1
|
Ravindranathan R, Somuncu O, da Costa AABA, Mukkavalli S, Lamarre BP, Nguyen H, Grochala C, Jiao Y, Liu J, Kochupurakkal B, Parmar K, Shapiro GI, D’Andrea AD. PARG inhibitor sensitivity correlates with accumulation of single-stranded DNA gaps in preclinical models of ovarian cancer. Proc Natl Acad Sci U S A 2024; 121:e2413954121. [PMID: 39546575 PMCID: PMC11588084 DOI: 10.1073/pnas.2413954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Poly (ADP-ribose) glycohydrolase (PARG) is a dePARylating enzyme which promotes DNA repair by removal of poly (ADP-ribose) (PAR) from PARylated proteins. Loss or inhibition of PARG results in replication stress and sensitizes cancer cells to DNA-damaging agents. PARG inhibitors are now undergoing clinical development for patients having tumors with homologous recombination deficiency (HRD), such as cancer patients with germline or somatic BRCA1/2-mutations. PARP inhibitors kill BRCA-deficient cancer cells by increasing single-stranded DNA gaps (ssGAPs) during replication. Here, we report that, like PARP inhibitor (PARPi), PARG inhibitor (PARGi) treatment also causes an accumulation of ssGAPs in sensitive cells. PARGi exposure increased accumulation of S-phase-specific PAR, a marker for Okazaki fragment processing (OFP) defects on lagging strands and induced ssGAPs, in sensitive cells but not in resistant cells. PARGi also caused accumulation of PAR at the replication forks and at the ssDNA sites in sensitive cells. Additionally, PARGi exhibited monotherapy activity in specific HR-deficient, as well as HR-proficient, patient-derived, or patient-derived xenograft (PDX)-derived organoids of ovarian cancer, and drug sensitivity directly correlated with the accumulation of ssGAPs. Taken together, PARGi treatment results in toxic accumulation of PAR at replication forks resulting in ssGAPs due to OFP defects during replication. Regardless of the BRCA/HRD-status, the induction of ssGAPs in preclinical models of ovarian cancer cells correlates with PARGi sensitivity. Patient-derived organoids (PDOs) may be a useful model system for testing PARGi sensitivity and functional biomarkers.
Collapse
Affiliation(s)
- Ramya Ravindranathan
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Ozge Somuncu
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Alexandre André B. A. da Costa
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Sirisha Mukkavalli
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Benjamin P. Lamarre
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Huy Nguyen
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Carter Grochala
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Yuqing Jiao
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Joyce Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Bose Kochupurakkal
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Kalindi Parmar
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Geoffrey I. Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Alan D. D’Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| |
Collapse
|
2
|
Wang J, Wang ZQ, Zong W. ADP-ribose hydrolases: biological functions and potential therapeutic targets. Expert Rev Mol Med 2024; 26:e21. [PMID: 39375922 PMCID: PMC11488344 DOI: 10.1017/erm.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 10/09/2024]
Abstract
ADP-ribosylation (ADPRylation), which encompasses poly(ADP-ribosyl)ation and mono(ADP-ribosyl)ation, is an important post-translational modification catalysed by the poly(ADP-ribose) polymerase (PARP) enzyme superfamily. The process involves writers (PARPs) and erasers (ADP-ribose hydrolases), which work together to precisely regulate diverse cellular and molecular responses. Although the PARP-mediated synthesis of ADP-ribose (ADPr) has been well studied, ADPr degradation by degrading enzymes deserves further investigation. Nonetheless, recent studies have provided important new insights into the biology and functions of ADPr hydrolases. Notably, research has illuminated the significance of the poly(ADP-ribose) degradation pathway and its activation by the coordinated actions of poly(ADP-ribose) glycohydrolase and other ADPr hydrolases, which have been identified as key components of ADPRylation signalling networks. The degradation pathway has been proposed to play crucial roles in key cellular processes, such as DNA damage repair, chromatin dynamics, transcriptional regulation and cell death. A deep understanding of these ADPr erasing enzymes provides insights into the biological roles of ADPRylation in human health and disease aetiology and paves the road for the development of novel therapeutic strategies. This review article provides a summary of current knowledge about the biochemical and molecular functions of ADPr erasers and their physiological implications in human pathology.
Collapse
Affiliation(s)
- Jingpeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Zhao-Qi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Jena 07743, Germany
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
3
|
Li P, Zhu X, Qu H, Han Z, Yao X, Wei Y, Li B, Chen H. Synergistic Effect of Ubiquitin-Specific Protease 14 and Poly(ADP-Ribose) Glycohydrolase Co-Inhibition in BRCA1-Mutant, Poly(ADP-Ribose) Polymerase Inhibitor-Resistant Triple-Negative Breast Cancer Cells. Onco Targets Ther 2024; 17:741-753. [PMID: 39258222 PMCID: PMC11385694 DOI: 10.2147/ott.s463217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Purpose The clinical benefits of poly(ADP-ribose) polymerase (PARP) inhibitors are limited to triple-negative breast cancer (TNBC) with BRCA deficiency due to primary and acquired resistance. Thus, there is a pressing need to develop alternative treatment regimens to target BRCA-mutated TNBC tumors that are resistant to PARP inhibition. Similar to PARP, poly(ADP-ribose) glycohydrolase (PARG) plays a role in DNA replication and repair. However, there are conflicting reports on the vulnerability of BRCA1-deficient tumor cells to PARG inhibition. This study aims to investigate the synergistically lethal effect of the PARG inhibitor COH34 and the ubiquitin-specific protease (USP) 14 inhibitor IU1-248 and the underlying mechanisms in BRCA1-mutant, PARP inhibitor-resistant TNBC cells. Methods The cytotoxicity of PARG inhibition alone or in combination with USP14 inhibition in the BRCA-mutant, PARP inhibitor-resistant TNBC cell lines, HCC1937 and SUM149PT, was analyzed using cell viability and proliferation assays and flow cytometry. The molecular mechanisms underlying the synergistic effects of IU1-248 and COH34 were evaluated by immunofluorescence staining, DNA repair reporter assays and Western blot analysis. Results It was found that HCC1937 and SUM149PT cells exhibited moderate responsiveness to PARG inhibition alone. To the best of our knowledge, this research is the first to demonstrate that the combination of IU1-248 and COH34 produces synergistic effects against TNBC cells in the same setting. Mechanistically, the blockade of USP14 by IU1-248 was shown to increase DNA damage and promote error-prone non-homologous end joining (NHEJ), as evidenced by the accumulation of γH2AX and 53BP1 in the nucleus and the activation of a reporter assay. Additionally, it was demonstrated that the inhibition of NHEJ repair activity attenuates the synergistic effects of concomitant PARG and USP14 inhibition. IU1-248 promotes NHEJ repair through the downregulation of the expression of c-Myc. Conclusion USP14 inhibition may be a plausible strategy for expanding the utility of PARG inhibitors in TNBC in BRCA-mutant, PARP inhibitor-resistant settings.
Collapse
Affiliation(s)
- Pisong Li
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xiaoyu Zhu
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Hui Qu
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Zhongbin Han
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xingyu Yao
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Yuan Wei
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Baijun Li
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Hongshen Chen
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| |
Collapse
|
4
|
Coulson-Gilmer C, Littler S, Barnes B, Brady R, Anagho H, Pillay N, Dey M, Macmorland W, Bronder D, Nelson L, Tighe A, Lin WH, Morgan R, Unwin R, Nielsen M, McGrail J, Taylor S. Intrinsic PARG inhibitor sensitivity is mimicked by TIMELESS haploinsufficiency and rescued by nucleoside supplementation. NAR Cancer 2024; 6:zcae030. [PMID: 39015544 PMCID: PMC11249981 DOI: 10.1093/narcan/zcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
A subset of cancer cells are intrinsically sensitive to inhibitors targeting PARG, the poly(ADP-ribose) glycohydrolase that degrades PAR chains. Sensitivity is accompanied by persistent DNA replication stress, and can be induced by inhibition of TIMELESS, a replisome accelerator. However, the nature of the vulnerability responsible for intrinsic sensitivity remains undetermined. To understand PARG activity dependency, we analysed Timeless model systems and intrinsically sensitive ovarian cancer cells. We show that nucleoside supplementation rescues all phenotypes associated with PARG inhibitor sensitivity, including replisome speed and fork stalling, S-phase completion and mitotic entry, proliferation dynamics and clonogenic potential. Importantly nucleoside supplementation restores PARG inhibitor resistance despite the continued presence of PAR chains, indicating that sensitivity does not correlate with PAR levels. In addition, we show that inhibition of thymidylate synthase, an enzyme required for dNTP homeostasis, induces PARG-dependency. Together, these observations suggest that PARG inhibitor sensitivity reflects an inability to control replisome speed and/or maintain helicase-polymerase coupling in response to nucleotide imbalances.
Collapse
Affiliation(s)
- Camilla Coulson-Gilmer
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Samantha Littler
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Rosie M Brady
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Holda A Anagho
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nisha Pillay
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Malini Dey
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - William Macmorland
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Daniel Bronder
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Louisa Nelson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Wei-Hsiang Lin
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Robert D Morgan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester M20 4BX, UK
| | - Richard D Unwin
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Michael L Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joanne C McGrail
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
5
|
Vekariya U, Minakhin L, Chandramouly G, Tyagi M, Kent T, Sullivan-Reed K, Atkins J, Ralph D, Nieborowska-Skorska M, Kukuyan AM, Tang HY, Pomerantz RT, Skorski T. PARG is essential for Polθ-mediated DNA end-joining by removing repressive poly-ADP-ribose marks. Nat Commun 2024; 15:5822. [PMID: 38987289 PMCID: PMC11236980 DOI: 10.1038/s41467-024-50158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Leonid Minakhin
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Mrityunjay Tyagi
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Tatiana Kent
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Douglas Ralph
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA.
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Nie L, Wang C, Huang M, Liu X, Feng X, Tang M, Li S, Hang Q, Teng H, Shen X, Ma L, Gan B, Chen J. DePARylation is critical for S phase progression and cell survival. eLife 2024; 12:RP89303. [PMID: 38578205 PMCID: PMC10997334 DOI: 10.7554/elife.89303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Poly(ADP-ribose)ylation or PARylation by PAR polymerase 1 (PARP1) and dePARylation by poly(ADP-ribose) glycohydrolase (PARG) are equally important for the dynamic regulation of DNA damage response. PARG, the most active dePARylation enzyme, is recruited to sites of DNA damage via pADPr-dependent and PCNA-dependent mechanisms. Targeting dePARylation is considered an alternative strategy to overcome PARP inhibitor resistance. However, precisely how dePARylation functions in normal unperturbed cells remains elusive. To address this challenge, we conducted multiple CRISPR screens and revealed that dePARylation of S phase pADPr by PARG is essential for cell viability. Loss of dePARylation activity initially induced S-phase-specific pADPr signaling, which resulted from unligated Okazaki fragments and eventually led to uncontrolled pADPr accumulation and PARP1/2-dependent cytotoxicity. Moreover, we demonstrated that proteins involved in Okazaki fragment ligation and/or base excision repair regulate pADPr signaling and cell death induced by PARG inhibition. In addition, we determined that PARG expression is critical for cellular sensitivity to PARG inhibition. Additionally, we revealed that PARG is essential for cell survival by suppressing pADPr. Collectively, our data not only identify an essential role for PARG in normal proliferating cells but also provide a potential biomarker for the further development of PARG inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| |
Collapse
|
7
|
Fabbrizi MR, Nickson CM, Hughes JR, Robinson EA, Vaidya K, Rubbi CP, Kacperek A, Bryant HE, Helleday T, Parsons JL. Targeting OGG1 and PARG radiosensitises head and neck cancer cells to high-LET protons through complex DNA damage persistence. Cell Death Dis 2024; 15:150. [PMID: 38368415 PMCID: PMC10874437 DOI: 10.1038/s41419-024-06541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Complex DNA damage (CDD), containing two or more DNA lesions within one or two DNA helical turns, is a signature of ionising radiation (IR) and contributes significantly to the therapeutic effect through cell killing. The levels and complexity of CDD increases with linear energy transfer (LET), however, the specific cellular response to this type of DNA damage and the critical proteins essential for repair of CDD is currently unclear. We performed an siRNA screen of ~240 DNA damage response proteins to identify those specifically involved in controlling cell survival in response to high-LET protons at the Bragg peak, compared to low-LET entrance dose protons which differ in the amount of CDD produced. From this, we subsequently validated that depletion of 8-oxoguanine DNA glycosylase (OGG1) and poly(ADP-ribose) glycohydrolase (PARG) in HeLa and head and neck cancer cells leads to significantly increased cellular radiosensitivity specifically following high-LET protons, whilst no effect was observed after low-LET protons and X-rays. We subsequently confirmed that OGG1 and PARG are both required for efficient CDD repair post-irradiation with high-LET protons. Importantly, these results were also recapitulated using specific inhibitors for OGG1 (TH5487) and PARG (PDD00017273). Our results suggest OGG1 and PARG play a fundamental role in the cellular response to CDD and indicate that targeting these enzymes could represent a promising therapeutic strategy for the treatment of head and neck cancers following high-LET radiation.
Collapse
Affiliation(s)
- Maria Rita Fabbrizi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Catherine M Nickson
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L7 8TX, UK
| | - Jonathan R Hughes
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emily A Robinson
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L7 8TX, UK
| | - Karthik Vaidya
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Carlos P Rubbi
- Medical School, Edge Hill University, St Helens Road, Ormskirk, L39 4QP, UK
| | - Andrzej Kacperek
- Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington, CH63 4JY, UK
| | - Helen E Bryant
- Sheffield Institute for Nucleic Acids (SInFoNiA), School of Medicine and Population Health, University of Sheffield, Sheffield, S10 2RX, UK
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Jason L Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Nie L, Wang C, Huang M, Liu X, Feng X, Tang M, Li S, Hang Q, Teng H, Shen X, Ma L, Gan B, Chen J. DePARylation is critical for S phase progression and cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551317. [PMID: 37577639 PMCID: PMC10418084 DOI: 10.1101/2023.07.31.551317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Poly(ADP-ribose)ylation or PARylation by PAR polymerase 1 (PARP1) and dePARylation by poly(ADP-ribose) glycohydrolase (PARG) are equally important for the dynamic regulation of DNA damage response. PARG, the most active dePARylation enzyme, is recruited to sites of DNA damage via pADPr-dependent and PCNA-dependent mechanisms. Targeting dePARylation is considered an alternative strategy to overcome PARP inhibitor resistance. However, precisely how dePARylation functions in normal unperturbed cells remains elusive. To address this challenge, we conducted multiple CRISPR screens and revealed that dePARylation of S phase pADPr by PARG is essential for cell viability. Loss of dePARylation activity initially induced S phase-specific pADPr signaling, which resulted from unligated Okazaki fragments and eventually led to uncontrolled pADPr accumulation and PARP1/2-dependent cytotoxicity. Moreover, we demonstrated that proteins involved in Okazaki fragment ligation and/or base excision repair regulate pADPr signaling and cell death induced by PARG inhibition. In addition, we determined that PARG expression is critical for cellular sensitivity to PARG inhibition. Additionally, we revealed that PARG is essential for cell survival by suppressing pADPr. Collectively, our data not only identify an essential role for PARG in normal proliferating cells but also provide a potential biomarker for the further development of PARG inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Kanev PB, Atemin A, Stoynov S, Aleksandrov R. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol 2024; 51:2-18. [PMID: 37714792 DOI: 10.1053/j.seminoncol.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/17/2023]
Abstract
Genome integrity is under constant insult from endogenous and exogenous sources. In order to cope, eukaryotic cells have evolved an elaborate network of DNA repair that can deal with diverse lesion types and exhibits considerable functional redundancy. PARP1 is a major sensor of DNA breaks with established and putative roles in a number of pathways within the DNA repair network, including repair of single- and double-strand breaks as well as protection of the DNA replication fork. Importantly, PARP1 is the major target of small-molecule PARP inhibitors (PARPi), which are employed in the treatment of homologous recombination (HR)-deficient tumors, as the latter are particularly susceptible to the accumulation of DNA damage due to an inability to efficiently repair highly toxic double-strand DNA breaks. The clinical success of PARPi has fostered extensive research into PARP biology, which has shed light on the involvement of PARP1 in various genomic transactions. A major goal within the field has been to understand the relationship between catalytic inhibition and PARP1 trapping. The specific consequences of inhibition and trapping on genomic stability as a basis for the cytotoxicity of PARP inhibitors remain a matter of debate. Finally, PARP inhibition is increasingly recognized for its capacity to elicit/modulate anti-tumor immunity. The clinical potential of PARP inhibition is, however, hindered by the development of resistance. Hence, extensive efforts are invested in identifying factors that promote resistance or sensitize cells to PARPi. The current review provides a summary of advances in our understanding of PARP1 biology, the mechanistic nature, and molecular consequences of PARP inhibition, as well as the mechanisms that give rise to PARPi resistance.
Collapse
Affiliation(s)
- Petar-Bogomil Kanev
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aleksandar Atemin
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Radoslav Aleksandrov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
10
|
Vogel A, Haupts A, Kloth M, Roth W, Hartmann N. A novel targeted NGS panel identifies numerous homologous recombination deficiency (HRD)-associated gene mutations in addition to known BRCA mutations. Diagn Pathol 2024; 19:9. [PMID: 38184614 PMCID: PMC10770950 DOI: 10.1186/s13000-023-01431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
Deleterious mutations in the BRCA1 and BRCA2 genes have significant therapeutic relevance in clinical settings regarding personalized therapy approaches. BRCA1 and BRCA2 play a pivotal role in homologous recombination (HR) and thus are sensitive for PARP inhibitors (PARPi). Beyond the narrow scope of evaluating only the BRCA mutation status, PARPi can be beneficial for HR deficient (HRD) patients, who harbor mutations in other HR-associated genes. In the present retrospective study, a novel targeted HRD gene panel was validated and implemented for use with FFPE tissue. Samples of patients with ovarian, breast, pancreatic and prostate cancer were included. Variants were robustly detected with various DNA input amounts and the use of test samples showed complete concordance between previously known mutations and HRD panel results. From all the 90 samples included in this cohort, TP53 was the most frequently altered gene (73%). Deleterious BRCA1/2 mutations were found in 20 (22%) of all samples. New pathogenic or likely pathogenic mutations in additional HR-associated genes were identified in 22 (24%) patients. Taken together, the present study proves the feasibility of a new HRD gene panel with reliable panel performance and offers the possibility to easily screen for resistance mutations acquired over treatment time.Mutations in HR-associated genes, besides BRCA1/2, might represent promising potential targets for synthetic lethality approaches. Thus, a substantial number of patients may benefit from expanding the scope of therapeutic agents like PARPi.
Collapse
Affiliation(s)
- Anne Vogel
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Anna Haupts
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Michael Kloth
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Nils Hartmann
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany.
| |
Collapse
|
11
|
Li P, Zhen Y, Kim C, Liu Z, Hao J, Deng H, Deng H, Zhou M, Wang XD, Qin T, Yu Y. Nimbolide targets RNF114 to induce the trapping of PARP1 and synthetic lethality in BRCA-mutated cancer. SCIENCE ADVANCES 2023; 9:eadg7752. [PMID: 37878693 PMCID: PMC10599614 DOI: 10.1126/sciadv.adg7752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Recent studies have pointed to PARP1 trapping as a key determinant of the anticancer effects of PARP1 inhibitors (PARPi). We identified RNF114, as a PARylation-dependent, E3 ubiquitin ligase involved in DNA damage response. Upon sensing genotoxicity, RNF114 was recruited, in a PAR-dependent manner, to DNA lesions, where it targeted PARP1 for degradation. The blockade of this pathway interfered with the removal of PARP1 from DNA lesions, leading to profound PARP1 trapping. We showed that a natural product, nimbolide, inhibited the E3 ligase activity of RNF114 and thus caused PARP1 trapping. However, unlike conventional PARPi, nimbolide treatment induced the trapping of both PARP1 and PARylation-dependent DNA repair factors. Nimbolide showed synthetic lethality with BRCA mutations, and it overcame intrinsic and acquired resistance to PARPi, both in vitro and in vivo. These results point to the exciting possibility of targeting the RNF114-PARP1 pathway for the treatment of homologous recombination-deficient cancers.
Collapse
Affiliation(s)
- Peng Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanli Zhen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chiho Kim
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zhengshuai Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jianwei Hao
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Heping Deng
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hejun Deng
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xu-Dong Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tian Qin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
12
|
Parisi A, Rossi F, De Filippis C, Paoloni F, Felicetti C, Mammarella A, Pecci F, Lupi A, Berardi R. Current Evidence and Future Perspectives about the Role of PARP Inhibitors in the Treatment of Thoracic Cancers. Onco Targets Ther 2023; 16:585-613. [PMID: 37485307 PMCID: PMC10362869 DOI: 10.2147/ott.s272563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, poly (ADP-ribose) polymerase (PARP) inhibition has become a promising therapeutic option for several tumors, especially for those harboring a BRCA 1-2 mutation or a deficit in the homologous recombination repair (HRR) pathway. Nevertheless, to date, PARP inhibitors are still not largely used for thoracic malignancies neither as a single agent nor in combination with other treatments. Recently, a deeper understanding of HRR mechanisms, alongside the development of new targeted and immunotherapy agents, particularly against HRR-deficient tumors, traced the path to new treatment strategies for many tumor types including lung cancer and malignant pleural mesothelioma. The aim of this review is to sum up the current knowledge about cancer-DNA damage response pathways inhibition and to update the status of recent clinical trials investigating the use of PARP inhibitors, either as monotherapy or in combination with other agents for the treatment of thoracic malignancies. We will also briefly discuss available evidence on Poly(ADP-Ribose) Glycohydrolase (PARG) inhibitors, a novel promising therapeutic option in oncology.
Collapse
Affiliation(s)
- Alessandro Parisi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Francesca Rossi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Chiara De Filippis
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Francesco Paoloni
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Cristiano Felicetti
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Alex Mammarella
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Federica Pecci
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Alessio Lupi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Rossana Berardi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| |
Collapse
|
13
|
Duma L, Ahel I. The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans 2023; 51:995-1008. [PMID: 37171085 PMCID: PMC10317172 DOI: 10.1042/bst20220749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
ADP-ribosylation is a post-translational modification involved in DNA damage response (DDR). In higher organisms it is synthesised by PARP 1-3, DNA strand break sensors. Recent advances have identified serine residues as the most common targets for ADP-ribosylation during DDR. To ADP-ribosylate serine, PARPs require an accessory factor, HPF1 which completes the catalytic domain. Through ADP-ribosylation, PARPs recruit a variety of factors to the break site and control their activities. However, the timely removal of ADP-ribosylation is also key for genome stability and is mostly performed by two hydrolases: PARG and ARH3. Here, we describe the key writers, readers and erasers of ADP-ribosylation and their contribution to the mounting of the DDR. We also discuss the use of PARP inhibitors in cancer therapy and the ways to tackle PARPi treatment resistance.
Collapse
Affiliation(s)
- Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| |
Collapse
|
14
|
Sun Y, Shi Y, Liu H, Lv C, Zhang A. The role of poly (ADP-ribose) glycohydrolase in phosphatase and tensin homolog deficiency endometrial cancer. J Obstet Gynaecol Res 2023; 49:1244-1254. [PMID: 36759425 DOI: 10.1111/jog.15563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023]
Abstract
AIM To explore the relationship between poly(ADP-ribose) glycohydrolase (PARG) and the occurrence, development, and prognosis of endometrial carcinoma (EC), and investigate whether the PARG inhibitor PDD0017273 could increase the sensitivity of EC cells to cisplatin. METHODS The expression of PARG, phosphatase and tensin homolog (PTEN), and p53 in normal endometrial tissues (NE), endometrial hyperplasia without atypia (EH), atypical endometrial hyperplasia (AH), and EC was detected by immunohistochemistry. AN3CA EC cells with PTEN deficiency were treated with different cisplatin and PDD0017273, alone or in combination. Cell proliferation was detected by MTT method, apoptosis was detected by flow cytometry, and the expression of PARG in EC cells after treatment with different drugs was detected by western blot and immunohistochemistry. RESULTS Expression of PARG in NE, EH, AH, and EC increased gradually. In addition, compared with low PARG expression in PTEN-positive EC, patients who had high PARG expression in PTEN-negative EC had more advanced clinical stages (r = -0.399, p = 0.032) and shorter overall survival time (p = 0.037). A dose of 40 μM PDD0017273 effectively inhibited PARG expression, increased the sensitivity of AN3CA cells to cisplatin. CONCLUSIONS The findings suggest that PARG overexpression is a promising immunohistochemical marker to predict the occurrence and prognosis of EC. Moreover, PARG inhibition produced antitumor effects and increased the sensitivity of EC cells with PTEN deficiency to cisplatin.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Yi Shi
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Hui Liu
- Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Chunmei Lv
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Aihua Zhang
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|
15
|
Tsuda K, Kurasaka C, Ogino Y, Sato A. Genomic and biological aspects of resistance to selective poly(ADP-ribose) glycohydrolase inhibitor PDD00017273 in human colorectal cancer cells. Cancer Rep (Hoboken) 2023; 6:e1709. [PMID: 36053937 PMCID: PMC9939995 DOI: 10.1002/cnr2.1709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Poly(ADP-ribose) glycohydrolase (PARG) is a key enzyme in poly(ADP-ribose) (PAR) metabolism and a potential anticancer target. Many drug candidates have been developed to inhibit its enzymatic activity. Additionally, PDD00017273 is an effective and selective inhibitor of PARG at the first cellular level. AIMS Using human colorectal cancer (CRC) HCT116 cells, we investigated the molecular mechanisms and tumor biological aspects of the resistance to PDD00017273. METHODS AND RESULTS HCT116RPDD , a variant of the human CRC cell line HCT116, exhibits resistance to the PARG inhibitor PDD00017273. HCT116RPDD cells contained specific mutations of PARG and PARP1, namely, PARG mutation Glu352Gln and PARP1 mutation Lys134Asn, as revealed by exome sequencing. Notably, the levels of PARG protein were comparable between HCT116RPDD and HCT116. In contrast, the PARP1 protein levels in HCT116RPDD were significantly lower than those in HCT116. Consequently, the levels of intracellular poly(ADP-ribosyl)ation were elevated in HCT116RPDD compared to HCT116. Interestingly, HCT116RPDD cells did not exhibit cross-resistance to COH34, an additional PARG inhibitor. CONCLUSION Our findings suggest that the mutated PARG acquires PDD00017273 resistance due to structural modifications. In addition, our findings indicate that PDD00017273 resistance induces mutation and PARP downregulation. These discoveries collectively provide a better understanding of the anticancer candidate PARG inhibitors in terms of resistance mechanisms and anticancer strategies.
Collapse
Affiliation(s)
- Kaede Tsuda
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
| | - Chinatsu Kurasaka
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
| | - Yoko Ogino
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
- Department of Gene Regulation, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
| | - Akira Sato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
| |
Collapse
|
16
|
Schuhwerk H, Kleemann J, Gupta P, van Roey R, Armstark I, Kreileder M, Feldker N, Ramesh V, Hajjaj Y, Fuchs K, Mahapatro M, Hribersek M, Volante M, Groenewoud A, Engel FB, Ceppi P, Eckstein M, Hartmann A, Müller F, Kroll T, Stemmler MP, Brabletz S, Brabletz T. The EMT transcription factor ZEB1 governs a fitness-promoting but vulnerable DNA replication stress response. Cell Rep 2022; 41:111819. [PMID: 36516781 DOI: 10.1016/j.celrep.2022.111819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The DNA damage response (DDR) and epithelial-to-mesenchymal transition (EMT) are two crucial cellular programs in cancer biology. While the DDR orchestrates cell-cycle progression, DNA repair, and cell death, EMT promotes invasiveness, cellular plasticity, and intratumor heterogeneity. Therapeutic targeting of EMT transcription factors, such as ZEB1, remains challenging, but tumor-promoting DDR alterations elicit specific vulnerabilities. Using multi-omics, inhibitors, and high-content microscopy, we discover a chemoresistant ZEB1-high-expressing sub-population (ZEB1hi) with co-rewired cell-cycle progression and proficient DDR across tumor entities. ZEB1 stimulates accelerated S-phase entry via CDK6, inflicting endogenous DNA replication stress. However, DDR buildups involving constitutive MRE11-dependent fork resection allow homeostatic cycling and enrichment of ZEB1hi cells during transforming growth factor β (TGF-β)-induced EMT and chemotherapy. Thus, ZEB1 promotes G1/S transition to launch a progressive DDR benefitting stress tolerance, which concurrently manifests a targetable vulnerability in chemoresistant ZEB1hi cells. Our study thus highlights the translationally relevant intercept of the DDR and EMT.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Julia Kleemann
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Pooja Gupta
- Core Unit for Bioinformatics, Data Integration and Analysis, Center for Medical Information and Communication Technology, University Hospital Erlangen, Erlangen Germany
| | - Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Kreileder
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nora Feldker
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Vignesh Ramesh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Yussuf Hajjaj
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Fuchs
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mojca Hribersek
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marco Volante
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Arwin Groenewoud
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Paolo Ceppi
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen- Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen- Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Müller
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital Erlangen, Erlangen Germany
| | - Torsten Kroll
- Leibniz Institute on Aging - Fritz-Lipmann Institute (FLI), Jena, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
17
|
Koczor CA, Haider AJ, Saville KM, Li J, Andrews JF, Beiser AV, Sobol RW. Live Cell Detection of Poly(ADP-Ribose) for Use in Genetic and Genotoxic Compound Screens. Cancers (Basel) 2022; 14:3676. [PMID: 35954352 PMCID: PMC9367489 DOI: 10.3390/cancers14153676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Poly(ADP-ribose) (PAR) is a molecular scaffold that aids in the formation of DNA repair protein complexes. Tools to sensitively quantify PAR in live cells have been lacking. We recently described the LivePAR probe (EGFP fused to the RNF146-encoded WWE PAR binding domain) to measure PAR formation at sites of laser micro-irradiation in live cells. Here, we present two methods that expand on the use of LivePAR and its WWE domain. First, LivePAR enriches in the nucleus of cells following genotoxic challenge. Image quantitation can identify single-cell PAR formation following genotoxic stress at concentrations lower than PAR ELISA or PAR immunoblot, with greater sensitivity to genotoxic stress than CometChip. In a second approach, we used the RNF146-encoded WWE domain to develop a split luciferase probe for analysis in a 96-well plate assay. We then applied these PAR analysis tools to demonstrate their broad applicability. First, we show that both approaches can identify genetic modifications that alter PARylation levels, such as hyper-PARylation in BRCA2-deficient cancer cells. Second, we demonstrate the utility of the WWE split luciferase assay to characterize the cellular response of genotoxins, PARP inhibitors, and PARG inhibitors, thereby providing a screening method to identify PAR modulating compounds.
Collapse
Affiliation(s)
- Christopher A. Koczor
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Aaron J. Haider
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Kate M. Saville
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Jianfeng Li
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Joel F. Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Alison V. Beiser
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Robert W. Sobol
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| |
Collapse
|
18
|
Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. Int J Mol Sci 2022; 23:ijms23137292. [PMID: 35806303 PMCID: PMC9266317 DOI: 10.3390/ijms23137292] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Differential evolution of apoptosis, programmed necrosis, and autophagy, parthanatos is a form of cell death mediated by poly(ADP-ribose) polymerase 1 (PARP1), which is caused by DNA damage. PARP1 hyper-activation stimulates apoptosis-inducing factor (AIF) nucleus translocation, and accelerates nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) depletion, leading to DNA fragmentation. The mechanisms of parthanatos mainly include DNA damage, PARP1 hyper-activation, PAR accumulation, NAD+ and ATP depletion, and AIF nucleus translocation. Now, it is reported that parthanatos widely exists in different diseases (tumors, retinal diseases, neurological diseases, diabetes, renal diseases, cardiovascular diseases, ischemia-reperfusion injury...). Excessive or defective parthanatos contributes to pathological cell damage; therefore, parthanatos is critical in the therapy and prevention of many diseases. In this work, the hallmarks and molecular mechanisms of parthanatos and its related disorders are summarized. The questions raised by the recent findings are also presented. Further understanding of parthanatos will provide a new treatment option for associated conditions.
Collapse
|
19
|
Wang M, Chen S, Ao D. Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm (Beijing) 2021; 2:654-691. [PMID: 34977872 PMCID: PMC8706759 DOI: 10.1002/mco2.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Over the last decades, the growing understanding on DNA damage response (DDR) pathways has broadened the therapeutic landscape in oncology. It is becoming increasingly clear that the genomic instability of cells resulted from deficient DNA damage response contributes to the occurrence of cancer. One the other hand, these defects could also be exploited as a therapeutic opportunity, which is preferentially more deleterious in tumor cells than in normal cells. An expanding repertoire of DDR-targeting agents has rapidly expanded to inhibitors of multiple members involved in DDR pathways, including PARP, ATM, ATR, CHK1, WEE1, and DNA-PK. In this review, we sought to summarize the complex network of DNA repair machinery in cancer cells and discuss the underlying mechanism for the application of DDR inhibitors in cancer. With the past preclinical evidence and ongoing clinical trials, we also provide an overview of the history and current landscape of DDR inhibitors in cancer treatment, with special focus on the combination of DDR-targeted therapies with other cancer treatment strategies.
Collapse
Affiliation(s)
- Manni Wang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Siyuan Chen
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Danyi Ao
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
20
|
Li J, M. Saville K, Ibrahim M, Zeng X, McClellan S, Angajala A, Beiser A, Andrews JF, Sun M, Koczor CA, Clark J, Hayat F, Makarov MV, Wilk A, Yates NA, Migaud ME, Sobol RW. NAD + bioavailability mediates PARG inhibition-induced replication arrest, intra S-phase checkpoint and apoptosis in glioma stem cells. NAR Cancer 2021; 3:zcab044. [PMID: 34806016 PMCID: PMC8600031 DOI: 10.1093/narcan/zcab044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 01/31/2023] Open
Abstract
Elevated expression of the DNA damage response proteins PARP1 and poly(ADP-ribose) glycohydrolase (PARG) in glioma stem cells (GSCs) suggests that glioma may be a unique target for PARG inhibitors (PARGi). While PARGi-induced cell death is achieved when combined with ionizing radiation, as a single agent PARG inhibitors appear to be mostly cytostatic. Supplementation with the NAD+ precursor dihydronicotinamide riboside (NRH) rapidly increased NAD+ levels in GSCs and glioma cells, inducing PARP1 activation and mild suppression of replication fork progression. Administration of NRH+PARGi triggers hyperaccumulation of poly(ADP-ribose) (PAR), intra S-phase arrest and apoptosis in GSCs but minimal PAR induction or cytotoxicity in normal astrocytes. PAR accumulation is regulated by select PARP1- and PAR-interacting proteins. The involvement of XRCC1 highlights the base excision repair pathway in responding to replication stress while enhanced interaction of PARP1 with PCNA, RPA and ORC2 upon PAR accumulation implicates replication associated PARP1 activation and assembly with pre-replication complex proteins upon initiation of replication arrest, the intra S-phase checkpoint and the onset of apoptosis.
Collapse
Affiliation(s)
- Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Md Ibrahim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Steve McClellan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Anusha Angajala
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Alison Beiser
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Joel F Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Mai Sun
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Christopher A Koczor
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Jennifer Clark
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Anna Wilk
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Nathan A Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W Sobol
- To whom correspondence should be addressed. Tel: +1 251 445 9846;
| |
Collapse
|
21
|
Matanes E, López-Ozuna VM, Octeau D, Baloch T, Racovitan F, Dhillon AK, Kessous R, Raban O, Kogan L, Salvador S, Lau S, Gotlieb WH, Yasmeen A. Inhibition of Poly ADP-Ribose Glycohydrolase Sensitizes Ovarian Cancer Cells to Poly ADP-Ribose Polymerase Inhibitors and Platinum Agents. Front Oncol 2021; 11:745981. [PMID: 34778062 PMCID: PMC8578901 DOI: 10.3389/fonc.2021.745981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Background Poly ADP-ribose glycohydrolase (PARG) is responsible for the catabolism of PARP-synthesized PAR to free ADP-ribose. Inhibition of PARG leads to DNA repair interruption and consequently induces cell death. This study aims to evaluate the effect of a PARG inhibitor (PARGi) on epithelial ovarian cancer (OC) cell lines, alone and in combination with a PARP inhibitor (PARPi) and/or Cisplatin. Methods PARG mRNA levels were studied in three different OC datasets: TCGA, Hendrix, and Meyniel. PARG protein levels were assessed in 100 OC specimens from our bio-bank. The therapeutic efficacy of PARGi was assessed using cell migration and clonogenic formation assays. Flow cytometry was used to evaluate the cell apoptosis rate and the changes in the cell cycle. Results PARG protein was highly expressed in 34% of the OC tumors and low expression was found in another 9%. Similarly, Hendrix, Meyneil and TCGA databases showed a significant up-regulation in PARG mRNA expression in OC samples as compared to normal tissue (P=0.001, P=0.005, P=0.005, respectively). The use of PARGi leads to decreased cell migration. PARGi in combination with PARPi or Cisplatin induced decreased survival of cells as compared to each drug alone. In the presence of PARPi and Cisplatin, PARG knockdown cell lines showed significant G2/M cell cycle arrest and cell death induction. Conclusions PARG inhibition appears as a complementary strategy to PARP inhibition in the treatment of ovarian cancer, especially in the presence of homologous recombination defects.
Collapse
Affiliation(s)
- Emad Matanes
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Vanessa M López-Ozuna
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - David Octeau
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Tahira Baloch
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Florentin Racovitan
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Amandeep Kaur Dhillon
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Roy Kessous
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Oded Raban
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Liron Kogan
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Shannon Salvador
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Susie Lau
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Amber Yasmeen
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Jain A, Bhardwaj V. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities. World J Gastroenterol 2021; 27:6527-6550. [PMID: 34754151 PMCID: PMC8554400 DOI: 10.3748/wjg.v27.i39.6527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths in the United States. Although chemotherapeutic regimens such as gemcitabine+ nab-paclitaxel and FOLFIRINOX (FOLinic acid, 5-Fluroruracil, IRINotecan, and Oxaliplatin) significantly improve patient survival, the prevalence of therapy resistance remains a major roadblock in the success of these agents. This review discusses the molecular mechanisms that play a crucial role in PDAC therapy resistance and how a better understanding of these mechanisms has shaped clinical trials for pancreatic cancer chemotherapy. Specifically, we have discussed the metabolic alterations and DNA repair mechanisms observed in PDAC and current approaches in targeting these mechanisms. Our discussion also includes the lessons learned following the failure of immunotherapy in PDAC and current approaches underway to improve tumor's immunological response.
Collapse
Affiliation(s)
- Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Vikas Bhardwaj
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
23
|
Coulson-Gilmer C, Morgan RD, Nelson L, Barnes BM, Tighe A, Wardenaar R, Spierings DCJ, Schlecht H, Burghel GJ, Foijer F, Desai S, McGrail JC, Taylor SS. Replication catastrophe is responsible for intrinsic PAR glycohydrolase inhibitor-sensitivity in patient-derived ovarian cancer models. J Exp Clin Cancer Res 2021; 40:323. [PMID: 34656146 PMCID: PMC8520217 DOI: 10.1186/s13046-021-02124-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/02/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Patients with ovarian cancer often present at advanced stage and, following initial treatment success, develop recurrent drug-resistant disease. PARP inhibitors (PARPi) are yielding unprecedented survival benefits for women with BRCA-deficient disease. However, options remain limited for disease that is platinum-resistant and/or has inherent or acquired PARPi-resistance. PARG, the PAR glycohydrolase that counterbalances PARP activity, is an emerging target with potential to selectively kill tumour cells harbouring oncogene-induced DNA replication and metabolic vulnerabilities. Clinical development of PARG inhibitors (PARGi) will however require predictive biomarkers, in turn requiring an understanding of their mode of action. Furthermore, differential sensitivity to PARPi is key for expanding treatment options available for patients. METHODS A panel of 10 ovarian cancer cell lines and a living biobank of patient-derived ovarian cancer models (OCMs) were screened for PARGi-sensitivity using short- and long-term growth assays. PARGi-sensitivity was characterized using established markers for DNA replication stress, namely replication fibre asymmetry, RPA foci, KAP1 and Chk1 phosphorylation, and pan-nuclear γH2AX, indicating DNA replication catastrophe. Finally, gene expression in sensitive and resistant cells was also examined using NanoString or RNAseq. RESULTS PARGi sensitivity was identified in both ovarian cancer cell lines and patient-derived OCMs, with sensitivity accompanied by markers of persistent replication stress, and a pre-mitotic cell cycle block. Moreover, DNA replication genes are down-regulated in PARGi-sensitive cell lines consistent with an inherent DNA replication vulnerability. However, DNA replication gene expression did not predict PARGi-sensitivity in OCMs. The subset of patient-derived OCMs that are sensitive to single-agent PARG inhibition, includes models that are PARPi- and/or platinum-resistant, indicating that PARG inhibitors may represent an alternative treatment strategy for women with otherwise limited therapeutic options. CONCLUSIONS We discover that a subset of ovarian cancers are intrinsically sensitive to pharmacological PARG blockade, including drug-resistant disease, underpinned by a common mechanism of replication catastrophe. We explore the use of a transcript-based biomarker, and provide insight into the design of future clinical trials of PARGi in patients with ovarian cancer. However, our results highlight the complexity of developing a predictive biomarker for PARGi sensitivity.
Collapse
Affiliation(s)
- Camilla Coulson-Gilmer
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Robert D Morgan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Louisa Nelson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Bethany M Barnes
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - René Wardenaar
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, 9713, AV, The Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, 9713, AV, The Netherlands
| | - Helene Schlecht
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, 9713, AV, The Netherlands
| | - Sudha Desai
- Department of Histopathology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Joanne C McGrail
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| |
Collapse
|
24
|
PARylation prevents the proteasomal degradation of topoisomerase I DNA-protein crosslinks and induces their deubiquitylation. Nat Commun 2021; 12:5010. [PMID: 34408146 PMCID: PMC8373905 DOI: 10.1038/s41467-021-25252-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
Poly(ADP)-ribosylation (PARylation) regulates chromatin structure and recruits DNA repair proteins. Using single-molecule fluorescence microscopy to track topoisomerase I (TOP1) in live cells, we found that sustained PARylation blocked the repair of TOP1 DNA-protein crosslinks (TOP1-DPCs) in a similar fashion as inhibition of the ubiquitin-proteasome system (UPS). PARylation of TOP1-DPC was readily revealed by inhibiting poly(ADP-ribose) glycohydrolase (PARG), indicating the otherwise transient and reversible PARylation of the DPCs. As the UPS is a key repair mechanism for TOP1-DPCs, we investigated the impact of TOP1-DPC PARylation on the proteasome and found that the proteasome is unable to associate with and digest PARylated TOP1-DPCs. In addition, PARylation recruits the deubiquitylating enzyme USP7 to reverse the ubiquitylation of PARylated TOP1-DPCs. Our work identifies PARG as repair factor for TOP1-DPCs by enabling the proteasomal digestion of TOP1-DPCs. It also suggests the potential regulatory role of PARylation for the repair of a broad range of DPCs.
Collapse
|
25
|
Pillay N, Brady RM, Dey M, Morgan RD, Taylor SS. DNA replication stress and emerging prospects for PARG inhibitors in ovarian cancer therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:160-170. [PMID: 33524442 DOI: 10.1016/j.pbiomolbio.2021.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Poly (ADP-ribosyl)ation has central functions in maintaining genome stability, including facilitating DNA replication and repair. In cancer cells these processes are frequently disrupted, and thus interfering with poly (ADP-ribosyl)ation can exacerbate inherent genome instability and induce selective cytotoxicity. Indeed, inhibitors of poly (ADP-ribose) polymerase (PARP) are having a major clinical impact in treating women with BRCA-mutant ovarian cancer, based on a defect in homologous recombination. However, only around half of ovarian cancers harbour defects in homologous recombination, and most sensitive tumours eventually acquire PARP inhibitor resistance with treatment. Thus, there is a pressing need to develop alternative treatment strategies to target tumours with both inherent and acquired resistance to PARP inhibition. Several novel inhibitors of poly (ADP-ribose)glycohydrolase (PARG) have been described, with promising anti-cancer activity in vitro that is distinct from PARP inhibitors. Here we discuss, the role of poly (ADP-ribosyl)ation in genome stability, and the potential for PARG inhibitors as a complementary strategy to PARP inhibitors in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Nisha Pillay
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Rd, Manchester, M20 4GJ, UK; Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, UK
| | - Rosie M Brady
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Rd, Manchester, M20 4GJ, UK
| | - Malini Dey
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Rd, Manchester, M20 4GJ, UK
| | - Robert D Morgan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Rd, Manchester, M20 4GJ, UK; Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Rd, Manchester, M20 4GJ, UK.
| |
Collapse
|
26
|
Prokhorova E, Agnew T, Wondisford AR, Tellier M, Kaminski N, Beijer D, Holder J, Groslambert J, Suskiewicz MJ, Zhu K, Reber JM, Krassnig SC, Palazzo L, Murphy S, Nielsen ML, Mangerich A, Ahel D, Baets J, O'Sullivan RJ, Ahel I. Unrestrained poly-ADP-ribosylation provides insights into chromatin regulation and human disease. Mol Cell 2021; 81:2640-2655.e8. [PMID: 34019811 PMCID: PMC8221567 DOI: 10.1016/j.molcel.2021.04.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/25/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
ARH3/ADPRHL2 and PARG are the primary enzymes reversing ADP-ribosylation in vertebrates, yet their functions in vivo remain unclear. ARH3 is the only hydrolase able to remove serine-linked mono(ADP-ribose) (MAR) but is much less efficient than PARG against poly(ADP-ribose) (PAR) chains in vitro. Here, by using ARH3-deficient cells, we demonstrate that endogenous MARylation persists on chromatin throughout the cell cycle, including mitosis, and is surprisingly well tolerated. Conversely, persistent PARylation is highly toxic and has distinct physiological effects, in particular on active transcription histone marks such as H3K9ac and H3K27ac. Furthermore, we reveal a synthetic lethal interaction between ARH3 and PARG and identify loss of ARH3 as a mechanism of PARP inhibitor resistance, both of which can be exploited in cancer therapy. Finally, we extend our findings to neurodegeneration, suggesting that patients with inherited ARH3 deficiency suffer from stress-induced pathogenic increase in PARylation that can be mitigated by PARP inhibition.
Collapse
Affiliation(s)
- Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Thomas Agnew
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Nicole Kaminski
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - James Holder
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Marcin J Suskiewicz
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Julia M Reber
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sarah C Krassnig
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Luca Palazzo
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
27
|
Base excision repair and its implications to cancer therapy. Essays Biochem 2021; 64:831-843. [PMID: 32648895 PMCID: PMC7588666 DOI: 10.1042/ebc20200013] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Base excision repair (BER) has evolved to preserve the integrity of DNA following cellular oxidative stress and in response to exogenous insults. The pathway is a coordinated, sequential process involving 30 proteins or more in which single strand breaks are generated as intermediates during the repair process. While deficiencies in BER activity can lead to high mutation rates and tumorigenesis, cancer cells often rely on increased BER activity to tolerate oxidative stress. Targeting BER has been an attractive strategy to overwhelm cancer cells with DNA damage, improve the efficacy of radiotherapy and/or chemotherapy, or form part of a lethal combination with a cancer specific mutation/loss of function. We provide an update on the progress of inhibitors to enzymes involved in BER, and some of the challenges faced with targeting the BER pathway.
Collapse
|
28
|
Molecular disruption of DNA polymerase β for platinum sensitisation and synthetic lethality in epithelial ovarian cancers. Oncogene 2021; 40:2496-2508. [PMID: 33674744 PMCID: PMC8032555 DOI: 10.1038/s41388-021-01710-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023]
Abstract
Targeting PARP1 [Poly(ADP-Ribose) Polymerase 1] for synthetic lethality is a new strategy for BRCA germ-line mutated or platinum sensitive ovarian cancers. However, not all patients respond due to intrinsic or acquired resistance to PARP1 inhibitor. Development of alternative synthetic lethality approaches is a high priority. DNA polymerase β (Polβ), a critical player in base excision repair (BER), interacts with PARP1 during DNA repair. Here we show that polβ deficiency is a predictor of platinum sensitivity in human ovarian tumours. Polβ depletion not only increased platinum sensitivity but also reduced invasion, migration and impaired EMT (epithelial to mesenchymal transition) of ovarian cancer cells. Polβ small molecular inhibitors (Pamoic acid and NSC666719) were selectively toxic to BRCA2 deficient cells and associated with double-strand breaks (DSB) accumulation, cell cycle arrest and increased apoptosis. Interestingly, PARG [Poly(ADP-Ribose) Glycohydrolase] inhibitor (PDD00017273) [but not PARP1 inhibitor (Olaparib)] was synthetically lethal in polβ deficient cells. Selective toxicity to PDD00017273 was associated with poly (ADP-ribose) accumulation, reduced nicotinamide adenine dinucleotide (NAD+) level, DSB accumulation, cell cycle arrest and increased apoptosis. In human tumours, polβ-PARG co-expression adversely impacted survival in patients. Our data provide evidence that polβ targeting is a novel strategy and warrants further pharmaceutical development in epithelial ovarian cancers.
Collapse
|
29
|
Wang J, Oh YT, Li Z, Dou J, Tang S, Wang X, Wang H, Takeda S, Wang Y. RAD52 Adjusts Repair of Single-Strand Breaks via Reducing DNA-Damage-Promoted XRCC1/LIG3α Co-localization. Cell Rep 2021; 34:108625. [PMID: 33440161 PMCID: PMC7872142 DOI: 10.1016/j.celrep.2020.108625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022] Open
Abstract
Radiation sensitive 52 (RAD52) is an important factor for double-strand break repair (DSBR). However, deficiency in vertebrate/mammalian Rad52 has no apparent phenotype. The underlying mechanism remains elusive. Here, we report that RAD52 deficiency increased cell survival after camptothecin (CPT) treatment. CPT generates single-strand breaks (SSBs) that further convert to double-strand breaks (DSBs) if they are not repaired. RAD52 inhibits SSB repair (SSBR) through strong single-strand DNA (ssDNA) and/or poly(ADP-ribose) (PAR) binding affinity to reduce DNA-damage-promoted X-Ray Repair Cross Complementing 1 (XRCC1)/ligase IIIα (LIG3α) co-localization. The inhibitory effects of RAD52 on SSBR neutralize the role of RAD52 in DSBR, suggesting that RAD52 may maintain a balance between cell survival and genomic integrity. Furthermore, we demonstrate that blocking RAD52 oligomerization that disrupts RAD52’s DSBR, while retaining its ssDNA binding capacity that is required for RAD52’s inhibitory effects on SSBR, sensitizes cells to different DNA-damaging agents. This discovery provides guidance for developing efficient RAD52 inhibitors in cancer therapy. Wang et al. show that vertebrate/mammalian RAD52 promotes CPT-induced cell death via inhibition of PARP-mediated SSBR, which involves RAD52’s strong ssDNA/PAR binding affinity that reduces DNA-damage-promoted XRCC1-LIG3a interaction. Blocking of RAD52 oligomerization, while retaining the ssDNA binding capacity of RAD52, efficiently sensitizes cells to different DNA-damaging agents.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - You-Take Oh
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Zhentian Li
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Juan Dou
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Siyuan Tang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Xiang Wang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Hongyan Wang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Shunichi Takeda
- CREST Research Project, Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Ya Wang
- Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
30
|
Han Y, Yu X, Li S, Tian Y, Liu C. New Perspectives for Resistance to PARP Inhibitors in Triple-Negative Breast Cancer. Front Oncol 2020; 10:578095. [PMID: 33324554 PMCID: PMC7724080 DOI: 10.3389/fonc.2020.578095] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are a therapeutic milestone exerting a synthetic lethal effect in the treatment of cancer involving BRCA1/2 mutation. Theoretically, PARP inhibitors (PARPi) eliminate tumor cells by disrupting DNA damage repair through either PARylation or the homologous recombination (HR) pathway. However, resistance to PARPi greatly hinders therapeutic effectiveness in triple-negative breast cancer (TNBC). Owing to the high heterogeneity and few genetic targets in TNBC, there has been limited therapeutic progress in the past decades. In view of this, there is a need to circumvent resistance to PARPi and develop potential treatment strategies for TNBC. We present, herein, a review of the scientific progress and explore the mechanisms underlying PARPi resistance in TNBC. The complicated mechanisms of PARPi resistance, including drug exporter formation, loss of poly (ADP-ribose) glycohydrolase (PARG), HR reactivation, and restoration of replication fork stability, are discussed in detail in this review. Additionally, we also discuss new combination therapies with PARPi that can improve the clinical response in TNBC. The new perspectives for PARPi bring novel challenges and opportunities to overcome PARPi resistance in breast cancer.
Collapse
Affiliation(s)
- Ye Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuqiang Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Biomedical Informatics, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Harrision D, Gravells P, Thompson R, Bryant HE. Poly(ADP-Ribose) Glycohydrolase (PARG) vs. Poly(ADP-Ribose) Polymerase (PARP) - Function in Genome Maintenance and Relevance of Inhibitors for Anti-cancer Therapy. Front Mol Biosci 2020; 7:191. [PMID: 33005627 PMCID: PMC7485115 DOI: 10.3389/fmolb.2020.00191] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that catalyze the addition of poly(ADP-ribose) (PAR) subunits onto themselves and other acceptor proteins. PARPs are known to function in a large range of cellular processes including DNA repair, DNA replication, transcription and modulation of chromatin structure. Inhibition of PARP holds great potential for therapy, especially in cancer. Several PARP1/2/3 inhibitors (PARPi) have had success in treating ovarian, breast and prostate tumors harboring defects in the homologous recombination (HR) DNA repair pathway, especially BRCA1/2 mutated tumors. However, treatment is limited to specific sub-groups of patients and resistance can occur, limiting the use of PARPi. Poly(ADP-ribose) glycohydrolase (PARG) reverses the action of PARP enzymes, hydrolysing the ribose-ribose bonds present in poly(ADP-ribose). Like PARPs, PARG is involved in DNA replication and repair and PARG depleted/inhibited cells show increased sensitivity to DNA damaging agents. They also display an accumulation of perturbed replication intermediates which can lead to synthetic lethality in certain contexts. In addition, PARG is thought to play an important role in preventing the accumulation of cytoplasmic PAR and therefore parthanatos, a caspase-independent PAR-mediated type of cell death. In contrast to PARP, the therapeutic potential of PARG has been largely ignored. However, several recent papers have demonstrated the exciting possibilities that inhibitors of this enzyme may have for cancer treatment, both as single agents and in combination with cytotoxic drugs and radiotherapy. This article discusses what is known about the functions of PARP and PARG and the potential future implications of pharmacological inhibition in anti-cancer therapy.
Collapse
Affiliation(s)
- Daniel Harrision
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Polly Gravells
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ruth Thompson
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
32
|
Nagashima H, Lee CK, Tateishi K, Higuchi F, Subramanian M, Rafferty S, Melamed L, Miller JJ, Wakimoto H, Cahill DP. Poly(ADP-ribose) Glycohydrolase Inhibition Sequesters NAD + to Potentiate the Metabolic Lethality of Alkylating Chemotherapy in IDH-Mutant Tumor Cells. Cancer Discov 2020; 10:1672-1689. [PMID: 32606138 DOI: 10.1158/2159-8290.cd-20-0226] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/31/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
NAD+ is an essential cofactor metabolite and is the currency of metabolic transactions critical for cell survival. Depending on tissue context and genotype, cancer cells have unique dependencies on NAD+ metabolic pathways. PARPs catalyze oligomerization of NAD+ monomers into PAR chains during cellular response to alkylating chemotherapeutics, including procarbazine or temozolomide. Here we find that, in endogenous IDH1-mutant tumor models, alkylator-induced cytotoxicity is markedly augmented by pharmacologic inhibition or genetic knockout of the PAR breakdown enzyme PAR glycohydrolase (PARG). Both in vitro and in vivo, we observe that concurrent alkylator and PARG inhibition depletes freely available NAD+ by preventing PAR breakdown, resulting in NAD+ sequestration and collapse of metabolic homeostasis. This effect reversed with NAD+ rescue supplementation, confirming the mechanistic basis of cytotoxicity. Thus, alkylating chemotherapy exposes a genotype-specific metabolic weakness in tumor cells that can be exploited by PARG inactivation. SIGNIFICANCE: Oncogenic mutations in the isocitrate dehydrogenase genes IDH1 or IDH2 initiate diffuse gliomas of younger adulthood. Strategies to maximize the effectiveness of chemotherapy in these tumors are needed. We discover alkylating chemotherapy and concurrent PARG inhibition exploits an intrinsic metabolic weakness within these cancer cells to provide genotype-specific benefit.See related commentary by Pirozzi and Yan, p. 1629.This article is highlighted in the In This Issue feature, p. 1611.
Collapse
Affiliation(s)
- Hiroaki Nagashima
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christine K Lee
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumi Higuchi
- Department of Neurosurgery, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Megha Subramanian
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seamus Rafferty
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lisa Melamed
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie J Miller
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Zhang M, Lai Y, Vasquez JL, James DI, Smith KM, Waddell ID, Ogilvie DJ, Liu Y, Agoulnik IU. Androgen Receptor and Poly(ADP-ribose) Glycohydrolase Inhibition Increases Efficiency of Androgen Ablation in Prostate Cancer Cells. Sci Rep 2020; 10:3836. [PMID: 32123273 PMCID: PMC7052214 DOI: 10.1038/s41598-020-60849-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
There is mounting evidence of androgen receptor signaling inducing genome instability and changing DNA repair capacity in prostate cancer cells. Expression of genes associated with base excision repair (BER) is increased with prostate cancer progression and correlates with poor prognosis. Poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) are key enzymes in BER that elongate and degrade PAR polymers on target proteins. While PARP inhibitors have been tested in clinical trials and are a promising therapy for prostate cancer patients with TMPRSS2-ERG fusions and mutations in DNA repair genes, PARG inhibitors have not been evaluated. We show that PARG is a direct androgen receptor (AR) target gene. AR is recruited to the PARG locus and induces PARG expression. Androgen ablation combined with PARG inhibition synergistically reduces BER capacity in independently derived LNCaP and LAPC4 prostate cancer cell lines. A combination of PARG inhibition with androgen ablation or with the DNA damaging drug, temozolomide, significantly reduces cellular proliferation and increases DNA damage. PARG inhibition alters AR transcriptional output without changing AR protein levels. Thus, AR and PARG are engaged in reciprocal regulation suggesting that the success of androgen ablation therapy can be enhanced by PARG inhibition in prostate cancer patients.
Collapse
Affiliation(s)
- Manqi Zhang
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, College of Arts, Sciences and Education, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Judy L Vasquez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Dominic I James
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK104TG, UK
| | - Kate M Smith
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK104TG, UK
| | - Ian D Waddell
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK104TG, UK
- CRL, Chesterford Research Park, CB10 1XL, Alderley Park, UK
| | - Donald J Ogilvie
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK104TG, UK
| | - Yuan Liu
- Department of Chemistry and Biochemistry, College of Arts, Sciences and Education, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Irina U Agoulnik
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Abstract
ADP-ribosylation is an intricate and versatile posttranslational modification involved in the regulation of a vast variety of cellular processes in all kingdoms of life. Its complexity derives from the varied range of different chemical linkages, including to several amino acid side chains as well as nucleic acids termini and bases, it can adopt. In this review, we provide an overview of the different families of (ADP-ribosyl)hydrolases. We discuss their molecular functions, physiological roles, and influence on human health and disease. Together, the accumulated data support the increasingly compelling view that (ADP-ribosyl)hydrolases are a vital element within ADP-ribosyl signaling pathways and they hold the potential for novel therapeutic approaches as well as a deeper understanding of ADP-ribosylation as a whole.
Collapse
Affiliation(s)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, 80145 Naples, Italy
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
35
|
Raghunatha P, Vosoughi A, Kauppinen TM, Jackson MF. Microglial NMDA receptors drive pro-inflammatory responses via PARP-1/TRMP2 signaling. Glia 2020; 68:1421-1434. [PMID: 32036619 DOI: 10.1002/glia.23790] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
Chronic neuroinflammation driven by microglia is a characteristic feature associated with numerous neurodegenerative diseases. While acute inflammation can assist with recovery and repair, prolonged microglial pro-inflammatory responses are known to exacerbate neurodegenerative processes. Yet, detrimental outcomes of extended microglial activation are counterbalanced by beneficial outcomes including phagocytosis and release of trophic factors promoting neuronal viability. Our past work has shown that the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is a key signaling hub driving pro-inflammatory microglia responses, but the signaling pathway maintaining PARP-1 activation remains elusive. While best understood for its role in promoting DNA repair, our group has shown that PARP-1 activity can be stimulated via Ca2+ influx-dependent ERK1/2-mediated phosphorylation. However, to date, the route of Ca2+ entry responsible for stimulating PARP-1 has not been identified. A likely candidate is via Ca2+ -permeable transient receptor potential melastatin 2 (TRPM2) channels activated downstream of PARP-1 in a cascade that involves ADP-ribose (ADPR) production by poly(ADP-ribose) glycohydrolase (PARG). Here we demonstrate that NMDA receptor (NMDAR) stimulation in primary cultured microglia induces their proliferation, morphological activation and release of pro-inflammatory mediators. These responses were contingent on the recruitment of PARP-1, PARG and Ca2+ permeable TRPM2 channels. Furthermore, we show that Ca2+ influx is necessary to activate PARP-1/TRPM2 signaling, in an ERK1/2-dependent, but DNA damage independent, manner. Our findings, showing that PARP-1/TRPM2 mediate the pro-inflammatory effects of NMDAR stimulation, provides a unifying mechanism linking elevated glutamate levels to chronic neuroinflammation.
Collapse
Affiliation(s)
- Prajwal Raghunatha
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Amir Vosoughi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Tiina M Kauppinen
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada.,The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Abstract
In this review, Slade provides an overview of the molecular mechanisms and cellular consequences of PARP and PARG inhibition. The author also highlights the clinical performance of four PARP inhibitors used in cancer therapy (olaparib, rucaparib, niraparib, and talazoparib) and discusses the predictive biomarkers of inhibitor sensitivity and mechanisms of resistance as well as the means of overcoming them through combination therapy. Oxidative and replication stress underlie genomic instability of cancer cells. Amplifying genomic instability through radiotherapy and chemotherapy has been a powerful but nonselective means of killing cancer cells. Precision medicine has revolutionized cancer therapy by putting forth the concept of selective targeting of cancer cells. Poly(ADP-ribose) polymerase (PARP) inhibitors represent a successful example of precision medicine as the first drugs targeting DNA damage response to have entered the clinic. PARP inhibitors act through synthetic lethality with mutations in DNA repair genes and were approved for the treatment of BRCA mutated ovarian and breast cancer. PARP inhibitors destabilize replication forks through PARP DNA entrapment and induce cell death through replication stress-induced mitotic catastrophe. Inhibitors of poly(ADP-ribose) glycohydrolase (PARG) exploit and exacerbate replication deficiencies of cancer cells and may complement PARP inhibitors in targeting a broad range of cancer types with different sources of genomic instability. Here I provide an overview of the molecular mechanisms and cellular consequences of PARP and PARG inhibition. I highlight clinical performance of four PARP inhibitors used in cancer therapy (olaparib, rucaparib, niraparib, and talazoparib) and discuss the predictive biomarkers of inhibitor sensitivity, mechanisms of resistance as well as the means of overcoming them through combination therapy.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
37
|
Abstract
Poly(ADP-ribosyl)ation (PARylation) mediated by poly ADP-ribose polymerases (PARPs) plays a key role in DNA damage repair. Suppression of PARylation by PARP inhibitors impairs DNA damage repair and induces apoptosis of tumor cells with repair defects. Thus, PARP inhibitors have been approved by the US FDA for various types of cancer treatment. However, recent studies suggest that dePARylation also plays a key role in DNA damage repair. Instead of antagonizing PARylation, dePARylation acts as a downstream step of PARylation in DNA damage repair. Moreover, several types of dePARylation inhibitors have been developed and examined in the preclinical studies for cancer treatment. In this review, we will discuss the recent progress on the role of dePARylation in DNA damage repair and cancer suppression. We expect that targeting dePARylation could be a promising approach for cancer chemotherapy in the future.
Collapse
Affiliation(s)
- Muzaffer Ahmad Kassab
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Lily L. Yu
- Westridge School, 324 Madeline Dr., Pasadena, CA 91105 USA
| | - Xiaochun Yu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| |
Collapse
|
38
|
MacroH2A1 Regulation of Poly(ADP-Ribose) Synthesis and Stability Prevents Necrosis and Promotes DNA Repair. Mol Cell Biol 2019; 40:MCB.00230-19. [PMID: 31636161 PMCID: PMC6908255 DOI: 10.1128/mcb.00230-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Through its ability to bind the ends of poly(ADP-ribose) (PAR) chains, the function of the histone variant macroH2A1.1, including its ability to regulate transcription, is coupled to PAR polymerases (PARPs). PARP1 also has a major role in DNA damage response (DDR) signaling, and our results show that macroH2A1 alters the kinetics of PAR accumulation following acute DNA damage by both suppressing PARP activity and simultaneously protecting PAR chains from degradation. Through its ability to bind the ends of poly(ADP-ribose) (PAR) chains, the function of the histone variant macroH2A1.1, including its ability to regulate transcription, is coupled to PAR polymerases (PARPs). PARP1 also has a major role in DNA damage response (DDR) signaling, and our results show that macroH2A1 alters the kinetics of PAR accumulation following acute DNA damage by both suppressing PARP activity and simultaneously protecting PAR chains from degradation. In this way, we demonstrate that macroH2A1 prevents cellular NAD+ depletion, subsequently preventing necrotic cell death that would otherwise occur due to PARP overactivation. We also show that macroH2A1-dependent PAR stabilization promotes efficient repair of oxidative DNA damage. While the role of PAR in recruiting and regulating macrodomain-containing proteins has been established, our results demonstrate that, conversely, macrodomain-containing proteins, and specifically those containing macroH2A1, can regulate PARP1 function through a novel mechanism that promotes both survival and efficient repair during DNA damage response.
Collapse
|
39
|
Ali R, Alabdullah M, Alblihy A, Miligy I, Mesquita KA, Chan SY, Moseley P, Rakha EA, Madhusudan S. PARP1 blockade is synthetically lethal in XRCC1 deficient sporadic epithelial ovarian cancers. Cancer Lett 2019; 469:124-133. [PMID: 31669203 DOI: 10.1016/j.canlet.2019.10.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 01/07/2023]
Abstract
PARP1 inhibitor (Niraparib, Olaparib, Rucaparib) maintenance therapy improves progression-free survival in platinum sensitive sporadic epithelial ovarian cancers. However, biomarkers of response to PARPi therapy is yet to be clearly defined. XRCC1, a scaffolding protein, interacts with PARP1 during BER and SSBR. In a large clinical cohort of 525 sporadic ovarian cancers, high XRCC1 or high PARP1 protein levels was not only associated with aggressive phenotypes but was also significantly linked with poor progression-free survival (p = 0.048 & p = 0.001 respectively) and poor ovarian cancer-specific survival (p = 0.020 & p = 0.008 respectively). Pre-clinically, Olaparib and Talazoparib therapy were selectively toxic in XRCC1 deficient or knock-out platinum sensitive ovarian cancer cells in 2D and 3D models. Increased sensitivity was associated with DNA double-strand break accumulation, cell cycle arrest and apoptotic cell accumulation. We conclude that XRCC1 deficiency predicts sensitivity to PARP inhibitor therapy. PARP1 targeting is a promising new approach in XRCC1 deficient ovarian cancers.
Collapse
Affiliation(s)
- Reem Ali
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Muslim Alabdullah
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK; Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG51PB, UK
| | - Adel Alblihy
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Islam Miligy
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG51PB, UK
| | - Katia A Mesquita
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Stephen Yt Chan
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Paul Moseley
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG51PB, UK
| | - Srinivasan Madhusudan
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK; Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK.
| |
Collapse
|
40
|
Chen L, Gunji A, Uemura A, Fujihara H, Nakamoto K, Onodera T, Sasaki Y, Imamichi S, Isumi M, Nozaki T, Kamada N, Jishage KI, Masutani M. Development of renal failure in PargParp-1 null and Timm23 hypomorphic mice. Biochem Pharmacol 2019; 167:116-124. [DOI: 10.1016/j.bcp.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
41
|
Jain A, Agostini LC, McCarthy GA, Chand SN, Ramirez A, Nevler A, Cozzitorto J, Schultz CW, Lowder CY, Smith KM, Waddell ID, Raitses-Gurevich M, Stossel C, Gorman YG, Atias D, Yeo CJ, Winter JM, Olive KP, Golan T, Pishvaian MJ, Ogilvie D, James DI, Jordan AM, Brody JR. Poly (ADP) Ribose Glycohydrolase Can Be Effectively Targeted in Pancreatic Cancer. Cancer Res 2019; 79:4491-4502. [PMID: 31273064 PMCID: PMC6816506 DOI: 10.1158/0008-5472.can-18-3645] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/06/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
Abstract
Patients with metastatic pancreatic ductal adenocarcinoma (PDAC) have an average survival of less than 1 year, underscoring the importance of evaluating novel targets with matched targeted agents. We recently identified that poly (ADP) ribose glycohydrolase (PARG) is a strong candidate target due to its dependence on the pro-oncogenic mRNA stability factor HuR (ELAVL1). Here, we evaluated PARG as a target in PDAC models using both genetic silencing of PARG and established small-molecule PARG inhibitors (PARGi), PDDX-01/04. Homologous repair-deficient cells compared with homologous repair-proficient cells were more sensitive to PARGi in vitro. In vivo, silencing of PARG significantly decreased tumor growth. PARGi synergized with DNA-damaging agents (i.e., oxaliplatin and 5-fluorouracil), but not with PARPi therapy. Mechanistically, combined PARGi and oxaliplatin treatment led to persistence of detrimental PARylation, increased expression of cleaved caspase-3, and increased γH2AX foci. In summary, these data validate PARG as a relevant target in PDAC and establish current therapies that synergize with PARGi. SIGNIFICANCE: PARG is a potential target in pancreatic cancer as a single-agent anticancer therapy or in combination with current standard of care.
Collapse
Affiliation(s)
- Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lebaron C Agostini
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Grace A McCarthy
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saswati N Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - AnnJosette Ramirez
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Avinoam Nevler
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph Cozzitorto
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher W Schultz
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cinthya Yabar Lowder
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kate M Smith
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Ian D Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | | | - Chani Stossel
- Oncology Institute, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Glick Gorman
- Oncology Institute, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Dikla Atias
- Oncology Institute, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Charles J Yeo
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jordan M Winter
- Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Kenneth P Olive
- Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Talia Golan
- Oncology Institute, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael J Pishvaian
- Department of Gastrointestinal Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Donald Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Dominic I James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Allan M Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Jonathan R Brody
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Abstract
Mitosis ensures accurate segregation of duplicated DNA through tight regulation of chromosome condensation, bipolar spindle assembly, chromosome alignment in the metaphase plate, chromosome segregation and cytokinesis. Poly(ADP-ribose) polymerases (PARPs), in particular PARP1, PARP2, PARP3, PARP5a (TNKS1), as well as poly(ADP-ribose) glycohydrolase (PARG), regulate different mitotic functions, including centrosome function, mitotic spindle assembly, mitotic checkpoints, telomere length and telomere cohesion. PARP depletion or inhibition give rise to various mitotic defects such as centrosome amplification, multipolar spindles, chromosome misalignment, premature loss of cohesion, metaphase arrest, anaphase DNA bridges, lagging chromosomes, and micronuclei. As the mechanisms of PARP1/2 inhibitor-mediated cell death are being progressively elucidated, it is becoming clear that mitotic defects caused by PARP1/2 inhibition arise due to replication stress and DNA damage in S phase. As it stands, entrapment of inactive PARP1/2 on DNA phenocopies replication stress through accumulation of unresolved replication intermediates, double-stranded DNA breaks (DSBs) and incorrectly repaired DSBs, which can be transmitted from S phase to mitosis and instigate various mitotic defects, giving rise to both numerical and structural chromosomal aberrations. Cancer cells have increased levels of replication stress, which makes them particularly susceptible to a combination of agents that compromise replication fork stability. Indeed, combining PARP1/2 inhibitors with genetic deficiencies in DNA repair pathways, DNA-damaging agents, ATR and other cell cycle checkpoint inhibitors has yielded synergistic effects in killing cancer cells. Here I provide a comprehensive overview of the mitotic functions of PARPs and PARG, mitotic phenotypes induced by their depletion or inhibition, as well as the therapeutic relevance of targeting mitotic cells by directly interfering with mitotic functions or indirectly through replication stress.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
43
|
Noordermeer SM, van Attikum H. PARP Inhibitor Resistance: A Tug-of-War in BRCA-Mutated Cells. Trends Cell Biol 2019; 29:820-834. [PMID: 31421928 DOI: 10.1016/j.tcb.2019.07.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Poly-(ADP)-ribose polymerase (PARP) inhibition is synthetic lethal with deficiency for homologous recombination (HR), a pathway essential for DNA double-strand break repair. PARP inhibitors (PARPi) therefore hold great promise for the treatment of tumors with disruptive mutations in BRCA1/2 or other HR factors. Unfortunately, PARPi resistance has proved to be a major problem in the clinic. Knowledge about PARPi resistance is expanding quickly, revealing four main mechanisms that alter drug availability, affect (de)PARylation enzymes, restore HR, or restore replication fork stability. We discuss how studies on resistance mechanisms have yielded important insights into the regulation of DNA double-strand break (DSB) repair and replication fork protection, and how these studies could pave the way for novel treatment options to target resistance mechanisms or acquired vulnerabilities.
Collapse
Affiliation(s)
- Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, The Netherlands.
| | - Haico van Attikum
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
44
|
Li P, Zhen Y, Yu Y. Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry. Methods Enzymol 2019; 626:301-321. [PMID: 31606080 DOI: 10.1016/bs.mie.2019.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ADP-ribosylation is a protein post-translational modification that is critically involved in a wide array of biological processes connected to cell stress responses. Enzymes known as poly-ADP-ribose polymerases (PARPs) catalyze the addition of the ADP-ribose units to amino acids with various side chain chemistries. In particular, the PARP family member PARP1 is responsible for the modification of a large number of proteins and is involved in initiation of the DNA damage response, although the mechanisms through which PARP1 functions are still incompletely understood. The analysis of protein ADP-ribosylation is challenging because PARylation is a low-abundance, labile and heterogeneous protein modification. Recently, we developed an integrative proteomic platform for the site-specific analysis of protein ADP-ribosylation on Asp and Glu residues. Herein, we describe the method, and demonstrate its utility in quantitative characterization of the human Asp- and Glu-ADP-ribosylated proteome.
Collapse
Affiliation(s)
- Peng Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yuanli Zhen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
45
|
Targeted and Persistent 8-Oxoguanine Base Damage at Telomeres Promotes Telomere Loss and Crisis. Mol Cell 2019; 75:117-130.e6. [PMID: 31101499 PMCID: PMC6625854 DOI: 10.1016/j.molcel.2019.04.024] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/04/2019] [Accepted: 04/15/2019] [Indexed: 01/23/2023]
Abstract
Telomeres are essential for genome stability. Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere shortening. Although telomeres are hypersensitive to ROS-mediated 8-oxoguanine (8-oxoG) formation, the biological effect of this common lesion at telomeres is poorly understood because ROS have pleiotropic effects. Here we developed a chemoptogenetic tool that selectively produces 8-oxoG only at telomeres. Acute telomeric 8-oxoG formation increased telomere fragility in cells lacking OGG1, the enzyme that removes 8-oxoG, but did not compromise cell survival. However, chronic telomeric 8-oxoG induction over time shortens telomeres and impairs cell growth. Accumulation of telomeric 8-oxoG in chronically exposed OGG1-deficient cells triggers replication stress, as evidenced by mitotic DNA synthesis at telomeres, and significantly increases telomere losses. These losses generate chromosome fusions, leading to chromatin bridges and micronucleus formation upon cell division. By confining base damage to the telomeres, we show that telomeric 8-oxoG accumulation directly drives telomere crisis.
Collapse
|
46
|
Li Z, Chen Y, Tang M, Li Y, Zhu WG. Regulation of DNA damage-induced ATM activation by histone modifications. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42764-019-00004-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Toma M, Skorski T, Sliwinski T. DNA Double Strand Break Repair - Related Synthetic Lethality. Curr Med Chem 2019; 26:1446-1482. [PMID: 29421999 DOI: 10.2174/0929867325666180201114306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a heterogeneous disease with a high degree of diversity between and within tumors. Our limited knowledge of their biology results in ineffective treatment. However, personalized approach may represent a milestone in the field of anticancer therapy. It can increase specificity of treatment against tumor initiating cancer stem cells (CSCs) and cancer progenitor cells (CPCs) with minimal effect on normal cells and tissues. Cancerous cells carry multiple genetic and epigenetic aberrations which may disrupt pathways essential for cell survival. Discovery of synthetic lethality has led a new hope of creating effective and personalized antitumor treatment. Synthetic lethality occurs when simultaneous inactivation of two genes or their products causes cell death whereas individual inactivation of either gene is not lethal. The effectiveness of numerous anti-tumor therapies depends on induction of DNA damage therefore tumor cells expressing abnormalities in genes whose products are crucial for DNA repair pathways are promising targets for synthetic lethality. Here, we discuss mechanistic aspects of synthetic lethality in the context of deficiencies in DNA double strand break repair pathways. In addition, we review clinical trials utilizing synthetic lethality interactions and discuss the mechanisms of resistance.
Collapse
Affiliation(s)
- Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, 3400 North Broad Street, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
48
|
Aktas BY, Guner G, Guven DC, Arslan C, Dizdar O. Exploiting DNA repair defects in breast cancer: from chemotherapy to immunotherapy. Expert Rev Anticancer Ther 2019; 19:589-601. [PMID: 31181965 DOI: 10.1080/14737140.2019.1631162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Impaired DNA damage response (DDR) and subsequent genomic instability are associated with the carcinogenic process itself, but it also results in sensitivity of tumor cells to certain drugs and can be exploited to treat cancer by inducing deadly mutations or mitotic catastrophe. Exploiting DDR defects in breast cancer cells has been one of the main strategies in both conventional chemotherapy, targeted therapies, or immunotherapies. Areas covered: In this review, the authors first discuss DDR mechanisms in healthy cells and DDR defects in breast cancer, then focus on current therapies and developments in the treatment of DDR-deficient breast cancer. Expert opinion: Among conventional chemotherapeutics, platinum-based regimens, in particular, seem to be effective in DDR-deficient patients. PARP inhibitors represent one of the successful models of translational research in this area and clinical data showed high efficacy and reasonable toxicity with these agents in patients with breast cancer and BRCA mutation. Recent studies have underlined that some subtypes of breast cancer are highly immunogenic. Promising activity has been shown with immunotherapeutic agents, particularly in DDR-deficient breast cancers. Chemotherapeutics, DNA-repair pathway inhibitors, and immunotherapies might result in further improved outcomes in certain subsets of patients with breast cancer and DDR.
Collapse
Affiliation(s)
- Burak Yasin Aktas
- a Department of Medical Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| | - Gurkan Guner
- a Department of Medical Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| | - Deniz Can Guven
- a Department of Medical Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| | - Cagatay Arslan
- b Bahcesehir University , Faculty of Medicine, Department of Internal Medicine and Medical Oncology , Istanbul , Turkey
| | - Omer Dizdar
- a Department of Medical Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| |
Collapse
|
49
|
Tanuma SI, Shibui Y, Oyama T, Uchiumi F, Abe H. Targeting poly(ADP-ribose) glycohydrolase to draw apoptosis codes in cancer. Biochem Pharmacol 2019; 167:163-172. [PMID: 31176615 DOI: 10.1016/j.bcp.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022]
Abstract
Poly(ADP-ribosyl)ation is a unique post-translational modification of proteins. The metabolism of poly(ADP-ribose) (PAR) is tightly regulated mainly by poly(ADP-ribose) polymerases (PARP) and poly(ADP-ribose) glycohydrolase (PARG). Accumulating evidence has suggested the biological functions of PAR metabolism in control of many cellular processes, such as cell proliferation, differentiation and death by remodeling chromatin structure and regulation of DNA transaction, including DNA repair, replication, recombination and transcription. However, the physiological roles of the catabolism of PAR catalyzed by PARG remain less understood than those of PAR synthesis by PARP. Noteworthy biochemical studies have revealed the importance of PAR catabolic pathway generating nuclear ATP via the coordinated actions of PARG and ADP-ribose pyrophosphorylase (ADPRPPL) for the driving of DNA repair and the maintenance of DNA replication apparatus while repairing DNA damage. Furthermore, genetic studies have shown the value of PARG as a therapeutic molecular target for PAR-mediated diseases, such as cancer, inflammation and many pathological conditions. In this review, we present the current knowledge of de-poly(ADP-ribosyl)ation catalyzed by PARG focusing on its role in DNA repair, replication and apoptosis. Furthermore, the induction of apoptosis code of DNA replication catastrophe by synthetic lethality of PARG inhibition and the recent progresses regarding the development of small molecule PARG inhibitors and their therapeutic potentials in cancer chemotherapy are highlighted in this review.
Collapse
Affiliation(s)
- Sei-Ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Yuto Shibui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takahiro Oyama
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideaki Abe
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| |
Collapse
|
50
|
Sasaki Y, Fujimori H, Hozumi M, Onodera T, Nozaki T, Murakami Y, Ashizawa K, Inoue K, Koizumi F, Masutani M. Dysfunction of Poly (ADP-Ribose) Glycohydrolase Induces a Synthetic Lethal Effect in Dual Specificity Phosphatase 22-Deficient Lung Cancer Cells. Cancer Res 2019; 79:3851-3861. [PMID: 31142510 DOI: 10.1158/0008-5472.can-18-1037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/23/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022]
Abstract
Poly (ADP-ribose) glycohydrolase (PARG) is the main enzyme responsible for catabolism of poly (ADP-ribose) (PAR), synthesized by PARP. PARG dysfunction sensitizes certain cancer cells to alkylating agents and cisplatin by perturbing the DNA damage response. The gene mutations that sensitize cancer cells to PARG dysfunction-induced death remain to be identified. Here, we performed a comprehensive analysis of synthetic lethal genes using inducible PARG knockdown cells and identified dual specificity phosphatase 22 (DUSP22) as a novel synthetic lethal gene related to PARG dysfunction. DUSP22 is considered a tumor suppressor and its mutation has been frequently reported in lung, colon, and other tumors. In the absence of DNA damage, dual depletion of PARG and DUSP22 in HeLa and lung cancer A549 cells reduced survival compared with single-knockdown counterparts. Dual depletion of PARG and DUSP22 increased the apoptotic sub-G1 fraction and upregulated PUMA in lung cancer A549, PC14, and SBC5 cells, and inhibited the PI3K/AKT/mTOR pathway in A549 cells, suggesting that dual depletion of PARG and DUSP22 induced apoptosis by upregulating PUMA and suppressing the PI3K/AKT/mTOR pathway. Consistently, the growth of tumors derived from double knockdown A549 cells was slower compared with those derived from control siRNA-transfected cells. Taken together, these results indicate that DUSP22 deficiency exerts a synthetic lethal effect when combined with PARG dysfunction, suggesting that DUSP22 dysfunction could be a useful biomarker for cancer therapy using PARG inhibitors. SIGNIFICANCE: This study identified DUSP22 as a novel synthetic lethal gene under the condition of PARG dysfunction and elucidated the mechanism of synthetic lethality in lung cancer cells.
Collapse
Affiliation(s)
- Yuka Sasaki
- Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Hiroaki Fujimori
- Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Miyuki Hozumi
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Takae Onodera
- Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Tadashige Nozaki
- Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, Hirakata, Osaka, Japan
| | - Yasufumi Murakami
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Kazuto Ashizawa
- Department of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | - Kengo Inoue
- Pharma Valley Center, Nagaizumi-cho, Shunto-gun, Shizuoka, Japan
| | - Fumiaki Koizumi
- Department of Laboratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Mitsuko Masutani
- Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan. .,Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| |
Collapse
|