21
|
Moore JM, Correa R, Rosenberg SM, Hastings PJ. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli. PLoS Genet 2017; 13:e1006733. [PMID: 28727736 PMCID: PMC5542668 DOI: 10.1371/journal.pgen.1006733] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 08/03/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022] Open
Abstract
Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS oxidation of DNA potentially regulated by ROS regulators.
Collapse
Affiliation(s)
- Jessica M. Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Raul Correa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
22
|
Potentiation of hydrogen peroxide toxicity: From catalase inhibition to stable DNA-iron complexes. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 773:274-281. [PMID: 28927535 DOI: 10.1016/j.mrrev.2016.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
Hydrogen peroxide (H2O2) is unique among general toxins, because it is stable in abiotic environments at ambient temperature and neutral pH, yet rapidly kills any type of cells by producing highly-reactive hydroxyl radicals. This life-specific reactivity follows the distribution of soluble iron, Fe(II) (which combines with H2O2 to form the famous Fenton's reagent),Fe(II) is concentrated inside cells, but is virtually absent outside them. Because of the immediate danger of H2O2, all cells have powerful H2O2 scavengers, the equally famous catalases, which enable cells to survive thousand-fold higher concentrations of H2O2 and, in combination with adequate movement of H2O2 across membranes, make the killing H2O2 concentrations virtually impractical to generate in vivo. And yet, low concentrations of H2O2 are somehow used as an efficient biological weapon. Here we review several examples of how cells potentiate H2O2 toxicity with other chemicals. At first, these potentiators were thought to simply inhibit catalases, but recent findings with cyanide suggest that potentiators mostly promote the other side of Fenton's reaction, recruiting iron from cell depots into stable DNA-iron complexes that, in the presence of elevated H2O2, efficiently break duplex DNA, pulverizing the chromosome. This multifaceted potentiation of H2O2 toxicity results in robust and efficient killing.
Collapse
|