1
|
Belal SA, Lee J, Park J, Kang D, Shim K. The Effects of Oleic Acid and Palmitic Acid on Porcine Muscle Satellite Cells. Foods 2024; 13:2200. [PMID: 39063284 PMCID: PMC11276066 DOI: 10.3390/foods13142200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
We aimed to determine the effects of oleic acid (OA) and palmitic acid (PA), alone or in combination, on proliferation, differentiation, triacylglycerol (TAG) content, and gene expression in porcine muscle satellite cells (PMSCs). Results revealed that OA-alone- and PA + OA-treated PMSCs showed significantly increased viability than those in the control or PA-alone-treated groups. No significant effects on apoptosis were observed in all three treatments, whereas necrosis was significantly lower in OA-alone- and PA + OA-treated groups than in the control and PA-alone-treated groups. Myotube formation significantly increased in OA-alone and PA + OA-treated PMSCs than in the control and PA-alone-treated PMSCs. mRNA expression of the myogenesis-related genes MyoD1 and MyoG and of the adipogenesis-related genes PPARα, C/EBPα, PLIN1, FABP4, and FAS was significantly upregulated in OA-alone- and PA + OA-treated cells compared to control and PA-alone-treated cells, consistent with immunoblotting results for MyoD1 and MyoG. Supplementation of unsaturated fatty acid (OA) with/without saturated fatty acid (PA) significantly stimulated TAG accumulation in treated cells compared to the control and PA-alone-treated PMSCs. These results indicate that OA (alone and with PA) promotes proliferation by inhibiting necrosis and promoting myotube formation and TAG accumulation, likely upregulating myogenesis- and adipogenesis-related gene expression by modulating the effects of PA in PMSCs.
Collapse
Affiliation(s)
- Shah Ahmed Belal
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.A.B.); (D.K.)
- Department of Poultry Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jeongeun Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Jinryong Park
- Food Processing Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea;
| | - Darae Kang
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.A.B.); (D.K.)
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.A.B.); (D.K.)
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
2
|
Wang H, He K, Zeng X, Zhou X, Yan F, Yang S, Zhao A. Isolation and identification of goose skeletal muscle satellite cells and preliminary study on the function of C1q and tumor necrosis factor-related protein 3 gene. Anim Biosci 2020; 34:1078-1087. [PMID: 33152229 PMCID: PMC8100491 DOI: 10.5713/ajas.20.0430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022] Open
Abstract
Objective Skeletal muscle satellite cells (SMSCs) are significant for the growth, regeneration, and maintenance of skeletal muscle after birth. However, currently, few studies have been performed on the isolation, culture and inducing differentiation of goose muscle satellite cells. Previous studies have shown that C1q and tumor necrosis factor-related protein 3 (CTRP3) participated in the process of muscle growth and development, but its role in the goose skeletal muscle development is not yet clear. This study aimed to isolate, culture, and identify the goose SMSCs in vitro. Additionally, to explore the function of CTRP3 in goose SMSCs. Methods Goose SMSCs were isolated using 0.25% trypsin from leg muscle (LM) of 15 to 20 day fertilized goose eggs. Cell differentiation was induced by transferring the cells to differentiation medium with 2% horse serum and 1% penicillin streptomycin. Immunofluorescence staining of Desmin and Pax7 was used to identify goose SMSCs. Quantitative realtime polymerase chain reaction and western blot were applied to explore developmental expression profile of CTRP3 in LM and the regulation of CTRP3 on myosin heavy chains (MyHC), myogenin (MyoG) expression and Notch signaling pathway related genes expression. Results The goose SMSCs were successfully isolated and cultured. The expression of Pax7 and Desmin were observed in the isolated cells. The expression of CTRP3 decreased significantly during leg muscle development. Overexpression of CTRP3 could enhance the expression of two myogenic differentiation marker genes, MyHC and MyoG. But knockdown of CTRP3 suppressed their expression. Furthermore, CTRP3 could repress the mRNA level of Notch signaling pathway-related genes, notch receptor 1, notch receptor 2 and hairy/enhancer-of-split related with YRPW motif 1, which previously showed a negative regulation in myoblast differentiation. Conclusion These findings provide a useful cell model for the future research on goose muscle development and suggest that CTRP3 may play an essential role in skeletal muscle growth of goose.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Xuehua Zeng
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Feifei Yan
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| |
Collapse
|
3
|
MiR-199b represses porcine muscle satellite cells proliferation by targeting JAG1. Gene 2019; 691:24-33. [DOI: 10.1016/j.gene.2018.12.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 02/02/2023]
|
4
|
MiR-34c represses muscle development by forming a regulatory loop with Notch1. Sci Rep 2017; 7:9346. [PMID: 28839212 PMCID: PMC5571228 DOI: 10.1038/s41598-017-09688-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/19/2017] [Indexed: 11/08/2022] Open
Abstract
Since pork accounts for about 40% of global meat consumption, the pig is an important economic animal for meat production. Pig is also a useful medical model for humans due to its similarity in size and physiology. Understanding the mechanism of muscle development has great implication for animal breeding and human health. Previous studies showed porcine muscle satellite cells (PSCs) are important for postnatal skeletal muscle growth, and Notch1 signaling pathway and miRNAs regulate the skeletal muscle development. Notch1 signal pathway regulates the transcription of certain types of miRNAs which further affects target gene expression. However, the specific relationship between Notch1 and miRNAs during muscle development has not been established. We found miR-34c is decreased in PSCs overexpressed N1ICD. Through the overexpression and inhibition of mi-34c, we demonstrated that miR-34c inhibits PSCs proliferation and promotes PSCs differentiation. Using dual-luciferase reporter assay and Chromatin immunoprecipitation, we demonstrate there is a reciprocal regulatory loop between Notch1 and miR-34c. Furthermore, injection of miR-34c lentivirus into mice caused repression of gastrocnemius muscle development. In summary, our data revealed that miR-34c can form a regulatory loop with Notch1 to repress muscle development, and this result expands our understanding of muscle development mechanism.
Collapse
|
5
|
Gao CQ, Xu YL, Jin CL, Hu XC, Li HC, Xing GX, Yan HC, Wang XQ. Differentiation capacities of skeletal muscle satellite cells in Lantang and Landrace piglets. Oncotarget 2017; 8:43192-43200. [PMID: 28574820 PMCID: PMC5522138 DOI: 10.18632/oncotarget.17860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/03/2017] [Indexed: 01/31/2023] Open
Abstract
We isolated and cultured satellite cells (SCs) from the longissimus dorsi muscles of 1-day-old male Landrace and Lantang piglets to compare the SC differentiation capacity in the two breeds. Lantang piglets yielded more (P < 0.05) SCs per gram of muscle than Landrace piglets (5.2 ± 0.9×104 vs. 2.4 ± 0.2×104). Transcription of the differentiation markers myogenin and myosin heavy chain I (MyHC I) in the longissimus dorsi muscle was higher in Lantang than Landrace piglets (P < 0.05). Protein levels of myogenin (P < 0.05), MyHC I (P < 0.05), and myogenic regulatory factor 4 (P = 0.07) were higher in Lantang than Landrace piglet SCs after 72 h of differentiation. Creatine kinase activity was higher in Lantang than Landrace piglet SCs after 24, 48, and 72 h of differentiation (P < 0.05), and there was a greater fusion index in Landrace piglet SCs after 72 h of differentiation. In addition, phosphorylation of Akt, mTOR, S6K1, S6, and 4EBP1 was lower in Lantang than Landrace piglet SCs (P < 0.05). Thus differentiation was more extensive in Lantang than Landrace piglet SCs, but expression of the mTOR signaling pathway was lower in Lantang piglet SCs, suggesting mTOR signaling may inhibit myogenic differentiation. These findings reveal that mTOR signaling is a factor in myogenesis and imply that mTOR could potentially serve as an activator of myoblast differentiation and muscle regeneration.
Collapse
Affiliation(s)
- Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| | - Yin-Long Xu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
- Guangzhou United Bio-Technology Feed Co., Ltd, Guangzhou, China
| | - Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| | - Xiao-Chao Hu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| | - Hai-Chang Li
- Davis Heart & Lung Research Institute, Wexner Medical Center at the Ohio State University, Columbus, OH, USA
| | - Guang-Xu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| |
Collapse
|
6
|
Rhoads RP, Baumgard LH, El-Kadi SW, Zhao LD. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Roles for insulin-supported skeletal muscle growth. J Anim Sci 2017; 94:1791-802. [PMID: 27285676 DOI: 10.2527/jas.2015-0110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Basic principles governing skeletal muscle growth and development, from a cellular point of view, have been realized for several decades. Skeletal muscle is marked by the capacity for rapid hypertrophy and increases in protein content. Ultimately, skeletal muscle growth is controlled by 2 basic means: 1) myonuclear accumulation stemming from satellite cell (myoblast) proliferation and 2) the balance of protein synthesis and degradation. Each process underlies the rapid changes in lean tissue accretion evident during fetal and neonatal growth and is particularly sensitive to nutritional manipulation. Although multiple signals converge to alter skeletal muscle mass, postprandial changes in the anabolic hormone insulin link feed intake with enhanced rates of protein synthesis in the neonate. Indeed, a consequence of insulin-deficient states such as malnutrition is reduced myoblast activity and a net loss of body protein. A well-characterized mechanism mediating the anabolic effect of insulin involves the phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling pathway. Activation of mTOR leads to translation initiation control via the phosphorylation of downstream targets. Modulation of this pathway by insulin, as well as by other hormones and nutrients, accounts for enhanced protein synthesis leading to efficient lean tissue accretion and rapid skeletal muscle gain in the growing animal. Dysfunctional insulin activity during fetal and neonatal stages likely alters growth through cellular and protein synthetic capacities.
Collapse
|
7
|
Wang W, Yang YB, Ma XY, Yu XL, Hwang I. Changes in calpain and caspase gene expression at the mRNA level during bovine muscle satellite cell myogenesis and the correlation between the cell model and the muscle tissue. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Elucidating a molecular mechanism that the deterioration of porcine meat quality responds to increased cortisol based on transcriptome sequencing. Sci Rep 2016; 6:36589. [PMID: 27833113 PMCID: PMC5105143 DOI: 10.1038/srep36589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
Stress response is tightly linked to meat quality. The current understanding of the intrinsic mechanism of meat deterioration under stress is limited. Here, male piglets were randomly assigned to cortisol and control groups. Our results showed that when serum cortisol level was significantly increased, the meat color at 1 h postmortem, muscle bundle ratio, apoptosis rate, and gene expression levels of calcium channel and cell apoptosis including SERCA1, IP3R1, BAX, Bcl-2, and Caspase-3, were notably increased. However, the value of drip loss at 24 h postmortem and serum CK were significantly decreased. Additionally, a large number of differentially expressed genes (DEGs) in GC regulation mechanism were screened out using transcriptome sequencing technology. A total of 223 DEGs were found, including 80 up-regulated genes and 143 down-regulated genes. A total of 204 genes were enriched in GO terms, and 140 genes annotated into in KEGG database. Numerous genes were primarily involved in defense, inflammatory and wound responses. This study not only identifies important genes and signalling pathways that may affect the meat quality but also offers a reference for breeding and feeding management to provide consumers with better quality pork products.
Collapse
|
9
|
Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MRI, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2016; 93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.
Collapse
|
10
|
Abstract
The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.
Collapse
|
11
|
Li BJ, Li PH, Huang RH, Sun WX, Wang H, Li QF, Chen J, Wu WJ, Liu HL. Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1171-7. [PMID: 26104526 PMCID: PMC4478486 DOI: 10.5713/ajas.14.0848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/12/2015] [Accepted: 02/22/2015] [Indexed: 02/05/2023]
Abstract
The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.
Collapse
Affiliation(s)
- Bo-Jiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping-Hua Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China ; Huaian Academy of Nanjing Agricultural University, Huaian, Jiangsu, 223001, China
| | - Rui-Hua Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China ; Huaian Academy of Nanjing Agricultural University, Huaian, Jiangsu, 223001, China
| | - Wen-Xing Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi-Fa Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang-Jun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China ; Huaian Academy of Nanjing Agricultural University, Huaian, Jiangsu, 223001, China
| | - Hong-Lin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Lim D, Lee SH, Kim NK, Cho YM, Chai HH, Seong HH, Kim H. Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean) Cattle. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:19-29. [PMID: 25049701 PMCID: PMC4093059 DOI: 10.5713/ajas.2012.12375] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/26/2012] [Accepted: 08/07/2012] [Indexed: 11/27/2022]
Abstract
Marbling (intramuscular fat) is an important trait that affects meat quality and is a casual factor determining the price of beef in the Korean beef market. It is a complex trait and has many biological pathways related to muscle and fat. There is a need to identify functional modules or genes related to marbling traits and investigate their relationships through a weighted gene co-expression network analysis based on the system level. Therefore, we investigated the co-expression relationships of genes related to the 'marbling score' trait and systemically analyzed the network topology in Hanwoo (Korean cattle). As a result, we determined 3 modules (gene groups) that showed statistically significant results for marbling score. In particular, one module (denoted as red) has a statistically significant result for marbling score (p = 0.008) and intramuscular fat (p = 0.02) and water capacity (p = 0.006). From functional enrichment and relationship analysis of the red module, the pathway hub genes (IL6, CHRNE, RB1, INHBA and NPPA) have a direct interaction relationship and share the biological functions related to fat or muscle, such as adipogenesis or muscle growth. This is the first gene network study with m.logissimus in Hanwoo to observe co-expression patterns in divergent marbling phenotypes. It may provide insights into the functional mechanisms of the marbling trait.
Collapse
Affiliation(s)
- Dajeong Lim
- National Institute of Animal Science, RDA, Suwon, Korea ; Department of Food and Animal Biotechnology, Seoul National University, Seoul, Korea
| | | | - Nam-Kuk Kim
- National Agricultural products Quality management Service(NAQS), Seoul, Korea
| | - Yong-Min Cho
- National Institute of Animal Science, RDA, Suwon, Korea
| | - Han-Ha Chai
- National Institute of Animal Science, RDA, Suwon, Korea
| | | | - Heebal Kim
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Korea
| |
Collapse
|
13
|
Fernyhough ME, Bucci LR, Feliciano J, Dodson MV. The Effect of Nutritional Supplements on Muscle-Derived Stem Cells in vitro. Int J Stem Cells 2014; 3:63-7. [PMID: 24855542 DOI: 10.15283/ijsc.2010.3.1.63] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2010] [Indexed: 11/09/2022] Open
Abstract
Postnatal muscle stem cells, recognized as myogenic satellite cells, were isolated from sheep skeletal muscle and used in these experiments. Forty-one different metabolic compounds that are commonly found in commercially-available oral supplements were exposed to primary muscle stem cell cultures, in an effort to ascertain whether any one compound could alter satellite cell proliferation or differentiation (a first step towards elucidating the metabolomics or nutrigenomics of these stem cells). These compounds included energetic moieties, amino acid analogs, fatty acids and analogs including different forms of conjugated linoleic acid, minerals and mineral conjugates, insect hormones, caffeine, plant extracts, and extracts from over-the-counter supplements, and were obtained by key manufacturers in a form that would be commercially available. The compounds were sterilized and then exposed to myogenic satellite cell cultures at different levels (ranging from toxic to physiologic) to ascertain if there would be an effect. The results suggested that exposure of satellite cells to only a few compounds resulted in any measurable effect(s). Ten compounds elicited increases in proliferation, and four compounds promoted increases in differentiation. These results suggest avenues for the exploration of enhancing muscle stem cell activity of interest for muscle wasting disorders, sarcopenia of aging and physical performance.
Collapse
Affiliation(s)
| | - Luke R Bucci
- Schiff Nutrition International, Salt Lake City, UT 84104, USA
| | - Jeff Feliciano
- Schiff Nutrition International, Salt Lake City, UT 84104, USA
| | - Michael V Dodson
- Muscle Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
14
|
Targeted suppression of μ-calpain and caspase 9 expression and its effect on caspase 3 and caspase 7 in satellite cells of Korean Hanwoo cattle. Cell Biol Int 2014; 36:843-9. [PMID: 22657938 DOI: 10.1042/cbi20120050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The calpains play an important role in cell death and cell signalling. Caspases catalyse wholesale destruction of cellular proteins which is a major cause of cellular death. The current study looks at the function of μ-calpain and caspase 9, using RNAi (RNA interference)-mediated silencing, and to observe the mRNA expression level of caspase genes during satellite cell growth. The satellite cells were treated with siRNA (small interfering RNA) of μ-calpain and caspase 9 separately. There was reduction of 16 and 24% in CAPN1 (calpain1)-siRNA2 and CAPN1-siRNA3 transfected cells respectively, whereas it was 60 and 56% in CAPN1-siRNA1 and CAPN1-siRNA4 transfected cells respectively. CAPN1-siRNA4 and CAPN1-siRNA1 treated cells showed more reduction in caspase 3 and 7 gene expression. CARD9 (caspase recruitment domain 9)-siRNA1 and CARD9-siRNA2-treated cells showed reduction of 40 and 49% respectively. CARD9-siRNA1 and CARD9-siRNA2 showed an increase in caspase 3 gene expression, whereas CARD9-siRNA2 showed reduction in caspase 7 gene expression. These results suggest a strong cross-talk between μ-calpain and the caspase enzyme systems. Suppression of target genes, such as μ-calpain and caspase 9, might have genuine potential in the treatment of skeletal muscle atrophy.
Collapse
|
15
|
Van Ba H, Inho H. Significant role of μ-calpain (CANP1) in proliferation/survival of bovine skeletal muscle satellite cells. In Vitro Cell Dev Biol Anim 2013; 49:785-97. [PMID: 23943438 PMCID: PMC3825316 DOI: 10.1007/s11626-013-9666-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/08/2013] [Indexed: 01/24/2023]
Abstract
Calpains are a family of Ca2+-dependent intracellular cysteine proteases, including the ubiquitously expressed μ-calpain (CANP1) and m-calpain (CANP2). The CANP1 has been found to play a central role in postmortem proteolysis and meat tenderization. However, the physiological roles of CANP1 in cattle skeletal satellite cells remain unclear. In this study, three small interference RNA sequences (siRNAs) targeting CANP1 gene were designed and ligated into pSilencer plasmid vector to construct shRNA expression constructs. Suppression of CANP1 in satellite cells was evaluated using these shRNA expressing constructs. Our results revealed that all three siRNAs could downregulate the expression of CANP1. Suppression of CANP1 significantly reduced cell viability in cell proliferation when compared with control cells. We found a crosstalk between CANP1 and caspase systems, particularly suppression of CANP1 resulted in an increase in the expressions of apoptotic caspases such as caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9, as well as heat-shock protein (HSP) systems. Additionally, suppression of CANP1 led to the upregulation of other apoptosis and DNA damage-regulating genes whilst at the same time downregulating proliferation, migration, and differentiation-regulating genes. The results of our findings report for the first time that suppression of CANP1 resulted in the activation of caspase and HSP systems which might in turn regulate apoptosis through the caspase-dependent cell death pathway. This clearly demonstrates the key roles of CANP1 in regulation of cell proliferation and survival.
Collapse
Affiliation(s)
- Hoa Van Ba
- Department of Animal Science and Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | | |
Collapse
|
16
|
Effects of 17β-estradiol on turkey myogenic satellite cell proliferation, differentiation, and expression of glypican-1, MyoD and myogenin. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:565-71. [DOI: 10.1016/j.cbpa.2013.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/28/2012] [Accepted: 01/03/2013] [Indexed: 11/19/2022]
|
17
|
The effect of troglitazone on lipid accumulation and related gene expression in Hanwoo muscle satellite cell. J Physiol Biochem 2012; 69:97-109. [PMID: 22773295 DOI: 10.1007/s13105-012-0193-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/22/2012] [Indexed: 12/25/2022]
Abstract
The current study was undertaken to determine the effect of the troglitazone (TGZ) on the expression of peroxisome proliferator-activating receptor (PPARγ), CCAAT/enhancer-binding protein, fatty acid binding protein 4, calpain 1 (CAPN1), and lipid accumulation in the myotube of Hanwoo muscle satellite cells. The satellite cells were treated with 5, 10, and 50 μM of TGZ for indicated time intervals. TGZ promoted the trans-differentiation with significant increase in glycerol accumulation. Polymerase chain reaction (PCR) and microarray results indicated that the TGZ treatment significantly increased the expression of adipogenic transcription factors. TGZ (10 and 50 μM) increased the CAPN1 gene expression 2.2- and 2.6-fold in real-time polymerase chain reaction analysis and 0.52- and 0.25-fold in microarray analysis, respectively, when compared with their respective controls. This result suggests that CAPN1 gene might be involved in the adipogenic differentiation programs. In addition, 13 genes were upregulated and 12 genes were downregulated in microarray analysis. Most of the up/downregulated genes were directly linked with adipogenesis.
Collapse
|
18
|
Ge X, Yu J, Jiang H. Growth hormone stimulates protein synthesis in bovine skeletal muscle cells without altering insulin-like growth factor-I mRNA expression. J Anim Sci 2011; 90:1126-33. [PMID: 22100600 DOI: 10.2527/jas.2011-4358] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Growth hormone is a major stimulator of skeletal muscle growth in animals, including cattle. In this study, we determined whether GH stimulates skeletal muscle growth in cattle by direct stimulation of proliferation or fusion of myoblasts, by direct stimulation of protein synthesis, or by direct inhibition of protein degradation in myotubes. We also determined whether these direct effects of GH are mediated by IGF-I produced by myoblasts or myotubes. Satellite cells were isolated from cattle skeletal muscle and were allowed to proliferate as myoblasts or induced to fuse into myotubes in culture. Growth hormone at 10 and 100 ng/mL increased protein synthesis in myotubes (P < 0.05), but had no effect on protein degradation in myotubes or proliferation of myoblasts (P > 0.05). Insulin-like growth factor-I at 50 and 500 ng/mL stimulated protein synthesis (P < 0.01), and this effect of IGF-I was much greater than that of GH (P < 0.05). Besides stimulating protein synthesis, IGF-I at 50 and 500 ng/mL also inhibited protein degradation in myotubes (P < 0.01), and IGF-I at 500 ng/mL stimulated proliferation of myoblasts (P < 0.05). Neither GH nor IGF-I had effects on fusion of myoblasts into myotubes (P > 0.1). These data indicate that GH and IGF-I have largely different direct effects on bovine muscle cells. Growth hormone at 10 and 100 ng/mL had no effect on IGF-I mRNA expression in either myoblasts or myotubes (P > 0.1). This lack of effect was not because the cultured myoblasts or myotubes were not responsive to GH; GH receptor mRNA was detectable in them and the expression of the cytokine-inducible SH2-containing protein (CISH) gene, a well-established GH target gene, was increased by GH in bovine myoblasts (P < 0.05). Overall, the data suggest that GH stimulates skeletal muscle growth in cattle in part through stimulation of protein synthesis in the muscle and that this stimulation is not mediated through increased IGF-I mRNA expression in the muscle.
Collapse
Affiliation(s)
- X Ge
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | | | |
Collapse
|
19
|
Chan CYX, Masui O, Krakovska O, Belozerov VE, Voisin S, Ghanny S, Chen J, Moyez D, Zhu P, Evans KR, McDermott JC, Siu KWM. Identification of differentially regulated secretome components during skeletal myogenesis. Mol Cell Proteomics 2011; 10:M110.004804. [PMID: 21343469 DOI: 10.1074/mcp.m110.004804] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myogenesis is a well-characterized program of cellular differentiation that is exquisitely sensitive to the extracellular milieu. Systematic characterization of the myogenic secretome (i.e. the ensemble of secreted proteins) is, therefore, warranted for the identification of novel secretome components that regulate both the pluripotency of these progenitor mesenchymal cells, and also their commitment and passage through the differentiation program. Previously, we have successfully identified 26 secreted proteins in the mouse skeletal muscle cell line C2C12 (1). In an effort to attain a more comprehensive picture of the regulation of myogenesis by its extracellular milieu, quantitative profiling employing stable isotope labeling by amino acids in cell culture was implemented in conjunction with two parallel high throughput online reverse phase liquid chromatography-tandem mass spectrometry systems. In summary, 34 secreted proteins were quantified, 30 of which were shown to be differentially expressed during muscle development. Intriguingly, our analysis has revealed several novel up- and down-regulated secretome components that may have critical biological relevance for both the maintenance of pluripotency and the passage of cells through the differentiation program. In particular, the altered regulation of secretome components, including follistatin-like protein-1, osteoglycin, spondin-2, and cytokine-induced apoptosis inhibitor-1, along with constitutively expressed factors, such as fibulin-2, illustrate dynamic changes in the secretome that take place when differentiation to a specific lineage occurs.
Collapse
Affiliation(s)
- C Y X'avia Chan
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dodson MV, Hausman GJ, Guan L, Du M, Rasmussen TP, Poulos SP, Mir P, Bergen WG, Fernyhough ME, McFarland DC, Rhoads RP, Soret B, Reecy JM, Velleman SG, Jiang Z. Skeletal muscle stem cells from animals I. Basic cell biology. Int J Biol Sci 2010; 6:465-74. [PMID: 20827399 PMCID: PMC2935669 DOI: 10.7150/ijbs.6.465] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/27/2010] [Indexed: 01/14/2023] Open
Abstract
Skeletal muscle stem cells from food-producing animals are of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding of muscle stem cell biology and function is essential for developing technologies and strategies to augment the metabolic efficiency and muscle hypertrophy of growing animals potentially leading to greater efficiency and reduced environmental impacts of animal production, while concomitantly improving product uniformity and consumer acceptance and enjoyment of muscle foods.
Collapse
Affiliation(s)
- Michael V Dodson
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tatsumi R. Mechano-biology of skeletal muscle hypertrophy and regeneration: possible mechanism of stretch-induced activation of resident myogenic stem cells. Anim Sci J 2010; 81:11-20. [PMID: 20163667 DOI: 10.1111/j.1740-0929.2009.00712.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In undamaged postnatal muscle fibers with normal contraction and relaxation activities, quiescent satellite cells of resident myogenic stem cells are interposed between the overlying external lamina and the sarcolemma of a subjacent mature muscle fiber. When muscle is injured, exercised, overused or mechanically stretched, these cells are activated to enter the cell proliferation cycle, divide, differentiate, and fuse with the adjacent muscle fiber, and are responsible for regeneration and work-induced hypertrophy of muscle fibers. Therefore, a mechanism must exist to translate mechanical changes in muscle tissue into chemical signals that can activate satellite cells. Recent studies of satellite cells or single muscle fibers in culture and in vivo demonstrated the essential role of hepatocyte growth factor (HGF) and nitric oxide (NO) radical in the activation pathway. These experiments have also reported that mechanically stretching satellite cells or living skeletal muscles triggers the activation by rapid release of HGF from its extracellular tethering and the subsequent presentation to the receptor c-met. HGF release has been shown to rely on calcium-calmodulin formation and NO radical production in satellite cells and/or muscle fibers in response to the mechanical perturbation, and depend on the subsequent up-regulation of matrix metalloproteinase (MMP) activity. These results indicate that the activation mechanism is a cascade of events including calcium ion influx, calcium-calmodulin formation, NO synthase activation, NO radical production, MMP activation, HGF release and binding to c-met. Better understanding of 'mechano-biology' on the satellite cell activation is essential for designing procedures that could enhance muscle growth and repair activities in meat-animal agriculture and also in neuromuscular disease and aging in humans.
Collapse
Affiliation(s)
- Ryuichi Tatsumi
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Kyushu University, Higashi, Fukuoka, Japan.
| |
Collapse
|
22
|
Suzuki T, Takaishi H, Sakata T, Do MKQ, Hara M, Sato A, Mizunoya W, Nishimura T, Hattori A, Ikeuchi Y, Tatsumi R. In vitro measurement of post-natal changes in proliferating satellite cell frequency during rat muscle growth. Anim Sci J 2010; 81:245-51. [PMID: 20438507 DOI: 10.1111/j.1740-0929.2009.00734.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Satellite cells, resident myogenic stem cells found in postnatal skeletal muscle, are most abundant during early postnatal development and sharply decline in frequency thereafter to adult levels in mice and rats. Therefore, postnatal changes in satellite cell mitotic activities are important aspects for further understanding a muscle growth strategy. In large meat-production animals, however, the traditional in vivo proliferation assay may be less realistic because it requires intra-peritoneal (ip) injection of huge dosage of mutagenic nucleosides, (3)H-labeled thymidine or bromodeoxyuridine (BrdU), at each age-time of sacrifice. We report in the present pilot study using rats that in vivo proliferation activity of satellite cells can be evaluated by an in vitro BrdU-incorporation assay in early cultures. Briefly, satellite cells were prepared from upper hind-limb and back muscles and maintained for 24 h with imposing by BrdU addition for the last 2 h, followed by the regular immunocytochemistry for determining BrdU-incorporated cell percentage. This in vitro assay demonstrated a rapid decrease in proliferating satellite cell frequency to the adult level during about 3-month period after birth, and yielded a high correlation to the measurements by the in vivo BrdU ip-injection method during the postnatal period examined from day-2 to month-11. The in vitro proliferation assay may be further adaptable for large domestic animals by the combination with a muscle biopsy technique that enables age-interval sampling from the same growing animals.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Kyushu University, Higashi, Fukuoka and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|